{レーザレーダ装置11の構成例}
図1は、本発明を適用したレーザレーダ装置の一実施の形態であるレーザレーダ装置11の構成例を示している。
レーザレーダ装置11は、例えば、車両に設けられ、その車両の進行方向にある物体の検出を行う。なお、以下、レーザレーダ装置11により物体の検出が可能な領域を監視領域と称する。また、以下、レーザレーダ装置11が設けられている車両を他の車両と区別する必要がある場合、自車両と称する。さらに、以下、自車両の左右方向(車幅方向)と平行な方向を水平方向と称する。
レーザレーダ装置11は、制御部21、投光部22、受光部23、測定部24、及び、演算部25を含むように構成される。
制御部21は、車両制御装置12からの指令や情報等に基づいて、レーザレーダ装置11の各部の制御を行う。
投光部22は、物体の検出に用いるパルス状のレーザ光(レーザパルス)である測定光を監視領域に投光する。
受光部23は、測定光の反射光を受光し、水平方向のそれぞれ異なる方向からの反射光の強度(明るさ)を検出する。そして、受光部23は、各方向の反射光の強度に応じた電気信号である複数の受光信号を出力する。
測定部24は、受光部23から供給される受光信号に基づいて受光値の測定を行い、測定結果を演算部25に供給する。
演算部25は、測定部24から供給される受光値の測定結果に基づいて、監視領域内の物体の検出を行い、検出結果を制御部21及び車両制御装置12に供給する。
車両制御装置12は、例えば、ECU(Electronic Control Unit)等により構成され、監視領域内の物体の検出結果に基づいて、自動ブレーキ制御や運転者への警報等を行う。
{投光部22の構成例}
図2は、レーザレーダ装置11の投光部22の構成例を示している。投光部22は、駆動回路101、発光素子102、及び、投光光学系103を含むように構成される。
駆動回路101は、制御部21の制御の下に、発光素子102の発光強度や発光タイミング等の制御を行う。尚、この例においては、駆動回路101は、制御部21により制御されて、発光素子102の発光強度を2段階に切り替えて発光させる。ただし、発光強度は、2段階以上に切り替えられるようにして、2段階以上に切り替えて発光させるようにしてもよい。
発光素子102は、例えば、レーザダイオードからなり、駆動回路101の制御の下に、測定光(レーザパルス)の発光を行う。発光素子102から発光された測定光は、レンズ等により構成される投光光学系103を介して監視領域に投光される。
{受光部23の構成例}
図3は、レーザレーダ装置11の受光部23の構成例を示している。受光部23は、受光光学系201及び受光素子202−1乃至202−16を含むように構成される。
なお、以下、受光素子202−1乃至202−16を個々に区別する必要がない場合、単に受光素子202と称する。
受光光学系201は、レンズ等により構成され、光軸が車両の前後方向を向くように設置される。そして、受光光学系201は、監視領域内の物体等により反射された測定光の反射光が入射し、入射した反射光を各受光素子202の受光面に入射させる。
各受光素子202は、例えば、入射した光電荷をその光量に応じた電流値の受光信号に光電変換するフォトダイオードからなる。また、各受光素子202は、受光光学系201に入射した反射光が集光する位置において、受光光学系201の光軸に対して垂直、かつ、自車両の車幅方向に平行(すなわち、水平方向)に一列に並ぶように設けられている。そして、受光光学系201に入射した反射光は、受光光学系201への水平方向の入射角度に応じて、各受光素子202に振り分けられて入射する。従って、各受光素子202は、監視領域からの反射光のうち、水平方向においてそれぞれ異なる方向からの反射光を受光する。これにより、監視領域は水平方向の複数の方向における複数の領域(以下、検出領域と称する)に分割され、各受光素子202は、それぞれ対応する検出領域からの反射光を個別に受光する。そして、受光素子202は、受光した反射光をその受光量に応じた電流値の受光信号に光電変換し、得られた受光信号を測定部24に供給する。
{測定部24の構成例}
図4は、レーザレーダ装置11の測定部24の構成例を示している。測定部24は、選択部251、電流電圧変換部252、増幅部253、及び、サンプリング部254を含むように構成される。選択部251は、マルチプレクサ(MUX)261−1乃至261−4を含むように構成される。電流電圧変換部252は、トランス・インピーダンス・アンプ(TIA)262−1乃至262−4を含むように構成される。増幅部253は、プログラマブル・ゲイン・アンプ(PGA)263−1乃至263−4を含むように構成される。サンプリング部254は、A/Dコンバータ(ADC)264−1乃至264−4を含むように構成される。
なお、以下、MUX261−1乃至261−4、TIA262−1乃至262−4、PGA263−1乃至263−4、及び、ADC264−1乃至264−4をそれぞれ個々に区別する必要がない場合、それぞれ単にMUX261、TIA262、PGA263、及び、ADC264と称する。
MUX261−1は、制御部21の制御の下に、受光素子202−1乃至202−4から供給される受光信号のうち1つ以上を選択して、TIA262−1に供給する。なお、MUX261−1は、複数の受光信号を選択した場合、選択した受光信号を加算してTIA262−1に供給する。
MUX261−2は、制御部21の制御の下に、受光素子202−5乃至202−8から供給される受光信号のうち1つ以上を選択して、TIA262−2に供給する。なお、MUX261−2は、複数の受光信号を選択した場合、選択した受光信号を加算してTIA262−2に供給する。
MUX261−3は、制御部21の制御の下に、受光素子202−9乃至202−12から供給される受光信号のうち1つ以上を選択して、TIA262−3に供給する。なお、MUX261−3は、複数の受光信号を選択した場合、選択した受光信号を加算してTIA262−3に供給する。
MUX261−4は、制御部21の制御の下に、受光素子202−13乃至202−16から供給される受光信号のうち1つ以上を選択して、TIA262−4に供給する。なお、MUX261−4は、複数の受光信号を選択した場合、選択した受光信号を加算してTIA262−4に供給する。
従って、各受光素子202は、受光素子202−1乃至202−4からなる第1のグループ、受光素子202−5乃至202−8からなる第2のグループ、受光素子202−9乃至202−12からなる第3のグループ、受光素子202−13乃至202−16からなる第4のグループに分割される。そして、MUX261−1は、第1のグループの受光素子202の選択を行い、選択した受光素子202の受光信号を出力する。MUX261−2は、第2のグループの受光素子202の選択を行い、選択した受光素子202の受光信号を出力する。MUX261−3は、第3のグループの受光素子202の選択を行い、選択した受光素子202の受光信号を出力する。MUX261−4は、第4のグループの受光素子202の選択を行い、選択した受光素子202の受光信号を出力する。
各TIA262は、制御部21の制御の下に、MUX261から供給される受光信号の電流−電圧変換を行う。すなわち、各TIA262は、入力された電流としての受光信号を電圧としての受光信号に変換するとともに、制御部21により設定されたゲインで変換後の受光信号の電圧を増幅する。そして、各TIA262は、増幅後の受光信号を後段のPGA263に供給する。
各PGA263は、制御部21の制御の下に、TIA262から供給される受光信号の電圧を、制御部21により設定されたゲインで増幅し、後段のADC264に供給する。
各ADC264は、受光信号のA/D変換を行う。すなわち、各ADC264は、制御部21の制御の下に、PGA263から供給されるアナログの受光信号のサンプリングを行うことにより受光値の測定を行う。そして、各ADC264は、受光値のサンプリング結果(測定結果)を示すデジタルの受光信号を演算部25に供給する。
{MUX261の構成例}
図5は、MUX261の機能の構成例を模式的に示している。
MUX261は、デコーダ271、入力端子IN1乃至IN4、接点C1乃至C4、及び、出力端子OUT1を備えている。接点C1乃至C4の一端は、それぞれ入力端子IN1乃至IN4に接続されており、接点C1乃至C4の他の一端は、出力端子OUT1に接続されている。
なお、以下、入力端子IN1乃至IN4及び接点C1乃至C4を個々に区別する必要がない場合、単に入力端子IN及び接点Cと称する。
デコーダ271は、制御部21から供給される選択信号をデコードし、デコードした選択信号の内容に従って、各接点Cのオン/オフを個別に切り替える。そして、オンになっている接点Cに接続されている入力端子INに入力される受光信号が選択され、出力端子OUT1から出力される。なお、オンになっている接点Cが複数ある場合、選択された複数の受光信号が加算されて出力端子OUT1から出力される。
{演算部25の構成例}
図6は、演算部25の構成例を示している。
演算部25は、積算部301、検出部302、及び、通知部303を含むように構成される。また、検出部302は、相関係数処理部311、ピーク検出部312及び物体検出部313を含むように構成される。
積算部301は、同じ受光素子202の受光値の積算をサンプリング時刻毎に行い、その積算値(以下、積算受光値と称する)を相関係数処理部311に供給する。
相関係数処理部311は、制御部21より供給されてくる投光部22における発光強度の情報に基づいて、発光強度に対応付けて積算受光値を記憶する。また、相関係数処理部311は、積算受光値と発光強度との相関係数を算出し、例えば、最高の発光強度における積算受光値に、対応する相関係数をそれぞれ乗じてピーク検出部312に供給する。ここで、算出される相関係数は、例えば、以下の式(1)で示される。
ここで、Rは、所定のサンプリング時刻における発光強度と積算受光値との相関係数(−1<R<1)を表している。また、xi,yi(i=1,2,3・・・n)は、発光強度および積算受光値を表しており、x,yの上部にバーが設けられた文字は、それぞれ、xi,yiの相加平均値である。
すなわち、物体によって反射される反射光は、測定光の発光強度に応じて増減する。したがって、この場合には、積算受光値と発光強度とは相関が高く、相関係数が大きくなる。逆に、ノイズや測定光の反射光以外の迷光によって生じた積算受光値については、発光強度との相関は低くなるため相関係数が小さくなる。結果として、相関の高い積算受光値に対しては、大きな相関係数が乗じられることになり、逆にノイズのような積算受光値には小さな相関係数が乗じられることにより、実質的にノイズを除去することが可能となる。尚、この例においては、相関係数処理部311は検出部302に含まれる構成とされているが、検出部302の外部に設けるようにしても良い。
ピーク検出部312は、各受光素子202の積算受光値(反射光の強度)に基づいて、測定光の反射光の強度の水平方向及び時間方向(距離方向)のピークを検出し、検出結果を物体検出部313に供給する。
ここで、時間方向(距離方向)のピークについて説明する。レーザレーダ装置は、投光された測定光が物体によって反射されて、レーザレーダ装置に帰ってくるまでの時間(飛行時間と呼ぶ)を用いて該物体までの距離を算出している。この飛行時間は、距離を光速で除した値と比例しているため、時間が分かれば距離を算出することができる。ある受光素子202が反射光を受光した時刻が時刻t1だとした場合には、時刻t1における積算受光値が他の時刻の積算受光値よりも大きい値となる。受光素子202毎に、その積算受光値が最大となるサンプリング時刻とこの時刻における積算受光値とからピークを特定することができる。このピークが時間方向(距離方向)のピークである。例えば、後述する図9の最下段で示されるサンプリング時刻に対するサンプリング値の積算値の分布におけるピークが、時間方向(距離方向)のピークに相当する。
また、水平方向のピークについて説明する。前述したように、受光素子202は、車両の幅方向に向かって水平に配置されている。監視領域は水平方向に複数の検出領域に分割され、各受光素子202は、それぞれ対応する検出領域からの反射光を受光する。例えば、車両に設置されている2つのリフレクタは、レーザレーダ装置からほぼ同じ距離だけ離れており、また水平方向にも車幅よりもやや短い距離離れている。あるサンプリング時刻において2つのリフレクタの一方からの反射光を受光素子202−4が受光し、それとは離れて配置されている受光素子202−8が2つのリフレクタの他方からの反射光を受光するとした場合には、水平方向に配置された受光素子202−1乃至受光素子202−16のうち、受光素子202−4と受光素子202−8との2箇所において積分受光値が突出して大きくなる。これが水平方向のピークである。例えば、後述する図12の最上段で示される水平方向に対する積算受光値の分布におけるピークが、水平方向のピークに相当する。
物体検出部313は、積算受光値(反射光の強度)の水平方向及び時間方向(距離方向)の分布及びピークの検出結果に基づいて、監視領域内の物体の検出を行う。また、物体検出部313は、投光部22が発光強度を切り替えて投光するとき、発光強度毎の検出結果を記憶すると共に、同一の水平方向および時間方向における検出結果の相関係数を算出し、算出した相関係数を検出結果に乗じた値を検出結果として制御部21及び通知部303に供給する。
通知部303は、監視領域内の物体の検出結果を車両制御装置12に供給する。
{物体検出処理}
次に、図7のフローチャートを参照して、レーザレーダ装置11により実行される物体検出処理について説明する。
ステップS1において、各MUX261は、受光素子202の選択を行う。具体的には、各MUX261は、制御部21の制御の下に、各MUX261に入力される受光信号のうち後段のTIA262に供給する受光信号を選択する。そして、以下の処理において、選択された受光信号の出力元の受光素子202の受光値の測定が行われる。換言すれば、選択された受光素子202の検出領域からの反射光の強度の測定が行われる。
ステップS2において、投光部22の駆動回路101は、制御部21の制御に基づいて、発光強度を第1または第2の発光強度に切り替える。このとき、制御部21は、いずれの発光強度に制御したのかを示す情報を演算部25に供給する。
ステップS3において、投光部22は、測定光を投光する。具体的には、駆動回路101は、制御部21の制御の下に、上述したステップS2の処理により切り替えられた発光強度で発光素子102からパルス状の測定光を出射させる。発光素子102から出射された測定光は、投光光学系103を介して監視領域全体に投光される。
ステップS4において、受光部23は、反射光に応じた受光信号を生成する。具体的には、各受光素子202は、受光光学系201を介して、ステップS3の処理で投光した測定光に対する反射光のうち、それぞれ対応する方向の検出領域からの反射光を受光する。そして、各受光素子202は、受光した反射光をその受光量に応じた電気信号である受光信号に光電変換し、得られた受光信号を後段のMUX261に供給する。
ステップS5において、測定部24は、受光信号のサンプリングを行う。具体的には、各TIA262は、制御部21の制御の下に、各MUX261から供給された受光信号の電流−電圧変換を行うとともに、制御部21により設定されたゲインにより受光信号の電圧を増幅する。各TIA262は、増幅後の受光信号を後段のPGA263に供給する。
各PGA263は、制御部21の制御の下に、各TIA262から供給される受光信号の電圧を、制御部21により設定されたゲインで増幅し、後段のADC264に供給する。
各ADC264は、制御部21の制御の下に、各PGA263から供給される受光信号のサンプリングを行い、受光信号をA/D変換する。各ADC264は、A/D変換後の受光信号を積算部301に供給する。
なお、受光信号のサンプリング処理の詳細については、図8を参照して後述する。
ステップS6において、積算部301は、前回までの受光値と今回の受光値の積算を行う。これにより、図9を参照して後述するように、同じ受光素子202からの受光信号の同じサンプリング時刻における受光値の積算が行われる。
ステップS7において、制御部21は、受光値の測定を所定の回数(例えば、100回)行ったか否かを判定する。まだ受光値の測定を所定の回数行っていないと判定された場合、処理はステップS2に戻る。
その後、ステップS7において受光値の測定を所定の回数行ったと判定されるまで、ステップS2乃至S7の処理が繰り返し実行される。これにより、後述する所定の長さの測定期間内に、測定光を投光し、選択した受光素子202の受光値を測定する処理が所定の回数繰り返される。また、測定した受光値の積算が行われる。
一方、ステップS7において、受光値の測定を所定の回数行ったと判定された場合、処理はステップS8に進む。
ステップS8において、制御部21は、測定期間を所定の回数繰り返したか否かを判定する。まだ測定期間を所定の回数繰り返していないと判定された場合、処理はステップS1に戻り、ステップS2の処理により、必要に応じて発光強度が切り替えられて、処理が繰り返される。尚、発光強度の切り替えは、例えば、測定期間毎に測定回数が100回であった場合、第1の発光強度により50回測定されるようにし、第2の発光強度(<第1の発光強度)により50回測定されるようにしてもよい。このとき、発光強度は、第1の発光強度が前半50回とされ、第2の発光強度が後半50回となるように切り替えられるようにしても良いし、それ以外の頻度で切り替えられるようにしても良い。
その後、ステップS8において、測定期間を所定の回数繰り返したと判定されるまで、ステップS1乃至S8の処理が繰り返し実行される。すなわち、後述する所定の長さの検出期間内に、測定期間が所定の回数繰り返される。また、測定期間毎に、発光強度が切り替えられながら、受光値の測定を行う対象となる受光素子202の選択が行われ、反射光の強度の測定対象となる検出領域が切り替えられる。
一方、ステップS8において、測定期間を所定の回数繰り返したと判定された場合、処理はステップS9に進む。
ここで、図8乃至図10を参照して、ステップS1乃至S8の処理の具体例について説明する。
図8は、受光信号のサンプリング処理の具体例を示すタイミングチャートであり、図内の各段の図の横軸は時間を示している。尚、ここでは、発光強度が変化しない場合について説明するものとするが、実際には、発光強度毎に以下の処理がなされる。
図8のいちばん上の段は、測定光の発光タイミングを示している。検出期間TD1、TD2、・・・は、物体の検出処理を行う期間の最小単位であり、1回の検出期間において物体の検出処理が1回行われる。
また、各検出期間は、4サイクルの測定期間TM1乃至TM4及び休止期間TBを含んでいる。測定期間は、受光値の測定を行う受光素子202の切り替えを行う最小単位である。すなわち、各測定期間の前に受光素子202の選択が可能である一方、測定期間内は受光素子202の変更をすることができない。従って、1回の測定期間において、2種類の発光強度が切り替えられながら、同じ種類の受光素子202の受光値の測定が行われる。これにより、測定期間単位で発光強度を切り替えながら反射光の強度を測定する対象となる検出領域を切り替えることができる。
図8の2段目は、検出期間TD1の測定期間TM2を拡大した図である。この図に示されるように、1サイクルの測定期間内に、測定光が所定の間隔で所定の回数(例えば100回)だけ投光される。
図8の3段目は、ADC264のサンプリングタイミングを規定するトリガ信号の波形を示しており、4段目は、ADC264における受光信号のサンプリングタイミングを示している。なお、4段目の縦軸は受光信号の値(電圧)を示し、受光信号上の複数の黒丸は、それぞれサンプリングポイントを示している。従って、隣接する黒丸と黒丸の間の時間が、サンプリング間隔となる。
制御部21は、測定光の投光から所定の時間経過後に、トリガ信号を各ADC264に供給する。各ADC264は、トリガ信号が入力されてから所定の時間が経過した後、所定のサンプリング周波数(例えば、数十から数百MHz)で所定の回数(例えば32回)だけ受光信号のサンプリングを行う。すなわち、測定光が投光される度に、MUX261により選択された受光信号のサンプリングが、所定のサンプリング間隔で所定の回数行われる。
例えば、ADC264のサンプリング周波数を100MHzとすると、10ナノ秒のサンプリング間隔でサンプリングが行われる。従って、距離に換算して約1.5mの間隔で受光値のサンプリングが行われる。すなわち、各検出領域内の自車両からの距離方向において約1.5m間隔の各地点からの反射光の強度が測定される。
そして、各ADC264は、トリガ信号を基準とする(トリガ信号が入力された時刻を0とする)各サンプリング時刻におけるサンプリング値(受光値)を示すデジタルの受光信号を積算部301に供給する。
このように、測定光が投光される度に、MUX261により選択された各受光素子202の受光信号のサンプリングが行われる。これにより、選択された各受光素子202の検出領域内の反射光の強度が所定の距離単位で検出される。
一方、休止期間TBにおいては、測定光の投光及び受光値の測定が休止する。そして、測定期間TM1乃至TM4における受光値の測定結果に基づく物体の検出処理や、投光部22、受光部23、測定部24の設定、調整、試験等が行われる。
次に、図9を参照して、受光値の積算処理の具体例について説明する。図9は、1サイクルの測定期間中に測定光を100回投光した場合に、ある受光素子202から出力される100回分の受光信号に対する積算処理の例を示している。なお、図9の横軸はトリガ信号が入力されたタイミングを基準(時刻0)とする時刻(サンプリング時刻)を示し、縦軸は受光値(サンプリング値)を示している。
この図に示されるように、1回目から100回目までの各測定光に対して、それぞれサンプリング時刻t1乃至tyにおいて受光信号のサンプリングが行われ、同じサンプリング時刻における受光値が積算される。例えば、1回目から100回目までの各測定光に対するサンプリング時刻t1における受光値が積算される。このようにして、検出期間内にサンプリングされた、同じ受光素子202からの受光信号の同じサンプリング時刻における受光値の積算が行われる。そして、この積算値が以降の処理に用いられる。
ここで、MUX261において複数の受光素子202からの受光信号を加算する場合、全ての受光素子202が一致する受光信号の受光値が積算される。例えば、受光素子202−1及び202−2からの受光信号を加算した受光信号の受光値は、受光素子202−1又は受光素子202−2の一方のみからの受光信号の受光値とは別に積算される。換言すれば、受光素子202−1及び202−2からの受光信号を加算した受光信号の受光値と、受光素子202−1又は受光素子202−2の一方のみからの受光信号の受光値とは、それぞれ別の種類の受光信号をサンプリングした受光値として区別され、分けて積算される。
この積算処理により、1回の測定光に対する受光信号のS/N比が低い場合でも、この積算処理を行うことにより、信号成分は増幅され、ランダムなノイズは平均化されて減少する。その結果、受信信号から信号成分とノイズ成分を分離しやすくなり、実質的に受光感度を上げることができる。これにより、例えば、遠方の物体や反射率の低い物体の検出精度が向上する。
なお、以下、1サイクルの測定期間内に実行される所定の回数(例えば、100回)の測定処理及び積算処理のセットを測定積算ユニットと称する。
図10は、各測定期間における各MUX261の受光素子202の選択の組み合わせの例を示している。なお、この図において、MUX261−1乃至261−4をMUX1乃至4と短縮して表している。また、図内の四角のマスの中の番号は、MUX261−1乃至261−4により選択された受光素子202の番号を示している。すなわち、受光素子202−1乃至202−16が、それぞれ1乃至16の番号で示されている。
例えば、測定期間TM1において、MUX261−1乃至261−4により受光素子202−1、202−5、202−9、202−13がそれぞれ選択され、選択された各受光素子202の受光値の測定が行われる。測定期間TM2において、MUX261−1乃至261−4により受光素子202−2、202−6、202−10、202−14がそれぞれ選択され、選択された各受光素子202の受光値の測定が行われる。測定期間TM3において、MUX261−1乃至261−4により受光素子202−3、202−7、202−11、202−15がそれぞれ選択され、選択された各受光素子202の受光値の測定が行われる。測定期間TM4において、MUX261−1乃至261−4により受光素子202−4、202−8、202−12、202−16がそれぞれ選択され、選択された各受光素子202の受光値の測定が行われる。
従って、この例では、1フレームの検出期間中に、全ての受光素子202の受光値の測定が行われる。換言すれば、1フレームの検出期間中に、監視領域内の全検出領域からの反射光の強度が測定される。
尚、上述したように、図8乃至図10の例においては、同一の発光強度で投光される場合について説明するものとして説明してきたが、実際には、100回のうち、例えば、前半の50回で第1の発光強度による積算受光値が出力され、後半の50回で第2の発光強度による積算受光値が出力されるようにしてもよい。
図7に戻り、ステップS9において、相関係数処理部311は、サンプリング時刻(距離)毎に、積算受光値の発光強度に対する相関係数を算出する。
ステップS10において、相関係数処理部311は、サンプリング時刻(距離)毎の相関係数を、各サンプリング時刻(距離)における最高発光強度(本実施例では、第1の発光強度)の測定光に対する積算受光値に乗じてピーク検出部312に出力する。
ステップS11において、ピーク検出部312は、ピーク検出を行う。具体的には、ピーク検出部312は、相関係数が乗じられた各受光素子202のサンプリング時刻毎の積算受光値の分布に基づいて、検出期間内の反射光の強度の水平方向及び時間方向(距離方向)のピークを検出する。尚、相関係数が乗じられた各受光素子202のサンプリング時刻毎の積算受光値は、相関係数が乗じられることによりノイズが除去されるように補正されることになる。そこで、以降においては、相関係数が乗じられたサンプリング時刻毎の積算受光値を、サンプリング時刻毎の補正積算受光値と称するものとする。
より具体的には、ピーク検出部312は、受光素子202毎に補正積算受光値がピークとなるサンプリング時刻を検出する。これにより、自車両からの距離方向において反射光の強度がピークとなる地点が、検出領域毎に検出される。換言すれば、各検出領域において、反射光の強度である補正受光値がピークとなる地点の自車両からの距離が検出される。
また、ピーク検出部312は、サンプリング時刻毎に補正積算受光値がピークとなる受光素子202(検出領域)を検出する。これにより、自車両からの距離方向において、所定の間隔ごと(例えば、約1.5mごと)に反射光の強度がピークとなる水平方向の位置(検出領域)が検出される。
そして、ピーク検出部312は、検出結果を示す情報を物体検出部313に供給する。
すなわち、発光強度の異なる積算受光値の時間方向の分布は、例えば、図11で示されるような波形となる。図11の波形においては、横軸がサンプリング時刻tを、縦軸が積算受光値となる受光信号のレベル、並びに、相関係数、および補正積算受光値をそれぞれ表している。すなわち、図11の波形においては、最上段の実線の波形が第1の発光強度の積算受光値の分布であり、上から2段目の点線の波形が第1の発光強度よりも弱い第2の発光強度の積算受光値の分布である。また、上から3段目の一点鎖線の波形が相関係数Rの分布であり、上から4段目の二点鎖線の波形が最高発光強度である第1の発光強度に、相関係数を乗じた補正積算受光値の分布である。さらに、図11においては、相関係数については、0乃至1.0であり、積算受光値および補正積算受光値については、最大値を基準に正規化された値として表現されている。
図11の最上段の実線および2段目の点線の波形で示されるように、分布Z1で示される積算受光値のピークは、第1の発光強度および第2の発光強度のいずれにおいても発光強度の変化に応じた強度で受光される積算受光値であるため、第1および第2の発光強度のそれぞれの積算受光値における相関が高く、3段目の一点鎖線で示されるように、その相関係数も大きな値となる。一方、図11の最上段の実線および2段目の点線の波形で示されるように、分布Z2で示される積算受光値のピーク群は、いずれもノイズであるため、第1および第2の発光強度のそれぞれの積算受光値における相関が低く、3段目の一点鎖線で示される波形で示されるように、その相関係数も小さな値となる。
従って、図11の最上段の実線で示される最大発光強度の積算受光値に、3段目の一点鎖線で示される相関係数を乗じることにより、4段目の二点鎖線で示されるような、相関の高い積算受光値については元の値に近い値が補正積算受光値として残される。逆に、相関の低い積算受光値は元の値に対してより小さな補正積算受光値とされる。結果として、積算受光値のノイズを除去する補正が可能となり、補正積算受光値を得ることが可能となる。
また、このようにノイズが除去された波形に基づいてピークを検出することが可能となるので、適切に時間方向のピークを検出することが可能となる。
尚、相関係数が乗じられる積算受光値は、最大発光強度(本実施例では、第1の発光強度)以外の発光強度の積算受光値であってもよいし、発光強度の種別は2種類のみならず、それ以上の種類の発光強度毎の積算受光値を用いて、サンプリング時刻毎の相関係数を求めるようにしてもよい。ただし、上述した式(1)により相関係数が定義される場合、相関係数の絶対値が1よりも小さい値に設定されるので、相関係数を乗じることにより積算受光値そのものが小さくなることから、発光強度が大きい積算受光値を用いた方がピークを検出し易い。
また、以上においては、相関係数を積算受光値に乗算することで、積算受光値からなる波形を補正する、すなわち、ノイズを除去する例について説明してきたが、相関係数の低い積算受光値が実質的にノイズであるものとみなしてもよい。そこで、相関係数が所定値よりも小さなサンプリング時刻の積算受光値については、ゼロにするようにして、実質的にノイズが除去されるようにして補正積算受光値を求めるようにしてもよい。すなわち、相関係数は、絶対値が1よりも小さな値であるので、このように処理することにより、積算受光値を小さくすることなくノイズを除去することができるので、より適切にピークを検出することが可能となる。
また、ピーク検出部312は、水平方向の方向毎(受光素子202毎)に時間方向(距離方向)に対する補正積算受光値の分布、すなわち、サンプリング時刻に対する補正積算受光値の分布を求め、この分布より時間方向(距離方向)のピークを求める。そして、ピーク検出部312は、補正積算受光値のピークとなるサンプリング時刻における、水平方向の各方向の(各受光素子202の)補正積算受光値を、各受光素子202の水平方向の並び順に横軸方向に並べることにより、例えば、図12の上部で示されるような水平方向の補正積算受光値の分布として求める。図12においては、例えば、2つの顕著なピークP1,P2が検出されている。
また、ピーク検出部312のピーク検出方法には、任意の方法を採用することができる。
ステップS12において、物体検出部313は、物体の検出を行う。具体的には、物体検出部313は、検出期間内の反射光の強度の水平方向及び時間方向の分布及びピークの検出結果に基づいて、監視領域内の他の車両、歩行者、障害物等の物体の有無、並びに、物体の種類、方向、距離等の検出を行う。物体検出部313は、検出結果を示す情報を制御部21及び通知部303に供給する。
なお、物体検出部313の物体検出方法には、任意の方法を採用することができる。
ここで、図12を参照して、物体検出方法の一例について説明する。
図12のグラフは、自車両の前方に車両351が走行している場合に、車両351からの反射光が戻ってくる付近のサンプリング時刻における補正積算受光値の水平方向の分布を示している。すなわち、このグラフは、当該サンプリング時刻における各受光素子202の積算受光値に対して、上述した手法により相関係数による補正を加えることで得られる補正積算受光値を各受光素子202の水平方向の並び順に横軸方向に並べたグラフである。
測定光は車両351によって反射されて受光素子202により受光されるが、投光から受光までには時間差が生じている。この時間差は、レーザレーダ装置と車両351との距離に比例するので、車両351からの反射光は、該時間差と一致するサンプリングタイミング(サンプリング時刻tn)における受光値として測定される。従って、車両351を含む検出領域の各受光素子202の補正積算受光値のうち、特にサンプリング時刻tnにおける補正積算受光値が大きくなる。
前方に車両351が存在する場合、車両351により反射された反射光が、受光素子202により受光されるため、検出領域内に車両351を含む各受光素子202の積算受光値が大きくなる。特に、車両351の後方の左右のリフレクタ352L,352Rの反射率が高いため、検出領域内にリフレクタ352L,352Rを含む各受光素子202の積算受光値が特に大きくなる。
従って、図12のグラフに示されるように、水平方向の補正積算受光値の分布において、2つの顕著なピークP1,P2が現れる。また、リフレクタ352Lとリフレクタ352Rの間の車体により反射された反射光も検出されるため、ピークP1とピークP2の間の積算受光値もその他の領域に比べて高くなる。このように、同じサンプリング時刻における補正積算受光値の水平方向の分布において、顕著な2つのピークを検出することにより、前方の車両を検出することが可能である。
ステップS13において、通知部303は、必要に応じて物体の検出結果を外部に通知する。例えば、通知部303は、物体の有無に関わらず、物体の検出結果を定期的に車両制御装置12に供給する。或いは、例えば、通知部303は、車両が前方の物体に衝突する危険性がある場合に限り、物体の検出結果を車両制御装置12に供給する。
ステップS14において、制御部21は、所定の時間待機する。すなわち、制御部21は、図8の休止期間TBが終了するまで、測定光の投光を行わないように待機する。
その後、処理はステップS1に戻り、ステップS1乃至S14の処理が繰り返し実行される。すなわち、検出期間毎に積算受光値に基づいて物体の検出を行う処理が繰り返される。なお、発光強度を切替えることを用いて物体の検出を行うステップS2乃至S11の処理は、従来の発光強度が同一の検出処理では物体が検出されなかった場合に行うようにしても良い。
以上のように、各受光素子202の受光値をサンプリング時刻毎に積算して物体の検出を行うので、反射光の受光感度を上げ、監視領域内の物体の検出精度を向上させることができる。
また、1フレームの検出期間内に4サイクルの測定期間を設け、受光値を測定する受光素子202を切り替えることにより、TIA262、PGA263及びADC264の数を抑制しつつ、各検出期間内に監視領域内の各検出領域の物体の検出を行うことができる。これにより、受光値の測定や積算に要する回路の規模や演算量を抑制することができる。
なお、以上の説明では、各受光素子202の受光値の測定を所定の順序で繰り返すことにより、1フレームの検出期間内に各受光素子202に対して1回ずつ測定期間を割り当てる例を示した。換言すれば、1フレームの検出期間内に各受光素子202に対する測定積算ユニットを1回ずつ行う例を示した。この場合、監視領域内全体を広く満遍なく監視することができる。
一方、上述したように、各MUX261は、受光信号の選択を自由に行うことができ、受光値の測定を行う受光素子202の組み合わせを自由に設定することができる。すなわち、各受光素子202について、1フレームの検出期間内に測定積算ユニットを最大4回行ったり、1回も行わないようにしたりすることが可能である。
従って、各検出領域の監視の必要性に応じて、各受光素子202に対する測定積算ユニットを行う頻度を調整することができる。例えば、物体が検出されている領域、物体が存在する可能性が高い領域、危険度が高い領域等、監視する必要性が高い検出領域に対して測定積算ユニットの実行頻度を高くし、受光値の積算回数を増やすことにより、当該検出領域の監視を集中的に行うことが可能である。逆に、例えば、物体が未検出の領域、物体が存在しない可能性が高い領域、危険度が低い領域等、監視する必要性が低い検出領域に対して測定積算ユニットの実行頻度を下げ、受光値の積算回数を減らすことにより、当該検出領域の監視を間欠的に行うことが可能である。
このように、各受光素子202(検出領域)に対する測定積算ユニットの実行頻度を適切に調整することにより、レーザレーダ装置11のハードウエア及びソフトウエア資源をより有効に活用することができる。
例えば、図13に示される例では、検出期間TD1中に、受光素子202−14乃至202−16に対する測定積算ユニットが1回も行われずに、受光素子202−13に対する測定積算ユニットが4回行われている。これにより、受光素子202−13の積算受光値は、測定積算ユニットを1回のみ行う場合と比較して約4倍になり、受光素子202−13の受光感度を上げることができる。
なお、上述したように、各測定期間の受光素子202の割り当て方法は自由に変更することが可能である。従って、例えば、検出期間TD2のように、中間の測定期間TM2と測定期間TM3を受光素子202−7に割り当てたり、同じMUX261−3に接続されている受光素子202−9及び受光素子202−10に、それぞれ連続する測定期間TM1,TM2、及び、測定期間TM3,TM4を割り当てたりすることが可能である。また、例えば、検出期間TD3のように、受光素子202−4に不連続に測定期間を割り当てることも可能である。
さらに、上述したように、各MUX261は、2以上の受光信号を加算して出力することが可能である。従って、例えば、図13の検出期間TD4のように、受光素子202−9及び202−10の受光信号を加算して測定積算ユニットを実行することが可能である。これにより、水平分解能は低下するが、受光素子202−9及び202−10の検出領域を統合した領域に対する積算受光値が大きくなり、当該統合領域に対する受光感度をより良好にすることができる。
ここで、上述したように、受光素子202−9及び202−10からの受光信号の受光値を加算した受光値は、受光素子202−9又は受光素子202−10の一方のみからの受光信号の受光値とは別に積算される。
また、以上の説明では、検出期間単位で受光値の積算処理を行う例を示したが、複数フレームの検出期間にわたって受光値の積算処理を行うようにしてもよい。また、本発明は投光方向を走査することによって変化させる、いわゆる走査方式のレーザーレーダ装置にも適用できる。
また、本発明は、車両用以外の他の用途に用いるレーザレーダ装置にも適用することが可能である。
[コンピュータの構成例]
なお、上述した一連の処理は、ハードウエアにより実行することもできるし、ソフトウエアにより実行することもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
図14は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
コンピュータにおいて、CPU(Central Processing Unit)601,ROM(Read Only Memory)602,RAM(Random Access Memory)603は、バス604により相互に接続されている。
バス604には、さらに、入出力インタフェース605が接続されている。入出力インタフェース605には、入力部606、出力部607、記憶部608、通信部609、及びドライブ610が接続されている。
入力部606は、キーボード、マウス、マイクロフォンなどよりなる。出力部607は、ディスプレイ、スピーカなどよりなる。記憶部608は、ハードディスクや不揮発性のメモリなどよりなる。通信部609は、ネットワークインタフェースなどよりなる。ドライブ610は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブルメディア611を駆動する。
以上のように構成されるコンピュータでは、CPU601が、例えば、記憶部608に記憶されているプログラムを、入出力インタフェース605及びバス604を介して、RAM603にロードして実行することにより、上述した一連の処理が行われる。
コンピュータ(CPU601)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア611に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
コンピュータでは、プログラムは、リムーバブルメディア611をドライブ610に装着することにより、入出力インタフェース605を介して、記憶部608にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部609で受信し、記憶部608にインストールすることができる。その他、プログラムは、ROM602や記憶部608に、あらかじめインストールしておくことができる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。