JP6296776B2 - Biofertilizer manufacturing method - Google Patents

Biofertilizer manufacturing method Download PDF

Info

Publication number
JP6296776B2
JP6296776B2 JP2013258791A JP2013258791A JP6296776B2 JP 6296776 B2 JP6296776 B2 JP 6296776B2 JP 2013258791 A JP2013258791 A JP 2013258791A JP 2013258791 A JP2013258791 A JP 2013258791A JP 6296776 B2 JP6296776 B2 JP 6296776B2
Authority
JP
Japan
Prior art keywords
biofertilizer
inoculation
fertilizer
strain
root
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013258791A
Other languages
Japanese (ja)
Other versions
JP2015113274A (en
Inventor
愛 小野
愛 小野
貴志 見城
貴志 見城
智孝 浅野
智孝 浅野
吉川 正巳
正巳 吉川
横山 正
正 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASAHI INDUSTRIES CO., LTD.
KYOTO PREFECTURE
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Original Assignee
ASAHI INDUSTRIES CO., LTD.
KYOTO PREFECTURE
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASAHI INDUSTRIES CO., LTD., KYOTO PREFECTURE, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY filed Critical ASAHI INDUSTRIES CO., LTD.
Priority to JP2013258791A priority Critical patent/JP6296776B2/en
Priority to PCT/JP2014/083111 priority patent/WO2015093428A1/en
Publication of JP2015113274A publication Critical patent/JP2015113274A/en
Application granted granted Critical
Publication of JP6296776B2 publication Critical patent/JP6296776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/04Preserving or maintaining viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fertilizers (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

この発明は、微生物資材を利用しているバイオ肥料に関し、特に、保存性に優れ、作物定着性の高い微生物肥料に関する。   The present invention relates to a biofertilizer that uses microbial materials, and in particular, relates to a microbial fertilizer that is excellent in preservability and has high crop fixing ability.

従来から、コスト的に優位で、速効的、かつ高い肥効効率という観点から主に化学肥料が一般的な作物生産に使用され、作物増産に貢献してきた。   Conventionally, chemical fertilizers have been used mainly for general crop production from the viewpoint of cost advantage, quick effect, and high fertilization efficiency, and have contributed to increased crop production.

しかしながら、様々な食品の品質、安全性に関する問題や、肥料成分の溶脱、等による環境負荷問題の発生などから、近年、化学肥料や農薬、等の化学物質に依存した栽培体型が見直される傾向にある。そして、消費者が希望する、安心、安全、かつ良食味な作物生産に対応し、環境保全型農業を追及する傾向が強まっている。これに伴って、微生物を含んだ資材の施用が増加する傾向にある。   However, due to various food quality and safety issues and environmental load problems due to the leaching of fertilizer components, etc., there has been a tendency in recent years to reexamine cultivated body types that depend on chemical substances such as chemical fertilizers and agricultural chemicals. is there. In addition, there is an increasing tendency to pursue environmental conservation agriculture in response to the production of safe, safe, and tasty crops desired by consumers. Along with this, application of materials containing microorganisms tends to increase.

微生物を含んだ資材の施用に供すべく、これまで市販されていた微生物資材には、冷蔵条件で保管したり、スキムミルク等による単一の菌ペーストを調製しなければ、長期間(例えば、3カ月)、菌数や、その効果を維持することが難しいという問題があった。   In order to use materials containing microorganisms, microbial materials that have been marketed so far must be stored for a long period of time (for example, 3 months) unless they are stored under refrigerated conditions or a single fungus paste such as skim milk is prepared. ), The number of bacteria and the problem that it was difficult to maintain the effect.

このような問題への対策として、紫外線の照射や、植物残渣、等を添加すること、等によって資材に含まれる菌を単一化すること(雑菌を除く)や、対象菌のみの活性を増加させることなどが一般的に行われていた。   As countermeasures against such problems, it is possible to unify bacteria contained in materials (excluding miscellaneous bacteria) by adding ultraviolet rays, adding plant residues, etc., and increasing the activity of only the target bacteria It was generally done.

このような微生物資材において、菌数や、その効果を維持することを目的とした提案もいくつか行われている。例えば、特許文献1には、肥料や多孔質体に微生物培養液あるいは微生物培養液上澄みを加え、造粒した微生物資材が提案されている。また、特許文献2には、Bacillus属細菌を芽胞化することにより、高い生残性を保ち、菌濃度の高い飼料にできることが提案されている。   In such microbial materials, some proposals have been made for the purpose of maintaining the number of bacteria and the effect thereof. For example, Patent Document 1 proposes a microorganism material that is granulated by adding a microorganism culture solution or a supernatant of a microorganism culture solution to a fertilizer or a porous material. Further, Patent Document 2 proposes that a Bacillus genus bacterium can be sporulated to maintain a high survival rate and make a feed with a high bacterial concentration.

特開2002−363561号公報JP 2002-363561 A 特開2000−217567号公報JP 2000-217567 A

この発明は、常温(25℃前後)で6ケ月以上、菌数や、その効果を維持可能なバイオ肥料を提案することを目的にしている。   An object of the present invention is to propose a biofertilizer capable of maintaining the number of bacteria and the effect for 6 months or more at room temperature (around 25 ° C.).

本願発明は、Bacillus属細菌を培養した後、65℃〜80℃の温度範囲で60分間以上加熱処理してなる芽胞率100%のバイオ肥料である。   The present invention is a biofertilizer having a spore ratio of 100%, which is obtained by culturing Bacillus bacteria and then heat-treating it at a temperature range of 65 ° C to 80 ° C for 60 minutes or more.

この発明によれば、常温(25℃前後)で6ケ月以上、菌数や、その効果を維持可能なバイオ肥料を提供することができる。   According to the present invention, it is possible to provide a biofertilizer capable of maintaining the number of bacteria and the effect for 6 months or more at room temperature (around 25 ° C.).

また、Bacillus属細菌に従来から認められていた生育促進、等の特性を一層効果的に発現させ、特に、施用した作物(例えば、イネ)の根域拡大、根部への定着性向上、根の重量増加効果、栄養吸収促進効果を向上させることのできるバイオ肥料を提供することができる。   In addition, the characteristics of Bacillus bacteria such as growth promotion, which have been recognized in the past, are expressed more effectively. Especially, the root area of applied crops (for example, rice) is expanded, root colonization is improved, and roots are improved. The biofertilizer which can improve a weight increase effect and a nutrient absorption promotion effect can be provided.

Bacillus pumilus TUAT1株(NITE BP−1356)を用いた1/5000aポット試験における各処理区の乾物蓄積量を表す図。The figure showing the dry matter accumulation | storage amount of each process section in the 1 / 5000a pot test using Bacillus pumilus TUAT1 strain | stump | stock (NITE BP-1356). Bacillus pumillus TUAT1 株(NITE BP−1356)の栄養型、芽胞型の違いがイネの根伸長に与える影響を比較した検討結果を表す参考写真であって、参考写真中、左側が芽胞型、右側が栄養型。It is the reference photograph showing the examination result which compared the influence which the difference in the vegetative type and the spore type of Bacillus pumillus TUAT1 strain (NITE BP-1356) has on the root elongation of rice, the left side is spore type, and the right side is Nutritional type.

従来からBacillus pumilusは、生育促進、病害抑制、臭気低減、蛋白分解性、等の特性を有する有用菌であることが知られていた。   Conventionally, Bacillus pumilus has been known to be a useful bacterium having properties such as growth promotion, disease suppression, odor reduction, and proteolytic properties.

本願の発明者等は、このBacillus pumilusの中から、Bacillus pumilus TUAT1株(NITE BP−1356)を選抜し、イネに施用した場合の根域拡大、栄養吸収促進効果に関して次のように検討を行った。   The inventors of the present application select the Bacillus pumilus TUAT1 strain (NITE BP-1356) from the Bacillus pumilus, and examine the effects of promoting root absorption and nutrient absorption when applied to rice as follows. It was.

なお、Bacillus pumillus TUAT1株は、特許微生物寄託センターに国際寄託しており、受託番号はNITE BP−1356である。   The Bacillus pumillus TUAT1 strain has been deposited internationally at the Patent Microorganism Depositary, and the deposit number is NITE BP-1356.

(供試菌株および接種剤の調整)
Bacillus pumilus TUAT1株(NITE BP−1356)(以下、「TUAT1株」と表すことがある)を1g/リットルの塩化アンモニウムを含む5リットルのNFb液体培地で一週間、25℃で振とう培養し、4℃、6000rpm、30分の遠心分離で集菌した。
(Adjustment of test strain and inoculum)
Bacillus pumilus TUAT1 strain (NITE BP-1356) (hereinafter sometimes referred to as “TUAT1 strain”) was cultured with shaking in 5 liters of NFb liquid medium containing 1 g / liter of ammonium chloride at 25 ° C. for 1 week. The cells were collected by centrifugation at 4 ° C. and 6000 rpm for 30 minutes.

次に2mmのふるいを通過させた東京農工大学付属農場の黒ボク土壌1kgを121℃、40分のオートクレーブで滅菌し、100mLの滅菌蒸留水に前記集菌菌体を混和し、28℃、最大圃場容水量下で1週間静置し、熟成させた。また接種材の菌密度は希釈平板法により測定し、10〜10cfu/g に調整した。 Next, 1 kg of black soil from the farm attached to Tokyo University of Agriculture and Technology passed through a 2 mm sieve was sterilized in an autoclave at 121 ° C for 40 minutes, and the collected cells were mixed in 100 mL of sterilized distilled water. The mixture was allowed to stand for 1 week under field capacity and matured. The bacterial density of the inoculum was measured by a dilution plate method and adjusted to 10 7 to 10 8 cfu / g.

(接種法)
TUAT1株の「リーフスター」等への接種は、ポット試験での場合、苗移植時に上記接種剤200gで苗の根部を包むようにして接種した。また圃場試験においては、接種材100gをバット上で水に懸濁させ懸濁液とし、そこに移植苗の根を1時間浸すことで接種した。
(Inoculation method)
In the case of a pot test, TUAT1 strain “Leaf Star” and the like were inoculated so that the seedling roots were wrapped with 200 g of the inoculum at the time of seedling transplantation. In the field test, 100 g of the inoculum was suspended in water on a vat to form a suspension, and the seedlings were inoculated by immersing the roots of the transplanted seedling for 1 hour.

接種法の検討で、イネの場合は、播種時に上記接種剤を接種し、その後、複数回同様な接種を行うと、安定的な効果が得られることが分かった。   Examination of the inoculation method revealed that in the case of rice, a stable effect can be obtained by inoculating the above inoculum at the time of sowing and then inoculating the same several times.

また、移植時の接種は、移植苗を一夜、接種剤に浸漬することで安定的な接種は確立される。   In addition, stable inoculation can be established by immersing the transplanted seedling in the inoculum overnight.

(ポット試験)
1/5000aの磁製ポットに篩別した東京農工大学付属広域都市圏フィールドサイエンス研究センターFM本町水田の灰色低地土に肥料を混和して充填し、20日育苗したリーフスター苗を移植した。ポットは3つの施肥段階を設けた。すなわち、慣行区(5kg/10a)、慣行の60%の窒素減肥をした減肥区(2kg/10a)、無施肥区(0kg/10a)である。
(Pot test)
Fertilizer was mixed and filled in the gray lowland soil of the Field Science Research Center FM Honmachi paddy field attached to the Tokyo University of Agriculture and Technology, which was sieved into a 1 / 5000a porcelain pot, and leaf star seedlings grown on the 20th were transplanted. The pot was provided with three fertilization stages. That is, it is a customary zone (5 kg / 10a), a reduced fertilizer zone (2 kg / 10a) with 60% reduction in nitrogen, and a non-fertilized zone (0 kg / 10a).

さらにそれぞれの接種区・無接種区を設け、計6処理区とした。リン酸およびカリウムについては慣行区および減肥区で5kg/10aとなるように施用し、無施肥区にはどちらも与えなかった。ポットは東京農工大学農学部ガラス室内にて、各処理区3連で室内に無作為に配置し、自然光下で栽培した。栽培を開始して106日後に植物体を根ごと採取し、穂、茎葉部および根部の部位別に分けた。通風乾燥機内で48時間、70℃で乾燥後、乾物重を測定した。また化学分析項目として、乾燥植物体を以下に記すように植物体養分分析、15N自然存在比の測定に供した。 Furthermore, each inoculation zone and non-inoculation zone were set up for a total of 6 treatment zones. About phosphoric acid and potassium, it applied so that it might become 5 kg / 10a in a customary area and a fertilizer reduction area, and neither was given to the non-fertilization area. The pots were randomly placed in the glass room of the Tokyo University of Agriculture and Technology, Faculty of Agriculture, and cultivated under natural light. 106 days after the start of cultivation, the plant body was collected together with the roots and divided according to the parts of the ears, foliage and roots. After drying at 70 ° C. for 48 hours in a ventilation dryer, the dry weight was measured. In addition, as a chemical analysis item, the dried plant body was subjected to plant nutrient analysis and 15 N natural abundance measurement as described below.

(圃場試験)
圃場における接種試験は、2カ所の水田で行った。
(Field test)
The inoculation test in the field was conducted in two paddy fields.

一箇所は、東京農工大学付属広域都市圏フィールドサイエンス研究センターFM本町水田(多摩川沖積土壌)である。ここでは3つの施肥段階、すなわち慣行区(10kg/10a)、慣行の30%の窒素減肥をした減肥区(7kg/10a)、無施肥区(0kg/10a)とし、ポット試験と同様にそれぞれ接種区・無接種区を設け、計6処理区とした。リン酸およびカリウムについては慣行区および減肥区で10kg/10aとなるように施用し、無施肥区にはどちらも与えなかった。   One place is the FM Honmachi paddy field (Tama River alluvial soil) attached to Tokyo University of Agriculture and Technology. Here, there are three fertilization stages: the conventional section (10 kg / 10a), the reduced fertilizer section (7 kg / 10a) with 30% nitrogen reduction, and the non-fertilized section (0 kg / 10a). A ward / non-inoculation zone was set up for a total of 6 treatment zones. About phosphoric acid and potassium, it applied so that it might become 10kg / 10a in a customary area and a fertilizer reduction area, and neither was given to the non-fertilization area.

20日間育苗したイネ「リーフスター」苗を、栽植密度が22.2株/mとなるように、一株当たり3本で移植した。 Rice “leaf star” seedlings grown for 20 days were transplanted at 3 plants per plant so that the planting density was 22.2 strains / m 2 .

調査項目は、以下の1)、2)、3)とした。   The survey items were 1), 2) and 3) below.

1)生育調査項目として、各処理区の群落内から連続する5つの株を生育調査株として選び、1週間ごとに、草丈、茎数、葉色(SPAD値)の測定を行った。葉色の測定には、SPADメーター(MINOLTA、 SPAD−502)を使用した。   1) As growth survey items, five continuous strains from within the community of each treatment section were selected as growth survey strains, and plant height, number of stems, and leaf color (SPAD value) were measured every week. A SPAD meter (MINOLTA, SPAD-502) was used for the measurement of leaf color.

2)成長解析項目として、登熟期である移植後127日目に各処理区から2条8株(計16株)の地上部を採取し、地上部新鮮重を測定した。その内平均的な新鮮重をもつ4株を、穂、葉身(葉とする)、茎及び葉鞘および枯死部(茎とする)の部位別に分け、乾物重を測定した。   2) As a growth analysis item, on the 127th day after transplantation, which is the ripening period, the above-ground part of 2. 8 strains (16 strains in total) was collected from each treatment section, and the above-ground fresh weight was measured. Among them, 4 strains having an average fresh weight were classified according to the site of ear, leaf blade (referred to as leaf), stem and leaf sheath, and dead part (referred to as stem), and dry weight was measured.

3)化学分析項目として、乾物を以下に記す植物体養分分析、15N自然存在比の測定に供した。 3) As chemical analysis items, dry matter was subjected to plant nutrient analysis and 15 N natural abundance measurement described below.

もう一箇所は、秋田県大潟村の水田である。ここでは、機械移植前に苗箱を接種剤を懸濁した溶液に浸漬し、その後、移植機で移植した。測定項目は、草丈、茎数、葉色(SPAD)、及び収量構成要素とした。   The other is a paddy field in Ogata Village, Akita Prefecture. Here, the seedling box was immersed in a solution in which the inoculum was suspended before machine transplantation, and then transplanted with a transplanter. Measurement items were plant height, number of stems, leaf color (SPAD), and yield components.

(植物体養分分析)
植物体の窒素、リン酸、カリウムの吸収について評価するために、植物体中のそれぞれの濃度、および集積量を求めた。まずポット試験及び圃場試験において得られた乾燥植物体を粉砕機で粉砕し、その植物粉を濃硫酸−過酸化水素法により湿式分解した。その後分解液中の窒素濃度をインドフェノール法、リン濃度をバナドモリブデン酸法によって比色し、分光光度計(Shimadzu,UV-160)を用いて定量した。またカリウム濃度は試料溶液を5倍または10倍に希釈し、炎光光度計(英弘精機産業,FLA型)を用いて測定した。これらから、植物体に含まれる窒素、リン、カリウムの濃度を求め、さらに乾物重の値を乗ずることにより、植物体中のこれらの要素の集積量を計算した。
(Plant nutrient analysis)
In order to evaluate the absorption of nitrogen, phosphoric acid, and potassium in the plant body, each concentration and accumulation amount in the plant body were determined. First, the dried plant bodies obtained in the pot test and the field test were pulverized with a pulverizer, and the plant powder was wet-decomposed by the concentrated sulfuric acid-hydrogen peroxide method. Thereafter, the nitrogen concentration in the decomposition solution was colorimetrically determined by the indophenol method and the phosphorus concentration by the vanadomolybdic acid method, and quantified using a spectrophotometer (Shimadzu, UV-160). The potassium concentration was measured by diluting the sample solution 5 times or 10 times and using a flame photometer (Hideko Seiki, FLA type). From these, the concentration of nitrogen, phosphorus, and potassium contained in the plant body was obtained, and the accumulated amount of these elements in the plant body was calculated by multiplying by the dry weight value.

15N自然存在比の測定)
接種菌が固定した窒素がリーフスターへと移行しているかを確かめるために、ポット試験および圃場試験において得られた上記乾燥植物体粉末のさらに一部を超微細粉砕機によって処理し、15N自然存在比の測定に供した。測定はカリフォルニア大学デービス校安定同位体施設に依頼分析した。
(15 N measurement of natural abundance ratio)
For nitrogen inoculum was fixed ascertain has shifted toward the leaves star, a further portion of the drying plant powder obtained in pot tests and field trials treated with ultrafine pulverizer, 15 N natural It used for the measurement of abundance ratio. The measurements were requested and analyzed at the University of California Davis Stable Isotope Facility.

(結果)
(1/5000aポット試験)
(乾物重)
出穂期におけるリーフスターの部位別乾物重の測定値を表1に示した。根部では、慣行区の無接種区を指数表示で100とすると接種区は205となり、接種により根量の乾物重が約2倍に増加していた。
(result)
(1 / 5000a pot test)
(Dry weight)
Table 1 shows the measured dry weight of each leaf star in the heading period. In the root part, when the non-inoculated area of the customary area is set to 100 in the index display, the inoculated area becomes 205, and the dry weight of the root amount increased by about 2 times by the inoculation.

また、減肥区でも、慣行無接種区に比べて137の指数を示し、根乾物重が増加する傾向がみられ、TUAT1株の接種は根部の生育を促進することが分かった。   Further, even in the reduced fertilizer group, an index of 137 was shown compared to the conventional non-inoculated group, and the root dry matter weight tended to increase, and it was found that inoculation with the TUAT1 strain promoted root growth.

また無施肥区では根部への影響は見られず、施肥段階と接種との間に危険率5%で交互作用の効果が認められたことから、根の生育に関して、施肥量により接種の効果がより発現することが示された。
全乾物重の値は窒素の施肥量および接種により有意な増加を示し(P = 0.01)、対照(無接種)区との比較では減肥区および慣行区で有意な乾物蓄積の増加が認められた。また減肥接種区の全乾物重の値は慣行無接種区のそれと類似し、減肥した窒素分を接種により補償できる可能性が示唆された。さらに図1に施肥段階と乾物重の相関を示した。この結果施肥段階と乾物重に高い相関が認められ、接種によって乾物蓄積量が上積みされるように増加していた。
In the non-fertilization zone, no effect on the roots was observed, and an interaction effect was observed between the fertilization stage and the inoculation with a risk rate of 5%. It was shown to be more expressed.
The value of total dry matter showed a significant increase with nitrogen fertilization and inoculation (P = 0.01), and a significant increase in dry matter accumulation was observed in the reduced fertilizer and conventional plots compared to the control (no inoculation) plot. It was. The value of total dry weight in the reduced fertilizer inoculation area was similar to that in the conventional non-inoculation area, suggesting that the reduced nitrogen content could be compensated by inoculation. Fig. 1 shows the correlation between fertilization stage and dry weight. As a result, there was a high correlation between the fertilization stage and dry matter weight, and the inoculation amount increased by inoculation.

(養分分析)
1ポットあたりのリーフスターへの窒素集積量に関して、分散分析の結果、施肥の段階および接種それぞれの効果において有意な差が認められ(P = 0.05、P = 0.01)、施肥および接種によって窒素吸収が促進されていることが示された(表1)。
(Nutrient analysis)
As a result of analysis of variance, a significant difference was observed in the fertilization stage and the effect of each inoculation (P = 0.05, P = 0.01) regarding the amount of nitrogen accumulation in the leaf star per pot. Showed that nitrogen absorption was promoted (Table 1).

リンおよびカリウム集積量に関しては窒素と同様に、施肥の段階および菌接種それぞれの効果において有意な差が認められ(表1)、施肥および接種によってリンおよびカリウムの吸収が促進されていることが示された。   Regarding nitrogen and potassium accumulation, similar to nitrogen, significant differences were observed in the stage of fertilization and the effect of each inoculation (Table 1), indicating that phosphorus and potassium absorption was promoted by fertilization and inoculation. It was done.

(δ15N値に基づく蓄積窒素の由来)
15Nの自然存在比は、土壌では15Nの割合が高く、窒素の原子量は重くなる。一方空気中の窒素の原子量は15Nの割合が低く、その原子量は軽くなる。この原理に基づくと、化学肥料の窒素や微生物の生物窒素固定作用で固定された窒素は、土壌中に存在する土壌由来の窒素原子より原子量が軽くなる。そのため、化学窒素肥料や生物窒素固定の窒素を主に蓄積した植物体の窒素の原子量は軽くなる。一方、土壌由来の窒素を吸収した植物体の窒素の原子量は高くなる。
(Origin of accumulated nitrogen based on δ 15 N value)
As for the natural abundance ratio of 15 N, the ratio of 15 N is high in soil, and the atomic weight of nitrogen is heavy. On the other hand, the atomic weight of nitrogen in air has a low ratio of 15 N, and the atomic weight becomes light. Based on this principle, the chemical fertilizer nitrogen and the nitrogen fixed by the biological nitrogen fixation action of microorganisms have a lighter atomic weight than the nitrogen atoms derived from soil present in the soil. Therefore, the atomic weight of nitrogen in the plant body that mainly accumulates chemical nitrogen fertilizer and biological nitrogen fixed nitrogen is reduced. On the other hand, the atomic weight of the nitrogen of the plant body which absorbed nitrogen derived from soil becomes high.

表2にポット試験の根と茎葉部の接種及び無接種区のδ15N値を示した。その結果、化学肥料の施用が増えると、無施肥区に比べて無接種区ではδ15N値が減少し、軽くなっていることが分かった。これは、化学窒素肥料がδ15N値に直接的に影響していることを示している。 Table 2 shows the δ 15 N values in the inoculation and non-inoculation sections of the root and foliage in the pot test. As a result, it was found that as the application of chemical fertilizer increased, the δ 15 N value decreased and became lighter in the non-inoculated group than in the non-fertilized group. This indicates that chemical nitrogen fertilizer directly affects the δ 15 N value.

一方、接種区では、無接種区に比べて、その値は若干増加する傾向を示していた。この結果から、TUAT1株を接種したイネは、発根により化学窒素肥料と共に、土壌中の窒素を、無接種区に比べて多く吸収していることが分かった。
On the other hand, in the inoculated area, the value tended to increase slightly compared to the non-inoculated area. From this result, it was found that the rice inoculated with the TUAT1 strain absorbed a greater amount of nitrogen in the soil together with the chemical nitrogen fertilizer by rooting than in the non-inoculated area.

(圃場試験1(農工大水田圃場))
(乾物重)
登熟期におけるリーフスターの地上部部位別乾物重の測定値を表3に示した。分散分析の結果、地上部の全乾物重では施肥および菌接種それぞれの因子について有意差が認められた(P = 0.01)。各施肥段階での比較では、慣行区および減肥区において、接種区が対照(無接種)区を有意に上回り、接種効果が認められた。また無施肥区では菌接種の効果は認められなかった。また全体として施肥レベルと接種の有無の両因子間に交互作用が認められ(P = 0.05)、施肥段階が上がるにつれ接種効果が表れることが示唆された。地上部部位別にみると、慣行区ではすべての部位で、減肥区では葉と茎で乾物重の有意な増加が認められた。
(Field test 1 (Agricultural and industrial paddy field))
(Dry weight)
Table 3 shows the measured values of dry matter weight by leaf portion of the leaf star during the ripening period. As a result of analysis of variance, a significant difference was observed for the factors of fertilization and inoculation with the total dry weight of the above-ground part (P = 0.01). In comparison at each fertilization stage, the inoculation group significantly exceeded the control (no inoculation) group in the conventional and reduced fertilization groups, and the inoculation effect was recognized. In the non-fertilized area, the effect of inoculation was not observed. In addition, an overall interaction was observed between both factors of fertilization level and inoculation (P = 0.05), suggesting that the inoculation effect appears as the fertilization stage increases. In terms of the above-ground parts, a significant increase in dry matter weight was observed in all areas in the conventional area and in the leaves and stems in the reduced area.

6処理区のすべての間の多重比較では、減肥接種区と慣行無接種区との間に有意差は認められなかったことから、ポット試験と同様に窒素肥料の減肥が接種により補償できる可能性が示唆された。   In the multiple comparison among all six treatment groups, there was no significant difference between the reduced fertilizer-inoculated group and the conventional non-inoculated group. Was suggested.

(養分分析)
表3に登熟期のリーフスターの窒素、リンおよびカリウムの集積量の値を示した。各栄養素において、施肥および接種の有無両因子の有意な効果が、地上部全体および部位別で認められた(P <0.05)。さらに地上部全体では乾物重の値と同様に両因子間の交互作用が認められた。
(Nutrient analysis)
Table 3 shows the values of nitrogen, phosphorus and potassium accumulation in leaf stars during the ripening period. For each nutrient, significant effects of both fertilization and inoculation factors were observed for the entire aerial part and by site (P <0.05). Furthermore, the interaction between the two factors was recognized in the whole aerial part as well as the dry weight value.

すべての施肥段階にていて、接種により地上部の窒素集積量が増加することが示され、その増加量は無施肥区では17%、減肥区では34%、慣行区では37%であった。ポット試験では植物体中の窒素濃度に菌接種の影響は表れていなかったが、圃場試験では、窒素濃度への菌接種の明瞭な影響が認められ、さらに窒素濃度と施肥の段階には極めて高い相関(R2>0.99)がみられた。すなわちポット試験の結果とは異なり、圃場試験での接種による植物体中への窒素の集積の促進は、施肥の量にさらに上積みをする形で、植物体中の窒素濃度を高めることによって起こっていた。   At all fertilization stages, inoculation was shown to increase the nitrogen accumulation in the aerial part, and the increase was 17% in the non-fertilized area, 34% in the fertilized area, and 37% in the conventional area. The pot test showed no effect of bacterial inoculation on the nitrogen concentration in the plant, but the field test showed a clear effect of the bacterial inoculation on the nitrogen concentration, and the nitrogen concentration and fertilization stage were extremely high A correlation (R2> 0.99) was observed. In other words, unlike the pot test results, the promotion of nitrogen accumulation in the plant body by inoculation in the field test occurs by increasing the nitrogen concentration in the plant body in a form that further increases the amount of fertilization. It was.

またリンおよびカリウムの集積に関して、窒素と同様に施肥量および接種により有意な効果が認められ、植物体全体では、リンでは減肥区と慣行区、カリウムでは慣行区において接種による有意な集積量の増加が認められた(表3)。植物体中のリンおよびカリウム濃度は窒素の施肥量と相関する傾向があり、窒素施肥量に伴ってリンやカリウムの吸収も促進されていた。
In addition, as with nitrogen, there is a significant effect of fertilization and inoculation on phosphorus and potassium accumulation, and for the whole plant, significant increase in accumulation by inoculation in the reduced fertilizer and customary areas for phosphorus and in the conventional area for potassium. Was observed (Table 3). The phosphorus and potassium concentrations in the plants tended to correlate with the amount of nitrogen applied, and the absorption of phosphorus and potassium was promoted with the amount of nitrogen applied.

(圃場試験2(秋田県大潟村水田圃場))
秋田県大潟村では、「環境創造型農業」を実践し、JAS有機栽培や、減農薬無化学肥料栽培が積極的に行われており、また、イネ栽培は大規模な機械化栽培である。そこで、そのような大規模な機械化栽培に、Bacillus属細菌バイオ肥料の接種が適応可能か検証した。
(Field test 2 (Ogata village paddy field in Akita Prefecture))
In Ogata Village, Akita Prefecture, “Environmentally Creative Farming” is practiced, and JAS organic cultivation and pesticide-free chemical fertilizer cultivation are actively conducted. Rice cultivation is a large-scale mechanized cultivation. Therefore, it was verified whether inoculation with Bacillus genus biofertilizer is applicable to such large-scale mechanized cultivation.

表4に、農家圃場における、生育状況を示した。   Table 4 shows the growth situation in the farmer's field.

草丈に関しては、F及びT圃場のイネに関して、対照(無接種)区と接種区に大きな違いは無かった。   Regarding the plant height, there was no significant difference between the control (no inoculation) group and the inoculation group for the rice in the F and T fields.

葉のSPAD値に関しては、T圃場が、F圃場より若干高めに推移し、T圃場の土壌中の窒素供給力がF圃場のそれより高いことを示していた。茎数に関しては、両圃場のイネ共、最高分けつ期(7月23日)に於いては、接種区の茎数が対照(無接種)区を上回り、8月14日の出穂期以降に於いても、茎数は接種区が対照(無接種)区を上回った。以下にはデータを示していないが、他の圃場試験でも同様な効果が示されていた。
Regarding the SPAD value of the leaves, the T field was slightly higher than the F field, indicating that the nitrogen supply capacity in the soil of the T field was higher than that of the F field. Regarding the number of stems, in both rice fields, in the highest splitting period (July 23), the number of stems in the inoculated section exceeded the control (non-inoculated) section, and after the earliest sunrise on August 14 Even so, the number of stems was higher in the inoculated group than in the control (non-inoculated) group. Although no data is shown below, other field tests have shown similar effects.

表5に、秋田県大潟村農家圃場でのTUAT1下部接種がイネ品種「こまち」の収量および収量構成要素へ与えた効果を記載した。   Table 5 shows the effect of the lower inoculation of TUAT1 on the farm field in Ogata Village, Akita Prefecture, on the yield and yield components of the rice cultivar “Komachi”.

F圃場では、対照区(TUAT1株無接種)および接種区間で、千粒重、登熟歩合に大きな違いは無く、一穂粒数はむしろ低下した。しかし、接種区の穂数が対照区のそれより22.4%増加し、その結果、接種区の収量も32.8%増加した。また、T圃場では、千粒重、登熟歩合、一穂粒数は、対照区と接種区間で大きな違いは無かったが、接種区の穂数が対照区のそれに比べて14.6%増加し、その結果、接種区の収量が対照区のそれに比べて17.9%増加した。   In the F field, there was no significant difference in the weight of the seeds and the ripening rate between the control group (TUAT1 non-inoculation) and the inoculation section, and the number of ears was rather decreased. However, the number of spikes in the inoculated group increased by 22.4% from that in the control group, and as a result, the yield of the inoculated group increased by 32.8%. In addition, in the T field, there were no significant differences in the thousand grain weight, ripening rate, and number of spikelets between the control group and the inoculation section, but the number of ears in the inoculation group increased by 14.6% compared to that in the control group. As a result, the yield of the inoculated group increased by 17.9% compared with that of the control group.

このように、慣行施肥区にTUAT1株を接種すると、穂数の増加に伴い、イネの子実収量も増加することが分かった。
Thus, when the TUAT1 strain was inoculated in the conventional fertilized area, it was found that the grain yield of rice increased with the increase in the number of ears.

本願の発明者等は、上述したBacillus pumilus TUAT1株(NITE BP−1356)による根域の拡大や栄養吸収促進効果、特に、イネに施用した場合の優れた根域の拡大、栄養吸収促進効果に着目し、同様の傾向が示されるBacillus pumilusについて、更に、研究を進めることで本願発明を完成させたものである。   The inventors of the present application are effective in expanding the root area and promoting nutrient absorption by the Bacillus pumilus TUAT1 strain (NITE BP-1356) described above, particularly in enhancing the root area and applying nutrient absorption when applied to rice. The present invention has been completed by further research on Bacillus pumilus, which pays attention and shows the same tendency.

本願の発明者等は、引き続き、接種源として使用するTUAT1株(NITE BP−1356)の生育ステージの違いがイネの生育や接種菌株の根部定着性に及ぼす影響を検討した。   The inventors of the present application subsequently examined the effect of differences in the growth stage of TUAT1 strain (NITE BP-1356) used as an inoculation source on the growth of rice and the root colonization of the inoculated strain.

イネ根部における定着菌数調査のため、TUAT1株のストレプトマイシン100ppm・リファンピシン100ppm二重薬剤耐性変異株(TUAT1SR8株)を接種試験に供した。   In order to investigate the number of colonized bacteria in the root of rice, TUAT1 strain streptomycin 100 ppm and rifampicin 100 ppm double drug resistant mutant strain (TUAT1SR8 strain) were used for the inoculation test.

品種は、ヒノヒカリを用いた。   As the variety, Hinohikari was used.

試験区は、接種源として使用する菌の生育ステージを比較するために、栄養型細胞接種区および芽胞接種区を設けた。   In order to compare the growth stage of the bacteria used as the inoculation source, the test group provided a vegetative cell inoculation group and a spore inoculation group.

栄養型細胞は、Trypticase Soy broth培地を用い、30℃、暗条件、105rpm、24時間振とう培養後に集菌し、滅菌水に再懸濁して接種源とした。   The vegetative cells were collected using a Trypticase Soy broth medium at 30 ° C. under dark conditions at 105 rpm for 24 hours, and then resuspended in sterile water as an inoculum.

芽胞は、Trypticase Soy broth培地を用い、30℃、暗条件、105rpm、10日間振とう培養後に集菌し、生理食塩水に懸濁後、65℃で30分間2回湯煎により栄養型細胞を死滅させた後、芽胞を滅菌水に再懸濁して接種源とした。   Spores were collected using Trypticase Soy broth medium at 30 ° C. under dark conditions, 105 rpm, and shake culture for 10 days, suspended in physiological saline, and then killed by rinsing twice at 65 ° C. for 30 minutes. Then, the spore was resuspended in sterilized water to make an inoculum.

種籾は、塩水選、60℃で10分間温湯消毒、15℃で7日間浸種後、25℃で16時間催芽後に播種し、20日間育苗した。   Seeds were seeded with salt water, sterilized with hot water at 60 ° C. for 10 minutes, soaked at 15 ° C. for 7 days, sown at 25 ° C. for 16 hours, and sown for 20 days.

接種は、育苗した苗の根部に付着した土壌を除去し、25℃、暗条件下において、1本あたり1mlの接種源に24時間根部を浸漬した。   For inoculation, the soil attached to the roots of the seedlings was removed, and the roots were immersed in an inoculation source of 1 ml per seed for 24 hours at 25 ° C. under dark conditions.

対照(無接種)区は滅菌水に同様に浸漬した。接種苗は、0.5gの燐加安14号を添加した400mlの無肥料培土を充填した半透明ポットに1株3本植で移植し、ガラス温室において、最低夜温15℃で33日間管理した。   The control (no inoculation) group was immersed in sterilized water in the same manner. Inoculated seedlings are transplanted as three plants per plant in a semi-transparent pot filled with 400 ml of non-fertilizer medium supplemented with 0.5 g of Rin Kaan 14 and managed in a glass greenhouse at a minimum night temperature of 15 ° C for 33 days. did.

調査項目は、イネ生育量、イネ根部におけるTUAT1SR8株の定着性とした。   The survey items were the rice growth and the TUAT1SR8 strain fixability in the rice root.

定着性調査では、根部に付着した土壌を水道水で洗浄した後、生理食塩水中で10分間振とうした液を根面試料とした。さらに、同生理食塩水中から、根を取出して、細断・磨砕、生理食塩水で希釈した液を根内試料とした。   In the fixability investigation, the soil adhering to the root was washed with tap water, and then a solution shaken in physiological saline for 10 minutes was used as a root surface sample. Further, a root was taken out from the physiological saline, and a solution obtained by chopping, grinding, and diluting with physiological saline was used as a sample in the root.

なお、菌数計測は、培地はリファンピシン100ppm、ストレプトマイシン100ppm、シクロヘキシミド200ppm含有Trypticase Soy agarを使用し、希釈平板法で計測した。   The number of bacteria was measured by a dilution plate method using Trypticase Soy agar containing 100 ppm rifampicin, 100 ppm streptomycin, and 200 ppm cycloheximide.

生育量調査の結果、栄養型細胞接種区では42%、芽胞接種区では80%%、根重が有意に増加した。   As a result of the growth survey, the root weight was significantly increased by 42% in the vegetative cell inoculation group and 80% in the spore inoculation group.

定着性調査の結果、栄養型細胞接種区では、接種24時間処理直後である移植時の定着菌数は10(cfu/groot)、7日後には検出されなくなったが、芽胞接種区では、移植時の定着菌数は10(cfu/groot) 、移植25日後でも104〜5(cfu/groot)と安定してイネ根部に定着することが明らかになった。 As a result of the investigation of colonization, the number of colonized bacteria at the time of transplantation immediately after the treatment for 24 hours in the vegetative cell inoculation group was 10 4 (cfu / groot), but it was not detected after 7 days. It was revealed that the number of colonized bacteria at the time of transplantation was 10 7 (cfu / groot) and 10 4 to 5 (cfu / groot) even after 25 days from transplantation, and the colony was stably settled in the rice root.

根部に定着する菌の芽胞割合を調査するため、根面および根内試料を調整後、65℃で1時間湯煎して栄養型細胞を死滅させたところ、およそ半分程度に減少していたことより、栄養型細胞と芽胞は同程度の割合で混在していると考えられた。   In order to investigate the spore ratio of the fungus that settles at the root, after preparing the root surface and the sample in the root, roasting at 65 ° C. for 1 hour to kill vegetative cells, it was reduced to about half It was considered that trophoblast cells and spores were mixed at the same rate.

このことは、芽胞は休眠状態にあるのではなく、根部において本菌株の増殖環の1ステージとして存在していると考えられた。   This suggests that the spores are not in a dormant state but exist as one stage of the growth ring of this strain at the root.

この検討より、接種源を芽胞にすることで、イネ根部での定着性が高まり、根重増加効果が安定化する可能性が示唆され、安定した接種効果を得るための条件として接種源を芽胞にすることが有用であるとの可能性を確認できた。   This study suggests that by using spores as the inoculum, it is possible that the rooting of rice will be more stable and the root weight increase effect may be stabilized. The possibility that it is useful is confirmed.

これらの検討に基づく本願発明は、Bacillus属細菌を培養した後、65℃〜80℃の温度範囲で60分間以上加熱処理してなる芽胞率100%の バイオ肥料(微生物肥料)である。   The present invention based on these studies is a biofertilizer (microbe fertilizer) having a spore ratio of 100%, which is obtained by culturing Bacillus bacteria and then heat-treating at 65 ° C to 80 ° C for 60 minutes or more.

本発明の微生物肥料はBacillus属細菌を培養し、芽胞率100%としたものであるので、常温(25℃前後)での長期間の保存が可能になり、菌数およびその効果を長期間(6カ月以上)にわたって維持できるものになる。また、施用したときに作物(特にイネ)の根への定着性が向上したものになる。   Since the microbial fertilizer of the present invention is obtained by culturing Bacillus genus bacteria to a spore ratio of 100%, it can be stored for a long period of time at room temperature (around 25 ° C.). 6 months or more). In addition, when applied, the roots of crops (especially rice) are improved.

発明者等の検討によれば、芽胞することによって、作物(特にイネ)の生育量の増加が、無接種ないし栄養型の接種と比較して高くなることを確認できた。   According to the study by the inventors, it has been confirmed that the increase in the amount of growth of the crop (particularly rice) is higher than the non-inoculation or vegetative type inoculation by spore formation.

芽胞を形成することにより温度、水分などのストレス耐性が高められることは従来から知られていたことである。本願の発明者等は、上述した条件で芽胞率100%とすることによって、Bacillus属細菌に従来から認められていた生育促進、等の特性を一層効果的に発現させ、特に、施用した作物(例えば、イネ)の根域拡大、根部への定着性向上、根の重量増加効果、栄養吸収促進効果が向上することを見つけ出して本願発明を完成させたものである。   It has been conventionally known that stress tolerance such as temperature and moisture can be enhanced by forming spores. The inventors of the present application, by setting the spore rate to 100% under the above-described conditions, can more effectively express characteristics such as growth promotion conventionally recognized in Bacillus bacteria, and in particular, applied crops ( For example, the present invention has been completed by finding out that the root area expansion of rice), the fixability to roots, the effect of increasing the weight of roots, and the effect of promoting nutrient absorption are improved.

上述したように、Bacillus属細菌を培養した後、65℃〜80℃の温度範囲で60分間以上加熱処理することにより栄養型を完全に死滅させ、芽胞率100%とすることができる。   As described above, after culturing the Bacillus genus bacteria, the trophoblast can be completely killed by heat treatment for 60 minutes or more in a temperature range of 65 ° C. to 80 ° C., and the spore ratio can be 100%.

発明者等の検討によれば、栄養型を完全に死滅させて芽胞率100%とし、その上で、施用した作物の根域拡大、根部への定着性向上、根の重量増加効果、栄養吸収促進効果などを効果的に向上させる上で、65℃〜80℃の温度範囲で60分間以上加熱処理を行うことが望ましかった。   According to the study by the inventors, the vegetative type is completely killed to a spore ratio of 100%, and then the root area of the applied crop is expanded, the root establishment is improved, the root weight is increased, the nutrient is absorbed. In order to effectively improve the accelerating effect and the like, it was desired to perform heat treatment for 60 minutes or more in a temperature range of 65 ° C to 80 ° C.

なお、60分間以上の加熱処理時間分間は、複数回に分けて行い、トータルでの加熱処理時間が60分間以上になるものでもよい。   Note that the heat treatment time of 60 minutes or more may be divided into a plurality of times, and the total heat treatment time may be 60 minutes or more.

また、芽胞率100%とし、その上で、施用した作物の根域拡大、根部への定着性向上、根の重量増加効果、栄養吸収促進効果などを効果的に向上させると共に、製造コスト・効率なども考慮して、65℃〜80℃の温度範囲での加熱処理はトータルで70分間は越えないことが望ましい。   In addition, with a spore ratio of 100%, it is possible to effectively improve the root area of applied crops, improve root fixation, increase root weight, promote nutrient absorption, etc. In view of the above, it is desirable that the heat treatment in the temperature range of 65 ° C. to 80 ° C. does not exceed 70 minutes in total.

芽胞率100%とする芽胞化の条件は、65℃〜80℃の温度範囲で、60分間以上加熱処理する条件を満たすものであればよく、培地に限定は無い。例えば、 Trypticase soy plate(20ml培地、9cm直径シャーレ)で、28℃にて10日間〜14日間培養する。ここから集菌して生理食塩水で洗浄(3回)し、再度、集菌して生理食塩水で懸濁した後、65℃で30分間加熱処理する、前記の工程を2回繰り返すことで、65℃での加熱時間を60分にする。こうして得た本発明のバイオ肥料(芽胞液)は4℃で冷蔵保存し、保存したバイオ肥料(芽胞液)を滅菌水で希釈して接種源として使用する。   The conditions for spore formation with a spore ratio of 100% are not particularly limited as long as the conditions for the heat treatment for 60 minutes or more in the temperature range of 65 ° C. to 80 ° C. are satisfied. For example, the cells are cultured on a Trypticase soy plate (20 ml medium, 9 cm diameter petri dish) at 28 ° C. for 10 to 14 days. Bacteria are collected from here, washed with physiological saline (3 times), collected again and suspended in physiological saline, and then heat-treated at 65 ° C. for 30 minutes, by repeating the above steps twice. The heating time at 65 ° C. is 60 minutes. The biofertilizer (spore fluid) of the present invention thus obtained is refrigerated at 4 ° C., and the stored biofertilizer (spore fluid) is diluted with sterilized water and used as an inoculation source.

上述した本発明のバイオ肥料は、施用した作物の根域拡大、根部への定着性向上、根の重量増加効果、栄養吸収促進効果などを効果的に向上させるという観点から、菌濃度が1.0×10〜9.0×10cfu/gであることが望ましい。 The above-described biofertilizer of the present invention has a fungus concentration of 1. from the viewpoint of effectively improving the root area of applied crops, improving root fixation, increasing root weight, promoting nutrient absorption, and the like. 0 × is desirably 10 7 ~9.0 × 10 7 cfu / g.

上述した本発明のバイオ肥料において、前記Bacillus属細菌は、Bacillus pumillus TUAT1株とすることができる。Bacillus pumillus TUAT1株は、特許微生物寄託センターに受託番号NITE BP−1356で国際寄託されている菌であって、発明者等の検討によれば、芽胞率100%とすることで、施用した作物の根域拡大、根部への定着性向上、根の重量増加効果、栄養吸収促進効果などを効果的に向上させることができた。   In the biofertilizer of the present invention described above, the Bacillus genus bacterium can be Bacillus pumillus TUAT1 strain. The Bacillus pumillus TUAT1 strain is a bacterium that has been deposited internationally at the Patent Microorganism Depositary under the accession number NITE BP-1356. According to the study by the inventors, the spore rate is set to 100%. It was possible to effectively improve root area expansion, root anchorage improvement, root weight increase effect, nutrient absorption promotion effect, and the like.

次に、本発明が提案する粒状バイオ肥料(粒状微生物肥料)は、粒状の肥料用資材を上述した本発明のバイオ肥料に浸漬した後、水分12%〜2%になるまで乾燥処理してなるものである。あるいは、肥料用資材に上述した本発明のバイオ肥料を添加・混合して造粒した後、水分12%〜2%になるまで乾燥処理してなるものである。   Next, the granular biofertilizer (granular microbial fertilizer) proposed by the present invention is formed by immersing granular fertilizer materials in the above-described biofertilizer of the present invention, and then drying it until the water content becomes 12% to 2%. Is. Or after adding and mixing the bio-fertilizer of this invention mentioned above to the fertilizer material and granulating, it dry-processes until it becomes 12%-2% of water | moisture content.

ここでの乾燥処理は水分調整を目的として行うものである。   The drying process here is performed for the purpose of moisture adjustment.

本発明の粒状バイオ肥料における菌濃度を上述した1.0×10〜9.0×10cfu/gにする上で、乾燥処理は水分2%になるまでにしておくことが望ましく、一方、水分が15%を超えている状態で乾燥処理を終えた場合、製造時点の粒状バイオ肥料の菌濃度が1.0×10〜9.0×10cfu/gの範囲にあっても、その後の保存時に菌数が10cfu/gを下回るようになるので、好ましくない。 When the bacterial concentration in the granular biofertilizer of the present invention is 1.0 × 10 7 to 9.0 × 10 7 cfu / g as described above, it is desirable that the drying treatment is performed until the water content becomes 2%, When the drying process is finished in a state where the water content exceeds 15%, even if the bacterial concentration of the granular biofertilizer at the time of manufacture is in the range of 1.0 × 10 7 to 9.0 × 10 7 cfu / g In the subsequent storage, the number of bacteria is less than 10 7 cfu / g, which is not preferable.

なお、乾燥処理後の粒状バイオ肥料の菌濃度を1.0×10〜9.0×10cfu/gとする上で、水分調整の目的で行う乾燥工程には、高温の火力乾燥ではなく、通風乾燥方式や、流動層方式の乾燥を行うことが望ましい。例えば、通風乾燥機を用いて4時間以内の乾燥により、水分12%〜2%とすることができる。 In addition, in order to set the bacterial concentration of the granular biofertilizer after the drying treatment to 1.0 × 10 7 to 9.0 × 10 7 cfu / g, in the drying process performed for the purpose of moisture adjustment, However, it is desirable to perform ventilation drying or fluidized bed drying. For example, the moisture can be adjusted to 12% to 2% by drying within 4 hours using a ventilation dryer.

上述した本発明の微生物肥料をこのようにして粒状バイオ肥料とすることで、菌数およびその効果を更に長期間にわたって維持できる(1年以上にわたる常温での長期保存可能)ものになる。また、ハンドリング性が向上し、粒状肥料として施用する(例えば、育苗時に培土に混合施用する)ことで、作物の根への定着性を一層向上させ、肥効を向上させることができる。   By using the above-described microbial fertilizer of the present invention as a granular biofertilizer in this way, the number of bacteria and the effect thereof can be maintained for a longer period of time (long-term storage at room temperature for one year or more is possible). Moreover, handling property improves and it applies as a granular fertilizer (for example, it mixes and applies to culture soil at the time of seedling raising), the fixability to the root of a crop can be improved further, and a fertilization effect can be improved.

前記の肥料用資材はケイソウ土、ゼオライト、シリカゲルの中のいずれか一種又は複数種の組み合わせにすることができる。   The fertilizer material may be any one or a combination of diatomaceous earth, zeolite, and silica gel.

ケイ酸資材はイネの耐倒伏性向上や健苗効果を有している、そこで、シリカゲルを肥料用資材に用いる、あるいは、シリカゲルを肥料用資材の一部に用いることで、イネ生産における増収・減肥効果を向上させることができる。   Silicic acid material has improved lodging resistance and healthy seedling effect of rice. Therefore, by using silica gel as a fertilizer material, or by using silica gel as a part of fertilizer material, increase the production / reduction in rice production. The effect of reducing fertilizer can be improved.

これらの肥料用資材を造粒して粒状の肥料用資材とし、これを上述した本発明のバイオ肥料に浸漬した後、乾燥、篩分けを行って平均粒径2〜4mmの粒状バイオ肥料とする。   These fertilizer materials are granulated into granular fertilizer materials, which are dipped in the biofertilizer of the present invention described above, and then dried and sieved to obtain granular biofertilizers having an average particle size of 2 to 4 mm. .

あるいは、これらの肥料用資材に上述した本発明のバイオ肥料を添加・混合して造粒した後、乾燥、篩分けを行って平均粒径2〜4mmの粒状バイオ肥料とする。   Or after adding and mixing the biofertilizer of this invention mentioned above to these fertilizer materials and granulating, it is dried and sieved and it is set as the granular biofertilizer with an average particle diameter of 2-4 mm.

造粒は、転動造粒(ドラム、皿)、押出成形(ペレット)、圧縮成型(ブリケット)など、造粒形式を問わず、種々の造粒形式で行うことができる。   The granulation can be performed in various granulation formats regardless of the granulation format such as rolling granulation (drum, dish), extrusion molding (pellet), compression molding (briquette) and the like.

上述したいずれの形式で製造する粒状バイオ肥料であっても、ハンドリング性の観点から、硬度1kgf以上であることが望ましい。   Even if it is the granular biofertilizer manufactured in any form mentioned above, it is desirable from the viewpoint of handling property that the hardness is 1 kgf or more.

前述した本発明の粒状バイオ肥料における前記肥料用資材には、μm以上の孔径を有する多孔質資材が含まれることが望ましい。本発明のバイオ肥料において微生物の大きさは1μm以上である。そこで、μm以上の孔径を有する多孔質資材が用いられていると、μm以上の孔の中に微生物を封入できることになるので有利である。   The fertilizer material in the granular biofertilizer of the present invention described above preferably includes a porous material having a pore diameter of μm or more. In the biofertilizer of the present invention, the size of the microorganism is 1 μm or more. Therefore, when a porous material having a pore diameter of μm or more is used, it is advantageous because microorganisms can be enclosed in the pores of μm or more.

例えば、ケイソウ土(焼成処理していないもの)は、μm以上の孔径を有する多孔質資材であるので、Bacillus属菌を封入する多孔質資材として有用である。   For example, diatomaceous earth (unfired) is a porous material having a pore size of μm or more, and is therefore useful as a porous material for encapsulating Bacillus spp.

上述した複数種の肥料用資材を組み合わせて使用する場合、例えば、シリカゲルとケイソウ土(焼成処理していないもの)とを重量で7:3の割合で用い、これに、総重量の1.2〜3%のバインダー(例えば、デンプン)を加えて、混合、成型(造粒)する。一方で、Bacillus属細菌を培養した後、65℃〜80℃の温度範囲で60分間以上加熱処理して芽胞率100%とした本発明のバイオ肥料の溶液を準備する。そして、前記のように準備した粒状の肥料用資材と等量の前記バイオ肥料溶液を添加し、1時間浸漬する。その後、バイオ肥料溶液をデカンテ―ションで除去し、通風乾燥(70℃、4時間)して水分2〜12%の本発明の粒状バイオ肥料を得ることができる。   In the case of using a combination of the above-mentioned various types of fertilizer materials, for example, silica gel and diatomaceous earth (not fired) are used in a ratio of 7: 3 by weight, and the total weight is 1.2. Add ~ 3% binder (eg starch), mix and mold (granulate). On the other hand, after culture | cultivating Bacillus genus bacteria, the solution of the biofertilizer of this invention which was heat-processed in the temperature range of 65 to 80 degreeC for 60 minutes or more and made the spore rate 100% is prepared. And the granular fertilizer material prepared as described above is added in an amount equal to the biofertilizer solution and immersed for 1 hour. Thereafter, the biofertilizer solution can be removed by decantation and dried by ventilation (70 ° C., 4 hours) to obtain the granular biofertilizer of the present invention having a moisture content of 2 to 12%.

なお、前記において、ケイソウ土、ゼオライト、シリカゲルの中のいずれか一種又は複数種の組み合わせからなる肥料用資材の総重量に対して、1.2〜3%の重量割合で添加するバインダー(例えば、デンプン)は、施用された本発明の粒状バイオ肥料が直ちには崩壊しないが、施用後1週間程度で崩壊するようになる目的で添加するものである。このような目的で使用される肥料用バインダーであればこの技術分野で公知の種々の物を使用できる。   In addition, in the above, a binder (for example, for example, added in a weight ratio of 1.2 to 3% with respect to the total weight of the fertilizer material composed of any one or a combination of diatomaceous earth, zeolite, and silica gel) Starch) is added for the purpose of allowing the applied granular biofertilizer of the present invention not to disintegrate immediately but to disintegrate in about one week after application. If it is a binder for fertilizers used for such a purpose, various things well-known in this technical field can be used.

以下、本発明の好ましい実施例について説明するが、本発明は、上述した実施の形態及び、以下に説明する実施例に限られることなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the above-described embodiment and examples described below, but within a technical scope grasped from the description of the scope of claims. Various changes can be made.

Bacillus属であるBacillus pumillus TUAT1株(NITE BP−1356)は、そのライフサイクルのなかに芽胞と呼ばれる形態をとることができ、温度や水分等の環境条件に対して強い耐性を持つことが可能である。また、TUAT1株はイネにおいて、その根伸長を促進する機能を持ち、養分吸収獲得の増加に貢献することにより、収量を増加させることが可能である。   Bacillus pumillus TUAT1 strain (NITE BP-1356), which is a genus of Bacillus, can take a form called a spore in its life cycle and can have a strong resistance to environmental conditions such as temperature and moisture. is there. Moreover, the TUAT1 strain has a function of promoting root elongation in rice, and can contribute to an increase in the acquisition of nutrient absorption, thereby increasing the yield.

しかしながら、従来、栄養型、芽胞型の違いがこれらの効果にどの程度、影響するかについては明らかではなかった。そこで、この実施例では、イネへの異なる形態のTUAT1株の接種が、イネの生育に対して影響を与えるかについて明らかにした。   However, to date, it has not been clear how much the difference between vegetative type and spore type affects these effects. Therefore, in this example, it was clarified whether inoculation of rice with different forms of TUAT1 strain affects the growth of rice.

なお、この実施例では、イネの根の定着性を適切に評価する目的で、TUAT1株の他に、TUAT1にリファンプシンとストレプトマイシン耐性を付与した抗生物質耐性株(TUAT1SR8株)を用いた。   In this example, in addition to the TUAT1 strain, an antibiotic-resistant strain (TUAT1SR8 strain) in which rifampsin and streptomycin resistance were imparted to TUAT1 was used for the purpose of appropriately evaluating rice root fixation.

接種源の調整
栄養型および芽胞の接種源の調整は以下のように行った。
Adjustment of inoculum The adjustment of vegetative type and spore inoculum was performed as follows.

栄養型の接種源の調整は、50%グリセロール溶液で保管した2種類のTUAT1株[TUAT1株と上述したファンプシンとストレプトマイシン耐性を付与した抗性物質耐性株(TUAT1SR8株)]を、500ml容三角フラスコを用いて200mlのTrypticase Soy Broth (BD社製)に接種した。接種後、28℃・110rpmの条件で24時間培養を行った。24時間の培養後、遠心分離機(BECMAN製 Centrifuge Avanti TM25)により集菌し、同量の生理食塩水を用いて、3回洗浄を行った。洗浄後、10cfu/mlの濃度に滅菌水で調整したものを接種源とした。また、接種源は使用まで4℃の条件で冷蔵保存した。 The vegetative inoculation source was prepared by adjusting two TUAT1 strains stored in 50% glycerol solution [TUAT1 strain and the above-mentioned anti-substance resistant strains (TUAT1SR8 strain) imparted with resistance to streptomycin and 500 ml of TUAT1 strain]]. 200 ml Trypticase Soy Broth (manufactured by BD) was inoculated using a flask. After inoculation, the cells were cultured for 24 hours at 28 ° C. and 110 rpm. After culturing for 24 hours, the cells were collected by a centrifuge (Centrifuge Avanti TM25 manufactured by BECMAN) and washed three times using the same amount of physiological saline. After washing, the inoculation source was adjusted to a concentration of 10 7 cfu / ml with sterilized water. The inoculum was stored refrigerated at 4 ° C. until use.

芽胞の接種源の調整は、2種類のTUAT1株(TUAT1株と上述したTUAT1SR8株)をそれぞれ9cm直径シャーレを用いて作成した20ml Trypticase Soy Agarに接種した。接種後、28℃の条件で培養を行った。培養後、遠心分離機により集菌し、同量の生理食塩水を用いて、3回洗浄を行った。洗浄後、65℃、30分間の条件で加熱処理を行い、栄養型細胞を死滅させた。その後、洗浄と加熱処理をもう一度行い、10cfu/mlの濃度に滅菌水で調整したものを接種源とした。また、接種源は使用まで4℃の条件で冷蔵保存した。 The inoculation source of the spore was inoculated into 20 ml Trypticase Soy Agar prepared by using two types of TUAT1 strains (TUAT1 strain and TUAT1SR8 strain described above) using a 9 cm diameter petri dish. After inoculation, the cells were cultured at 28 ° C. After culturing, the cells were collected by a centrifuge and washed three times using the same amount of physiological saline. After washing, heat treatment was performed at 65 ° C. for 30 minutes to kill vegetative cells. Thereafter, washing and heat treatment were performed once again, and the inoculum was adjusted to a concentration of 10 7 cfu / ml with sterilized water. The inoculum was stored refrigerated at 4 ° C. until use.

栽培試験
供試植物 イネ(Oryza sative) cv. ヒノヒカリ
栽培概要
ヒノヒカリの種子は塩水選、温湯消毒後、15℃の条件で8日間浸種した。浸種後、半日催芽処理したもみを育苗培土(無肥料育苗培土:肥料入育苗培土=2:1)に播種した。20日間育苗した苗の根を水道水で洗浄後、10cfu/mlの濃度に調整したTUAT1株とTUAT1SR8株の菌液を、それぞれを異なる試験区に1本あたり1ml接種した。接種24時間後、苗を無肥料育苗培土400mlにリンカアン14号0.5g添加した土壌を充填した500ml容ポットに移植した。移植は1ポットあたり3本とした。移植後、ガラスハウスで栽培し、33日後にTUAT1株とTUAT1SR8株を接種したイネの地上部と根部の重量を測定した。
Cultivation test Test plant Rice (Oryza sative) cv. Hinohikari seeds overview Hinohikari seeds were soaked for 8 days at 15 ° C. after salt water selection and hot water disinfection. After soaking, the half-day sprouting-treated rice was sown in seedling culture soil (non-fertilizer seedling culture soil: fertilizer-containing seedling culture soil = 2: 1). After washing roots of seedlings grown for 20 days with tap water, 1 ml of TUAT1 strain and TUAT1SR8 strain each adjusted to a concentration of 10 7 cfu / ml were inoculated in 1 ml per different test area. Twenty-four hours after inoculation, the seedlings were transplanted into a 500 ml pot filled with 400 ml of non-fertilizer breeding seedling culture soil and 0.5 g of Linkaan No. 14 added thereto. Three transplants were made per pot. After transplanting, the plants were cultivated in a glass house, and after 33 days, the above-ground and root weights of rice inoculated with TUAT1 strain and TUAT1SR8 strain were measured.

定着菌数のモニタリング
定着菌数のモニタリングには根面、根内の定着菌数を計数するためにTUAT1SR8株を接種したイネのみを使用した。
Monitoring of the number of colonized bacteria Only the rice seeded with the TUAT1SR8 strain was used to monitor the number of colonized bacteria in the root surface and root.

1) 根面試料
ガラスハウスで栽培したイネを0、4、7、14日後にサンプリングした。サンプリングした根に付着した土壌を除去し、サンプルを根重量の約50倍量の生理食塩水で30分間振とうした液を根面試料とした
2) 根内試料
根面試料を調整後、根の適量を生理食塩水で摩砕した。摩砕後、根重量の約10倍量の生理食塩水を添加して得た懸濁液を根内試料とした
3)菌数の測定
リファンピシン100ppm、ストレプトマイシン100ppm、シクロヘキシミド200ppm含有 Trypticase soy plateを用いて希釈平板法で菌数を測定した。
1) Root surface sample Rice grown in a glass house was sampled after 0, 4, 7, and 14 days. The soil attached to the sampled roots was removed, and a solution obtained by shaking the sample with physiological saline about 50 times the weight of the root for 30 minutes was used as a root surface sample.
2) Root sample After preparing the root surface sample, an appropriate amount of the root was ground with physiological saline. After grinding, a suspension obtained by adding about 10 times the weight of the physiological saline was used as a root sample. 3) Counting the number of bacteria Using a trypticase soy plate containing rifampicin 100 ppm, streptomycin 100 ppm, cycloheximide 200 ppm The number of bacteria was measured by the dilution plate method.

芽胞率の調査
調整した接種源、根面および根内試料を65℃、1時間の加熱処理を行った。処理前を生菌数、処理後を芽胞数として、割合を算出した。
Investigation of the spore rate The prepared inoculum, root surface and root sample were heat-treated at 65 ° C. for 1 hour. The ratio was calculated with the number of viable bacteria before treatment and the number of spores after treatment.

結果
図2は、この実施例での検討結果を表す参考写真であって、参考写真中、左側が芽胞型、右側が栄養型である。
Results FIG. 2 is a reference photograph showing the results of the study in this example, in which the left side is a spore type and the right side is a vegetative type.

Bacillus pumilus TUAT1株の栄養型、芽胞の接種源の違いが、イネ根部における定着性に与える影響を検討した結果、栄養型の菌数は根内において、接種直後に4.6×10 cfu/ml検出されていたものが、7日後には検出されないことが示された。根面においても同様な結果であった。 As a result of examining the influence of the vegetative type of Bacillus pumilus TUAT1 strain and the inoculation source of spore on colonization in rice roots, the number of vegetative type was 4.6 × 10 4 cfu / What was detected in ml was shown not to be detected after 7 days. Similar results were obtained at the root surface.

一方、芽胞の菌数は根内において、接種直後に6.3×10cfu/g検出されており、25日後であっても、5.4×10cfu/gとわずかに減少しているものの、菌数が維持されることが示された(表6)。 On the other hand, the number of spores in the roots was detected at 6.3 × 10 7 cfu / g immediately after inoculation, and even after 25 days, the number decreased slightly to 5.4 × 10 5 cfu / g. However, the number of bacteria was shown to be maintained (Table 6).

2種類のTUAT1株接種の栄養型、芽胞の接種源の違いが、イネの生育に対する影響を検討した結果、栄養型の接種と比較して、芽胞型では根重が危険率0.1%で有意に増加していることが認められた(t検定)。   As a result of examining the influence on the growth of rice by the difference in vegetative type and spore inoculation source of the two types of TUAT1 strain inoculation, the root weight is 0.1% in the spore type in comparison with the vegetative type inoculation A significant increase was observed (t test).

また、TUAT1 SR8株では、根重および分げつ数が有意に増加していることが認められた(表6)。これらの結果から、TUAT1株の接種源の違いは芽胞の方が、イネへの定着性および生育への効果が高いことが明らかになった。   Moreover, in TUAT1 SR8 strain | stump | stock, it was recognized that the root weight and the number of tillers increased significantly (Table 6). From these results, it became clear that the difference in the inoculation source of the TUAT1 strain is that the spore has a higher effect on rice colonization and growth.

この実施例での検討により、根部への定着性向上、根の重量増加効果というイネの生育に対する影響の観点で、TUAT1株と、抗生物質耐性株(TUAT1SR8株)とは、栄養型に比較して同様に優れた効果を発揮しているものであることを確認できた。そこで、本発明のバイオ肥料によって発現される作用・効果、機序に関しては、TUAT1株、TUAT1SR8株のどちらを用いて検討を行っても、この実施例で確認できたように、同様の結果が示されると認められる。
From the viewpoint of the effect on the growth of rice, such as the root colonization improvement and the root weight increase effect, the TUAT1 strain and the antibiotic-resistant strain (TUAT1SR8 strain) are compared with the vegetative type. It was confirmed that the same excellent effect was exhibited. Thus, as to the action / effect and mechanism expressed by the biofertilizer of the present invention, the same results were obtained as confirmed in this example, regardless of whether the TUAT1 strain or the TUAT1SR8 strain was used. It is acknowledged to be shown.

TUAT1株にリファンプシンとストレプトマイシン耐性を付与した抗生物質耐性株(TUAT1SR8株)を Trypticase soy broth液体培地200mlに接種し、30℃、110rpmの条件で11日間培養した。培養後、65℃、30分間の条件で2度加熱処理を行い、5.4―5.5×10cfu/mlの芽胞を調製した。 Antibiotic resistant strain (TUAT1SR8 strain), which gave rifampsin and streptomycin resistance to TUAT1 strain, was inoculated into 200 ml of Trypticase soy broth liquid medium and cultured at 30 ° C. and 110 rpm for 11 days. After culturing, heat treatment was performed twice at 65 ° C. for 30 minutes to prepare 5.4-5.5 × 10 8 cfu / ml spores.

熱処理は湯煎、処理後はサンプルを氷冷することにより行った。加熱処理後、希釈平板法により、菌数の計数を行った。菌数計数用の培地はストレプトマイシン、リファンプシン100ppmを含むTrypticase soy plateで行った。菌数の計数は2サンプル2連の平均値で算出した。   The heat treatment was performed by bathing, and after the treatment, the sample was ice-cooled. After the heat treatment, the number of bacteria was counted by a dilution plate method. The medium for counting the number of bacteria was Trypticase soy plate containing 100 ppm of streptomycin and rifampsin. The count of the number of bacteria was calculated as an average value of 2 samples in duplicate.

結果
検討の結果を以下の表7に示す。
Results The results of the study are shown in Table 7 below.

TUAT1SR8株の芽胞は70℃の加熱処理では180分の処理条件であっても初期の菌数の減少がほとんど認められなかったが、80℃の処理条件では初期の菌数と比較して1/1000の菌数濃度まで減少することが示された。このことから、TUATSR8株の耐熱性は70℃の条件であることが明らかになった。
In the spore of TUAT1SR8 strain, a decrease in the initial number of bacteria was hardly observed even at 180 ° C. under the heat treatment at 70 ° C. It was shown to decrease to a bacterial count concentration of 1000. From this, it became clear that the heat resistance of the TUATSR8 strain was at 70 ° C.

粒状肥料にTUAT1株を封入した資材の効果を検討した。   The effect of the material which enclosed TUAT1 stock in granular fertilizer was examined.

粒状肥料
シリカゲルとケイソウ土(焼成していないケイソウ土)を重量比7:3の割合で混合し、粒状成型した肥料(造粒促進剤(バインダー)として総重量3%のでんぷんを添加)。
Granular fertilizer Silica gel and diatomaceous earth (unfired diatomaceous earth) are mixed at a weight ratio of 7: 3, and granulated fertilizer (added starch with a total weight of 3% as a granulation accelerator (binder)).

粉状肥料
シリカゲルとケイソウ土重量比7:3の割合で混合(造粒促進剤(バインダー)として総重量3%のでんぷんを添加)した肥料
TUAT1株封入資材の調製
菌液の調製
TUAT1株にリファンプシンとストレプトマイシン耐性を付与した抗生物質耐性株(TUAT1SR8株)を200ml Trypticase soy broth液体培地を含む三角フラスコ10本に接種し、28℃、110rpmの条件で11日間培養を行った。培養後、65℃、1時間の条件で加熱処理を行い、室温、8,000rpm、10minの条件で遠心分離を行った。遠心後、生理食塩水で3回洗浄し、2リットルの生理食塩水に懸濁し、8.7×10cfu /mlの菌濃度に調整した。
Powdered fertilizer Preparation of fertilizer TUAT1 stock encapsulated material mixed with silica gel and diatomaceous earth in a ratio of 7: 3 (addition of starch with a total weight of 3% as a granulation accelerator (binder)) Preparation of bacterial solution Rifampsin in TUAT1 strain And 10 antibiotic-resistant strains (TUAT1SR8 strain) to which streptomycin resistance was imparted were inoculated into 10 Erlenmeyer flasks containing 200 ml Trypticase soy broth liquid medium, and cultured at 28 ° C. and 110 rpm for 11 days. After the culture, heat treatment was performed at 65 ° C. for 1 hour, and centrifugation was performed at room temperature at 8,000 rpm for 10 minutes. After centrifugation, it was washed 3 times with physiological saline, suspended in 2 liters of physiological saline, and adjusted to a bacterial concentration of 8.7 × 10 8 cfu / ml.

製剤の調製
粒状肥料および粉状肥料200gを70%エタノールで殺菌したステンレスバットにいれ、調製した菌液200mlを添加し、1時間の浸漬処理を行った。処理後、通風乾燥器を用いて、70℃、4時間以内の条件で乾燥を行った。乾燥後、各試験に用いるまで4℃の条件で冷蔵保存した。
Preparation of formulation 200 g of granular fertilizer and powdered fertilizer were placed in a stainless steel vat sterilized with 70% ethanol, 200 ml of the prepared bacterial solution was added, and immersion treatment was performed for 1 hour. After the treatment, drying was performed using a ventilator at 70 ° C. for 4 hours. After drying, it was refrigerated at 4 ° C. until used for each test.

接種試験の概要
ヒノヒカリの種子は塩水選、温湯消毒後、15℃の条件で8日間浸種した。浸種後、半日催芽処理したもみを育苗培土(ラブリ−:春風培土:2:1)に播種した。28℃、暗所、2日間の条件で発芽させ、23℃の条件でGroth Cabinetで育苗を行った。育苗の条件については1/4サイズの育苗バットを用い、1バットあたり土壌900mlを充填後、水300gを灌水し、催芽したもみを25g、土壌(無肥料)200mlを覆土した。苗を無肥料育苗培土400mlに燐加安14号0.5g添加した土壌を充填した500ml容ディスポカップに移植した。移植は1ポットあたり3本とした。移植後、検定温室で栽培し、移植時の地上部と根部の乾物重および2ヵ月後の草丈、分げつ、地上部と根部の乾物重量を測定した。移植時の数値は100本あたりの平均、2ヶ月後は1区6ポット、4連、数値は1ポット当りの平均を示した。
Summary of inoculation test Hinohikari seeds were soaked for 8 days at 15 ° C. after salt water selection and hot water disinfection. After soaking, the half-day germinated fir was sown in a seedling culture soil (Lovery: Spring-style culture soil: 2: 1). Germination was performed at 28 ° C. in the dark for 2 days, and seedlings were grown in Groth Cabinet at 23 ° C. As for seedling conditions, a quarter-sized seedling vat was used, and after filling 900 ml of soil per vat, 300 g of water was irrigated, 25 g of germinated fir were covered with 200 ml of soil (non-fertilizer). The seedlings were transplanted into a 500 ml disposable cup filled with 400 ml of non-fertilizer raising seedling culture soil and 0.5 g of Rinkaan No. 14 added. Three transplants were made per pot. After transplanting, the plants were cultivated in a test greenhouse, and the dry weight of the above-ground part and the root part at the time of transplanting and the plant height, tillering, dry weight of the above-ground part and the root part after two months were measured. The values at the time of transplantation were the average per 100, and 2 months later, 1 ward was 6 pots, 4 stations, and the values were the average per pot.

結果を表8に示した。
The results are shown in Table 8.

実施例3では製剤に菌液浸漬方式(粒状の肥料用資材を本発明の微生物肥料に浸漬した後、水分12%〜2%になるまで乾燥処理)を採用していた。この実施例では、効率的な製造方法を検討するため異なる製造方式(肥料用資材に本発明の微生物肥料を添加・混合して造粒した後、水分12%〜2%になるまで乾燥処理)で調製した製剤の菌数を検討した。   In Example 3, a bacterial solution immersion method (dry treatment until the moisture content becomes 12% to 2% after the granular fertilizer material was immersed in the microbial fertilizer of the present invention) was adopted in the preparation. In this example, in order to examine an efficient production method, different production methods (after adding and mixing the microbial fertilizer of the present invention to the fertilizer material and granulating, drying treatment until the water content becomes 12% to 2%) The number of bacteria in the preparation prepared in (1) was examined.

実施例3と同様にして8.7×10cfu /mlの菌濃度の菌液を調製した。 In the same manner as in Example 3, a bacterial solution having a bacterial concentration of 8.7 × 10 8 cfu / ml was prepared.

実施例3と同様の肥料用資材(シリカゲルとケイソウ土(焼成していないケイソウ土)を重量比7:3の割合で混合し、粒状成型した肥料(造粒促進剤(バインダー)として総重量3%のでんぷんを添加))を用い、これに等量の菌液(8.7×10cfu /ml)を添加・混合して造粒した。 Fertilizer materials similar to Example 3 (silica gel and diatomaceous earth (unfired diatomaceous earth) were mixed at a weight ratio of 7: 3, and granulated molded fertilizer (total weight 3 as a granulation accelerator (binder)) % Starch was added), and an equal amount of the bacterial solution (8.7 × 10 8 cfu / ml) was added and mixed to granulate.

造粒後、通風乾燥機を用いて70℃、2時間30分の条件で乾燥した。   After granulation, the mixture was dried at 70 ° C. for 2 hours and 30 minutes using a ventilation dryer.

得られた製剤を乳鉢で摩砕した後、約5gに滅菌水45mlを添加し10分間振とう後、希釈平板法により菌数を計数した。   The obtained preparation was ground in a mortar, 45 ml of sterilized water was added to about 5 g and shaken for 10 minutes, and the number of bacteria was counted by a dilution plate method.

結果は表9の通りであった。   The results are shown in Table 9.

この実施例で得た製剤においても、実施例3の場合と同様の菌数を得ることができることが示された。
In the preparation obtained in this example, it was shown that the same number of bacteria as in Example 3 can be obtained.

以上、本発明の好ましい実施形態、実施例を説明したが、本発明は上述した実施の形態、実施例に限られるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。   The preferred embodiments and examples of the present invention have been described above, but the present invention is not limited to the above-described embodiments and examples, and variously within the technical scope grasped from the description of the claims. It can be changed.

Claims (6)

Bacillus属細菌であるBacillus pumillusTUAT1 株(NITE BP−1356)を培養した後、65℃〜80℃の温度範囲で60分間以上加熱処理してなる芽胞率100%のバイオ肥料を製造する方法 A method of producing a biofertilizer having a spore rate of 100% obtained by culturing Bacillus pumillus TUAT1 strain (NITE BP-1356) , which is a bacterium belonging to the genus Bacillus, and then heat-treating at a temperature range of 65 ° C to 80 ° C for 60 minutes or more. 菌濃度が1.0×10〜9.0×10cfu/gであることを特徴とする請求項1記載のバイオ肥料の製造方法The method for producing a biofertilizer according to claim 1, wherein the fungus concentration is 1.0 x 10 7 to 9.0 x 10 7 cfu / g. 粒状の肥料用資材を請求項1又は2記載のバイオ肥料の製造方法で製造したバイオ肥料に浸漬した後、水分12%〜2%になるまで乾燥処理してなる粒状バイオ肥料を製造する方法 After immersing the fertilizer material of granular biofertilizer produced by the production method of biofertilizer according to claim 1 or 2, wherein a method of producing a granular biofertilizer obtained by drying until 12% to 2% moisture. 肥料用資材に請求項1又は2記載のバイオ肥料の製造方法で製造したバイオ肥料を添加・混合して造粒した後、水分12%〜2%になるまで乾燥処理してなる粒状バイオ肥料を製造する方法 After granulation was added and mixed biofertilizer produced by the production method of biofertilizer according to claim 1 or 2, wherein for materials fertilizer, granular biofertilizer obtained by drying until 12% to 2% moisture How to manufacture . 前記肥料用資材はケイソウ土、ゼオライト、シリカゲルの中のいずれか一種又は複数種の組み合わせからなることを特徴とする請求項3又は4記載の粒状バイオ肥料の製造方法 The method for producing a granular biofertilizer according to claim 3 or 4, wherein the fertilizer material is composed of any one or a combination of diatomaceous earth, zeolite, and silica gel . 前記肥料用資材には、μm以上の孔径を有する多孔質資材が含まれることを特徴とする請求項3乃至5のいずれか一項記載の粒状バイオ肥料の製造方法The method for producing a granular biofertilizer according to any one of claims 3 to 5, wherein the fertilizer material includes a porous material having a pore diameter of not less than µm .
JP2013258791A 2013-12-16 2013-12-16 Biofertilizer manufacturing method Active JP6296776B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013258791A JP6296776B2 (en) 2013-12-16 2013-12-16 Biofertilizer manufacturing method
PCT/JP2014/083111 WO2015093428A1 (en) 2013-12-16 2014-12-15 Bio-fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013258791A JP6296776B2 (en) 2013-12-16 2013-12-16 Biofertilizer manufacturing method

Publications (2)

Publication Number Publication Date
JP2015113274A JP2015113274A (en) 2015-06-22
JP6296776B2 true JP6296776B2 (en) 2018-03-20

Family

ID=53402774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013258791A Active JP6296776B2 (en) 2013-12-16 2013-12-16 Biofertilizer manufacturing method

Country Status (2)

Country Link
JP (1) JP6296776B2 (en)
WO (1) WO2015093428A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071182A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Directed evolution of synthetic gene cluster
EP3322679A4 (en) 2015-07-13 2019-07-10 Pivot Bio, Inc. Methods and compositions for improving plant traits
CN105018395B (en) * 2015-08-14 2018-06-29 青岛中达农业科技有限公司 One bacillus pumilus and its application in alternaria leaf spot of apple is prevented
EP3359664A4 (en) 2015-10-05 2019-03-20 Massachusetts Institute Of Technology Nitrogen fixation using refactored nif clusters
JP2017095397A (en) * 2015-11-24 2017-06-01 朝日工業株式会社 Plant disease control agent, plant disease control agent using microorganism material, plant disease control agent and plant disease control method for suppressing and controlling generation of rice blast disease, major disease of rice
CN110799474B (en) 2017-01-12 2022-07-26 皮沃特生物公司 Methods and compositions for improving plant traits
CN111587287A (en) 2017-10-25 2020-08-25 皮沃特生物股份有限公司 Methods and compositions for improved nitrogen-fixing engineered microorganisms

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912387A (en) * 1995-04-26 1997-01-14 Shikoku Chem Corp Composting treatment agent
JPH09328682A (en) * 1996-06-10 1997-12-22 Sai Teiki Microbial material
JPH10146185A (en) * 1996-11-18 1998-06-02 Asada Shoji Kk Heat-resistant bacillus, lawn grass pathogenic bacterium control agent containing the bacillus, organic fertilizer, and their production
JP2000217567A (en) * 1999-01-29 2000-08-08 Yakult Honsha Co Ltd Sporulation of bacteria of genus bacillus
JP3140430B2 (en) * 1999-03-09 2001-03-05 株式会社 バイテク Bacillus microorganisms and their uses
JP2001314882A (en) * 2000-05-09 2001-11-13 Dreams:Kk Biological cleaning material
JP2002363561A (en) * 2001-06-08 2002-12-18 Nok Corp Method of manufacturing microbial material
JP2003171193A (en) * 2001-12-03 2003-06-17 Hiroshi Senoo Inoculation material for leguminous bacteria
JP2005281195A (en) * 2004-03-30 2005-10-13 Nisshin Oillio Group Ltd Plant growth promoter, method for culturing plant and method for promoting growth of plant
JP2006188395A (en) * 2005-01-07 2006-07-20 Nippon Hiryo Kk Compound fertilizer and its production method
JP4939509B2 (en) * 2008-10-01 2012-05-30 住重環境エンジニアリング株式会社 Simple method for measuring Bacillus bacteria

Also Published As

Publication number Publication date
JP2015113274A (en) 2015-06-22
WO2015093428A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6296776B2 (en) Biofertilizer manufacturing method
RU2628411C2 (en) Microbial inoculants and fertilisers composition containing them
Erickson et al. Infrequent internalization of Escherichia coli O157: H7 into field-grown leafy greens
Suman et al. Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus
JP5714603B2 (en) Novel fluorescent Pseudomonas species of the Pseudomonas azotoformans species for enhancing budding and growth of plants
JP2017534671A (en) Microbial composition and method of use thereof
AU2007229234A1 (en) The production and use of endophytes as novel inoculants for promoting enhanced plant vigor, health, growth, yield reducing environmental stress and for reducing dependency on chemical pesticides for pest control
KR102071714B1 (en) Bacillus mesonae strain promoting tolerance of plants and use thereof
CN116622581B (en) Bacillus bailii HM-3 and application thereof
WO2022174313A1 (en) Methods for carbon capture and increasing yield of crop plants
KR20140083122A (en) Chlamydospore formation technology and microorganism agents using trichoderma sp. ok-1
KR102000472B1 (en) Bacillus aryabhattai strain promoting resistance of plants against abiotic stress and use thereof
TWI660672B (en) Method for cultivating crops using Bacillus bacteria
KR20120104875A (en) Microorganism agents using trichoderma atroviride ob-1
JP5374260B2 (en) Agricultural materials
Sharma et al. Screening of AM fungi and Azotobacter chroococcum under natural, solarization, chemical sterilization and moisture conservation practices for commercial mango nursery production in north-west Himalayas
JP5909695B1 (en) Microbial control agent and seed coating agent for bacterial disease of plant, and seed coated with said seed coating agent
KR20120084925A (en) Microorganism agents using trichoderma harzianum ok-1
JP2012135300A (en) Microbial strain and cultivation method which show yield increase and inhibitory effect on late blight disease in solanaceous plant and which show protective effect on yield decrease due to continuous cropping in leguminous plant
KR101215273B1 (en) Microorganism mixture improving soil and enhancing crop growth
JP7529253B2 (en) Amaranthaceae seedlings and production method thereof
CN110257254A (en) A kind of preparation method and application of biocontrol bacterial strain TMN-1 and biocontrol agent
JP2004307342A (en) Growth promoting and disease injury suppressing material for plant, and culture soil for raising seedling comprising the same material
WO2003034807A1 (en) Rooted cutting and method of inoculating rooted cutting with microbial strain
JP7430960B2 (en) Cultivating soil for plants, cultivation sets including cultivating soil, cultivation methods using cultivating soil, and plant seedlings with cultivating soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6296776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250