JP6275257B2 - Compressor system for track vehicles and method of operating a compressor system with safe emergency operation - Google Patents

Compressor system for track vehicles and method of operating a compressor system with safe emergency operation Download PDF

Info

Publication number
JP6275257B2
JP6275257B2 JP2016536585A JP2016536585A JP6275257B2 JP 6275257 B2 JP6275257 B2 JP 6275257B2 JP 2016536585 A JP2016536585 A JP 2016536585A JP 2016536585 A JP2016536585 A JP 2016536585A JP 6275257 B2 JP6275257 B2 JP 6275257B2
Authority
JP
Japan
Prior art keywords
pressure
compressor
compressed air
switch
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016536585A
Other languages
Japanese (ja)
Other versions
JP2016539277A5 (en
JP2016539277A (en
Inventor
キップ トーマス
キップ トーマス
アスマン ゲアト
アスマン ゲアト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Publication of JP2016539277A publication Critical patent/JP2016539277A/en
Publication of JP2016539277A5 publication Critical patent/JP2016539277A5/ja
Application granted granted Critical
Publication of JP6275257B2 publication Critical patent/JP6275257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D27/00Heating, cooling, ventilating, or air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/04Satellite based navigation systems, e.g. global positioning system [GPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、軌道車両用のコンプレッサシステムに関する。このシステムは、少なくとも1つの圧縮空気タンクのために圧縮空気を発生させるコンプレッサを含み、このコンプレッサは、電気機械装置により駆動軸を介して駆動される。この場合、電気機械装置は、この電気機械装置を最大回転数と最小回転数との間の少なくとも1つの定格回転数で駆動するために、少なくとも間接的に制御装置を介して制御可能であり、さらにこの場合、コンプレッサの下流に設けられた圧縮空気搬送管路内に、制御装置のために圧力を測定する少なくとも1つの圧力センサが配置されている。さらに本発明は、本発明によるコンプレッサシステムの制御方法にも関する。   The present invention relates to a compressor system for a rail vehicle. The system includes a compressor that generates compressed air for at least one compressed air tank, which is driven by an electromechanical device via a drive shaft. In this case, the electromechanical device is controllable at least indirectly via the control device in order to drive the electromechanical device with at least one rated rotational speed between the maximum rotational speed and the minimum rotational speed, Furthermore, in this case, at least one pressure sensor for measuring the pressure for the control device is arranged in a compressed air conveying pipe provided downstream of the compressor. The invention further relates to a method for controlling a compressor system according to the invention.

発明の背景
軌道車両のコンプレッサに対しては、部分的に相容れない多様な要求が課され、たとえば高い供給能力、十分なスイッチオン期間、小さい音響放出、少ないエネルギー消費、小さい組み込みスペース、ならびに小さい仕入れ費用およびライフサイクルコストなどが要求される。この場合、軌道車両の動作状態に応じて、コンプレッサに対しそれぞれ異なる強さの要求プロフィルが存在する。コンプレッサを設計する際に提起される典型的な問題は、軌道車両のすべての動作状態で許容可能な最善の妥協点を、これらの要求の間において見出すことである。一般に軌道車両においては、電気的に駆動されるコンプレッサが用いられる。コンプレッサは、スイッチオン/スイッチオフ動作中、下方のスイッチオン圧力と上方のスイッチオフ圧力との間において、一定の回転数いわゆる定格回転数で駆動される。コンプレッサは、予め定められた充填時間が達成されるようにし、動作中、最小スイッチオン期間を下回らないように、その仕様が選定される。
BACKGROUND OF THE INVENTION A variety of incompatible requirements are imposed on track car compressors, such as high supply capacity, sufficient switch-on duration, small acoustic emission, low energy consumption, small installation space, and low purchasing costs. And life cycle costs are required. In this case, there are different required profiles for the compressor depending on the operating state of the track vehicle. A typical problem raised when designing a compressor is to find the best compromise between these requirements that is acceptable in all operating conditions of the track vehicle. In general, in an orbital vehicle, an electrically driven compressor is used. During the switch-on / switch-off operation, the compressor is driven at a constant rotation speed, the so-called rated rotation speed, between the lower switch-on pressure and the upper switch-off pressure. The compressor is selected for its specification so that a predetermined filling time is achieved and not less than the minimum switch-on period during operation.

一般的に知られている従来技術から明らかであるのは、軌道車両の種々の動作状態間で、コンプレッサの動作は異ならない、ということである。この場合、冷却システムのファンは、コンプレッサと同じ動作管理体制下におかれる。その理由は、ファンは一般的にコンプレッサにより直接、一緒に駆動されるからである。   It is clear from the generally known prior art that the operation of the compressor does not differ between the various operating states of the track vehicle. In this case, the cooling system fan is placed under the same operation management system as the compressor. The reason is that the fans are generally driven together directly by a compressor.

さらに知られているのは、通常の駆動部および通常の構造とは異なった、コンプレッサシステムの複雑な構造および駆動部に、付加的なコンポーネント特に電子的なコンポーネントが設けられていることであり、そのようなコンポーネントであると、故障する確率が余分に高まる可能性があるし、少なくとも誤動作に対する脆弱性が余分に高まる可能性がある。換言すれば、付加的な電子コンポーネントがコンプレッサシステムに導入されることで、個々の電子コンポーネントにより余分に高まる故障の確率が、コンプレッサシステムに一緒に入り込むことになる。このため、コンプレッサシステムの誤動作の確率および故障のリスクが高まってしまう。コンプレッサシステムは制動装置に圧縮空気を供給するので、コンプレッサシステムが故障すると、一般的に軌道車両は停車状態におかれる。   Furthermore, it is known that the complex structure and drive of the compressor system, which differs from the normal drive and structure, are provided with additional components, in particular electronic components, Such a component may increase the probability of failure and at least increase the vulnerability to malfunction. In other words, additional electronic components are introduced into the compressor system, so that the probability of failure that is further increased by the individual electronic components enters the compressor system together. This increases the probability of malfunction of the compressor system and the risk of failure. Since the compressor system supplies compressed air to the braking device, the tracked vehicle is typically stopped when the compressor system fails.

発明の概要
したがって本発明の課題は、コンプレッサシステムの誤動作の確率および故障のリスクを高めることなく、エネルギー効率よく、かつ音響放出を低減して、コンプレッサシステムを作動させることができるように、コンプレッサシステムおよびコンプレッサシステムの作動方法を最適化することである。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a compressor system that can be operated energy-efficiently and with reduced acoustic emission without increasing the probability of malfunction and failure of the compressor system. And optimizing the operating method of the compressor system.

この課題は、装置に関しては、請求項1の上位概念記載のコンプレッサシステムを前提として、請求項1の特徴部分に記載された構成によって解決される。さらに上記の課題は、方法に関しては、請求項6に記載の特徴によって解決される。従属請求項には、本発明の有利な実施形態が記載されている。   This problem is solved by the configuration described in the characterizing portion of claim 1 on the premise of the compressor system described in the superordinate concept of claim 1. Furthermore, the above problem is solved in terms of the method by the features of claim 6. The dependent claims contain advantageous embodiments of the invention.

本発明によれば、電気機械装置の回転数を連続的に制御するために、給電装置と電気機械装置との間に、調整部材が配置されており、この調整部材は、制御装置を介して制御可能であり、コンプレッサの下流に設けられた圧縮空気搬送管路に、圧力スイッチが配置されており、圧力スイッチは、少なくとも、1つの圧縮空気タンク内の圧力を監視し、少なくとも電気機械装置の回転数に作用を与える。   According to the present invention, in order to continuously control the rotation speed of the electric machine device, the adjustment member is disposed between the power feeding device and the electric machine device, and the adjustment member is interposed via the control device. A pressure switch is disposed in a compressed air conveying line that is controllable and provided downstream of the compressor, the pressure switch monitors at least the pressure in one compressed air tank, and at least of the electromechanical device. It affects the rotational speed.

換言すれば、調整部材は、電力の流れにおいて電気機械装置の上流に配置されており、つまりは電気機械装置の前段に接続されている。この調整部材によって、電気機械装置を種々の回転数で駆動することができる。このためには特に、周波数変換器またはインバータが適している。周波数に応じて、電気機械装置の回転数ひいてはコンプレッサの動作が整合される。ただし、回転数制御のための付加的な電子コンポーネントに起因して、特に付加的なセンサ、ケーブルおよび調整部材に起因して、コンプレッサシステムの誤動作の確率および故障のリスクが高まる。   In other words, the adjustment member is disposed upstream of the electromechanical device in the flow of electric power, that is, connected to the front stage of the electromechanical device. With this adjusting member, the electromechanical device can be driven at various rotational speeds. A frequency converter or an inverter is particularly suitable for this purpose. Depending on the frequency, the rotational speed of the electromechanical device and thus the operation of the compressor is matched. However, due to the additional electronic components for speed control, especially due to the additional sensors, cables and adjusting members, the probability of malfunction and the risk of failure of the compressor system is increased.

少なくとも1つの圧縮空気タンク内の圧力を監視するための圧力スイッチにより、この種のコンプレッサシステムの安全性が高められ、安全な緊急動作の可能性が得られるようになる。つまり圧力が降下した場合、圧力スイッチは、電気機械装置の回転数に間接的に作用を与えることができる。少なくとも1つの圧縮空気タンク内の圧力が所定の下方の圧力を下回った、という圧力スイッチの信号によって、少なくとも1つの圧縮空気タンク内の圧力を所定の上方の圧力に達するまで高める目的で、特にコンプレッサの回転数が高められるようにコンプレッサを制御することができる。したがって圧力スイッチがコンプレッサの少なくとも回転数に作用を与えるのは、圧力が最小圧力または上方のスイッチオフ圧力に達した場合だけである。最小圧力に達すると回転数が高められ、上方のスイッチオフ圧力に達すると少なくとも回転数が低減されるか、またはコンプレッサがスイッチオフされる。換言すれば、コンプレッサシステムにおいて、少なくとも1つの圧縮空気タンク内の圧力が最小圧力になるエラーが発生したならば、コンプレッサは再び通常動作となり、したがってコンプレッサは定格回転数で駆動される。   A pressure switch for monitoring the pressure in the at least one compressed air tank increases the safety of this type of compressor system and provides the possibility of safe emergency operation. That is, when the pressure drops, the pressure switch can indirectly affect the rotational speed of the electromechanical device. A compressor, in particular for the purpose of increasing the pressure in the at least one compressed air tank until it reaches a predetermined upper pressure by means of a pressure switch signal that the pressure in the at least one compressed air tank has fallen below a predetermined lower pressure The compressor can be controlled so that the rotational speed of the compressor can be increased. Thus, the pressure switch has an effect on at least the speed of the compressor only when the pressure reaches a minimum pressure or an upper switch-off pressure. When the minimum pressure is reached, the speed is increased, and when the upper switch-off pressure is reached, at least the speed is reduced or the compressor is switched off. In other words, if an error occurs in the compressor system that causes the pressure in the at least one compressed air tank to reach a minimum pressure, the compressor is again in normal operation, and therefore the compressor is driven at the rated speed.

1つの好ましい実施形態によれば、圧力スイッチは、電気機械装置の回転数に間接的に作用を与えるために、制御装置と共働するように接続されている。換言すれば、圧力スイッチは、発生した信号を制御装置へ転送し、制御装置は、好ましくは組み込まれた制御アルゴリズムを介して、電気機械装置の回転数を受け取った信号に合わせて整合させる。   According to one preferred embodiment, the pressure switch is connected to cooperate with the control device to indirectly influence the rotational speed of the electromechanical device. In other words, the pressure switch forwards the generated signal to the control device, which preferably matches the speed of the electromechanical device to the received signal, preferably via an embedded control algorithm.

さらに別の好ましい実施例によれば、制御装置と調整部材を電気機械装置から分離するための遮断器が、調整部材の後段に配置されている。この場合、遮断器は特に、給電装置と電気機械装置との間に配置されており、したがって調整部材と電気機械装置との間においても、給電装置と電気機械装置との間においても、ブリッジを成している。 According to yet another preferred embodiment, a circuit breaker for separating the control device and the adjusting member from the electromechanical device is arranged downstream of the adjusting member. In this case, the circuit breaker is in particular arranged between the power supply device and the electromechanical device, so that a bridge is provided both between the adjusting member and the electromechanical device and between the power supply device and the electromechanical device. It is made.

さらに好ましくは、この圧力スイッチは遮断器と接続されており、これらの間に介在して制御ロジックユニットが配置されている。したがって圧力スイッチは制御ユニットとは独立しており、圧力スイッチから信号を受け取る制御ロジックユニットを介して、駆動することができる。 More preferably, the pressure switch is connected to a circuit breaker, and a control logic unit is disposed therebetween. The pressure switch is therefore independent of the control unit and can be driven via a control logic unit that receives signals from the pressure switch.

好ましくは制御装置は、コンプレッサの下流に設けられ冷却ファンを備えた冷却ユニットを、少なくとも間接的に制御し、その際、冷却ファンの回転数を制御装置により連続的に調整することができる。このため冷却ユニットには、好ましくは調整部材が組み込まれている。別の選択肢として、調整部材を冷却ユニットの少なくとも前段に接続することも考えられる。また、調整部材に2つの制御出力端子を設け、それによって電気機械装置も冷却ファンも、1つの共通の調整部材を介して制御することも、同様に考えられる。   Preferably, the control device at least indirectly controls a cooling unit provided downstream of the compressor and provided with a cooling fan, and at that time, the rotation speed of the cooling fan can be continuously adjusted by the control device. For this reason, an adjustment member is preferably incorporated in the cooling unit. As another option, it is conceivable to connect the adjusting member at least in front of the cooling unit. Similarly, it is conceivable that the adjustment member is provided with two control output terminals, whereby the electromechanical device and the cooling fan are controlled via one common adjustment member.

方法に関しては、コンプレッサを、最大回転数と最小回転数との間で任意の中間値をとる可変の回転数で駆動し、圧力スイッチが、少なくとも1つの圧縮空気タンク内の圧力を監視し、少なくとも間接的に、電気機械装置の回転数に作用を与えるようにする。冷却ユニットは、直接的にも間接的にもコンプレッサとは接続されていないことから、冷却ユニットは別個に制御され、つまりは冷却ファンの回転数は別個に調整される。有利には、コンプレッサと冷却ファンをスイッチオフすることもできる。   With respect to the method, the compressor is driven at a variable speed that takes any intermediate value between the maximum speed and the minimum speed, and a pressure switch monitors the pressure in the at least one compressed air tank, and at least Indirectly, the rotational speed of the electromechanical device is affected. Since the cooling unit is not directly or indirectly connected to the compressor, the cooling unit is controlled separately, that is, the number of rotations of the cooling fan is adjusted separately. Advantageously, the compressor and the cooling fan can also be switched off.

さらに別の実施例によれば、制御装置は、少なくとも1つの圧縮空気タンク内の圧力が最小圧力に達すると、圧力スイッチから信号を受け取り、調整部材を制御し、スイッチオフ圧力に達するまで、コンプレッサを少なくとも定格回転数で駆動する。これにより、特に故障のあるセンサおよび/またはケーブルに対処することができる。つまり制御装置は、圧力スイッチに従って調整部材を制御する。 According to yet another embodiment, the control device receives a signal from the pressure switch when the pressure in the at least one compressed air tank reaches a minimum pressure, controls the regulating member, and controls the compressor until the switch-off pressure is reached. At least at the rated speed. This makes it possible to deal with particularly faulty sensors and / or cables. That is, the control device controls the adjustment member according to the pressure switch.

さらに別の実施例によれば、制御ロジックユニットは、少なくとも1つの圧縮空気タンク内の圧力が最小圧力に達すると、圧力スイッチから信号を受け取り、遮断器を制御して、制御装置および調整部材を電気機械装置から分離し、スイッチオフ圧力に達するまで、遮断器を介して、コンプレッサを定格回転数で駆動する。遮断器の設定に応じて、電気機械装置のために定格回転数よりも高い回転数を発生させることもできる。この目的で遮断器は、電気機械装置を給電装置と直接、接続する。したがって制御装置は、電気機械装置に対し、ひいてはコンプレッサの回転数に対し、いかなる作用も及ぼさない。このようにすれば特に、対応して設けられたすべてのセンサおよび調整部材とともに、制御装置全体の故障または誤動作に対処することができる。 According to yet another embodiment, the control logic unit receives a signal from the pressure switch when the pressure in the at least one compressed air tank reaches a minimum pressure, controls the circuit breaker, and controls the controller and adjustment member. The compressor is driven at rated speed through the circuit breaker until it is disconnected from the electromechanical device and the switch-off pressure is reached. Depending on the setting of the circuit breaker, a higher rotational speed than the rated rotational speed can be generated for the electromechanical device. For this purpose, the circuit breaker connects the electromechanical device directly with the feeding device. The control device therefore has no effect on the electromechanical device and thus on the rotational speed of the compressor. In this way, in particular, it is possible to cope with a failure or malfunction of the entire control device together with all the sensors and adjustment members provided correspondingly.

特に好ましくは、少なくとも1つの圧縮空気タンクの圧力が少なくとも2回、最小圧力まで降下した後、電気機械装置を、少なくとも定格回転数とコンプレッサのスイッチオフとの間で断続的に駆動し、圧力が最小圧力に降下したときには少なくとも定格回転数で駆動し、スイッチオフ圧力に達したときにはコンプレッサをスイッチオフする。換言すれば、少なくとも1つの圧縮空気タンク内で比較的一定の圧力を得るために、電気機械装置の回転数つまりはコンプレッサの回転数は、もはや変更されない。ただし、少なくとも1つの圧縮空気タンクをいっそう急速に充填できるようにする目的で、コンプレッサを定格回転数で駆動するのではなく、最大回転数で駆動することも、同様に考えられる。   Particularly preferably, after the pressure of the at least one compressed air tank has dropped to the minimum pressure at least twice, the electromechanical device is driven intermittently at least between the rated speed and the compressor switch-off, When the pressure drops to the minimum pressure, it is driven at least at the rated speed, and when the switch-off pressure is reached, the compressor is switched off. In other words, in order to obtain a relatively constant pressure in the at least one compressed air tank, the rotational speed of the electromechanical device, ie the rotational speed of the compressor, is no longer changed. However, it is equally conceivable to drive the compressor at the maximum speed, rather than at the rated speed, in order to allow the at least one compressed air tank to be filled more rapidly.

本発明の改良に関するさらに別の形態については、以下で図面を参照した本発明の有利な実施例の説明とともに説明する。   Further aspects of the improvement of the invention will be described below together with a description of advantageous embodiments of the invention with reference to the drawings.

本発明によるコンプレッサシステムを示すブロック図The block diagram which shows the compressor system by this invention 本発明のコンプレッサシステムを第2の実施例に従って示すブロック図Block diagram showing a compressor system of the present invention according to a second embodiment 互いに関連する2つのグラフを示す図であって、上方のグラフにはコンプレッサの回転数を時間軸上に示し、下方のグラフにはコンプレッサの圧力を時間軸上に示す図It is a figure which shows two graphs mutually related, Comprising: The rotation speed of a compressor is shown on a time axis in the upper graph, and the pressure of a compressor is shown on a time axis in the lower graph.

1つの有利な実施形態の詳細な説明
図1に示されているように、軌道車両用のコンプレッサシステムは電気機械装置1を有しており、この電気機械装置1は駆動軸2を介して、圧縮空気発生用のコンプレッサ3を駆動する。コンプレッサ3から発生した圧縮空気は、圧縮空気搬送管路6を介して、冷却ファン14を備えた冷却ユニット9へ供給される。冷却ユニット9の下流において圧縮空気搬送管路6内に、圧力センサ7と温度センサ13bが配置されている。さらに圧縮空気搬送管路6はプレセパレータ11に連通しており、さらにプレセパレータ11に続いて空気処理装置12が配置されている。ついで、乾燥させられ粒子が除かれて浄化された圧縮空気が、圧縮空気タンク4に貯蔵される。さらに圧縮空気搬送管路6に圧力スイッチ16が配置されており、この圧力スイッチ16は、圧縮空気タンク4内の圧力を監視し、電気機械装置1および冷却ファン14の回転数に間接的に作用を及ぼす。
Detailed Description of One Advantageous Embodiment As shown in FIG. 1, a compressor system for a track vehicle has an electromechanical device 1, which is connected via a drive shaft 2. The compressor 3 for generating compressed air is driven. The compressed air generated from the compressor 3 is supplied to the cooling unit 9 provided with the cooling fan 14 via the compressed air conveyance pipeline 6. A pressure sensor 7 and a temperature sensor 13 b are disposed in the compressed air conveyance pipe 6 downstream of the cooling unit 9. Further, the compressed air conveyance pipe line 6 communicates with the pre-separator 11, and an air treatment device 12 is disposed following the pre-separator 11. Next, the compressed air that has been dried and purified by removing particles is stored in the compressed air tank 4. Further, a pressure switch 16 is disposed in the compressed air conveying pipe 6, and this pressure switch 16 monitors the pressure in the compressed air tank 4 and indirectly acts on the rotational speeds of the electromechanical device 1 and the cooling fan 14. Effect.

コンプレッサ3に配置された温度センサ13a、ならびに温度センサ13bおよび圧力センサ7はすべて、測定された温度および測定された圧力を制御装置5へ送信する。さらに制御装置5は信号入力端子10を介して、ここには図示されていない他のセンサまたは列車管理システムからも、信号を受け取る。さらにこの場合、制御装置5は、冷却ユニット9の回転数を制御するのに適しているとともに、信号を調整部材8へ供給するのにも適している。周波数変換器として構成されている調整部材8は、電気機械装置1の回転数つまりはコンプレッサ3の回転数を設定する。さらに調整部材8は2つの出力を備えており、したがって制御装置5により冷却ファン14の回転数も調整される。この場合、調整部材8は、電気機械装置1の回転数を連続的に制御するために、給電装置15と電気機械装置1との間に配置されている。この場合、制御装置5は、圧縮空気タンク4内の圧力が最小圧力eに達したときに、圧力スイッチ16から信号を受け取り、調整部材8を制御し、スイッチオフ圧力dに達するまでコンプレッサ3定格回転数で駆動る。 The temperature sensor 13 a arranged in the compressor 3, and the temperature sensor 13 b and the pressure sensor 7 all transmit the measured temperature and the measured pressure to the control device 5. Furthermore, the control device 5 also receives signals from other sensors or train management systems not shown here via the signal input terminal 10. Furthermore, in this case, the control device 5 is suitable for controlling the rotational speed of the cooling unit 9 and also suitable for supplying a signal to the adjusting member 8. The adjusting member 8 configured as a frequency converter sets the rotational speed of the electromechanical device 1, that is, the rotational speed of the compressor 3. Further, the adjusting member 8 has two outputs, and therefore the rotational speed of the cooling fan 14 is also adjusted by the control device 5. In this case, the adjustment member 8 is disposed between the power feeding device 15 and the electromechanical device 1 in order to continuously control the rotational speed of the electromechanical device 1. In this case, the control unit 5, when the pressure in the compressed air tank 4 has reached a minimum pressure e, receives signals from the pressure switch 16, controls the adjusting member 8, a compressor 3 to reach the switch-off pressure d drive at the rated speed.

図2によれば、制御装置5と調整部材8を電気機械装置1から分離するための遮断器17が、調整部材8の後段に配置されている。この遮断器17には圧力スイッチ16が接続されており、これらの間に介在して制御ロジックユニット18が配置されている。この場合、制御ロジックユニット18は、圧縮空気タンク4内の圧力が最小圧力eに達すると、圧力スイッチ16から信号を受け取り、遮断器17を制御して、制御装置5および調整部材8を電気機械装置1から分離する。その後、コンプレッサ3は、スイッチオフ圧力dに達するまで、遮断器17を介して定格回転数nで駆動される。 According to FIG. 2, the circuit breaker 17 for separating the control device 5 and the adjustment member 8 from the electromechanical device 1 is arranged at the rear stage of the adjustment member 8. A pressure switch 16 is connected to the circuit breaker 17, and a control logic unit 18 is disposed therebetween. In this case, when the pressure in the compressed air tank 4 reaches the minimum pressure e, the control logic unit 18 receives a signal from the pressure switch 16 and controls the circuit breaker 17 to connect the control device 5 and the adjusting member 8 to the electric machine. Separate from device 1. Thereafter, the compressor 3 is driven at the rated rotational speed n through the circuit breaker 17 until the switch-off pressure d is reached.

図3には、圧力スイッチ16により圧縮空気タンク4内で圧力降下が測定されたときの既述の推移を示すグラフが描かれている。領域aにおいてコンプレッサ3は、最小回転数iと定格回転数nとの間の回転数で駆動され、この場合、圧縮空気タンク4内の圧力は所定の範囲内に保持される。したがってコンプレッサ3は領域aにおいては、制御された動作にある。回転数は可変であり、状況に依存する。   FIG. 3 shows a graph showing the above-described transition when the pressure drop is measured in the compressed air tank 4 by the pressure switch 16. In the region a, the compressor 3 is driven at a rotational speed between the minimum rotational speed i and the rated rotational speed n, and in this case, the pressure in the compressed air tank 4 is maintained within a predetermined range. Therefore, the compressor 3 is in a controlled operation in the region a. The number of revolutions is variable and depends on the situation.

領域bにおいて、圧縮空気タンク4内の圧力が降下し、コンプレッサ3の回転数が自然発生的に減少する。換言すれば、領域bにおいて、制御された動作中にエラーが発生し、その結果、圧力降下が測定されることになる。   In the region b, the pressure in the compressed air tank 4 drops, and the rotation speed of the compressor 3 naturally decreases. In other words, in region b, an error occurs during the controlled operation, so that the pressure drop is measured.

圧縮空気タンク4内の圧力が最小圧力eに達すると、圧力スイッチ16が応答し、領域cにおいて、間接的に遮断器17または調整部材8を介して、電気機械装置1の回転数を、ひいてはコンプレッサ3の回転数を、定格回転数nまで上昇させる。したがって領域cにおいて圧力スイッチ16の応答が発生し、これによって制御動作から非制御動作へと動作が切り替わる。非制御動作は2つの状態を有する。一方は、定格回転数nによるコンプレッサ3の駆動であり、他方は、コンプレッサ3のスイッチオフである。ここには示されていない冷却ファン14も、コンプレッサ3の駆動と同様に駆動される。 When the pressure in the compressed air tank 4 reaches the minimum pressure e, the pressure switch 16 responds, and in the region c, the rotational speed of the electromechanical device 1 is extended indirectly via the circuit breaker 17 or the adjusting member 8. The rotational speed of the compressor 3 is increased to the rated rotational speed n. Accordingly, the response of the pressure switch 16 is generated in the region c, whereby the operation is switched from the control operation to the non-control operation. An uncontrolled operation has two states. One is driving the compressor 3 at the rated speed n, and the other is switching off the compressor 3. The cooling fan 14 not shown here is also driven in the same manner as the compressor 3 is driven.

圧縮空気タンク4内の圧力がスイッチオフ圧力dに達すると、コンプレッサ3がスイッチオフされ、まずは再び最小回転数iと定格回転数nとの間で駆動され、それによって圧縮空気タンク4内の圧力が所定の範囲内に保持される。   When the pressure in the compressed air tank 4 reaches the switch-off pressure d, the compressor 3 is switched off and is first driven again between the minimum speed i and the rated speed n, whereby the pressure in the compressed air tank 4 is increased. Is maintained within a predetermined range.

本発明は、上述の有利な実施形態に限定されるものではなく、変形実施形態も考えることができ、以下の特許請求の範囲により保護される範囲には、それらの変形実施形態も共に含まれる。つまりたとえば、コンプレッサ3が複数の圧縮空気タンク4に圧縮空気を供給することも可能である。圧縮空気タンク4内の圧力が最小圧力eに達したときに、電気機械装置1の回転数ひいてはコンプレッサ3の回転数を、定格回転数nにするだけでなく最大回転数mまで高めるようにしてもよい。   The invention is not limited to the advantageous embodiments described above, but variants can also be envisaged, and these variants are also included within the scope protected by the following claims. . That is, for example, the compressor 3 can supply compressed air to the plurality of compressed air tanks 4. When the pressure in the compressed air tank 4 reaches the minimum pressure e, the rotation speed of the electromechanical device 1 and thus the rotation speed of the compressor 3 are not only set to the rated rotation speed n but also increased to the maximum rotation speed m. Also good.

1 電気機械装置
2 駆動軸
3 コンプレッサ
4 圧縮空気タンク
5 制御装置
6 圧縮空気搬送管路
7 圧力センサ
8 調整部材
9 冷却ユニット
10 信号入力端子
11 プレセパレータ
12 空気処理装置
13a,13b 温度センサ
14 冷却ファン
15 給電装置
16 圧力スイッチ
17 遮断器
18 制御ロジックユニット
a,b,c 領域
d スイッチオフ圧力
e 最小圧力
i 最小回転数
m 最大回転数
n 定格回転数
DESCRIPTION OF SYMBOLS 1 Electromechanical device 2 Drive shaft 3 Compressor 4 Compressed air tank 5 Control device 6 Compressed air conveyance pipe 7 Pressure sensor 8 Adjustment member 9 Cooling unit 10 Signal input terminal 11 Preseparator 12 Air treatment device 13a, 13b Temperature sensor 14 Cooling fan 15 Power supply device 16 Pressure switch 17 Circuit breaker 18 Control logic unit a, b, c area d Switch-off pressure e Minimum pressure i Minimum rotation speed m Maximum rotation speed n Rated rotation speed

Claims (5)

軌道車両用のコンプレッサシステムであって、
該コンプレッサシステムは、少なくとも1つの圧縮空気タンク(4)のために圧縮空気を発生させるコンプレッサ(3)を含み、該コンプレッサ(3)は、電気機械装置(1)により駆動軸(2)を介して駆動され、
前記電気機械装置(1)は、該電気機械装置(1)を最大回転数(m)と最小回転数(i)との間の少なくとも1つの定格回転数(n)で駆動するために、少なくとも間接的に制御装置(5)を介して制御可能であり、
さらに、前記コンプレッサ(3)の下流に設けられた圧縮空気搬送管路(6)内に、前記制御装置(5)のために圧力を測定する少なくとも1つの圧力センサ(7)が配置されており、
前記電気機械装置(1)の回転数を連続的に制御するために、給電装置(15)と前記電気機械装置(1)との間に、調整部材(8)が配置されており、該調整部材(8)は、前記制御装置(5)を介して制御可能であ
軌道車両用のコンプレッサシステムにおいて、
前記コンプレッサ(3)の下流に設けられた圧縮空気搬送管路(6)に、圧力スイッチ(16)が配置されており、該圧力スイッチ(16)は、前記少なくとも1つの圧縮空気タンク(4)内の圧力を監視し、少なくとも、前記電気機械装置(1)の回転数に作用を与え
前記制御装置(5)と前記調整部材(8)を前記電気機械装置(1)から分離するための遮断器(17)が、前記調整部材(8)の後段に配置されており、
前記圧力スイッチ(16)は、該圧力スイッチ(16)と前記遮断器(17)との間に配置された制御ロジックユニット(18)を介して、前記遮断器(17)と接続されている、
ことを特徴とする、軌道車両用のコンプレッサシステム。
A compressor system for a rail vehicle,
The compressor system includes a compressor (3) that generates compressed air for at least one compressed air tank (4), which is driven by an electromechanical device (1) via a drive shaft (2). Driven,
The electromechanical device (1) is at least for driving the electromechanical device (1) at at least one rated rotational speed (n) between a maximum rotational speed (m) and a minimum rotational speed (i). Indirectly controllable via the control device (5),
Furthermore, the compressed air carrying conduit provided downstream (6) within the said compressor (3), at least one pressure sensor (7) is arranged to measure the pressure to the control unit (5) ,
In order to continuously control the rotation speed of the electric machine device (1), an adjustment member (8) is disposed between the power supply device (15) and the electric machine device (1), and the adjustment is performed. member (8), Ru controllable der via the control device (5),
In the compressor system for rail vehicles,
A pressure switch (16) is disposed in a compressed air conveyance line (6) provided downstream of the compressor (3), and the pressure switch (16) is arranged in the at least one compressed air tank (4). Monitoring the pressure inside, and at least acting on the rotational speed of the electromechanical device (1) ,
A circuit breaker (17) for separating the control device (5) and the adjustment member (8) from the electromechanical device (1) is disposed at the rear stage of the adjustment member (8),
The pressure switch (16) is connected to the circuit breaker (17) via a control logic unit (18) disposed between the pressure switch (16) and the circuit breaker (17).
A compressor system for a rail vehicle characterized by the above.
前記制御装置(5)は、前記コンプレッサ(3)の下流に配置された、冷却ファン(14)を備えた冷却ユニット(9)を、少なくとも間接的に制御し、前記冷却ファン(14)の回転数は、前記制御装置(5)により連続的に調整可能である、
請求項1記載のコンプレッサシステム。
The control device (5), the compressor is disposed downstream of (3), a cooling unit having a cooling fan (14) and (9), at least indirectly controls the rotation of the cooling fan (14) The number can be adjusted continuously by the control device (5),
The compressor system according to claim 1.
請求項1または2記載のコンプレッサシステムの制御方法において、
前記コンプレッサ(3)を、最大回転数(m)と最小回転数(i)との間で任意の中間値をとる可変の回転数で駆動し、
前記圧力スイッチ(16)が、前記少なくとも1つの圧縮空気タンク(4)内の圧力を監視し、少なくとも間接的に、前記電気機械装置(1)の回転数に作用を与え
前記制御ロジックユニット(18)は、前記少なくとも1つの圧縮空気タンク(4)内の圧力が最小圧力(e)に達すると、前記圧力スイッチ(16)から信号を受け取り、前記遮断器(17)を制御して、前記制御装置(5)および前記調整部材(8)を前記電気機械装置(1)から分離し、
スイッチオフ圧力(d)に達するまで、前記遮断器(17)を介して、前記コンプレッサ(3)を定格回転数(n)で駆動する、
ことを特徴とする、コンプレッサシステムの制御方法。
In the control method of the compressor system according to claim 1 or 2 ,
The compressor (3) is driven at a variable speed that takes an arbitrary intermediate value between the maximum speed (m) and the minimum speed (i);
The pressure switch (16) monitors the pressure in the at least one compressed air tank (4) and acts at least indirectly on the rotational speed of the electromechanical device (1) ;
When the pressure in the at least one compressed air tank (4) reaches a minimum pressure (e), the control logic unit (18) receives a signal from the pressure switch (16) and turns on the circuit breaker (17). Control to separate the control device (5) and the adjustment member (8) from the electromechanical device (1);
Until the switch-off pressure (d) is reached, the compressor (3) is driven at the rated speed (n) via the circuit breaker (17),
A method for controlling a compressor system.
前記制御装置(5)は、前記少なくとも1つの圧縮空気タンク(4)内の圧力が最小圧力(e)に達すると、前記圧力スイッチ(16)から信号を受け取り、前記調整部材(8)を制御し、前記スイッチオフ圧力(d)に達するまで、前記コンプレッサ(3)を少なくとも定格回転数(n)で駆動する、
請求項記載の方法。
When the pressure in the at least one compressed air tank (4) reaches a minimum pressure (e), the control device (5) receives a signal from the pressure switch (16 ) and controls the adjusting member (8). And driving the compressor (3) at least at the rated speed (n) until the switch-off pressure (d) is reached.
The method of claim 3 .
前記少なくとも1つの圧縮空気タンク(4)内の圧力が少なくとも2回、最小圧力(e)まで降下した後、前記電気機械装置(1)を、少なくとも定格回転数(n)と前記コンプレッサ(3)のスイッチオフとの間で断続的に駆動し、圧力が最小圧力(e)に降下したときには少なくとも定格回転数(n)で駆動し、前記スイッチオフ圧力(d)に達したときには前記コンプレッサ(3)をスイッチオフする、
請求項3または4記載の方法。
After the pressure in the at least one compressed air tank (4) drops at least twice to the minimum pressure (e), the electromechanical device (1) is connected to at least the rated speed (n) and the compressor (3). intermittently driven between the switch-off pressure is driven at a minimum pressure of at least the rated rotational speed when the drops (e) (n), the compressor (3 when the reached the switch-off pressure (d) )
The method according to claim 3 or 4 .
JP2016536585A 2013-12-05 2014-12-02 Compressor system for track vehicles and method of operating a compressor system with safe emergency operation Expired - Fee Related JP6275257B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013113557.9A DE102013113557A1 (en) 2013-12-05 2013-12-05 Compressor system for a railway vehicle and method for operating the compressor system with a safe emergency operation
DE102013113557.9 2013-12-05
PCT/EP2014/076166 WO2015082432A1 (en) 2013-12-05 2014-12-02 Compressor system for a rail vehicle and method for operating the compressor system with safe emergency operation

Publications (3)

Publication Number Publication Date
JP2016539277A JP2016539277A (en) 2016-12-15
JP2016539277A5 JP2016539277A5 (en) 2017-11-09
JP6275257B2 true JP6275257B2 (en) 2018-02-07

Family

ID=52014055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016536585A Expired - Fee Related JP6275257B2 (en) 2013-12-05 2014-12-02 Compressor system for track vehicles and method of operating a compressor system with safe emergency operation

Country Status (10)

Country Link
US (1) US20170002804A1 (en)
EP (1) EP3077673A1 (en)
JP (1) JP6275257B2 (en)
KR (1) KR20160093649A (en)
CN (1) CN105940221B (en)
AU (1) AU2014359381B2 (en)
CA (1) CA2932783A1 (en)
DE (1) DE102013113557A1 (en)
RU (1) RU2646988C2 (en)
WO (1) WO2015082432A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111287B4 (en) * 2015-07-13 2018-04-26 Gardner Denver Deutschland Gmbh Compressor and method for its speed control
DE102016100705A1 (en) * 2016-01-18 2017-07-20 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Air supply system
CN109236659B (en) * 2018-10-15 2020-02-07 南京中车浦镇海泰制动设备有限公司 Control method of oil-free scroll compressor for rail transit wind source system
DE102019104760A1 (en) * 2019-02-25 2020-08-27 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Air supply system and method for controlling and / or monitoring an air supply system
DE102019131921A1 (en) * 2019-11-26 2021-05-27 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Compressor system for a rail vehicle and method for controlling a cooling device of a compressor system
DE102020100296A1 (en) 2020-01-09 2021-07-15 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Compressor system and method for operating a compressor system as a function of the compressed air requirement of an operating state of the vehicle
DE102020115300A1 (en) 2020-06-09 2021-12-09 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Compressor system and method for controlling a cooling device of a compressor system
DE102021118806B3 (en) 2021-07-21 2022-10-13 Pierburg Pump Technology Gmbh Method for controlling an electrically driven fluid pump for a vehicle and an electrically driven fluid pump for a vehicle

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2646204A (en) * 1947-11-13 1953-07-21 Atlas Diesel Ab Compressor plant
DE970770C (en) * 1950-09-22 1958-10-30 Atlas Copco Ab Compressor system
US3753069A (en) * 1971-11-18 1973-08-14 Borg Warner Start-up system for inverter driven motor including inverter bypass circuitry
JPS6338693A (en) * 1986-07-31 1988-02-19 Nippon Air Brake Co Ltd Pressure regulating method for rolling stock
FR2612142B1 (en) * 1987-03-13 1989-05-19 Alsthom DEVICE FOR SUPPLYING BRAKE VACUUM OR COMPRESSED AIR BRAKE SYSTEM
RU2041393C1 (en) * 1990-05-17 1995-08-09 Валерий Измаилович Мулуянов Piston compressor with electrodynamic drive
DE4219514A1 (en) * 1992-06-13 1993-12-16 Reinhold Kuhn Regenerative braking system for vehicle - has air compressor coupled to transmission during braking or with throttle fully released.
JPH07208371A (en) * 1994-01-13 1995-08-08 Hitachi Ltd Inverter-driven screw compressor
JP3599832B2 (en) * 1995-06-15 2004-12-08 兼松日産農林株式会社 Portable compressor device
US6390779B1 (en) * 1998-07-22 2002-05-21 Westinghouse Air Brake Technologies Corporation Intelligent air compressor operation
BE1013534A5 (en) * 2000-05-17 2002-03-05 Atlas Copco Airpower Nv Method voo r controlling a fan in a compressor installation and compressor installation with fan so regulated.
US6501629B1 (en) * 2000-10-26 2002-12-31 Tecumseh Products Company Hermetic refrigeration compressor motor protector
DE10240162A1 (en) * 2002-08-30 2004-03-18 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Air demand controlled compressor arrangement, especially for commercial vehicles
JP2004211620A (en) * 2003-01-06 2004-07-29 Sankyo Seiki Mfg Co Ltd Pressure control method for compressor
DE102004007882B4 (en) * 2003-03-31 2009-12-10 Hitachi Koki Co., Ltd. Air compressor and procedures for its controlling
JP4069450B2 (en) * 2003-06-24 2008-04-02 日立工機株式会社 Air compressor and control method thereof
JP2005069013A (en) * 2003-08-22 2005-03-17 Tokyo Electric Power Co Inc:The Gas supply device and its control method
US20060045751A1 (en) * 2004-08-30 2006-03-02 Powermate Corporation Air compressor with variable speed motor
JP2008002380A (en) * 2006-06-23 2008-01-10 Chikuho Seisakusho:Kk Additional inverter for compressor
DE102007019126B4 (en) * 2007-04-23 2009-07-09 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Sound-enclosed compressor arrangement
JP2007285307A (en) * 2007-08-08 2007-11-01 Hitachi Industrial Equipment Systems Co Ltd Inverter-drive rotary compressor
DE102008007661A1 (en) * 2008-02-06 2009-08-13 BSH Bosch und Siemens Hausgeräte GmbH compressor unit
US8044310B2 (en) * 2008-07-16 2011-10-25 Condor-Werke Gebr. Frede Gmbh & Co. Kg Combination pressure switch
JP5410123B2 (en) * 2009-03-13 2014-02-05 株式会社日立産機システム air compressor
DE102012223996A1 (en) * 2012-12-20 2014-06-26 Siemens Aktiengesellschaft Air pressure generating device for a rail vehicle
CN203278743U (en) * 2013-01-17 2013-11-06 福建睿能电子有限公司 Motor frequency conversion controller

Also Published As

Publication number Publication date
DE102013113557A1 (en) 2015-06-11
US20170002804A1 (en) 2017-01-05
EP3077673A1 (en) 2016-10-12
RU2646988C2 (en) 2018-03-13
CN105940221B (en) 2018-02-06
AU2014359381B2 (en) 2017-09-14
WO2015082432A1 (en) 2015-06-11
JP2016539277A (en) 2016-12-15
KR20160093649A (en) 2016-08-08
AU2014359381A1 (en) 2016-06-23
CN105940221A (en) 2016-09-14
CA2932783A1 (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP6275257B2 (en) Compressor system for track vehicles and method of operating a compressor system with safe emergency operation
JP6293281B2 (en) Compressor system and method for operating the compressor system in response to the operating state of a track vehicle
JP6279740B2 (en) Compressor system and method for operating the compressor system in response to the current state of the track vehicle
JP5019571B2 (en) Vehicle load control system
JP2016539277A5 (en)
US8779698B2 (en) Automatic variable speed motor drive bypass
JP2007336798A (en) System for railroad train power supply and procedure, and converter, local control unit and air-conditioning unit for the system
US10794388B2 (en) Fan failure backup apparatus and method of backing up the same
CN103069168A (en) Air compression device for railway vehicle
US20220135092A1 (en) Air supply system and method for controlling and/or monitoring an air supply system
WO2015140909A1 (en) Power supply control device and programmable logic controller
KR20180053671A (en) Method and apparatus for controlling energy sources for main and auxiliary air supply of rail vehicles in particular
CN108137036B (en) System for controlling operation of electric fan
JP6765008B2 (en) Generator voltage regulator
JP2018532361A (en) In particular, a method and apparatus for supplying main air and auxiliary air for rail vehicles.
EP2636598B1 (en) Environmental control system having parallel compressors and method of controllably operating
KR102063514B1 (en) Control apparatus and method of cooling fan motor
CN103733502A (en) HVAC motor load balancing
CN115053067A (en) Method for operating an electric air compressor assembly
WO2019230453A1 (en) Discharge control device
CN103676639B (en) Output precision and operation method
JP2012223042A (en) Power supply device for electric vehicle
KR101755849B1 (en) Control device and method for cooling battery of vehicle
JP2004263649A (en) Compressed-air device control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170926

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20170926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180109

R150 Certificate of patent or registration of utility model

Ref document number: 6275257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees