JP2012135300A - Microbial strain and cultivation method which show yield increase and inhibitory effect on late blight disease in solanaceous plant and which show protective effect on yield decrease due to continuous cropping in leguminous plant - Google Patents

Microbial strain and cultivation method which show yield increase and inhibitory effect on late blight disease in solanaceous plant and which show protective effect on yield decrease due to continuous cropping in leguminous plant Download PDF

Info

Publication number
JP2012135300A
JP2012135300A JP2011136886A JP2011136886A JP2012135300A JP 2012135300 A JP2012135300 A JP 2012135300A JP 2011136886 A JP2011136886 A JP 2011136886A JP 2011136886 A JP2011136886 A JP 2011136886A JP 2012135300 A JP2012135300 A JP 2012135300A
Authority
JP
Japan
Prior art keywords
strain
effect
microbial strain
yield
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011136886A
Other languages
Japanese (ja)
Other versions
JP5807950B2 (en
Inventor
Masami Yoshikawa
正巳 吉川
Seiji Matsumoto
静治 松本
Komei Shizukawa
幸明 静川
Ai Ono
愛 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO PREFECTURE
Original Assignee
KYOTO PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO PREFECTURE filed Critical KYOTO PREFECTURE
Priority to JP2011136886A priority Critical patent/JP5807950B2/en
Publication of JP2012135300A publication Critical patent/JP2012135300A/en
Application granted granted Critical
Publication of JP5807950B2 publication Critical patent/JP5807950B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microbial strain, which makes low cost cultivation possible and also has a great effect of both promoting growth and inhibiting late blight disease, concerning cultivation techniques in the seedling stage and the early growing stage after transplanting of the solanaceous plants, particularly of the genus Capsicum, and also to provide a microbial stain which has an effect of inhibiting yield decrease of leguminous plants, particularly of the genus Glycine, in the continuously cropped field.SOLUTION: The microbial strain is Arthrobacter oxydans, accession number FERM P-22038, and the cultivation method is to inoculate the seeds of solanaceous or leguminous plants with a microbial strain before growing the seeds.

Description

この発明は、トウガラシ、ピーマンなどのナス科植物及びダイズなどのマメ科植物の栽培において、好適に利用されうる微生物菌株、及びそれを利用した栽培方法に関する。   The present invention relates to a microbial strain that can be suitably used in the cultivation of eggplants such as peppers and peppers and legumes such as soybeans, and a cultivation method using the same.

京都の伝統野菜である伏見甘長トウガラシや万願寺トウガラシの産地の多くでは、ポットで育成された苗をハウス内圃場に定植する半促成栽培または促成栽培が行われている。このような栽培方法は、出荷時期を通常より前進させて収益性を高めることができるが、育苗が12月あるいは1月から3ヶ月以上に渡ることにより、低温による苗の生育不良が多発し、しかも多大な労力を要する。また、定植時期も早春の低温期(2月から3月)であるため、定植後1〜2ヶ月間の初期生育が遅く、栽培期間が長くなり、生産効率が悪い。さらに、この時期には土壌病害の疫病が多発しやすい。疫病が発生すると、多くの個体を枯死させて収穫不能に至らしめるため、農家は深刻な被害を受けることになる。そのため、土壌病害に強い健全な苗を育成するための技術開発が求められている。   In many of the production areas of Kyoto traditional vegetables such as Fushimi Kancho Pepper and Manganji Pepper, semi-forcing or forcing cultivation is carried out in which seedlings grown in pots are planted in farmhouse fields. Such a cultivation method can increase the profitability by advancing the shipping time from the usual, but by raising the seedlings over three months from December or January, the growth of seedlings due to low temperature frequently occurs, Moreover, a great deal of labor is required. Moreover, since the planting time is also the early spring low temperature period (February to March), the initial growth for 1 to 2 months after planting is slow, the cultivation period is long, and the production efficiency is poor. In addition, soil diseases are likely to occur during this period. When a plague occurs, farmers are severely damaged because many individuals die and become unable to harvest. Therefore, there is a demand for technological development for growing healthy seedlings that are resistant to soil diseases.

微生物を利用した野菜等の生育促進技術としては、植物共生菌類であるVA菌根菌が地力増進法による政令指定土壌改良資材として市販され、流通している(非特許文献1)。菌類以外では植物生育促進根圏細菌と呼ばれる微生物群を使った生育促進技術の研究事例が海外では多く、わが国では少ないながら見られる(非特許文献2)。一方、微生物を使って病害を防除しようとする生物防除技術はわが国でも数多くの研究がなされ(非特許文献3)、現在、農薬関連企業等を中心に農薬登録に向けての取組が行われている。   As a technique for promoting the growth of vegetables and the like using microorganisms, VA mycorrhizal fungi, which are plant symbiotic fungi, are commercially available and distributed as a government-designated soil improvement material by the Geopower Promotion Act (Non-patent Document 1). Except for fungi, there are many examples of research on growth promotion technology using a group of microorganisms called plant growth promoting rhizosphere bacteria overseas, but there are few cases in Japan (Non-patent Document 2). On the other hand, many researches have been conducted on biological control technology that attempts to control diseases using microorganisms (Non-patent Document 3). Currently, efforts are being made to register agricultural chemicals mainly by agricultural chemical-related companies. Yes.

更に、このように生育促進効果及び病害防除効果のいずれか一つを示す微生物とは異なり、発明者等が調査した限り両方の目的を果たす唯一の資材として、植物生育促進リゾバクテリアとキチンなどの有機土壌改良剤とを含む組成物(特許文献1)が提案されている。   Furthermore, unlike microorganisms that exhibit any one of the growth promoting effects and disease control effects as described above, as the only material that fulfills both purposes as long as the inventors have investigated, plant growth promoting rhizobacteria and chitin, etc. The composition (patent document 1) containing an organic soil improvement agent is proposed.

特表2003−529539Special table 2003-529539

政令指定土壌改良資材一覧(特徴・施用方法・取扱会社)、[online]、[平成22年5月31日検索]、インターネット<http://www.japan-soil.net/dokai-shizai/2_shizai.htm>List of Ordinance-designated Soil Improvement Materials (Characteristics / Application Methods / Handling Companies), [online], [Search May 31, 2010], Internet <http://www.japan-soil.net/dokai-shizai/2_shizai .htm> ホウレンソウにおける植物生育促進根圏細菌利用法の開発、[online]、[平成22年5月31日検索]、インターネット<http://www.cgk.affrc.go.jp/seika/seika_print/materials/report_06/report_2007_06f.pdf>Development of plant growth-promoting rhizosphere bacteria utilization method in spinach, [online], [Search May 31, 2010], Internet <http://www.cgk.affrc.go.jp/seika/seika_print/materials/ report_06 / report_2007_06f.pdf> 生物農薬を用いた病害虫防除技術、[online]、[平成22年10月19日検索]、インターネット<http://www.pref.saga.lg.jp/web/library/at-contents/shigoto/nogyo/nougyougijutsu/jizoku/pdf/A7.pdf>Pest control technology using biological pesticides, [online], [October 19, 2010 search], Internet <http://www.pref.saga.lg.jp/web/library/at-contents/shigoto/ nogyo / nougyougijutsu / jizoku / pdf / A7.pdf>

しかし、生育促進効果を示す微生物と病害防除効果を示す微生物を各々使用することは、農家にとって著しいコスト高になる。また、特許文献1に記載の組成物は、対象とする植物の範囲が広すぎて実施例で確認されている植物以外の植物についての効果が不明であるうえ、植物に対する処理方法の記載も不明瞭である。
それ故、この発明の第一の課題は、ナス科植物、特にトウガラシ属の育苗時及び定植後初期生育時の栽培技術に関する上記の課題を解決し、生育促進及び疫病発病抑制の双方に高い効果を併せ持つ菌株を提供することにある。第二の課題は、マメ科植物、特にダイズ属の連作圃場における収量低下防止効果を有する菌株を提供することにある。
However, using each of the microorganisms showing the growth promotion effect and the microorganisms showing the disease control effect increases the cost significantly for the farmer. In addition, the composition described in Patent Document 1 has an unclear effect on plants other than the plants identified in the examples because the range of target plants is too wide, and there is no description of the treatment method for plants. It is clear.
Therefore, the first object of the present invention is to solve the above-mentioned problems relating to the cultivation technique of the solanaceous plant, particularly Capsicum, at the time of raising seedlings and at the initial growth after planting, and is highly effective for both growth promotion and prevention of epidemics. It is in providing the strain which also has. A second problem is to provide a strain having an effect of preventing a decrease in yield in a continuous cropping field of legumes, particularly a soybean genus.

その課題を解決するこの発明の菌株は、
ナス科植物の生育を促進し、疫病の発生を抑制する性質を有するとともに、マメ科植物の連作による収量低下を防止する性質を併せもつArthrobacter属oxydans種受託番号FERM P−22038の微生物菌株である。
前記ナス科植物がトウガラシ属であるとき、あるいは前記マメ科植物がダイズ属であるとき、特にこの発明の作用効果が顕著である。
また、前記菌株の発明と関連する発明は、前記微生物菌株をナス科植物又はマメ科植物の種子に接種し、その種子を生育させることを特徴とする栽培方法である。
The strain of the present invention that solves the problem is
It is a microbial strain of Arthrobacter genus oxydans species accession number FERM P-22038 that has the property of promoting the growth of solanaceous plants and suppressing the occurrence of plague, and also the property of preventing the decrease in yield due to continuous cropping of legumes .
When the solanaceous plant belongs to the genus Capsicum, or when the legume plant belongs to the genus Soybean, the effects of the present invention are particularly remarkable.
The invention related to the invention of the strain is a cultivation method characterized by inoculating the microorganism strain on a seed of a solanaceous plant or legume and growing the seed.

この発明の菌株は、ナス科植物の生育を促進し且つ疫病の発生を抑制する性質を有する。そのため、この発明の菌株をナス科植物の栽培に利用すると生育を促進することができるとともに疫病の発生を抑制することもでき、農家は安定して効率よく低コストで栽培できる。また、この発明の菌株は、マメ科植物の連作圃場における収量低下を防止する性質をも有する。そのため、この発明の菌株をマメ科植物の栽培に利用すると同一の圃場を長年連続して使用することができる。   The strain of this invention has the property of promoting the growth of solanaceous plants and suppressing the occurrence of plague. Therefore, when the strain of this invention is used for cultivation of solanaceous plants, growth can be promoted and the occurrence of epidemics can be suppressed, and the farmer can cultivate stably and efficiently at low cost. In addition, the strain of the present invention has a property of preventing a decrease in yield in a continuous cropping field of legumes. Therefore, when the strain of the present invention is used for cultivation of legumes, the same field can be used continuously for many years.

−実施例1−
(1)根圏細菌の分離
高い生産性を維持しているトウガラシ、ナス及びネギの現地圃場から定植後約1ヶ月の生育旺盛な株を採取し、水中分画法により分離源を調製した。次に、キングB寒天培地を用い、希釈平板法により30℃、24〜48時間培養した。培養後に形成されたコロニーの中からUV照射下で蛍光を発するコロニーを釣菌し、表1に示すようにトウガラシ、ナス及びネギの株からそれぞれ188、196、200株、計584株の分離菌株を得た。蛍光性細菌は、植物との親和性に優れ、植物の生育に好影響を及ぼす可能性が高いことが経験的に知られていることによる。
これらの分離菌株をスキムミルク分散媒に懸濁後、−80℃で凍結保存し、以下の検定に供した。
Example 1
(1) Isolation of rhizosphere bacteria A vigorous strain of about one month after planting was collected from local fields of pepper, eggplant, and leek maintaining high productivity, and a separation source was prepared by an underwater fractionation method. Next, it was cultured at 30 ° C. for 24 to 48 hours by a dilution plate method using King B agar medium. From the colonies formed after culture, colonies that fluoresce under UV irradiation are picked, and as shown in Table 1, 188, 196, 200 strains from the pepper, eggplant and leek strains, respectively, a total of 584 isolates Got. This is because it has been empirically known that fluorescent bacteria are excellent in affinity with plants and highly likely to have a positive effect on the growth of plants.
These isolates were suspended in a skim milk dispersion medium, stored frozen at −80 ° C., and subjected to the following assay.

Figure 2012135300
Figure 2012135300

(2)分離菌株のトウガラシに対する生育促進効果による1次選抜(幼苗検定)
分離菌株は多数であるため、その中から生育促進効果を持つ菌株を効率よく選抜する必要がある。そのため、以下の手順で、分離菌株を接種したトウガラシを実験室内のグロースチャンバーで生育させ、発芽後間もない幼苗の段階で選抜を行った。
(2) Primary selection based on growth-promoting effect of isolated strains on red pepper (nursery seedling test)
Since there are many isolated strains, it is necessary to efficiently select a strain having a growth promoting effect among them. Therefore, the following procedure was used to grow capsicum inoculated with the isolated strain in a growth chamber in the laboratory, and selection was performed at the seedling stage immediately after germination.

分離菌株とともに凍結されたスキムミルク分散媒を室温で溶かし、水で薄めて平面培地に接種し、増殖して出現するコロニーのうち典型的な形態のものを選んで菌株毎にベクトン・デイツキンソン・アンド・カンパニ−製の液体培地トリプチケースソイブロスを用いて30℃で24時間振とう培養した。そして、遠心分離機により沈殿させて集めた菌体を滅菌水中に懸濁させ、約109cfu/mlに調製した。この懸濁液の中にトウガラシ種子(品種「伏見甘長とうがらし」、タキイ種苗株式会社)を1時間浸漬することにより、菌株をトウガラシ種子に接種した。   Dissolve skim milk dispersion medium frozen with the isolated strain at room temperature, dilute with water, inoculate on a flat medium, select typical colonies of the colonies that appear after growth, and select Becton, Ditzkinson and Using a liquid culture medium Trypticase soy broth made by a company, the cells were cultured with shaking at 30 ° C. for 24 hours. Then, the cells collected by precipitation with a centrifuge were suspended in sterilized water to prepare about 109 cfu / ml. The strain was inoculated into the pepper seed by immersing the pepper seed (variety “Fushimi Amaga Togarashi”, Takii Seed Co., Ltd.) in this suspension for 1 hour.

別途、バイアル瓶(ガラス製、内径35mm×高さ75mm)に瓶容量の1/3程度バーミキュライトを入れ、これに養分として市販の液体肥料ハイポネックス(登録商標)2000倍液を10ml注加した。そして、分離菌株を接種した前記トウガラシ種子を瓶内のバーミキュライトに播種した。グロースチャンバー内(25℃、16時間明/8時間)で14日間生育させた後、茎葉重及び根重を測定した。接種効果の判定にあたっては対照として無接種区を設け、これと比較した。   Separately, vermiculite was put into a vial (made of glass, inner diameter 35 mm × height 75 mm), about 1/3 of the bottle capacity, and 10 ml of a commercially available liquid fertilizer Hyponex (registered trademark) 2000 times solution was added thereto as a nutrient. And the said pepper seed | inoculated with the isolate was seed | inoculated to the vermiculite in a bottle. After growing for 14 days in a growth chamber (25 ° C., 16 hours light / 8 hours), the foliage weight and root weight were measured. In determining the inoculation effect, a non-inoculation zone was established as a control and compared with this.

グロースチャンバー内での幼苗検定の結果、対照と比較して茎葉重は同程度だが根重が有意に増加した菌株(生育促進タイプ)や、根重は同程度だが茎葉重は有意に減少した菌株(生育抑制タイプ)が認められた。この中から比較的高い生育促進効果を示した6菌株を1次選抜菌株として(表2)、ポット試験による2次選抜に供した。   As a result of the seedling test in the growth chamber, strains with the same leaf weight as compared to the control but with a significantly increased root weight (growth promotion type), and strains with the same root weight but a significantly reduced leaf weight (Growth suppression type) was observed. Among these, 6 strains that showed a relatively high growth promoting effect were used as primary selection strains (Table 2) and subjected to secondary selection by a pot test.

Figure 2012135300
Figure 2012135300

(3)分離菌株のトウガラシに対する生育促進効果による2次選抜(ポット試験)
1次選抜した菌株の生育促進効果をさらに詳細に検定するために、接種したトウガラシを通常の栽培(育苗)条件に近い環境(ガラス温室内)で以下の手順でポット試験に供した。
1次選抜された菌株を1次選抜時と同様にトウガラシ種子に接種した。菌株の接種されたトウガラシ種子を培土(商品名「プロソイル」、新東化学工業株式会社製)を充填したビニルポット(φ7.5cm)に播種し、ガラス温室内で1ヶ月間生育させた後、茎葉部、根部の新鮮重を測定した。測定値を無接種の対照区と比較することにより生育促進効果を判定した。
1次選抜菌株の多くは茎葉重、根重ともに対照区を上回ったが、その中でKP9670株の根部に対する生育促進効果が顕著であった(表3)。
(3) Secondary selection based on growth-promoting effect on red pepper of isolated strain (pot test)
In order to examine the growth promotion effect of the primary selected strains in more detail, the inoculated pepper was subjected to a pot test in the following procedure in an environment (in a glass greenhouse) close to normal cultivation (nurturing) conditions.
The primary selected strain was inoculated into the pepper seeds in the same manner as in the primary selection. After seeding capsicum seeds inoculated with the strain in a vinyl pot (φ7.5 cm) filled with soil (trade name “Prosoil”, manufactured by Shinto Chemical Co., Ltd.) and growing in a glass greenhouse for 1 month, The fresh weight of the foliage and roots was measured. The growth promoting effect was determined by comparing the measured value with the non-inoculated control group.
Many of the primary selection strains exceeded the control group in both stem and leaf weight and root weight, but the growth promoting effect on the root of KP9670 strain was remarkable (Table 3).

Figure 2012135300
Figure 2012135300

(4)分離菌株の疫病発病抑制効果の検定
生育促進効果と疫病発病抑制効果を併せ持つ菌株を得るため、1次選抜により得た菌株のトウガラシ疫病発病抑制効果を以下の要領でポット試験により検定した。
分離菌株を1次選抜時と同様に前記トリプチケースソイブロスを用いて30℃で24時間振とう培養した。得られた菌体の滅菌水懸濁液(約109cfu/ml)の中に前記と同一種のトウガラシの3週間齢の幼苗の根部を1時間浸漬することによって、分離菌株を幼苗の根部に接種した。
(4) Examination of epidemic pathogenesis control effect of isolated strain In order to obtain a strain having both growth promotion effect and epidemic pathogenesis control effect, the potash epidemic pathogenesis control effect of the strain obtained by the primary selection was tested by pot test as follows. .
The isolated strain was cultured with shaking at 30 ° C. for 24 hours using the trypticase soy broth as in the first selection. Inoculate the roots of the seedlings by immersing the roots of 3 weeks old seedlings of the same kind of red pepper in the sterilized water suspension (about 109 cfu / ml) of the obtained cells for 1 hour. did.

別途、トウガラシ疫病菌(Phytophthora capsici P−04株)を小麦ふすま・バーミキュライト培地で2週間培養後、培地もろとも培養物をホモジナイザーで粉砕し、培土(商品名「プロソイル」、新東化学工業株式会社製)に0.5%(w/v)の割合で混合することにより、病土を調製した。そして、この病土をビニルポット(φ7.5cm)に充填した。   Separately, after cultivating Pepper pesticidal fungus (Phytophthora capsici strain P-04) in wheat bran / vermiculite medium for 2 weeks, the medium was crushed with a homogenizer, and the soil (trade name “Prosoil”, Shinto Chemical Co., Ltd.) The soil was prepared by mixing at a rate of 0.5% (w / v). Then, this diseased soil was filled into a vinyl pot (φ7.5 cm).

次に、菌株を接種した前記トウガラシ幼苗を、前記ビニルポット内の疫病病土に植え付け、発病率(萎凋株率)を経時的に調査し、病土植え付け後2週間の病状進展曲線下面積(area under disease progress curve、AUDPC)を無接種の対照区と比較することにより、疫病発病抑制効果を評価した。
その結果、表4に示すように、1次選抜して得た菌株の内、KP9670株はAUDPC値が最も小さい、即ち最も高い発病抑制効果を示した。これらのことから、本菌株がトウガラシ苗の生育促進効果と疫病発病抑制効果を併せ持つ菌株として有望であると考えられた。
Next, the capsicum seedlings inoculated with the strain are planted in the plague soil in the vinyl pot, the disease incidence (wilt strain rate) is investigated over time, and the area under the pathological progression curve for 2 weeks after planting the disease ( area under disease progress curve (AUDPC) was compared with an uninoculated control group to evaluate the disease-causing effect.
As a result, as shown in Table 4, among the strains obtained by the primary selection, the KP9660 strain had the smallest AUDPC value, that is, the highest disease suppression effect. From these, it was considered that this strain is promising as a strain having both the effect of promoting the growth of pepper seedlings and the effect of suppressing the onset of the plague.

Figure 2012135300
Figure 2012135300

(4)KP9670株接種がトウガラシの収量に及ぼす影響
トウガラシ苗の生育促進効果と疫病発病抑制効果を併せ持つ菌株として選抜したKP9670株の圃場における増収効果を検討した
KP9670株を1次選抜時と同様にトウガラシ種子に接種した。KP9670株の接種されたトウガラシ種子を培土(商品名「プロソイル」、新東化学工業株式会社製)を充填したビニルポット(φ7.5cm)に播種し、ガラス温室内で1ヶ月間生育させた後、ハウス内圃場(灰色低地土)に定植し、京都府慣行の施肥、栽培管理を行った。定植してから28日後に収穫を開始し、7〜10日おきに40日間にわたって収穫し、1個体当たりの収穫果数及び1個体当たりの果実の重量を測定し、無接種の対照区と比較することにより増収効果を判定した。
(4) Effect of inoculation of KP9660 strain on the yield of red pepper We examined the effect of increasing the yield of KP9660 strain selected as a strain having both the growth promotion effect of pepper seedling and the control effect of epidemic disease in the same manner as in the first selection Capsicum seeds were inoculated. After seeding inoculated capsicum seeds of KP9660 strain in a vinyl pot (φ7.5 cm) filled with soil (trade name “Prosoil”, manufactured by Shinto Chemical Co., Ltd.) and growing in a glass greenhouse for 1 month Planted in a farm field (gray lowland), fertilized and managed in accordance with the practices of Kyoto Prefecture. 28 days after planting, harvesting started, harvested every 7 to 10 days for 40 days, the number of fruits harvested per individual and the weight of fruit per individual were measured, and compared with the uninoculated control group To determine the effect of increasing sales.

その結果、KP9670株接種区は収穫果数、果実の重量で無接種の対照区を上回り、高い増収効果が確認された。また、秀品率も対照区より高かった。尚、秀品率は、長さが15cm前後で曲がりのないまっすぐな果実を秀品と定義し、全収穫物のうち秀品果実の占める重さの割合として求めた。   As a result, the KP9660 inoculated group exceeded the uninoculated control group in terms of the number of harvested fruits and the weight of the fruit, and a high yield increase effect was confirmed. The excellent product rate was also higher than the control. The excellent product rate was determined as the ratio of the weight of the excellent fruit among all the harvests, defining a straight fruit with a length of about 15 cm and no bending as an excellent product.

Figure 2012135300
Figure 2012135300

(5)KP9670株の同定
KP9670株の形態特徴、生化学性状及び16SrRNA遺伝子の塩基配列から菌種を同定した。
本菌株は、グラム染色陽性の短桿菌であるが、増殖初期にV字型を示すなど細胞形状は一定しない。芽胞は形成せず、好気的に生育する。グルコースを利用せず、カタラーゼ陽性で、運動性は示さず、4℃及び41℃では生育しない。オキシダーゼ陽性、ゼラチン液化陰性、アルギニンデヒドロゲナーゼ陰性、脱窒反応陰性、デンプン分解陽性、レバン産生陰性の性状を示し、キングB寒天培地で培養すると微弱な蛍光色素産生が見られた。また、16SrRNA遺伝子の部分塩基配列(下記)を調べ、BLAST検索した結果、既知のアルスロバクター・オキシダンス(Arthrobacter oxydans) DSM20119株の塩基配列と99.7%の相同性を示した。
以上の結果から、KP9670株をArthrobacter oxydans Sgurosと同定した。KP9670株は、受託番号FERM P−22038として独立行政法人産業技術総合研究所特許生物寄託センターに寄託されている。
(5) Identification of KP9660 strain The bacterial species was identified from the morphological characteristics, biochemical properties, and 16S rRNA gene base sequence of the KP9660 strain.
This strain is a gram-staining-positive short bacillus, but its cell shape is not constant, such as showing a V shape in the early stage of growth. Spores do not form and grow aerobically. It does not utilize glucose, is catalase positive, does not show motility, and does not grow at 4 ° C and 41 ° C. Oxidase positive, gelatin liquefaction negative, arginine dehydrogenase negative, denitrification negative, starch degradation positive, levan production negative were exhibited, and weak fluorescent pigment production was observed when cultured on King B agar medium. In addition, as a result of examining the partial base sequence (described below) of the 16S rRNA gene and performing a BLAST search, it showed 99.7% homology with the base sequence of the known Arthrobacter oxydans DSM201119 strain.
From the above results, the KP9660 strain was identified as Arthrobacter oxydans Sguros. The KP9660 strain has been deposited at the Patent Organism Depositary of the National Institute of Advanced Industrial Science and Technology under the deposit number FERM P-22038.

−実施例2−
(1)KP9670株の培養
KP9670株をジャガイモ・ペプトン液体培地(ジャガイモ200gの煎汁1000ml中に以下の成分を溶解:ペプトン5.0g、リン酸2ナトリウム・12水塩3.0g、リン酸1カリウム0.5g、塩化ナトリウム3.0g、pH7.0)で28℃、24時間振とう培養した。5℃で冷却しながら10000Gで20分間遠心分離し、上清(培地)を除去した後、沈殿(菌体)を培地と同量の滅菌水に懸濁した。遠心分離及び滅菌水への菌体の懸濁をさらに2回繰り返すことによって培地成分の除去、即ち菌体洗浄を行い、最終的に培地と同量の滅菌水に菌体を懸濁した。この懸濁液の菌濃度は1.0×109cfu/mlであり、これを接種源とした。
-Example 2-
(1) Cultivation of KP9660 strain KP9660 strain was dissolved in potato-peptone liquid medium (dissolved the following components in 1000 ml of potato 200 g: peptone 5.0 g, disodium phosphate · 12 hydrate 3.0 g, phosphate 1 The mixture was cultured with shaking at 28 ° C. for 24 hours in 0.5 g of potassium, 3.0 g of sodium chloride, pH 7.0). Centrifugation was performed at 10,000 G for 20 minutes while cooling at 5 ° C., and the supernatant (medium) was removed, and then the precipitate (cells) was suspended in the same amount of sterile water as the medium. Centrifugation and suspension of the cells in sterilized water were repeated twice to remove the medium components, that is, the cells were washed, and finally the cells were suspended in the same amount of sterile water as the medium. The bacterial concentration of this suspension was 1.0 × 10 9 cfu / ml, and this was used as the inoculation source.

(2)ダイズのセル苗育苗段階でのKP9670株接種効果
72穴のセルトレイにナプラ養土(Sタイプ、ヤンマー製)を充填し、ダイズ(品種:新丹波黒)を1穴に1粒ずつ播種した。覆土した直後に、覆土した上から前記接種源、即ちKP9670株の菌体懸濁液を1穴につき2ml注いだ。その後、温室内で適宜水を注ぎながら10日間育成することにより、圃場に定植できる段階にまで生長させた。そして、茎葉重、根重、茎葉長及び出芽率を測定したところ、同菌株を接種した苗は、対照(無接種)に比べて出芽率が高く、茎葉長は低く根重が重い苗、即ち徒長が抑えられた健全苗であった(表6)。なお、接種方法は、播種後に菌体懸濁液を注ぐ方法だけでなく、同懸濁液に種子を短時間浸漬後、播種する方法によっても全く同じ効果が得られた。
(2) Effect of inoculation of KP9660 strain at the cell seedling raising stage of soybean Filling 72 hole cell tray with Napra soil (S type, made by Yanmar) and seeding soybean (variety: Shintanba black) one by one in one hole did. Immediately after the covering, 2 ml of the inoculum, that is, the cell suspension of KP9670 strain was poured from the top of the covering. Then, it was grown to a stage where it could be planted in a farm by growing for 10 days while pouring water in a greenhouse. Then, when the foliage weight, root weight, foliage length and germination rate were measured, the seedlings inoculated with the same strain had a higher germination rate than the control (no inoculation), the foliage length was low and the root weight was heavy, The seedlings were healthy seedlings (Table 6). The inoculation method was not only the method of pouring the cell suspension after sowing, but also the same effect was obtained not only by soaking the seeds in the suspension for a short time and then sowing.

Figure 2012135300
Figure 2012135300

(3)ダイズの連作圃場におけるKP9670株接種効果
連作による顕著な収量低下が起きている圃場について、土壌タイプが異なる2箇所(灰色低地土及び褐色低地土)を供試し、(2)の方法によりKP9670株を接種・育苗したダイズセル苗を2010年6月下旬に栽植密度2000株/10aで定植した。供試圃場には、牛糞バーク堆肥を2010年5月上旬に1t/10a、硫安(N含有率20%)を基肥としてを2010年5月下旬に1kg/10a、追肥として開花期(2010年8月中旬)に2kg/10a(それぞれ窒素成分量)施用した。その他の栽培管理は京都府内の慣行基準(京の豆栽培の手引き、京都府農林水産部、2006年)に従った。灰色低地土圃場は子実収量(粗子実重)、褐色低地土圃場はエダマメ収量(莢重)で接種効果を評価した。
(3) Effect of inoculation of KP9660 strain in a continuous cropping field of soybean For a field where remarkable yield reduction occurs due to continuous cropping, two different soil types (gray lowland and brown lowland) were tested, and the method of (2) Soybean cell seedlings inoculated and grown with the KP9660 strain were planted at a planting density of 2000 strain / 10a in late June 2010. In the test field, cattle manure bark compost is 1t / 10a in early May 2010, ammonium sulfate (N content 20%) is used as the basic fertilizer and 1kg / 10a is used in late May 2010. In the middle of the month, 2 kg / 10a (each nitrogen component amount) was applied. Other cultivation management was in accordance with Kyoto Prefecture customary standards (Kyoto Bean Cultivation Guide, Kyoto Prefectural Agriculture, Forestry and Fisheries Department, 2006). The gray lowland soil field evaluated the inoculation effect by grain yield (crude grain weight), and the brown lowland soil field by green soybean yield (salmon weight).

Figure 2012135300
Figure 2012135300

Figure 2012135300
Figure 2012135300

その結果、灰色低地土・連作圃場では、対照区(無接種)の子実収量が21.7kg/株であったのに比べ、KP9670接種区では2倍以上の46.3kg/株に増加した(表7)。対照区の子実収量は10a換算すると43.3kgとなり、府平均収量約100kgの半分程度の極めて低収の圃場であると判断できる。このような収量レベルになると効果的な対策が見あたらず、栽培放棄されるのが通常であることから、本菌株接種による増収効果の意義は大きい。褐色低地土・連作圃場では、対照区(無接種)のエダマメ収量が103.6g/株であったのに比べ、KP9670株接種区では約22%増の126.9g/株に増加した(表8)。対照区のエダマメ収量は10a換算すると207.2kgとなり、府平均の約400kgの半分程度の極めて低収な圃場である。低収のエダマメ収穫の場合でも本菌株の接種効果が見られることが確認された。   As a result, in the gray lowland / continuous cropping field, the grain yield in the control plot (no inoculation) was 21.7 kg / strain, but in the KP9660 inoculation plot, it increased to 46.3 kg / strain, more than doubled. (Table 7). The grain yield in the control plot is 43.3 kg in terms of 10a, and it can be judged that this is a very low-yielding field, about half of the average yield of about 100 kg. At such a yield level, effective measures are not found, and cultivation is usually abandoned. Therefore, the effect of increasing the yield by inoculating this strain is significant. In brown lowland soil / continuous cropping field, the yield of green soybeans in the control group (no inoculation) was 103.6 g / strain, but in the inoculation group of KP9660 strain, it increased to about 126.9 g / strain in the inoculation group (Table). 8). The yield of green soybeans in the control plot is 207.2 kg in terms of 10a, which is a very low-yielding field that is about half the prefectural average of about 400 kg. It was confirmed that the inoculation effect of this strain was observed even in the case of low yielding soybean harvest.

(4)ダイズの非連作圃場におけるKP9670株接種効果
接種方法及び栽培方法は(3)と同じ方法により、ダイズを連作していない灰色低地土の圃場(前作が野菜作の畑地)を供試して、本菌株の接種効果を確認した。その結果、対照区(無接種)の子実収量が75.0kg/株であったのに比べ、KP9670株接種区では90.8kg/株に増加した(表9)。対照区の子実収量は10a換算すると150.0kgとなり、府平均収量約100kgより生産性の高い圃場と判断できることから、収量低下が起こっていない圃場でも接種効果が発現することが確認できた。
(4) Effect of inoculation of KP9660 strain in non-continuous cropping field of soybean Inoculation method and cultivation method are the same as in (3), and a gray lowland soil field where the soybean is not continuously cropped The inoculation effect of this strain was confirmed. As a result, the grain yield in the control group (no inoculation) increased to 90.8 kg / strain in the KP9660 inoculation group compared to 75.0 kg / strain (Table 9). The grain yield in the control plot was 150.0 kg in terms of 10a, which can be judged as a field with higher productivity than the prefecture average yield of about 100 kg. Therefore, it was confirmed that the inoculation effect was exhibited even in the field where the yield did not decrease.

Figure 2012135300
Figure 2012135300

Claims (4)

ナス科植物の生育を促進し、疫病の発生を抑制する性質を有するとともに、マメ科植物の連作による収量低下を防止する性質を併せもつArthrobacter属oxydans種受託番号FERM P−22038の微生物菌株。   A microbial strain of Arthrobacter genus oxydans species accession number FERM P-22038, which has the property of promoting the growth of solanaceous plants and suppressing the occurrence of plague, and also preventing the decrease in yield due to continuous cropping of legumes. 前記ナス科植物がトウガラシ属である請求項1に記載の微生物菌株。   The microbial strain according to claim 1, wherein the solanaceous plant belongs to the genus Capsicum. 前記マメ科植物がダイズ属である請求項1に記載の微生物菌株。   The microbial strain according to claim 1, wherein the leguminous plant belongs to the genus Soybean. 請求項1に記載の微生物菌株をナス科植物又はマメ科植物の種子に接種し、その種子を生育させることを特徴とする栽培方法。   A cultivation method comprising inoculating a seed of a solanaceous plant or legume plant with the microbial strain of claim 1 and growing the seed.
JP2011136886A 2010-12-10 2011-06-21 Microbial strains and cultivation methods that show increased yield and control of plague disease on solanaceous plants, and prevent yield reduction by continuous cropping on legumes Expired - Fee Related JP5807950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136886A JP5807950B2 (en) 2010-12-10 2011-06-21 Microbial strains and cultivation methods that show increased yield and control of plague disease on solanaceous plants, and prevent yield reduction by continuous cropping on legumes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010275495 2010-12-10
JP2010275495 2010-12-10
JP2011136886A JP5807950B2 (en) 2010-12-10 2011-06-21 Microbial strains and cultivation methods that show increased yield and control of plague disease on solanaceous plants, and prevent yield reduction by continuous cropping on legumes

Publications (2)

Publication Number Publication Date
JP2012135300A true JP2012135300A (en) 2012-07-19
JP5807950B2 JP5807950B2 (en) 2015-11-10

Family

ID=46673308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136886A Expired - Fee Related JP5807950B2 (en) 2010-12-10 2011-06-21 Microbial strains and cultivation methods that show increased yield and control of plague disease on solanaceous plants, and prevent yield reduction by continuous cropping on legumes

Country Status (1)

Country Link
JP (1) JP5807950B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104206073A (en) * 2013-10-14 2014-12-17 安徽徽大农业有限公司 Germination method of pepper seeds
CN112655516A (en) * 2020-12-31 2021-04-16 聊城职业技术学院 Solanaceous vegetable culture medium and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021004967A (en) 2018-11-02 2021-07-15 Nihon Nohyaku Co Ltd Pest control agent composition and method for using same.

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6015018936; Soil Biology and Biochemistry Vol.40, 2008, p.2494-2501 *
JPN6015018938; Journal of Plant Nutrition and Soil Science Vol.168, 2005, p.94-99 *
JPN6015018940; Can. J. Microbiol. Vol.53, 2007, p.1195-1202 *
JPN6015018942; Plant Soil Vol.291, 2007, p.263-273 *
JPN6015018944; 土と微生物 Vol.58, No.1, 2004, p.13-24 *
JPN6015018945; 根の研究 Vol.19, No.2, 201006, p.71 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104206073A (en) * 2013-10-14 2014-12-17 安徽徽大农业有限公司 Germination method of pepper seeds
CN112655516A (en) * 2020-12-31 2021-04-16 聊城职业技术学院 Solanaceous vegetable culture medium and preparation method thereof

Also Published As

Publication number Publication date
JP5807950B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
Kim et al. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.)
Çakmakçi et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions
Karthikeyan et al. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat
RU2628411C2 (en) Microbial inoculants and fertilisers composition containing them
RU2550268C2 (en) Novel fluorescent pseudomonade type pseudomonas azotoformans for enhancing plant germination and growth
WO2010109436A1 (en) Microbial formulation for widespread uesd in agricultural practices
WO2015114552A1 (en) Plant growth promoting rhizobacterial strains and their uses
CN103037684A (en) Compositions and methods for increasing biomass, iron concentration, and tolerance to pathogens in plants
CN105579573A (en) Compositions and methods related to isolated endophytes
US20120192605A1 (en) Fertilizer composition and method
Abdel-Monaim et al. Efficacy of rhizobacteria and humic acid for controlling Fusarium wilt disease and improvement of plant growth, quantitative and qualitative parameters in tomato
Desai et al. Inoculation with microbial consortium promotes growth of tomato and capsicum seedlings raised in pro trays
Trivedi et al. Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location
KR101922428B1 (en) New microorganism Bacillus toyonensis SB19 having growth promoting of Leafy vegetables and high temperature tolorance and drought resistance of leafy vegetables and microbial agent containing the same and biofertilizer containing the same
KR20120104875A (en) Microorganism agents using trichoderma atroviride ob-1
JP5807950B2 (en) Microbial strains and cultivation methods that show increased yield and control of plague disease on solanaceous plants, and prevent yield reduction by continuous cropping on legumes
JP5374260B2 (en) Agricultural materials
KR20140083122A (en) Chlamydospore formation technology and microorganism agents using trichoderma sp. ok-1
KR20130016917A (en) Serratia nematodiphila wcu338 strain, composition for control plant disease and control method of plant disease with same
Gicharu et al. Variation in nitrogen fixation among three Bush Bean cultivars grown in Kenya when inoculated with three Rhizobia Strains
JP2019165676A (en) Plant disease control agent and method of controlling plant disease
JP2009096721A (en) Method of controlling plant insect pest derived from plant parasitic nematode and agent for controlling the plant insect pest
KR100616408B1 (en) Turfgrass growth promoter comprising Rhizopus oligosporus and methods of promoting growth of turfgrass by using it
Patakioutas et al. Root inoculation with beneficial micro-organisms as a means to control Fusarium oxysporum f. sp. lycopersici in two Greek landraces of tomato grown on perlite
KR20120084925A (en) Microorganism agents using trichoderma harzianum ok-1

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5807950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees