JP6273162B2 - 欠陥検査方法及びその装置 - Google Patents

欠陥検査方法及びその装置 Download PDF

Info

Publication number
JP6273162B2
JP6273162B2 JP2014062440A JP2014062440A JP6273162B2 JP 6273162 B2 JP6273162 B2 JP 6273162B2 JP 2014062440 A JP2014062440 A JP 2014062440A JP 2014062440 A JP2014062440 A JP 2014062440A JP 6273162 B2 JP6273162 B2 JP 6273162B2
Authority
JP
Japan
Prior art keywords
illumination
sample
light
defect inspection
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014062440A
Other languages
English (en)
Other versions
JP2015184203A5 (ja
JP2015184203A (ja
Inventor
雄太 浦野
雄太 浦野
本田 敏文
敏文 本田
芝田 行広
行広 芝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2014062440A priority Critical patent/JP6273162B2/ja
Priority to US14/638,305 priority patent/US9310318B2/en
Publication of JP2015184203A publication Critical patent/JP2015184203A/ja
Publication of JP2015184203A5 publication Critical patent/JP2015184203A5/ja
Application granted granted Critical
Publication of JP6273162B2 publication Critical patent/JP6273162B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95607Inspecting patterns on the surface of objects using a comparative method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8848Polarisation of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、半導体製造工程、液晶表示素子製造工程、プリント基板製造工程等、基板上にパターンを形成して対象物を製作していく製造工程で発生する欠陥を検出し、分析して対策を施す製造工程において、欠陥の発生状況を検査する欠陥検査方法及びその装置に関する。
本技術分野の背景技術として、特開2008−39882号公報(特許文献1)がある。この公報には、試料に入射した光ビームにより発生した光、又は前記試料で反射した反射光が入射し、入射位置に応じた位相差を与える偏光制御素子が記載されている。
特開第2008−39882号公報
基板の光学式欠陥検査において、アスペクト比が高く、かつ間隔の狭い(間隔が照明光の波長以下の)ラインアンドスペース(以下、L&S)パターンの一部が局所的につながったブリッジ欠陥(ショート欠陥とも呼ばれる)の検出は困難であった。
上記のブリッジ欠陥は、高アスペクト比、狭ピッチL&Sパターンのラインの間に挟まれた位置に存在するため、例えば、照明光をブリッジ欠陥の位置まで到達させることが困難である場合がある。また例えば、ブリッジ欠陥の形状に異方性があるため、欠陥位置に到達した照明光の偏光方向と欠陥の方向性との相対的な関係により、欠陥から高効率に散乱光を発生させることが困難である場合がある。また例えば、欠陥から発生した散乱光が欠陥周囲のL&Sパターンに反射、吸収されるため、欠陥散乱光の検出が困難である場合がある。また例えば、照明光によりL&Sパターンやそのパターンのラフネス、周期性の乱れなどから発生する回折光や散乱光がノイズとなり、欠陥散乱光が検出できない場合がある。
そこで、本発明では、上記ブリッジ欠陥から検出に十分な強度の散乱光を発生させることができる欠陥検査装置を提供する。例えば、照明光をブリッジ欠陥の位置まで到達させることができる欠陥検査装置を提供する。また例えば、異方性形状のブリッジ欠陥から高効率に散乱光を発生させることができる欠陥検査装置を提供する。また例えば、欠陥から発生した散乱光が欠陥周囲のL&Sパターンを透過し、欠陥散乱光の検出が可能な欠陥検査装置を提供する。また例えば、照明光によりL&Sパターンやそのパターンのラフネス、周期性の乱れなどから発生する回折光や散乱光を抑制し、欠陥散乱光を検出できる欠陥検査方法及びその装置を提供する。
上記課題を解決するために、本発明では、欠陥検査装置を、レーザ光を発射する光源と
、この光源より発射されたレーザを試料に対物レンズを介して垂直な方向から照明する垂直照明ユニットと、光源より発射されたレーザを試料に斜め方向から照明する斜方照明ユニットとを備えて構成し、垂直照明ユニットは、光源より発射されたレーザを直線偏光に変換する偏光変換部を有し、この偏光変換部を透過したレーザを試料のラインパターンの長手方向に直交する方向に偏光させた状態で試料に形成したラインパターンに照射するように構成した。
また、上記課題を解決するために、本発明では、光源より発射されたレーザを試料に対物レンズを介して垂直な方向から照明、または、光源より発射されたレーザを試料に斜め方向から照明し、垂直な方向から照明することを、光源より発射されたレーザを直線偏光に変換し、この直線偏光に変換したレーザをラインパターンの長手方向に直交する方向に偏光させた状態で試料に形成したラインパターンに照射することを特徴とする
本発明によれば、アスペクト比が高く、かつ間隔の狭い(照明波長以下の)L&Sパターンの一部がつながったブリッジ欠陥を高感度で検査できる欠陥検査装置を提供することができる。上記以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施例に係る欠陥検査装置の構成の概略の構成を示すブロック図である。 本発明の実施例における垂直照明部の構成を示す平面図(a)と正面図(b)である。 本発明の実施例における複数の検出光学系と検査対象基板との位置関係を示す検出光学系のブロック図である。 本発明の実施例における斜方照明部、垂直照明部との位置関係を示す各照明部のブロック図である。 本発明の実施例における斜方照明部の構成を示す斜方照明部のブロック図である。 本発明の実施例における斜方照明の入射方向と複数の検出部の検出方向との関係を示す検査対象基板の斜視図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥の一例を模式的に示した検査対象基板の平面図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥に垂直照明を行った状態を示す検査対象基板のD-D断面の正面図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥の一例を模式的に示した検査対象基板の平面図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥に斜方照明を行った状態を示す検査対象基板のD-D断面の正面図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥の一例を模式的に示した検査対象基板の平面図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥に垂直照明を行った状態における偏光方向を示す検査対象基板のE-E断面の正面図である。 検査対象基板上に形成されたL&Sパターンのブリッジ欠陥に垂直照明を行った状態における偏光方向を示す検査対象基板の図5BのX方向0の位置における断面の側面図である。 本発明の実施例における垂直照明光学系の概略の構成を示すブロック図である。 本発明の実施例における垂直照明光学系の変形例の概略の構成を示すブロック図である。 本発明の実施例における垂直照明光学系の別の変形例の概略の構成を示すブロック図である。 本発明の実施例におけるL&Sパターンのブリッジ欠陥からの散乱光の偏光方向の分布を示す模式図である。 本発明の実施例における上方検出部の偏光変換素子の構成を示す偏光変換素子の平面図である。 本発明の実施例における上方検出部の偏光変換素子に入射する検査対象基板からの散乱光の偏光分布の状態を示す図である。 本発明の実施例における上方検出部の偏光変換素子を透過した検査対象基板からの散乱光の偏光分布の状態を示す図である。 本発明の実施例における斜方検出部の偏光変換素子の構成を示す偏光変換素子の平面図である。 本発明の実施例における斜方検出部の偏光変換素子に入射する検査対象基板からの散乱光の偏光分布の状態を示す図である。 本発明の実施例における上方検出部の偏光変換素子を透過した検査対象基板からの散乱光の偏光分布の状態を示す図である。 本発明の実施例における検査レシピを決定するための処理の流れを示すフロー図である。
本発明は、半導体製造工程、液晶表示素子製造工程、プリント基板製造工程等、基板上にパターンを形成して対象物を製作する製造工程で発生する欠陥を検出し、分析して対策を施す製造工程において、欠陥の発生状況を検査する欠陥検査装置に関するものである。
欠陥検査装置に、一方向に長い線状に光を集光し、集光する開口角範囲の全域にわたって集光光学素子通過後の偏光方向が基板上のL&Sパターンの長手方向に垂直な面内にあり、集光位置における偏光方向が基板に垂直な成分を有する照明を与える照明光学系と、照明によって発生する散乱光の、検出視野を中心とする天球における緯度方向の偏光成分を検出する検出光学系とを採用することにより、アスペクト比が高く、かつ間隔の狭い(照明波長以下の)L&Sパターンの一部がつながったブリッジ欠陥を高感度で検査できるようにした。
以下に、本発明の実施例を、図を用いて説明する。
図1Aは本実施例の欠陥検査装置の構成の例である。本実施例による欠陥検査装置は、光源部101、垂直照明部111、斜方照明部112、垂直照明ミラー121、対物レンズ102、検出光学フィルタ部103、結像レンズ105、検出部106、処理部20、全体制御部301、表示部302、演算部303、記憶部304、ステージ駆動部151、X−Y−Z−θステージ152(以下、ステージ152)を有する。
本実施例による欠陥検査装置の動作の概略を説明する。光源部101、垂直照明部111、垂直照明ミラー121、対物レンズ102により、検査対象基板2に対して垂直方向から照明光が照射される。垂直方向からの照明と共にあるいは個別に、光源部101、斜方照明部112、により、検査対象基板2に対して斜方から照明光が照射される。検査対象基板2から発した反射光、回折光、散乱光は対物レンズ102で集光された後、検出光学フィルタ部103、結像レンズ105を介して、検出部106にて画像信号に変換される。
得られた画像信号に基づき、処理部20において欠陥が判定される。処理部20は画像メモリ21、画像比較部22、欠陥抽出部23を備えている。処理部20において、検査対象基板2からの散乱光を検出した検出部106からの出力信号は、画像メモリ21に入力して記憶されると同時に画像比較部22に入力される。
画像比較部22においては、検出部106から入力された画像データと、画像メモリに記憶されていた本来同じ画像データが得られるべき個所からの散乱光を検出して得られた画像データとを比較して差分を算出する。欠陥抽出部23においては、算出された画像データ間の差分値を予め設定しておいた閾値と比較し、閾値よりも大きな差分値を持つ画像データを欠陥候補として抽出する。
欠陥抽出部23で抽出した欠陥候補の情報は全体制御部301を介し、記憶部304に記憶され、表示部302に表示される。検査対象基板2は、ステージ駆動部151によって駆動されるステージ152によって走査され、全面が検査される。
光源部101は、レーザ光源1011、アッテネータ1012、NDフィルタ1013、波長板1014、ビームエキスパンダ1015を有する。光源部101において、レーザ光源1011から発射され、アッテネータ1012、NDフィルタ1013、波長板1014、ビームエキスパンダ1015を順次通過して光量、偏光状態、ビーム径、形状が調整、制御された照明光を出射する。この光源部101から出射された照明光の光路に対してミラー113を出し入れすることにより光路が切替えられ、照明光は垂直照明部111、または斜方照明部112に導かれる。レーザ光源1011は、短波長、高出力、高輝度、高安定のものが適しており、例えばYAGレーザの第三、第四、あるいは第五高調波を利用したものが用いられる。
図1Aには対物レンズ102、検出光学フィルタ部103、結像レンズ105、検出器106によって構成される検出部110を一つのみ図示したが、検出部は互いの対物レンズが機械的に干渉しない位置に複数設置してもよい。複数の検出部を有する場合、処理部20では複数の検出部にて検出された信号を処理して欠陥が判定される。
図1Aに示した例のように、単一の検出部110を有する場合、検出部の開口数(NA: Numerical Aperture)を大きくとることができるため、高い空間分解能および高い検出効率を実現することができ、微小な欠陥の検査に有効である。複数の検出部を有する場合、欠陥やパターンによって散乱光の方向性が異なる場合に、それぞれの欠陥やパターンに対して有利な方向の散乱光を検出することができ、欠陥信号の捕捉率の向上、および誤検出の低減に有効である。
図2Aは、検出部を複数備えた場合の、複数の検出部110a,110b,110c各々の対物レンズ102a,102b,102cの位置関係の例を示す図、図2Bは、垂直照明部111と斜方照明部112との位置関係を示す図である。検査対象基板2を含む面をXY面とし、検査対象基板2の法線方向をZ方向とする。ステージの主走査方向をX方向とし、副走査方向をY方向とする。
3つの検出部110a,110b,110cの各々の対物レンズ102a、102b、102cは、光軸をXZ面内に持つ。垂直検出部110aの対物レンズ102aはZ方向に配置され、Z方向に出射する光を検出する。斜方検出部110b,110cのそれぞれの対物レンズ102b、102cは、垂直検出部110aの対物レンズ102aの両側に配置され、Z方向から傾斜した方向に出射する光を検出する。
対物レンズ102aを備えた垂直検出部110a、対物レンズ102bを備えた斜方検出部110b、対物レンズ102cを備えた斜方検出部110cは、何れも、図2Cに示したように、図1Aで説明した検出部110と同様に、検出光学フィルタ部103b、103c、結像レンズ105b、105c、検出器106b、106cを備えて構成されている。但し、斜方検出部110b及び斜方検出部110cは、何れも、図1Aに示したミラー121を備えていない点において、垂直検出部110aの構成と異なる。斜方検出部110bと斜方検出部110cとは同じ構造であるので、図2Cには、その一方だけを表示した。
図1Aに示した構成において、光源部101から発射された照明光は、ミラー113を図示していない上下駆動機構で光軸に対して出し入れすることにより、垂直照明部111あるいは斜方照明部112に導かれる。ミラー113の代わりにビームスプリッタにより光路を分岐することで垂直照明部111と斜方照明部112双方に照明光を導くことも可能である。
図1Aに示した構成において、図示していない上下駆動機構でミラー113を光源部101から発射された照明光の光軸から外れた位置に待機させることにより、光源部101から発射された照明光は垂直照明部111に入射する。垂直照明部111を通った照明光は、対物レンズ102aの瞳位置あるいはその近傍に配置された垂直照明ミラー121により向きを変えられ、対物レンズ102aを介して検査対象基板2に導かれる。ミラー121のY方向の位置を変えることで上方からの照明の試料に対する入射角を対物レンズ102のNAの範囲内で変えることができる。
図1Bには、図1Aに示した対物レンズ102と垂直照射ミラー121及び検査対象基板2との関係を示す。図1Bの(a)は対物レンズ102と垂直照射ミラー121の平面図、(b)は正面図である。図1Bに示した構成において、垂直照射ミラー121のY方向の位置をP1の位置、即ち対物レンズの光軸(中心軸)と重なる位置に設置した場合、垂直照明部111を透過した照明光はP1の位置にある垂直照射ミラー121で反射して対物レンズ102を透過して入射光211P1としてほぼ垂直な方向から検査対象基板2に照射される。
一方、垂直照射ミラー121のY方向の位置をP2の位置、即ち対物レンズ102の視野内で光軸(中心軸)からずれた位置に設置した場合、垂直照明部111を透過した照明光はP2の位置にある垂直照射ミラー121で反射して対物レンズ102を透過して入射光211P2として中心軸からずれた斜め方向から検査対象基板2に照射される。
このように垂直照射ミラー121の位置を対物レンズ102の視野内で図示していない駆動手段で移動させることにより、検査対象基板2に照射される照明光の入射角を変えることができる。その結果、検査対象、検出したい欠陥の種類に応じて垂直照射ミラー121の位置を最適な位置に設定することにより、検出したい欠陥の検出率を高めることができる。これにより、非対称な欠陥の検出率(捕捉率)を上げることができる。
図1Aに示した構成において、図示していない上下駆動機構でミラー113を光源部101から発射された照明光の光軸上に設置することにより、光源部101から発射された照明光はミラー113で反射されてミラー114の側に出射し、ミラー114で反射されて斜方照明部112に入射する。斜方照明部112を通った照明光は、対物レンズ102aの外側を通り、YZ面内を通ってZ軸方向に対して傾斜した方向から検査対象基板2に導かれる。
照明光は、以上の垂直照明部111を経由した光学系、または斜方照明部112を経由した光学系により、検査対象基板2の表面上にて、後述する光学系によりY方向に長くX方向に短い線状のビーム形状に集光される。複数の検出部の対物レンズ102a、102b、102cの視野の中心は、照明光の集光位置に合せ込まれている。
図3に斜方照明の入射方向と複数の検出部の検出方向との関係を示す。斜方照明の照明光351(斜方照明部112を透過した光)の検査対象基板2の表面への入射角をθi、検査対象基板2の法線から傾斜した方向から検出する斜方検出部(図2Aの対物レンズ102bまたは102cの何れかを備えた斜方検出部)の検出角をθdとする。2つの斜方検出部はYZ平面を基準として互いに対称な方向(±θd)に配置される。
図4A及び図4Bは、高アスペクト比狭ピッチL&Sパターンのブリッジ欠陥に対して垂直照明した場合の例を示す図である。図4Bは,図4AのD−D断面矢視図である。ここでは、ラインパターン201の長手方向がY方向となっている例を示すが、検査対象物2の設置方向を変えることで、長手方向をX方向に設置することも可能である。アスペクト比の高いラインパターン201の間にブリッジ欠陥202が存在する。ブリッジ欠陥202の高さは、図4Bに示すように、一般にラインパターン201の高さと同等かそれ以下である。
L&Sパターンの長手方向に直交する方向(図4のX方向)に関しては、ラインパターン201は波長以下の長さの断続的なパターンの繰返しとみなせるため、その方向の電場振動に対して自由電子あるいは分極の振動が追従せず、絶縁体に近い光学応答を示す。よって、ラインパターン201の材質の光吸収率が高い場合でも、L&Sパターンの長手方向に直交する偏光方向の光は透過しやすい。
逆に、L&Sパターンの長手方向に平行な偏光成分は、ラインパターン201との相互作用が大きく、ラインパターン201にて強い反射、散乱が起き、L&Sパターンの内部203には到達しづらい。従って、波長より短いピッチのL&Sパターンの内部203に照明を透過させ、ブリッジ欠陥202に照明光を到達させるには、L&Sパターンの長手方向に直交する方向(図4A及び図4BではX方向)の偏光の照明が有効である。なお、本明細書において偏光方向とは、光の電場、磁場の振動のうち、電場の振動方向を指す。
垂直照明で上記を満たすのは、図4Bに記載したような、入射方向211がZ方向、偏光方向212がX方向の条件である。
また、ブリッジ202は形状に異方性があり、X、Y方向に比べてZ方向の長さが長いため、欠陥から強い散乱光を発生させるには、照明光によって欠陥位置にZ方向の偏光(電場振動)216を形成することが有効である。
一方、斜方照明で上記した条件を満たすのは、図4Cに示すように、ラインパターン201を図4Aの場合と比べて90°回転させた状態で、図4Dに示すように入射方向213がYZ面に平行な方向、偏光方向214がYZ面内方向(p偏光)の条件である。
図5A乃至図5Cは、L&Sパターンに対する垂直照明211の偏光方向を示す模式図である。図5Bは図5AのE−E断面矢視図、図5Cは図5Bの側面図である。垂直照明211の偏光方向をX方向の直線偏光にすることで、L&Sパターンの内部に透過し、欠陥202に到達する。照明は垂直照明集光部221(図1の垂直照明部111から対物レンズ102aまでの構成に相当)にてX方向に集光され、検査対象基板2上にてX方向に短くY方向に長い(図5C参照)線状照明となる。
一般的な直線偏光照明では、照明集光開口範囲内のX>0の領域とX<0の領域とで、垂直照明集光部221通過後の照明偏光の振幅のZ成分の符号が反転するため、集光位置において偏光のZ成分が相殺され、X方向の電場振幅が形成される。一方、本実施例では、垂直照明集光部221通過前の光束において、照明集光開口範囲内のX<0の領域の電場振動方向223とX>0の領域の電場振動方向224とが共にX方向で互いに逆向きとなる偏光状態、すなわちX<0とX>0の領域がいずれもX方向の直線偏光で位相が互いに180度ずれた状態、を形成する。
これにより、垂直照明集光部221通過後に、照明集光開口範囲Ap内のX<0での振動方向225とX>0での振動方向226とでZ成分の符号が一致しX成分の符号が反転する。この結果、集光位置においてX方向が相殺され、Z方向の電場振幅227が形成される。以上の構成により、照明の偏光がL&Sパターンの長手方向に直交するため、欠陥202の位置(欠陥位置)に照明光を効率良く到達させることができる。さらに、欠陥位置にZ方向の偏光227が形成されるため、欠陥から強い散乱光を得ることができる。
図6は、垂直照明部111と対物レンズ102とを組み合わせた垂直照明集光部221の構成の例である。光源部101から出射した直線偏光の照明光は垂直照明部111に入射して二分割波長板231により、互いに対向した向き(+X方向223と−X方向224、但し、ここでX方向及びY方向は、検査対象基板2上でのX方向及びY方向に対応する)の直線偏光に変換される。その後、照明光はシリンドリカルレンズ241と集光レンズ242(図1の対物レンズ102に相当)により検査対象基板2の表面にてY方向に長い線状のスポット243に集光される。
二分割波長板231は、照明光軸中心をX=0とした場合、Xが正の領域と、Xが負の領域とで、進相軸が互いに直交する1/2波長板の作用を持つ。図6の実施例は、Y軸に対して+45度傾いた方向を進相軸232とした1/2波長板2311と−45度傾いた方向を進相軸233とした1/2波長板2312とを組み合わせた構成であり、これにY方向の直線偏光を入射することで、偏光が±90度回転し、対向した向きの直線偏光223、224が得られる。シリンドリカルレンズ241と集光レンズ242との組合せにより照明光が線状に集光される。垂直検出102aの対物レンズが集光レンズ242を兼ねる。この構成により、照明光は一次元に集光することで線状の照明スポット243を形成し、かつ検出光学系(例えば図1の110)は二次元の結像を行うことで二次元の像を得ることが可能となる。
二分割波長板231として、透明基板上に透過する光の波長よりも短いピッチのサブ波長の異方性パターンを形成して領域ごとに所定の複屈折性を持たせたフォトニック結晶素子、あるいは異方性結晶からなる1/2波長板2枚を方位を90度ずらしてつなぎあわせた素子が用いられる。前者は一枚の透明基板上にパターンを形成するため透過光の波面精度が保たれる、およびリソグラフィによる微細加工のため複数領域間の継ぎ目のギャップの影響が無視できる、といった利点がある。
一方、前者がサブ波長微細パターンによる散乱の影響で透過率が下がるのに対し、後者は適切な反射防止コーティングにより高い透過率が実現できる利点がある。また、後者は透過光の波面精度を維持するために二枚の基板をつなぎ合わせた状態で互いの基板面が波長オーダーの精度で平行になっている必要がある。これは、面精度が保証された一枚の基板を基準面として用意し、これに二枚の波長板を押し当てる構成にすることで実現される。なお、透過光の波面精度を保つことは、二分割波長板231の透過光を細い線状のスポット集光するために必要な要件である。少なくともλ/4以下、望ましくはλ/10以下の透過波面精度が必要である。
図7は、垂直照明部111の構成の変形例である。微小異物の高感度検出に有効な短波長(紫外、深紫外)の波長域では、位相差が高精度に調整された波長板を作ることが長波長域と比較して難しいという課題がある。波長板が与える位相差が設計値からずれると、得られる偏光の方向が設計値からずれたものとなる。二分割波長板231の各領域で与えられる位相差が設計値の1/2波長(180度)からずれた場合、二分割波長板231透過後の偏光方向が±X方向からずれる。
図7のように二分割波長板231とシリンドリカルレンズ241との間にY方向の偏光成分を透過させずX方向の直線偏光成分を透過する偏光板251を設置することで、Y方向の偏光成分をカットし、所望の±X方向の偏光を得ることができる。二分割波長板231として、研磨により位相差を調整した一枚の波長板を二つに切断して向きを90度変えてつなぎ合わせたものを用いる。これにより、二分割した各領域の位相差の設計値からのずれ量が等しいことが保証される。その結果、各領域の偏光成分の方向のX方向からのずれ量が等しくなり、偏光子251透過後の+X方向と−X方向の偏光成分の強度バランスを等しくすることができる。
また、仮に偏光子251通過後に+X方向と−X方向の偏光成分の強度に差がある場合には、二分割波長板231を照明光軸回りに回転するか、あるいは二分割波長板に入射する照明光の直線偏光の方位を照明光学部111が有する波長板を用いて回転させることで、偏光子251通過後の偏光の向きを保ったまま強度のバランスが同じになるように合わせこむことができる。
図8は、垂直照明部111の構成の別の変形例である。図7の構成における二分割波長板231の代わりに二分割偏光板252を設置する。図8では二分割偏光板252および割偏光251の面に描かれた縞が偏光板の透過軸を示す。Y方向の直線偏光の照明光が二分割偏光板252を通過すると、X>0の領域はー45度、X<0の領域は+45度の直線偏光になる。さらに偏光板251を通過することで、−X方向、+X方向の直線偏光になる。
二分割偏光板252はフォトニック結晶あるいは二枚の偏光板をつなぎ合わせたもので構成される。図6、7の構成と比較して得られる照明強度が1/4倍になるが、波長板の位相差誤差による出力偏光の±X方向からのずれ、あるいは+X方向と−X方向の偏光成分の強度のずれの問題が無いという利点がある。
斜方照明部112により、Y−Z平面内でZ軸に対して傾けて検査対象基板2に入射させる斜方照明は、L&Sパターンの長手方向がX方向になるよう検査対象基板2を設置し、照明の偏光をp偏光とすることで、L&Sパターン内部の欠陥の検査に有効な、L&Sの長手方向に直交する偏光の照明となる。斜方照明部112の構成は、図6乃至8で説明した垂直照明部111の構成と同じであるので、説明を省略する。
図9は、L&Sパターンのブリッジ欠陥からの散乱光の天球面における偏光方向の分布の例である。図1、図2B,図4Bで説明した斜方照明部112による照明により、Z方向に長いブリッジ欠陥202にZ方向の偏光成分214(図4B参照)を持つ照明光を照射し、ブリッジ欠陥202から強い散乱光を発生させる。図9のようにブリッジ欠陥202を中心とする半球上の位置に対応させて散乱光の出射方向を表示した場合、Z方向の偏光成分214の電場振動により発生する散乱光の偏光方向は半球の経線に平行な方向となる。
図9には垂直検出部110aの開口601(図5BのApに相当)内の散乱光の偏光方向603と、斜方検出部110b又は110cの開口602内の偏光方向604を示す。垂直検出部110aおよび斜方検出部110b又は110cが備える検出光学フィルタ部において、図9に示す欠陥散乱光の偏光成分を透過する偏光フィルタを用いることで、欠陥以外からの散乱光を高い遮光率にて遮光し、欠陥散乱光を高い透過率で透過させ、欠陥を高感度に検出することができる。
上方検出部110aの検出光学フィルタ部103では、欠陥散乱光の偏光が検出開口601上で放射状に分布するため、放射状の偏光分布を透過する偏光フィルタが有効である。このような偏光フィルタの例として、フォトニック結晶を用いて放射状の偏光分布を透過するように設計したセグメント化偏光板がある。上記偏光フィルタの別の例として、軸対称偏光変換素子と直線偏光子の組合せにより、放射状の偏光分布を直線偏光に変換してその直線偏光のみを透過させることも可能である。
図10Aは軸対称偏光変換素子1031の例である。軸対称偏光変換素子1031は、面内の方位ごとに進相軸の方向が異なる1/2波長板で構成される。図10Aの矢印605が進相軸の方向を示す。所定の方位から角度αの領域の進相軸方向がα/2または−α/2となるように構成される。
図10Bに示すような放射状の偏光分布1041の入射光に対し、このような軸対称偏光変換素子1031を中心を上方検出部110aの光軸の中心と合せて作用させることで、入射した欠陥散乱光の放射状偏光分布1041が図10Cに示すように直線偏光1042(図10Aの進相軸方位の場合、縦方向の直線偏光)に変換されて軸対称偏光変換素子1031から出射される。この軸対称偏光変換素子1031から出射した直線偏光1042に変換された欠陥散乱光を、直線偏光子1032に入射させることで、直線偏光子1032からは欠陥の散乱光の偏光だけを選択的に透過させて検出部106で検出することができる。
これにより、高感度な欠陥検出が可能になる。軸対称偏光変換素子1031は、二分割波長板231と同様にフォトニック結晶素子、あるいは異方性結晶からなる1/2波長板606をつなぎ合わせた素子により実現される。情報検出部110aの結像性能を確保するため、軸対称偏光変換素子1031は透過波面精度が少なくともλ/4以上、好ましくはλ/10以上のものが用いられる。
斜方検出部110b及び110cの検出光学フィルタ部103b、103cでは、欠陥散乱光の偏光604が検出開口602上で経度方向に傾きが徐々に変化する分布となるため、その偏光分布を透過する偏光フィルタが有効である。図11は斜方検出部110b及び110cの検出光学フィルタ部103b及び103cに用いられる偏光変換素子1501の例である。偏光変換素子1501は、図10Aに示した軸対称偏光変換素子1031と同様に1/2波長板611の組合せで構成され、波長板方位の面内分布が異なっているものである。斜方検出部110b及び110c用の偏光変換素子1501は、面内の方位ごとに進相軸の方向612が異なる1/2波長板611で構成される。図11Aの矢印612が進相軸の方向を示す。
検査対象基板2からの欠陥散乱光は、図9の開口602内において経線604の方向の偏光分布、即ち図11Bに矢印で示すような偏光分布を持って偏光変換素子1501に入射する。偏光変換素子1501は、この入射光の偏光分布を偏光変換素子1501からの出射光において図11Cに示すように一方向に揃えるような、1/2波長板611の方位分布となるように構成されている。
図12は、検査レシピを設定し、この検査レシピに基づいて欠陥検査を行う欠陥検査方法の中で検査レシピを設定する方法を示すフローチャートの例である。ここで、検査レシピとは、検査を行う検査条件(照明条件、検出条件、欠陥判定処理条件)、あるいは複数の検査条件の組合せを指す。複数の検査条件を組み合わせた検査を行う場合は、各検査条件での検査を順次実施し、各々で得られる検査結果を統合して最終的な検査結果を得る。
検査レシピを設定するには、検査レシピ設定を開始し(S1201)、検査対象基板のロード方向を設定する(S1202)。ロード方向とは検査対象基板をステージ152に設置する際の検査対象物の設置方位である。次に照明条件(垂直照明あるいは斜方照明)を選択する(S1203)。斜方照明を選択した場合は、次に空間フィルタ設定(S1204)として、空間フィルタの設置位置、空間フィルタを構成する遮光パターンの設置本数の設定を行い、照明偏光設定(S1205)に移る。一方、照明条件選択(S1203)で垂直照明を選択した場合は、垂直照明の入射角(図1Bにおける垂直照明ミラー121のY方向の位置)を設定(S1206)した後、空間フィルタ空間フィルタの設置位置、空間フィルタを構成する遮光パターンの設置本数の設定(S1207)を行い、照明偏光設定(S1205)に移る。
S1205で照明偏光を設定したあとは、各検出部の検光条件を設定する。検光条件設定(S1208)は、各検出部が備える偏光子による検光方向の条件に対応する。次に照明パワーを設定(S1209)した後、欠陥判定処理条件設定(S1210)を行う。以上により一つの検査条件が定まる。
ここで、検査対象基板の試し検査を行い(S1211)、検査結果が表示部302に表示される(S1212)。検査結果は、欠陥検出個数、予め検査対象欠陥として設定した欠陥の集合に含まれる各欠陥の検出可否、捕捉率、虚報数、虚報率、過去に設定された検査レシピと比較して新たに設定した検査条件によって新規に検出された欠陥の個数、などを含む。これらの情報に基づいてユーザが検査条件の有効性を判断し(S1213)、有効であると判断されれば、検査レシピに検査条件を追加する(S1214)。次に、以上の手順で更新された検査レシピによって、検査対象とする欠陥の検出個数、検出捕捉率が目標に到達したかどうかを判定し(S1215)、検出捕捉率が目標に到達した場合(Yesの場合)には検査レシピを決定し(S1216)、検査レシピ設定が終了する。
検査条件の有効性を判断ステップ(S1213)で検査条件が有効ではないと判断したときには(Noの場合)、検査レシピに検査条件を追加せずに検出捕捉率が目標に到達したかどうかを判定するステップ(S1215)に進む。検査レシピに検査条件を追加せずに検出捕捉率が目標に到達したかどうかを判定するステップ(S1215)に進む。検出捕捉率が目標に到達したかどうかを判定するステップ(S1215)おいて、検出捕捉率が目標に到達していないと判定した場合には、S1202へ戻って、新たな検査条件の設定を再度実施する。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
2・・・検査対象基板 20・・・処理部 101・・・光源部 102・・・対物レンズ 103・・・検出光学フィルタ部 105・・・結像レンズ 106・・・検出器 110・・・検出部 111・・・垂直照明部 112・・・斜方照明部 113・・・ミラー 114・・・ミラー 121・・・垂直照明ミラー 122・・・空間フィルタ 123・・・正反射光フィルタ 151・・・ステージ駆動部 152・・・X−Y−Z−θステージ 201・・・L&Sパターン 202・・・ブリッジ欠陥 301・・・全体制御部 302・・・表示部 303・・・演算部 304…記憶部。

Claims (8)

  1. レーザ光を発射する光源と、
    該光源より発射されたレーザを試料に対物レンズを介して垂直な方向から照明する垂直照明ユニットと、
    前記光源より発射されたレーザを試料に斜め方向から照明する斜方照明ユニットと、
    を備えた欠陥検査装置であって、
    前記垂直照明ユニットは、前記光源より発射されたレーザを直線偏光に変換する偏光変換部を有し、該偏光変換部を透過した前記レーザを前記試料のラインパターンの長手方向に直交する方向に偏光させた状態で前記試料に形成したラインパターンに照射し、
    前記垂直照明ユニット及び前記斜方照明ユニットは、前記光源より発射されたレーザを偏光方向が反対の二つの偏光に分離する偏光分離部と、該偏光分離部で分離させた偏光方向が反対の二つの偏光を直線状に集光させるレンズ部とを備えていることを特徴とする欠陥検査装置。
  2. 請求項1記載の欠陥検査装置であって、前記垂直照明ユニットは、前記光源より発射されたレーザを一方向に長い線状に集光して前記試料に前記集光したレーザの長手方向を前記試料に形成されたラインパターンの長手方向に合わせ、前記一方向に長い線状に集光したレーザを前記ラインパターンの長手方向に直交する方向に偏光させた状態で前記試料に形成したラインパターンに照射することを特徴とする欠陥検査装置。
  3. 請求項1記載の欠陥検査装置であって、前記斜方照明ユニットは、前記光源より発射されたレーザを一方向に長い線状に集光して偏光の状態をp偏光にして前記試料に照射することを特徴とする欠陥検査装置。
  4. 請求項1記載の欠陥検査装置であって、前記垂直照明ユニット又は前記斜方照明ユニットによりレーザが照射された前記試料から反射散乱された光のうち検出光学系ユニットの対物レンズの外側の斜め方向に反射散乱された光を集光して検出する斜方検出光学系ユニットを備えることを特徴とする欠陥検査装置。
  5. 光源より発射されたレーザを試料に対物レンズを介して垂直な方向から照明、または、前記光源より発射されたレーザを前記試料に斜め方向から照明し、
    前記垂直な方向から照明することを、前記光源より発射されたレーザを直線偏光に変換し、該直線偏光に変換した前記レーザを前記試料のラインパターンの長手方向に直交する方向に偏光させた状態で前記試料に形成したラインパターンに照射し、
    前記垂直な方向から照明すること及び前記斜め方向から照明することを、前記光源より発射されたレーザを偏光方向が反対の二つの偏光に分離し、該分離させた偏光方向が反対の二つの偏光をレンズで直線状に集光させることにより照明することを特徴とする欠陥検査方法。
  6. 請求項記載の欠陥検査方法であって、前記垂直な方向から照明することを、前記光源より発射されたレーザを一方向に長い線状に集光して前記試料に前記集光したレーザの長手方向を前記試料に形成されたラインパターンの長手方向に合わせ、前記一方向に長い線状に集光したレーザを前記ラインパターンの長手方向に直交する方向に偏光させた状態で前記試料に形成したラインパターンに照射することを特徴とする欠陥検査方法。
  7. 請求項記載の欠陥検査方法であって、前記斜め方向から照明することを、前記光源より発射されたレーザを一方向に長い線状に集光して偏光の状態をp偏光にして前記試料に照射することを特徴とする欠陥検査方法。
  8. 請求項記載の欠陥検査方法であって、前記垂直な方向からの照明又は前記斜め方向からの照明によりレーザが照射された前記試料から反射散乱された光のうち前記対物レンズの外側の斜め方向に反射散乱された光を集光して検出することを特徴とする欠陥検査方法。
JP2014062440A 2014-03-25 2014-03-25 欠陥検査方法及びその装置 Expired - Fee Related JP6273162B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014062440A JP6273162B2 (ja) 2014-03-25 2014-03-25 欠陥検査方法及びその装置
US14/638,305 US9310318B2 (en) 2014-03-25 2015-03-04 Defect inspection method and defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062440A JP6273162B2 (ja) 2014-03-25 2014-03-25 欠陥検査方法及びその装置

Publications (3)

Publication Number Publication Date
JP2015184203A JP2015184203A (ja) 2015-10-22
JP2015184203A5 JP2015184203A5 (ja) 2016-12-01
JP6273162B2 true JP6273162B2 (ja) 2018-01-31

Family

ID=54189932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062440A Expired - Fee Related JP6273162B2 (ja) 2014-03-25 2014-03-25 欠陥検査方法及びその装置

Country Status (2)

Country Link
US (1) US9310318B2 (ja)
JP (1) JP6273162B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9995850B2 (en) 2013-06-06 2018-06-12 Kla-Tencor Corporation System, method and apparatus for polarization control
CN105548215A (zh) * 2016-01-01 2016-05-04 广州兴森快捷电路科技有限公司 一种晕圈、pi裂纹的观察分析方法
US11089225B2 (en) * 2016-04-08 2021-08-10 Konica Minolta, Inc. Optical measuring device, image generating method, and image generating program
KR102691923B1 (ko) * 2017-12-27 2024-08-06 주성엔지니어링(주) 기판 검사 장치 및 기판 검사 방법
US12032013B2 (en) 2017-12-27 2024-07-09 Jusung Engineering Co., Ltd. Substrate inspection device and substrate inspection method
CN108982520A (zh) * 2018-08-03 2018-12-11 汕头超声显示器(二厂)有限公司 一种膜底可视缺陷的检测方法及装置
US10942135B2 (en) * 2018-11-14 2021-03-09 Kla Corporation Radial polarizer for particle detection
WO2020136785A1 (ja) * 2018-12-27 2020-07-02 株式会社日立ハイテク 欠陥検査装置および検査方法並びに光学モジュール
US11035790B2 (en) * 2018-12-31 2021-06-15 Industrial Cooperation Foundation Chonbuk National University Inspection apparatus and inspection method
US10948423B2 (en) * 2019-02-17 2021-03-16 Kla Corporation Sensitive particle detection with spatially-varying polarization rotator and polarizer
CN113125456A (zh) * 2019-12-31 2021-07-16 深圳中科飞测科技股份有限公司 发光装置、检测方法、检测设备
KR20220023874A (ko) * 2020-08-20 2022-03-03 삼성디스플레이 주식회사 표시 장치 광학 성능 테스트용 광학 검사 기기 및 이를 이용한 광학 검사 방법
CN114371148B (zh) * 2022-01-19 2022-11-08 之江实验室 一种基于零椭偏暗场照明的散射干涉成像系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988223B2 (ja) * 2005-06-22 2012-08-01 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
JP4669995B2 (ja) 2006-08-02 2011-04-13 ナノフォトン株式会社 光学顕微鏡及び観察方法
JP2010025713A (ja) * 2008-07-18 2010-02-04 Hitachi High-Technologies Corp 欠陥検査方法及び欠陥検査装置
JP2010101714A (ja) * 2008-10-22 2010-05-06 Toshiba Corp パターン検査のためのパラメータ決定装置、プログラム、及び方法
JP2011122990A (ja) * 2009-12-14 2011-06-23 Hitachi High-Technologies Corp 欠陥検査装置及び欠陥検査方法
JP5712079B2 (ja) * 2011-07-29 2015-05-07 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
JP2013061185A (ja) * 2011-09-12 2013-04-04 Toshiba Corp パターン検査装置およびパターン検査方法

Also Published As

Publication number Publication date
US20150276623A1 (en) 2015-10-01
US9310318B2 (en) 2016-04-12
JP2015184203A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6273162B2 (ja) 欠陥検査方法及びその装置
JP6328468B2 (ja) 欠陥検査装置および検査方法
US20150003722A1 (en) Defect observation method and device therefor
JP4312777B2 (ja) サイドローブが除去された共焦点自己干渉顕微鏡
US20180329189A1 (en) Flexible mode scanning optical microscopy and inspection system
JP5171744B2 (ja) 欠陥検査方法およびその装置
JP5714645B2 (ja) 不良検出システムの改良
KR101460128B1 (ko) 패터닝된 샘플들을 검사하기 위한 광학적 시스템 및 방법
US8416292B2 (en) Defect inspection apparatus and method
JP6738254B2 (ja) 欠陥検出装置及び欠陥観察装置
JP2016038302A (ja) 欠陥検査装置及び欠陥検査方法
KR20010034323A (ko) 광학적 검사 방법 및 장치
JP2008096430A (ja) 欠陥検査方法およびその装置
KR20020019073A (ko) 가변 각도 설계를 이용하는 광학 검사 방법 및 장치
US20130148115A1 (en) Optical system and method for inspection of patterned samples
JP2008039882A (ja) 光学顕微鏡及び観察方法
KR20140024811A (ko) 패턴 검사 장치
US10067067B2 (en) Substrate inspection apparatus
JP2011163965A (ja) 欠陥検査方法及びその装置
KR102104392B1 (ko) 샘플의 다중 모드 검사를 위한 시스템 및 방법
JP6142996B2 (ja) ビア形状測定装置及びビア検査装置
JPH08327557A (ja) 欠陥検査装置及び方法
WO2002093567A2 (en) Focus error correction method and apparatus
JP2005308725A (ja) 透明板欠陥検査装置
JP3020546B2 (ja) 異物検査装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180105

R150 Certificate of patent or registration of utility model

Ref document number: 6273162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees