JP6268007B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6268007B2
JP6268007B2 JP2014051812A JP2014051812A JP6268007B2 JP 6268007 B2 JP6268007 B2 JP 6268007B2 JP 2014051812 A JP2014051812 A JP 2014051812A JP 2014051812 A JP2014051812 A JP 2014051812A JP 6268007 B2 JP6268007 B2 JP 6268007B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
electrode
semiconductor
immediately below
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014051812A
Other languages
Japanese (ja)
Other versions
JP2015176991A (en
Inventor
尚史 齋藤
尚史 齋藤
雅彦 蔵口
雅彦 蔵口
四戸 孝
孝 四戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014051812A priority Critical patent/JP6268007B2/en
Priority to US14/612,471 priority patent/US9837488B2/en
Publication of JP2015176991A publication Critical patent/JP2015176991A/en
Application granted granted Critical
Publication of JP6268007B2 publication Critical patent/JP6268007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明の実施形態は、半導体装置に関する。   Embodiments described herein relate generally to a semiconductor device.

半導体装置の高耐圧、低オン抵抗を実現するには、高い臨界電界を有する材料を用いるのが有効である。窒化物半導体は高い臨界電界強度を有することから、この窒化物半導体を用いることにより、高耐圧、低オン抵抗を実現する半導体装置が得られる。   In order to realize a high breakdown voltage and low on-resistance of a semiconductor device, it is effective to use a material having a high critical electric field. Since a nitride semiconductor has a high critical electric field strength, a semiconductor device that realizes a high breakdown voltage and a low on-resistance can be obtained by using this nitride semiconductor.

窒化物半導体装置では、電界がゲート電極の端部、あるいはフィールドプレート電極の端部に集中する場合があり、窒化物半導体が本来持つ高い耐性が有効に活用されていない場合がある。   In the nitride semiconductor device, the electric field may concentrate on the end of the gate electrode or the end of the field plate electrode, and the high resistance inherent in the nitride semiconductor may not be effectively utilized.

特開2013−207166号公報JP2013-207166A

本発明が解決しようとする課題は、高耐圧の半導体装置を提供することである。   The problem to be solved by the present invention is to provide a high breakdown voltage semiconductor device.

実施形態の半導体装置は、窒化物半導体を有する第1半導体層と、前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、を備える。前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、前記第3電極の下端は、前記第1半導体層の上端よりも下である。前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含み、前記第2半導体領域におけるp形不純物濃度は、前記第1半導体領域のp形不純物濃度よりも低い。前記第1半導体領域は、p形GaNを含み、前記第2半導体領域は、アンドープのGaNを含む。
実施形態の半導体装置は、窒化物半導体を有する第1半導体層と、前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、を備える。前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、前記第3電極の下端は、前記第1半導体層の上端よりも下である。前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含む。前記第2半導体領域は、超接合構造を有している。
実施形態の半導体装置は、窒化物半導体を有する第1半導体層と、前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、を備える。前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、前記第3電極の下端は、前記第1半導体層の上端よりも下である。前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含む。前記第2半導体領域は、前記第1半導体層から前記第3半導体層に向かう方向において、n形GaN含有層とp形GaN含有層とが交互に配列された構造を有する。
実施形態の半導体装置は、窒化物半導体を有する第1半導体層と、前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、を備える。前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、前記第3電極の下端は、前記第1半導体層の上端よりも下である。前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含む。前記第2半導体領域は、前記第1半導体層から前記第3半導体層に向かう方向において、n形AlGaN含有層とp形AlGaN含有層とが交互に配列された構造を有する。
実施形態の半導体装置は、窒化物半導体を有する第1半導体層と、前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、を備える。前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、前記第3電極の下端は、前記第1半導体層の上端よりも下である。前記第2半導体領域は、前記第1半導体層から前記第3半導体層に向かう方向において、AlGaN含有層とGaN含有層とが交互に配列された構造を有する。
別の実施形態の半導体装置は、窒化物半導体を有する第1半導体層と、前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、絶縁膜を介して前記第3半導体層、前記第2半導体層、および前記第1半導体層に対向し、前記第1電極から第2電極に向かう方向に対して交差する方向に配列され、前記第3半導体層上には設けられていない複数の第3電極と、隣り合う前記第3電極の間に設けられ、前記第3半導体層、前記第2半導体層、および前記第1半導体層に繋がり、窒化物半導体を有する第5半導体層と、を備える。前記第1半導体層は、p形GaNと、前記p形GaNと前記第2半導体層との間のGaNと、を含む。前記第5半導体層は、前記p形GaNよりも高抵抗のGaNを含む
The semiconductor device according to the embodiment includes a first semiconductor layer having a nitride semiconductor, and a second semiconductor layer provided on the first semiconductor layer and having a forbidden bandwidth larger than that of the first semiconductor layer and having a nitride semiconductor. A third semiconductor layer provided on the second semiconductor layer and having a forbidden band width smaller than that of the second semiconductor layer and having a nitride semiconductor; and the third semiconductor layer provided on the second semiconductor layer. A first electrode in contact with a layer; a second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer; the third semiconductor layer in contact with the first electrode; and the first electrode immediately below the first electrode. Two semiconductor layers, the first semiconductor layer immediately below the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the immediately below the second electrode And a third semiconductor layer provided between the first semiconductor layer and the third semiconductor layer. A third electrode not provided on the body layer; the third semiconductor layer in contact with the first electrode; the second semiconductor layer immediately below the first electrode; and the first semiconductor layer immediately below the first electrode A first portion between the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the first semiconductor immediately below the second electrode And an insulating film including a second portion between the layer and the third electrode, and a third portion between the first semiconductor layer and the third electrode. The third electrode is not provided on the first portion and is not provided on the second portion, and the lower end of the third electrode is lower than the upper end of the first semiconductor layer. Is also below. The first semiconductor layer includes a p-type first semiconductor region and a second semiconductor region between the first semiconductor region and the second semiconductor layer, and the p-type impurity concentration in the second semiconductor region Is lower than the p-type impurity concentration of the first semiconductor region. The first semiconductor region includes p-type GaN, and the second semiconductor region includes undoped GaN.
The semiconductor device according to the embodiment includes a first semiconductor layer having a nitride semiconductor, and a second semiconductor layer provided on the first semiconductor layer and having a forbidden bandwidth larger than that of the first semiconductor layer and having a nitride semiconductor. A third semiconductor layer provided on the second semiconductor layer and having a forbidden band width smaller than that of the second semiconductor layer and having a nitride semiconductor; and the third semiconductor layer provided on the second semiconductor layer. A first electrode in contact with a layer; a second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer; the third semiconductor layer in contact with the first electrode; and the first electrode immediately below the first electrode. Two semiconductor layers, the first semiconductor layer immediately below the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the immediately below the second electrode And a third semiconductor layer provided between the first semiconductor layer and the third semiconductor layer. A third electrode not provided on the body layer; the third semiconductor layer in contact with the first electrode; the second semiconductor layer immediately below the first electrode; and the first semiconductor layer immediately below the first electrode A first portion between the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the first semiconductor immediately below the second electrode And an insulating film including a second portion between the layer and the third electrode, and a third portion between the first semiconductor layer and the third electrode. The third electrode is not provided on the first portion and is not provided on the second portion, and the lower end of the third electrode is lower than the upper end of the first semiconductor layer. Is also below. The first semiconductor layer includes a p-type first semiconductor region and a second semiconductor region between the first semiconductor region and the second semiconductor layer. The second semiconductor region has a superjunction structure.
The semiconductor device according to the embodiment includes a first semiconductor layer having a nitride semiconductor, and a second semiconductor layer provided on the first semiconductor layer and having a forbidden bandwidth larger than that of the first semiconductor layer and having a nitride semiconductor. A third semiconductor layer provided on the second semiconductor layer and having a forbidden band width smaller than that of the second semiconductor layer and having a nitride semiconductor; and the third semiconductor layer provided on the second semiconductor layer. A first electrode in contact with a layer; a second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer; the third semiconductor layer in contact with the first electrode; and the first electrode immediately below the first electrode. Two semiconductor layers, the first semiconductor layer immediately below the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the immediately below the second electrode And a third semiconductor layer provided between the first semiconductor layer and the third semiconductor layer. A third electrode not provided on the body layer; the third semiconductor layer in contact with the first electrode; the second semiconductor layer immediately below the first electrode; and the first semiconductor layer immediately below the first electrode A first portion between the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the first semiconductor immediately below the second electrode And an insulating film including a second portion between the layer and the third electrode, and a third portion between the first semiconductor layer and the third electrode. The third electrode is not provided on the first portion and is not provided on the second portion, and the lower end of the third electrode is lower than the upper end of the first semiconductor layer. Is also below. The first semiconductor layer includes a p-type first semiconductor region and a second semiconductor region between the first semiconductor region and the second semiconductor layer. The second semiconductor region has a structure in which n-type GaN-containing layers and p-type GaN-containing layers are alternately arranged in a direction from the first semiconductor layer to the third semiconductor layer.
The semiconductor device according to the embodiment includes a first semiconductor layer having a nitride semiconductor, and a second semiconductor layer provided on the first semiconductor layer and having a forbidden bandwidth larger than that of the first semiconductor layer and having a nitride semiconductor. A third semiconductor layer provided on the second semiconductor layer and having a forbidden band width smaller than that of the second semiconductor layer and having a nitride semiconductor; and the third semiconductor layer provided on the second semiconductor layer. A first electrode in contact with a layer; a second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer; the third semiconductor layer in contact with the first electrode; and the first electrode immediately below the first electrode. Two semiconductor layers, the first semiconductor layer immediately below the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the immediately below the second electrode And a third semiconductor layer provided between the first semiconductor layer and the third semiconductor layer. A third electrode not provided on the body layer; the third semiconductor layer in contact with the first electrode; the second semiconductor layer immediately below the first electrode; and the first semiconductor layer immediately below the first electrode A first portion between the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the first semiconductor immediately below the second electrode And an insulating film including a second portion between the layer and the third electrode, and a third portion between the first semiconductor layer and the third electrode. The third electrode is not provided on the first portion and is not provided on the second portion, and the lower end of the third electrode is lower than the upper end of the first semiconductor layer. Is also below. The first semiconductor layer includes a p-type first semiconductor region and a second semiconductor region between the first semiconductor region and the second semiconductor layer. The second semiconductor region has a structure in which n-type AlGaN-containing layers and p-type AlGaN-containing layers are alternately arranged in a direction from the first semiconductor layer to the third semiconductor layer.
The semiconductor device according to the embodiment includes a first semiconductor layer having a nitride semiconductor, and a second semiconductor layer provided on the first semiconductor layer and having a forbidden bandwidth larger than that of the first semiconductor layer and having a nitride semiconductor. A third semiconductor layer provided on the second semiconductor layer and having a forbidden band width smaller than that of the second semiconductor layer and having a nitride semiconductor; and the third semiconductor layer provided on the second semiconductor layer. A first electrode in contact with a layer; a second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer; the third semiconductor layer in contact with the first electrode; and the first electrode immediately below the first electrode. Two semiconductor layers, the first semiconductor layer immediately below the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the immediately below the second electrode And a third semiconductor layer provided between the first semiconductor layer and the third semiconductor layer. A third electrode not provided on the body layer; the third semiconductor layer in contact with the first electrode; the second semiconductor layer immediately below the first electrode; and the first semiconductor layer immediately below the first electrode A first portion between the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and the first semiconductor immediately below the second electrode And an insulating film including a second portion between the layer and the third electrode, and a third portion between the first semiconductor layer and the third electrode. The third electrode is not provided on the first portion and is not provided on the second portion, and the lower end of the third electrode is lower than the upper end of the first semiconductor layer. Is also below. The second semiconductor region has a structure in which AlGaN-containing layers and GaN-containing layers are alternately arranged in a direction from the first semiconductor layer toward the third semiconductor layer.
A semiconductor device according to another embodiment includes a first semiconductor layer having a nitride semiconductor, a second semiconductor layer provided on the first semiconductor layer, having a forbidden band larger than that of the first semiconductor layer, and having a nitride semiconductor. A semiconductor layer, a third semiconductor layer provided on the second semiconductor layer, having a forbidden band width smaller than that of the second semiconductor layer and having a nitride semiconductor; and provided on the second semiconductor layer; A first electrode in contact with three semiconductor layers; a second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer; the third semiconductor layer in contact with the first electrode; and immediately below the first electrode. The second semiconductor layer, the first semiconductor layer immediately below the first electrode, the third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, and immediately below the second electrode An insulating film provided between the first semiconductor layer and the first semiconductor layer Via the third semiconductor layer, the second semiconductor layer, and the first semiconductor layer, and arranged in a direction intersecting a direction from the first electrode to the second electrode, A plurality of third electrodes that are not provided above and the adjacent third electrodes are connected to the third semiconductor layer, the second semiconductor layer, and the first semiconductor layer, and are nitride semiconductors And a fifth semiconductor layer. The first semiconductor layer includes p-type GaN and GaN between the p-type GaN and the second semiconductor layer. The fifth semiconductor layer includes GaN having a higher resistance than the p-type GaN .

図1(a)は、第1実施形態に係る半導体装置を表す模式的平面図であり、図1(b)は、第1実施形態に係る半導体装置を表す模式的断面図である。FIG. 1A is a schematic plan view illustrating the semiconductor device according to the first embodiment, and FIG. 1B is a schematic cross-sectional view illustrating the semiconductor device according to the first embodiment. 図2(a)は、参考例に係る半導体装置を表す模式的平面図であり、図2(b)は、参考例に係る半導体装置の電界強度を表す図である。FIG. 2A is a schematic plan view illustrating a semiconductor device according to a reference example, and FIG. 2B is a diagram illustrating electric field strength of the semiconductor device according to the reference example. 図3(a)、(c)は、第1実施形態に係る半導体装置の動作を表す模式的断面図であり、図3(b)は、第1実施形態に係る半導体装置の電界強度を表す図である。3A and 3C are schematic cross-sectional views illustrating the operation of the semiconductor device according to the first embodiment, and FIG. 3B illustrates the electric field strength of the semiconductor device according to the first embodiment. FIG. 図4(a)は、第2実施形態に係る半導体装置を表す模式的断面図であり、図4(b)は、第2実施形態に係る半導体装置の動作を表す図である。FIG. 4A is a schematic cross-sectional view illustrating the semiconductor device according to the second embodiment, and FIG. 4B is a diagram illustrating the operation of the semiconductor device according to the second embodiment. 図5(a)は、第3実施形態に係る半導体装置を表す模式的断面図であり、図5(b)は、第3実施形態に係る半導体装置のエネルギーバンドを表す図である。FIG. 5A is a schematic cross-sectional view illustrating a semiconductor device according to the third embodiment, and FIG. 5B is a diagram illustrating an energy band of the semiconductor device according to the third embodiment. 図6は、第4実施形態に係る半導体装置を表す模式的断面図である。FIG. 6 is a schematic cross-sectional view showing a semiconductor device according to the fourth embodiment. 図7(a)は、第5実施形態に係る半導体装置を表す模式的断面図であり、図7(b)は、GaN結晶の結晶構造を表す図である。FIG. 7A is a schematic cross-sectional view showing a semiconductor device according to the fifth embodiment, and FIG. 7B is a view showing a crystal structure of a GaN crystal. 図8(a)は、第6実施形態に係る半導体装置を表す模式的平面図であり、図8(b)、(c)は、第6実施形態に係る半導体装置を表す模式的平面図である。FIG. 8A is a schematic plan view showing a semiconductor device according to the sixth embodiment, and FIGS. 8B and 8C are schematic plan views showing the semiconductor device according to the sixth embodiment. is there. 図9は、第8実施形態に係る半導体装置を表す模式的断面図である。FIG. 9 is a schematic cross-sectional view showing a semiconductor device according to the eighth embodiment.

以下、図面を参照しつつ、実施形態について説明する。以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。   Hereinafter, embodiments will be described with reference to the drawings. In the following description, the same members are denoted by the same reference numerals, and the description of the members once described is omitted as appropriate.

(第1実施形態)
図1(a)は、第1実施形態に係る半導体装置を表す模式的平面図であり、図1(b)は、第1実施形態に係る半導体装置を表す模式的断面図である。
(First embodiment)
FIG. 1A is a schematic plan view illustrating the semiconductor device according to the first embodiment, and FIG. 1B is a schematic cross-sectional view illustrating the semiconductor device according to the first embodiment.

図1(a)、(b)では、ソース電極30からドレイン電極31に向かう方向を、例えば、Y方向としている。また、半導体基板10から半導体層22に向かう方向を、例えば、Z方方向としている。そして、X方向、Y方向、およびZ方向のそれぞれは、交差している。   In FIGS. 1A and 1B, the direction from the source electrode 30 to the drain electrode 31 is, for example, the Y direction. The direction from the semiconductor substrate 10 toward the semiconductor layer 22 is, for example, the Z direction. Each of the X direction, the Y direction, and the Z direction intersects.

図1(b)には、図1(a)のA−A’線における断面が表されている。   FIG. 1B shows a cross section taken along the line A-A ′ of FIG.

第1実施形態に係る半導体装置1は、半導体基板10と、バッファ層11と、半導体層20(第1半導体層)と、半導体層21(第2半導体層)と、半導体層22(第3半導体層)と、ソース電極30(第1電極)と、ドレイン電極31(第2電極)と、ゲート電極40(第3電極)と、ゲート絶縁膜41(絶縁膜)と、を備える。   The semiconductor device 1 according to the first embodiment includes a semiconductor substrate 10, a buffer layer 11, a semiconductor layer 20 (first semiconductor layer), a semiconductor layer 21 (second semiconductor layer), and a semiconductor layer 22 (third semiconductor). Layer), a source electrode 30 (first electrode), a drain electrode 31 (second electrode), a gate electrode 40 (third electrode), and a gate insulating film 41 (insulating film).

半導体基板10は、例えば、シリコン基板である。半導体層20は、窒化物半導体(例えば、GaN)を有する。半導体層20は、半導体領域20uと、半導体領域20pと、を有する。半導体領域20uは、半導体領域20pの上に設けられている。半導体領域20uは、アンドープ(undoped)の窒化物半導体(例えば、GaN)を有する。半導体領域20pは、窒化物半導体を有する。一例として、半導体領域20pは、p形GaNであるが、必ずしもp形である必要はない。半導体基板10と半導体層20との間には、バッファ層11が設けられている。バッファ層11は、窒化物半導体(例えば、GaN)を有する。   The semiconductor substrate 10 is a silicon substrate, for example. The semiconductor layer 20 includes a nitride semiconductor (for example, GaN). The semiconductor layer 20 includes a semiconductor region 20u and a semiconductor region 20p. The semiconductor region 20u is provided on the semiconductor region 20p. The semiconductor region 20u includes an undoped nitride semiconductor (for example, GaN). The semiconductor region 20p includes a nitride semiconductor. As an example, the semiconductor region 20p is p-type GaN, but is not necessarily p-type. A buffer layer 11 is provided between the semiconductor substrate 10 and the semiconductor layer 20. The buffer layer 11 includes a nitride semiconductor (for example, GaN).

半導体層21は、半導体層20上に設けられている。半導体層21の禁止帯幅は、半導体層20の禁止帯幅よりも大きい。半導体層21は、アンドープの窒化物半導体(例えば、AlGaN)を有する。   The semiconductor layer 21 is provided on the semiconductor layer 20. The forbidden band width of the semiconductor layer 21 is larger than the forbidden band width of the semiconductor layer 20. The semiconductor layer 21 includes an undoped nitride semiconductor (for example, AlGaN).

半導体層22は、半導体層21上に設けられている。半導体層22の禁止帯幅は、半導体層21の禁止帯幅よりも小さい。半導体層22は、窒化物半導体を有する。一例として、半導体層22は、n形GaNであるが、必ずしもn形である必要はない。   The semiconductor layer 22 is provided on the semiconductor layer 21. The forbidden band width of the semiconductor layer 22 is smaller than the forbidden band width of the semiconductor layer 21. The semiconductor layer 22 includes a nitride semiconductor. As an example, the semiconductor layer 22 is n-type GaN, but is not necessarily n-type.

ソース電極30は、半導体層21上に設けられている。ソース電極30は、半導体層22に接している。ドレイン電極31は、半導体層21上に設けられている。ドレイン電極31は、半導体層22に接している。ソース電極30とドレイン電極31とは互いに離れている。   The source electrode 30 is provided on the semiconductor layer 21. The source electrode 30 is in contact with the semiconductor layer 22. The drain electrode 31 is provided on the semiconductor layer 21. The drain electrode 31 is in contact with the semiconductor layer 22. The source electrode 30 and the drain electrode 31 are separated from each other.

ゲート電極40は、ソース電極30が接する半導体層22、ソース電極30直下の半導体層21、およびソース電極30直下の半導体層20と、ドレイン電極31が接する半導体層22、ドレイン電極31直下の半導体層21、およびドレイン電極31直下の半導体層20と、の間に設けられている。ゲート電極40は、ゲート絶縁膜41を介して半導体層20、半導体層21、および半導体層22に接している。ここで、ゲート電極40は、半導体層22上には設けられていない。ソース電極30、ドレイン電極31、およびゲート電極40は、X方向に延在している。また、ゲート絶縁膜41は、半導体層22上にも設けられている。ゲート電極40の上およびゲート絶縁膜41の上には、絶縁層50が設けられている。   The gate electrode 40 includes a semiconductor layer 22 in contact with the source electrode 30, a semiconductor layer 21 immediately below the source electrode 30, a semiconductor layer 20 immediately below the source electrode 30, a semiconductor layer 22 in contact with the drain electrode 31, and a semiconductor layer immediately below the drain electrode 31. 21 and the semiconductor layer 20 immediately below the drain electrode 31. The gate electrode 40 is in contact with the semiconductor layer 20, the semiconductor layer 21, and the semiconductor layer 22 through the gate insulating film 41. Here, the gate electrode 40 is not provided on the semiconductor layer 22. The source electrode 30, the drain electrode 31, and the gate electrode 40 extend in the X direction. The gate insulating film 41 is also provided on the semiconductor layer 22. An insulating layer 50 is provided on the gate electrode 40 and the gate insulating film 41.

窒化物半導体に含まれるn形不純物元素は、例えば、Si等であり、p形不純物元素は、例えば、Mg等である。   The n-type impurity element contained in the nitride semiconductor is, for example, Si, and the p-type impurity element is, for example, Mg.

半導体装置1において、半導体層20と半導体層21とはヘテロ接合をしており、半導体層20と半導体層21との界面付近に2次元電子ガス(2DEG)が発生する。ここで、半導体層21の厚さを5nm以上とすることにより、半導体層20と半導体層21との界面付近で分極が生じ、2次元電子ガスが生成する。また、半導体層21の膜厚の上限値は、エピタキシャル成長の限界膜厚(例えば、50nm)とする。   In the semiconductor device 1, the semiconductor layer 20 and the semiconductor layer 21 are in a heterojunction, and a two-dimensional electron gas (2DEG) is generated near the interface between the semiconductor layer 20 and the semiconductor layer 21. Here, by setting the thickness of the semiconductor layer 21 to 5 nm or more, polarization occurs near the interface between the semiconductor layer 20 and the semiconductor layer 21, and a two-dimensional electron gas is generated. In addition, the upper limit value of the film thickness of the semiconductor layer 21 is set to a limit film thickness (for example, 50 nm) for epitaxial growth.

半導体装置1においては、2次元電子ガスがゲート電極40とゲート絶縁膜41とによって構成されるトレンチ構造によって分断されている。このため、半導体装置1はいわゆるノーマリーオフの半導体装置になっている。   In the semiconductor device 1, the two-dimensional electron gas is divided by a trench structure constituted by the gate electrode 40 and the gate insulating film 41. Therefore, the semiconductor device 1 is a so-called normally-off semiconductor device.

半導体装置1の動作を説明する前に参考例に係る半導体装置の動作について説明する。   Before describing the operation of the semiconductor device 1, the operation of the semiconductor device according to the reference example will be described.

図2(a)は、参考例に係る半導体装置を表す模式的平面図であり、図2(b)は、参考例に係る半導体装置の電界強度を表す図である。   FIG. 2A is a schematic plan view illustrating a semiconductor device according to a reference example, and FIG. 2B is a diagram illustrating electric field strength of the semiconductor device according to the reference example.

図2(b)の横軸は、長さ(L)であり、縦軸は、電界強度(I)である。   The horizontal axis in FIG. 2B is the length (L), and the vertical axis is the electric field strength (I).

参考例に係る半導体装置100においては、半導体基板10上にバッファ層220を介してGaN層200が設けられている。また、GaN層200の上にAlGaN層210が設けられている。GaN層200とAlGaN層210とはヘテロ接合をしている。これにより、GaN層200とAlGaN層210との界面付近に2次元電子ガス(2DEG)が発生する。   In the semiconductor device 100 according to the reference example, the GaN layer 200 is provided on the semiconductor substrate 10 via the buffer layer 220. An AlGaN layer 210 is provided on the GaN layer 200. The GaN layer 200 and the AlGaN layer 210 are in a heterojunction. As a result, a two-dimensional electron gas (2DEG) is generated near the interface between the GaN layer 200 and the AlGaN layer 210.

また、半導体装置100においては、AlGaN層210上に、ソース電極300とドレイン電極310とが設けられている。また、ゲート電極400は、ソース電極300とドレイン電極310との間に設けられている。ゲート電極400は、ゲート絶縁膜410を介してGaN層200とAlGaN層210とに接している。   In the semiconductor device 100, the source electrode 300 and the drain electrode 310 are provided on the AlGaN layer 210. The gate electrode 400 is provided between the source electrode 300 and the drain electrode 310. The gate electrode 400 is in contact with the GaN layer 200 and the AlGaN layer 210 through the gate insulating film 410.

また、半導体装置100においては、オフ時における電流コラプス現象を防止する対策として、ゲート電極400の上方に、フィールドプレート電極400FPが設けている。フィールドプレート電極400FPは、ゲート電極400に電気的に接続されている。さらに、フィールドプレート電極400FPの上方には、フィールドプレート電極300FPが設けられている。フィールドプレート電極300FPは、ソース電極300に電気的に接続されている。そして、半導体装置100においては、ゲート電極400、フィールドプレート電極400FP、およびフィールドプレート電極300FPのそれぞれがドレイン電極310側に張り出す張り出し構造を有している(矢印Aで示す部分)。   Further, in the semiconductor device 100, the field plate electrode 400FP is provided above the gate electrode 400 as a measure for preventing the current collapse phenomenon at the off time. The field plate electrode 400FP is electrically connected to the gate electrode 400. Further, a field plate electrode 300FP is provided above the field plate electrode 400FP. The field plate electrode 300FP is electrically connected to the source electrode 300. In the semiconductor device 100, each of the gate electrode 400, the field plate electrode 400FP, and the field plate electrode 300FP has an overhang structure that projects toward the drain electrode 310 (part indicated by an arrow A).

半導体装置100においては、ソース・ドレイン間に電圧を印加し、ゲート電極400に閾値電圧(Vth)以上の電位を印加することにより、ソース電極300とドレイン電極310との間に電流が流れる。   In the semiconductor device 100, a current flows between the source electrode 300 and the drain electrode 310 by applying a voltage between the source and drain and applying a potential equal to or higher than the threshold voltage (Vth) to the gate electrode 400.

但し、半導体装置100においては、上述した張り出し構造によって、オフ時には、ゲート電極400の端部400E、フィールドプレート電極400FPの端部400FPE、フィールドプレート電極300FPの端部300FPEで電界が集中してしまう。   However, in the semiconductor device 100, the electric field concentrates at the end portion 400E of the gate electrode 400, the end portion 400FPE of the field plate electrode 400FP, and the end portion 300FPE of the field plate electrode 300FP due to the above-described projecting structure.

従って、図2(b)に示すように、ゲート電極400の端部400E、フィールドプレート電極400FPの端部400FPE、およびフィールドプレート電極300FPの端部300FPEで、電界強度はピークを持つことになる。   Therefore, as shown in FIG. 2B, the electric field strength has a peak at the end portion 400E of the gate electrode 400, the end portion 400FPE of the field plate electrode 400FP, and the end portion 300FPE of the field plate electrode 300FP.

ここで、GaN結晶の耐圧限界は、例えば、3MV(メガボルト)/cm以上であると言われている。ところが、ゲート・ドレイン間で局所的に電界が強くなると、ゲート・ドレイン間の耐圧が100V/μm以下にまで下がる場合がある。つまり、参考例のように、張り出し構造を持つ半導体装置では、本来持っているGaN結晶の耐圧特性が十分に生かしきれていない可能性がある。   Here, it is said that the breakdown voltage limit of the GaN crystal is, for example, 3 MV (megavolt) / cm or more. However, when the electric field is locally increased between the gate and the drain, the breakdown voltage between the gate and the drain may be lowered to 100 V / μm or less. That is, as in the reference example, in a semiconductor device having an overhang structure, there is a possibility that the breakdown voltage characteristic of the inherent GaN crystal is not fully utilized.

図3(a)、(c)は、第1実施形態に係る半導体装置の動作を表す模式的断面図であり、図3(b)は、第1実施形態に係る半導体装置の電界強度を表す図である。   3A and 3C are schematic cross-sectional views illustrating the operation of the semiconductor device according to the first embodiment, and FIG. 3B illustrates the electric field strength of the semiconductor device according to the first embodiment. FIG.

半導体装置1の動作について説明する。
図3(a)には、ドレイン電極31にソース電極30よりも高い電位を印加し、ゲート電極40に閾値電圧(Vth)よりも小さい電位(第1の電位)を印加したときの状態が表されている。この場合、ソース電極30とドレイン電極31との間には電流が流れない。つまり、オフ状態では、2次元電子ガス(2DEG)はトレンチ構造によって分断されたままである。
The operation of the semiconductor device 1 will be described.
FIG. 3A shows a state when a potential higher than that of the source electrode 30 is applied to the drain electrode 31 and a potential (first potential) smaller than the threshold voltage (Vth) is applied to the gate electrode 40. Has been. In this case, no current flows between the source electrode 30 and the drain electrode 31. That is, in the off state, the two-dimensional electron gas (2DEG) remains separated by the trench structure.

半導体装置1は、上述した張り出し構造を有していない。このため、ドレイン電極31からゲート電極40に向かう電界Eは、図中の矢印で示すように、Z方向において均一に分散される。   The semiconductor device 1 does not have the above-described overhang structure. For this reason, the electric field E directed from the drain electrode 31 to the gate electrode 40 is uniformly dispersed in the Z direction as indicated by arrows in the drawing.

ここで、オフ状態のときの電界強度を、図3(b)に表す。つまり、半導体装置1では、張り出し構造がないために、電極端部への電界集中が緩和されている。このため、半導体装置1の電界強度は、局所的に強くなるピークを持たず、電界強度分布が参考例に比べてより平坦になる。このように、電界強度分布がより平坦になることから、半導体装置1の耐圧は、GaN結晶の物性限界で決まるようになる。つまり、参考例に比べて、半導体装置の耐圧は向上する。   Here, the electric field strength in the OFF state is shown in FIG. That is, in the semiconductor device 1, since there is no overhang structure, the electric field concentration at the electrode end is reduced. For this reason, the electric field strength of the semiconductor device 1 does not have a locally strong peak, and the electric field strength distribution becomes flatter than that of the reference example. As described above, since the electric field intensity distribution becomes flatter, the breakdown voltage of the semiconductor device 1 is determined by the physical property limit of the GaN crystal. That is, the breakdown voltage of the semiconductor device is improved as compared with the reference example.

次いで、図3(c)に表すように、ドレイン電極31にソース電極30よりも高い電位を印加したまま、ゲート電極40に閾値電圧(Vth)以上の電位(第2の電位)を印加する。この場合、ゲート絶縁膜41と半導体層20との界面に沿って電子が誘起される。つまり、ゲート絶縁膜41と半導体層20との界面に沿って、チャネル領域が形成される。   Next, as shown in FIG. 3C, a potential (second potential) equal to or higher than the threshold voltage (Vth) is applied to the gate electrode 40 while a potential higher than that of the source electrode 30 is applied to the drain electrode 31. In this case, electrons are induced along the interface between the gate insulating film 41 and the semiconductor layer 20. That is, a channel region is formed along the interface between the gate insulating film 41 and the semiconductor layer 20.

従って、ゲートによって分断された2次元電子ガスと、誘起された電子と、が繋がって、ソース電極30とドレイン電極31との間に電子電流経路ERTが形成される。これにより、ソース電極30とドレイン電極31との間に電流が流れる。   Therefore, the two-dimensional electron gas divided by the gate and the induced electrons are connected to form an electron current path ERT between the source electrode 30 and the drain electrode 31. Thereby, a current flows between the source electrode 30 and the drain electrode 31.

また、半導体装置1では、その耐圧が高くなることに伴い、Y方向におけるソース電極30、ゲート電極40、およびドレイン電極31のそれぞれの間隔を縮めることができる。これにより、半導体装置の小型化を図ることができる。また、ソース・ドレイン間を縮めることにより、半導体装置のオン抵抗が低減する。   Further, in the semiconductor device 1, as the withstand voltage increases, the intervals between the source electrode 30, the gate electrode 40, and the drain electrode 31 in the Y direction can be reduced. As a result, the semiconductor device can be miniaturized. Further, by reducing the distance between the source and the drain, the on-resistance of the semiconductor device is reduced.

また、半導体装置1によれば、ゲート電極40がゲート絶縁膜41を介して接する半導体層20の一部(半導体領域20p)の導電形がp形になっている。従って、半導体装置1では、半導体層20の全てがノンドープ層である半導体装置に比べて、ゲート電極40の閾値電圧(Vth)が上昇する。つまり、第1実施形態では、確実にノーマリーオフとなる半導体装置が実現する。   Further, according to the semiconductor device 1, the conductivity type of a part of the semiconductor layer 20 (semiconductor region 20 p) with which the gate electrode 40 is in contact via the gate insulating film 41 is p-type. Therefore, in the semiconductor device 1, the threshold voltage (Vth) of the gate electrode 40 increases as compared with a semiconductor device in which all of the semiconductor layer 20 is a non-doped layer. That is, in the first embodiment, a semiconductor device that is normally normally off is realized.

(第2実施形態)
図4(a)は、第2実施形態に係る半導体装置を表す模式的断面図であり、図4(b)は、第2実施形態に係る半導体装置の動作を表す図である。
(Second Embodiment)
FIG. 4A is a schematic cross-sectional view illustrating the semiconductor device according to the second embodiment, and FIG. 4B is a diagram illustrating the operation of the semiconductor device according to the second embodiment.

図4(a)に表す半導体装置2においては、図中に表す領域2nの導電形がn形になっている。領域2nは、ソース電極30直下の半導体層21および半導体層20と、ソース電極30直下の半導体層21および半導体層20とゲート電極40との間の半導体層21および半導体層20と、ゲート電極40直下の半導体層20と、を含む。このような領域2nは、例えば、n形不純物元素を領域2nに局所的に注入することにより形成される。 In the semiconductor device 2 shown in FIG. 4A, the conductivity type of the region 2n shown in the drawing is an n + type . The region 2n includes the semiconductor layer 21 and the semiconductor layer 20 immediately below the source electrode 30, the semiconductor layer 21 and the semiconductor layer 20 between the semiconductor layer 20 and the gate electrode 40 immediately below the source electrode 30, and the gate electrode 40. And a semiconductor layer 20 immediately below. Such a region 2n is formed, for example, by locally injecting an n-type impurity element into the region 2n.

形の領域2nは、電子にとって低抵抗な領域となる。また、電子電流経路ERTの一部は、領域2nを通過している。つまり、半導体装置2では、半導体装置1に比べてオン抵抗がさらに低減する。
また、図4(a)には、一例として、領域2nのみを示したが、ソース電極30とゲート電極40との間の半導体層22がn形であってもよい。このような領域がn形になることにより、電子電流経路ERTの抵抗がさらに低減し、オン抵抗がさらに低くなる。
The n + -type region 2n is a region having low resistance for electrons. A part of the electron current path ERT passes through the region 2n. That is, in the semiconductor device 2, the on-resistance is further reduced as compared with the semiconductor device 1.
FIG. 4A shows only the region 2n as an example, but the semiconductor layer 22 between the source electrode 30 and the gate electrode 40 may be an n + type . When such a region becomes an n + type , the resistance of the electron current path ERT is further reduced, and the on-resistance is further reduced.

なお、半導体装置2では、領域2nにおいては反転層が形成されず、領域2n以外のゲート絶縁膜41と半導体層20との界面に沿ってチャネル(図中のチャネルCH)が形成される。これにより、チャネル領域CHがドレイン電極31に向き合う構造となり、ドレイン電極31からチャネル領域CHに向かう電界がチャネル領域CHで分散される。従って、局所的な電界がチャネル領域CHに印加され難くなり、オフリーク電流が確実に抑えられる。   In the semiconductor device 2, an inversion layer is not formed in the region 2n, and a channel (channel CH in the drawing) is formed along the interface between the gate insulating film 41 and the semiconductor layer 20 other than the region 2n. As a result, the channel region CH faces the drain electrode 31, and the electric field from the drain electrode 31 toward the channel region CH is dispersed in the channel region CH. Therefore, it becomes difficult for a local electric field to be applied to the channel region CH, and the off-leakage current is reliably suppressed.

(第3実施形態)
図5(a)は、第3実施形態に係る半導体装置を表す模式的断面図であり、図5(b)は、第3実施形態に係る半導体装置のエネルギーバンドを表す図である。
(Third embodiment)
FIG. 5A is a schematic cross-sectional view illustrating a semiconductor device according to the third embodiment, and FIG. 5B is a diagram illustrating an energy band of the semiconductor device according to the third embodiment.

図5(a)には、ゲート電極40近傍の構造が表されている。図5(b)には、オン時におけるゲート電極40近傍のエネルギーバンドが表されている。   FIG. 5A shows the structure near the gate electrode 40. FIG. 5B shows an energy band in the vicinity of the gate electrode 40 at the on time.

図5(a)に表す半導体装置3においては、ゲート絶縁膜41と半導体層20との間に、半導体層25(第4半導体層)が設けられている。半導体層25は、窒化物半導体(例えば、AlGaN)を有する。半導体層25の禁止帯幅は、半導体層20の禁止帯幅よりも大きい。半導体層25は、例えば、エピタキシャル成長によって形成される。   In the semiconductor device 3 illustrated in FIG. 5A, a semiconductor layer 25 (fourth semiconductor layer) is provided between the gate insulating film 41 and the semiconductor layer 20. The semiconductor layer 25 includes a nitride semiconductor (for example, AlGaN). The forbidden band width of the semiconductor layer 25 is larger than the forbidden band width of the semiconductor layer 20. The semiconductor layer 25 is formed by, for example, epitaxial growth.

半導体装置3によれば、チャネル領域においてもヘテロ接合が形成され、チャネル領域にも2次元電子ガス(2DEG)が発生する。そして、オン時には、ゲート絶縁膜41と半導体層25との界面近傍、あるいは半導体層20と半導体層25との界面近傍に電子が誘起される。   According to the semiconductor device 3, a heterojunction is formed also in the channel region, and two-dimensional electron gas (2DEG) is generated also in the channel region. When the switch is turned on, electrons are induced near the interface between the gate insulating film 41 and the semiconductor layer 25 or near the interface between the semiconductor layer 20 and the semiconductor layer 25.

半導体装置3によれば、チャネル領域における2次元電子ガス(2DEG)が発生により、チャネル領域における電子の閉じ込め効果が半導体装置1、2に比べて増す。これにより、チャネル抵抗がさらに低減し、チャネル領域における電子の移動度がさらに増加する。   According to the semiconductor device 3, the two-dimensional electron gas (2DEG) in the channel region is generated, so that the electron confinement effect in the channel region is increased as compared with the semiconductor devices 1 and 2. Thereby, the channel resistance is further reduced, and the mobility of electrons in the channel region is further increased.

(第4実施形態)
図6は、第4実施形態に係る半導体装置を表す模式的断面図である。
(Fourth embodiment)
FIG. 6 is a schematic cross-sectional view showing a semiconductor device according to the fourth embodiment.

第4実施形態に係る半導体装置4においては、半導体層20の半導体領域20p以外の部分が超接合構造(スーパージャンクション構造)を有している。   In the semiconductor device 4 according to the fourth embodiment, a portion other than the semiconductor region 20p of the semiconductor layer 20 has a super junction structure (super junction structure).

例えば、半導体層20の上側の半導体領域20uは、半導体層20から半導体層22に向かう方向(Z方向)において、半導体領域20unと半導体領域20upとが交互に配列された構造を有する。   For example, the semiconductor region 20u on the upper side of the semiconductor layer 20 has a structure in which the semiconductor regions 20un and the semiconductor regions 20up are alternately arranged in the direction from the semiconductor layer 20 toward the semiconductor layer 22 (Z direction).

ここで、半導体領域20unは、n形GaN含有層であり、半導体領域20upは、p形GaN含有層である。あるいは、半導体領域20unは、n形AlGaN含有層であり、半導体領域20upは、p形AlGaN含有層でもよい。   Here, the semiconductor region 20un is an n-type GaN-containing layer, and the semiconductor region 20up is a p-type GaN-containing layer. Alternatively, the semiconductor region 20un may be an n-type AlGaN-containing layer, and the semiconductor region 20up may be a p-type AlGaN-containing layer.

また、半導体領域20unは、GaN含有層であり、半導体領域20upは、AlGaN含有層であってもよい。この場合、GaN含有層およびAlGaN含有層には、不純物元素が導入されていない。しかし、GaN含有層とAlGaN含有層とのヘテロ接合によって、一方が負に帯電し、他方が正に帯電する。つまり、不純物元素を導入せずとも、擬似的にn形領域とp形領域とがZ方向に交互に配列されたことになる。   Further, the semiconductor region 20un may be a GaN-containing layer, and the semiconductor region 20up may be an AlGaN-containing layer. In this case, no impurity element is introduced into the GaN-containing layer and the AlGaN-containing layer. However, due to the heterojunction of the GaN-containing layer and the AlGaN-containing layer, one is negatively charged and the other is positively charged. That is, the n-type region and the p-type region are alternately arranged in the Z direction in a pseudo manner without introducing an impurity element.

このような超接合構造が設けられることにより、オフ時には、半導体領域20unと半導体領域20upとの接合部から半導体領域20unと半導体領域20upとの双方に空乏層が延びる。そして、延びた空乏層が半導体領域20un内および半導体領域20up内で繋がって、半導体領域20u全域が空乏化する。つまり、オフ時には、ゲート・ドレイン間に電気的な中性な半導体領域20uが安定して存在することになり、半導体装置4の耐圧は、半導体装置1〜3の耐圧に比べてさらに増加する。   By providing such a superjunction structure, a depletion layer extends from the junction between the semiconductor region 20un and the semiconductor region 20up to both the semiconductor region 20un and the semiconductor region 20up when off. Then, the extended depletion layer is connected in the semiconductor region 20un and the semiconductor region 20up, and the entire semiconductor region 20u is depleted. That is, at the time of OFF, the electrically neutral semiconductor region 20u exists stably between the gate and the drain, and the breakdown voltage of the semiconductor device 4 further increases as compared with the breakdown voltage of the semiconductor devices 1 to 3.

なお、超接合構造におけるn形AlGaN含有層、p形AlGaN含有層、およびAlGaN含有層のそれぞれの厚さは、例えば、5nm以上50nm以下とする。また、図6では、4層構造の半導体領域20uが表されているが、この層数に限られるものではない。   Note that the thicknesses of the n-type AlGaN-containing layer, the p-type AlGaN-containing layer, and the AlGaN-containing layer in the superjunction structure are, for example, not less than 5 nm and not more than 50 nm. In FIG. 6, the semiconductor region 20u having a four-layer structure is shown, but the number of layers is not limited thereto.

(第5実施形態)
図7(a)は、第5実施形態に係る半導体装置を表す模式的断面図であり、図7(b)は、GaN結晶の結晶構造を表す図である。
(Fifth embodiment)
FIG. 7A is a schematic cross-sectional view showing a semiconductor device according to the fifth embodiment, and FIG. 7B is a view showing a crystal structure of a GaN crystal.

第5実施形態に係る半導体装置5においては、半導体層20に含まれるGaN結晶のC軸が半導体層20から半導体層22に向かう方向(Z方向)に向いている。さらに、ゲート電極40がゲート絶縁膜41を介して接するGaN結晶の面がGaN結晶のm面になっている。   In the semiconductor device 5 according to the fifth embodiment, the C-axis of the GaN crystal included in the semiconductor layer 20 is oriented in the direction from the semiconductor layer 20 toward the semiconductor layer 22 (Z direction). Furthermore, the surface of the GaN crystal with which the gate electrode 40 is in contact via the gate insulating film 41 is the m-plane of the GaN crystal.

ここで、GaN結晶のm面は、非極性面である。従って、m面とゲート絶縁膜41との界面近傍には2次元電子ガス(2DEG)が発生し難いことから、オフリーク電流を確実に抑制できる。   Here, the m-plane of the GaN crystal is a nonpolar plane. Accordingly, since the two-dimensional electron gas (2DEG) is hardly generated in the vicinity of the interface between the m-plane and the gate insulating film 41, the off-leak current can be reliably suppressed.

(第6実施形態)
図8(a)は、第6実施形態に係る半導体装置を表す模式的平面図であり、図8(b)、(c)は、第6実施形態に係る半導体装置を表す模式的平面図である。
(Sixth embodiment)
FIG. 8A is a schematic plan view showing a semiconductor device according to the sixth embodiment, and FIGS. 8B and 8C are schematic plan views showing the semiconductor device according to the sixth embodiment. is there.

図8(a)には、図8(b)、(c)のC−C’線における断面が表され、図8(b)には、図8(a)のA−A’線における断面が表され、図8(c)には、図8(a)のB−B’線における断面が表されている。   8A shows a cross section taken along the line CC ′ of FIGS. 8B and 8C, and FIG. 8B shows a cross section taken along the line AA ′ of FIG. 8A. FIG. 8C shows a cross section taken along line BB ′ of FIG.

第6実施形態に係る半導体装置6においては、複数のゲート電極40がX方向に配列されている。隣り合うゲート電極40の間には、半導体層27(第5半導体層)が設けられている。半導体層27は、窒化物半導体(例えば、GaN)を有する。半導体層27は、半導体層22、半導体層21、および半導体層20に繋がっている。   In the semiconductor device 6 according to the sixth embodiment, a plurality of gate electrodes 40 are arranged in the X direction. A semiconductor layer 27 (fifth semiconductor layer) is provided between the adjacent gate electrodes 40. The semiconductor layer 27 includes a nitride semiconductor (for example, GaN). The semiconductor layer 27 is connected to the semiconductor layer 22, the semiconductor layer 21, and the semiconductor layer 20.

半導体装置6によれば、ソース・ドレイン間を流れる電子電流が半導体層27を経由しても流れる。これにより、オン抵抗がさらに低減する。   According to the semiconductor device 6, the electron current flowing between the source and the drain also flows through the semiconductor layer 27. Thereby, the on-resistance is further reduced.

(第7実施形態)
ゲート電極40の材料は、ポリシリコンのほか、仕事関数がより大きくなる金属材料、仕事関数がより大きくなるダイヤモンド等を選択してもよい。これにより、ゲート電極40の閾値電圧(Vth)がさらに上昇し、より確実にノーマリーオフとなる半導体装置が実現する。また、半導体層21は、InAlGaNを含んでもよい。InAlGaNは、AlGaNに比べて分極定数が高い。すなわち、InAlGaNを用いれば、半導体層20と半導体層21との界面近傍に、より多くの2次元電子ガスが発生する。これにより、オン抵抗がより低減する。
(Seventh embodiment)
As a material of the gate electrode 40, in addition to polysilicon, a metal material having a higher work function, diamond having a higher work function, or the like may be selected. As a result, the threshold voltage (Vth) of the gate electrode 40 is further increased, and a semiconductor device that is normally off more reliably is realized. Further, the semiconductor layer 21 may include InAlGaN. InAlGaN has a higher polarization constant than AlGaN. That is, when InAlGaN is used, more two-dimensional electron gas is generated near the interface between the semiconductor layer 20 and the semiconductor layer 21. Thereby, the on-resistance is further reduced.

(第8実施形態)
図9は、第8実施形態に係る半導体装置の模式的断面図である。
(Eighth embodiment)
FIG. 9 is a schematic cross-sectional view of a semiconductor device according to the eighth embodiment.

図9に示す半導体装置7においては、ソース電極30とドレイン電極31とが半導体層21、22に接しているが、図9のように、ソース電極30とドレイン電極31とは、半導体層22の上に設けられてもよい。ゲート電極40は、ソース電極30直下の半導体層22、半導体層21、および半導体層20と、ドレイン電極31直下の半導体層22、半導体層21、および半導体層20と、の間に設けられている。ゲート電極40は、ゲート絶縁膜41を介して半導体層20、半導体層21、および半導体層22に接している。このような構造は、上述した半導体装置2〜6にも適用される。   In the semiconductor device 7 shown in FIG. 9, the source electrode 30 and the drain electrode 31 are in contact with the semiconductor layers 21 and 22, but the source electrode 30 and the drain electrode 31 are formed on the semiconductor layer 22 as shown in FIG. 9. It may be provided above. The gate electrode 40 is provided between the semiconductor layer 22, the semiconductor layer 21, and the semiconductor layer 20 immediately below the source electrode 30, and the semiconductor layer 22, the semiconductor layer 21, and the semiconductor layer 20 immediately below the drain electrode 31. . The gate electrode 40 is in contact with the semiconductor layer 20, the semiconductor layer 21, and the semiconductor layer 22 through the gate insulating film 41. Such a structure is also applied to the semiconductor devices 2 to 6 described above.

また、半導体装置においては、半導体装置2のような領域2nを形成し、ソース電極30直下の半導体層22と、ソース電極30直下の半導体層22とゲート電極40との間の半導体層22と、をさらにn形にしてもよい。 In the semiconductor device, a region 2n like the semiconductor device 2 is formed, the semiconductor layer 22 immediately below the source electrode 30, and the semiconductor layer 22 between the semiconductor layer 22 and the gate electrode 40 immediately below the source electrode 30; May be further in the n + form.

上記の実施形態では、「部位Aは部位Bの上に設けられている」と表現された場合の「の上に」とは、部位Aが部位Bに接触して、部位Aが部位Bの上に設けられている場合の他に、部位Aが部位Bに接触せず、部位Aが部位Bの上方に設けられている場合との意味で用いられる場合がある。また、「部位Aは部位Bの上に設けられている」は、部位Aと部位Bとを反転させて部位Aが部位Bの下に位置した場合や、部位Aと部位Bとが横に並んだ場合にも適用される場合がある。これは、実施形態に係る半導体装置を回転しても、回転前後において半導体装置の構造は変わらないからである。   In the above embodiment, “above” in the case where “the part A is provided on the part B” means that the part A is in contact with the part B and the part A is the part B. In addition to the case where it is provided above, it may be used to mean that the part A does not contact the part B and the part A is provided above the part B. In addition, “part A is provided on part B” means that part A and part B are reversed and part A is located below part B, or part A and part B are placed sideways. It may also apply when lined up. This is because even if the semiconductor device according to the embodiment is rotated, the structure of the semiconductor device is not changed before and after the rotation.

以上、具体例を参照しつつ実施形態について説明した。しかし、実施形態はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、実施形態の特徴を備えている限り、実施形態の範囲に包含される。前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。   The embodiment has been described above with reference to specific examples. However, the embodiments are not limited to these specific examples. In other words, those specific examples that have been appropriately modified by those skilled in the art are also included in the scope of the embodiments as long as they include the features of the embodiments. Each element included in each of the specific examples described above and their arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be appropriately changed.

また、前述した各実施形態が備える各要素は、技術的に可能な限りにおいて複合させることができ、これらを組み合わせたものも実施形態の特徴を含む限り実施形態の範囲に包含される。その他、実施形態の思想の範疇において、当業者であれば、各種の変更例および修正例に想到し得るものであり、それら変更例および修正例についても実施形態の範囲に属するものと了解される。   In addition, each element included in each of the above-described embodiments can be combined as long as technically possible, and combinations thereof are also included in the scope of the embodiment as long as they include the features of the embodiment. In addition, in the category of the idea of the embodiment, those skilled in the art can conceive various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the embodiment. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1、2、3、4、5、6、7、100 半導体装置、 2n 領域、 10 半導体基板、 11 バッファ層、 20、21、22、25、27 半導体層、 20p、20u、20un、20up 半導体領域、 30 ソース電極、 31 ドレイン電極、 40 ゲート電極、 41 ゲート絶縁膜、 50 絶縁層、 200 GaN層、 210 AlGaN層、 300 ソース電極、 300FP フィールドプレート電極、 300FPE、400E、400FPE 端部、 310 ドレイン電極、 400 ゲート電極、 400FP フィールドプレート電極、 410 ゲート絶縁膜、 ERT 電子電流経路   1, 2, 3, 4, 5, 6, 7, 100 semiconductor device, 2n region, 10 semiconductor substrate, 11 buffer layer, 20, 21, 22, 25, 27 semiconductor layer, 20p, 20u, 20un, 20up semiconductor region 30 source electrode, 31 drain electrode, 40 gate electrode, 41 gate insulating film, 50 insulating layer, 200 GaN layer, 210 AlGaN layer, 300 source electrode, 300FP field plate electrode, 300 FPE, 400E, 400 FPE end, 310 drain electrode 400 gate electrode, 400FP field plate electrode, 410 gate insulating film, ERT electron current path

Claims (12)

窒化物半導体を有する第1半導体層と、
前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、
前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、
を備え、
前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、
前記第3電極の下端は、前記第1半導体層の上端よりも下であり、
前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含み、前記第2半導体領域におけるp形不純物濃度は、前記第1半導体領域のp形不純物濃度よりも低く、
前記第1半導体領域は、p形GaNを含み、
前記第2半導体領域は、アンドープのGaNを含む、半導体装置。
A first semiconductor layer having a nitride semiconductor;
A second semiconductor layer provided on the first semiconductor layer and having a forbidden band larger than the first semiconductor layer and having a nitride semiconductor;
A third semiconductor layer provided on the second semiconductor layer, having a forbidden bandwidth smaller than that of the second semiconductor layer and having a nitride semiconductor;
A first electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
A second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
The third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third semiconductor layer in contact with the second electrode; A third electrode provided between the second semiconductor layer immediately below the second electrode and the first semiconductor layer immediately below the second electrode, and not provided on the third semiconductor layer;
A first portion between the third semiconductor layer, the third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third electrode , The third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, the first semiconductor layer immediately below the second electrode, and a second portion between the third electrode And an insulating film including a third portion between the first semiconductor layer and the third electrode;
With
The third electrode is not provided on the first part and is not provided on the second part,
The lower end of the third electrode, Ri Oh below the upper end of the first semiconductor layer,
The first semiconductor layer includes a p-type first semiconductor region and a second semiconductor region between the first semiconductor region and the second semiconductor layer, and the p-type impurity concentration in the second semiconductor region Is lower than the p-type impurity concentration of the first semiconductor region,
The first semiconductor region includes p-type GaN,
The semiconductor device , wherein the second semiconductor region includes undoped GaN .
記第2半導体層は、AlGaNを含み、
前記第3半導体層は、GaNを含む、請求項1記載の半導体装置。
Before Stories second semiconductor layer comprises AlGaN,
The third semiconductor layer includes GaN, claim 1 Symbol mounting semiconductor device.
前記第2電極直下の前記第1半導体層は、GaN結晶を含み、
前記GaN結晶の、前記第3電極と対向する面は、GaN結晶のm面である請求項1記載の半導体装置。
The first semiconductor layer directly under the second electrode includes a GaN crystal,
Wherein the GaN crystal, the third electrode and the opposing surfaces is, claim 1 Symbol mounting a semiconductor device of which an m-plane of the GaN crystal.
窒化物半導体を有する第1半導体層と、
前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、
前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、
を備え、
前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、
前記第3電極の下端は、前記第1半導体層の上端よりも下であり、
前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含み、
前記第2半導体領域は、超接合構造を有している、半導体装置。
A first semiconductor layer having a nitride semiconductor;
A second semiconductor layer provided on the first semiconductor layer and having a forbidden band larger than the first semiconductor layer and having a nitride semiconductor;
A third semiconductor layer provided on the second semiconductor layer, having a forbidden bandwidth smaller than that of the second semiconductor layer and having a nitride semiconductor;
A first electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
A second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
The third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third semiconductor layer in contact with the second electrode; A third electrode provided between the second semiconductor layer immediately below the second electrode and the first semiconductor layer immediately below the second electrode, and not provided on the third semiconductor layer;
A first portion between the third semiconductor layer, the third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third electrode , The third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, the first semiconductor layer immediately below the second electrode, and a second portion between the third electrode And an insulating film including a third portion between the first semiconductor layer and the third electrode;
With
The third electrode is not provided on the first part and is not provided on the second part,
The lower end of the third electrode, Ri Oh below the upper end of the first semiconductor layer,
The first semiconductor layer includes a p-type first semiconductor region, and a second semiconductor region between the first semiconductor region and the second semiconductor layer,
The semiconductor device, wherein the second semiconductor region has a superjunction structure .
窒化物半導体を有する第1半導体層と、
前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、
前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、
を備え、
前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、
前記第3電極の下端は、前記第1半導体層の上端よりも下であり、
前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含み、
前記第2半導体領域は、前記第1半導体層から前記第3半導体層に向かう方向において、n形GaN含有層とp形GaN含有層とが交互に配列された構造を有する、半導体装置。
A first semiconductor layer having a nitride semiconductor;
A second semiconductor layer provided on the first semiconductor layer and having a forbidden band larger than the first semiconductor layer and having a nitride semiconductor;
A third semiconductor layer provided on the second semiconductor layer, having a forbidden bandwidth smaller than that of the second semiconductor layer and having a nitride semiconductor;
A first electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
A second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
The third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third semiconductor layer in contact with the second electrode; A third electrode provided between the second semiconductor layer immediately below the second electrode and the first semiconductor layer immediately below the second electrode, and not provided on the third semiconductor layer;
A first portion between the third semiconductor layer, the third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third electrode , The third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, the first semiconductor layer immediately below the second electrode, and a second portion between the third electrode And an insulating film including a third portion between the first semiconductor layer and the third electrode;
With
The third electrode is not provided on the first part and is not provided on the second part,
The lower end of the third electrode, Ri Oh below the upper end of the first semiconductor layer,
The first semiconductor layer includes a p-type first semiconductor region, and a second semiconductor region between the first semiconductor region and the second semiconductor layer,
The second semiconductor region has a structure in which n-type GaN-containing layers and p-type GaN-containing layers are alternately arranged in a direction from the first semiconductor layer to the third semiconductor layer .
窒化物半導体を有する第1半導体層と、
前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、
前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、
を備え、
前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、
前記第3電極の下端は、前記第1半導体層の上端よりも下であり、
前記第1半導体層は、p形の第1半導体領域と、前記第1半導体領域と前記第2半導体層との間の第2半導体領域と、を含み、
前記第2半導体領域は、前記第1半導体層から前記第3半導体層に向かう方向において、n形AlGaN含有層とp形AlGaN含有層とが交互に配列された構造を有する、半導体装置。
A first semiconductor layer having a nitride semiconductor;
A second semiconductor layer provided on the first semiconductor layer and having a forbidden band larger than the first semiconductor layer and having a nitride semiconductor;
A third semiconductor layer provided on the second semiconductor layer, having a forbidden bandwidth smaller than that of the second semiconductor layer and having a nitride semiconductor;
A first electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
A second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
The third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third semiconductor layer in contact with the second electrode; A third electrode provided between the second semiconductor layer immediately below the second electrode and the first semiconductor layer immediately below the second electrode, and not provided on the third semiconductor layer;
A first portion between the third semiconductor layer, the third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third electrode , The third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, the first semiconductor layer immediately below the second electrode, and a second portion between the third electrode And an insulating film including a third portion between the first semiconductor layer and the third electrode;
With
The third electrode is not provided on the first part and is not provided on the second part,
The lower end of the third electrode, Ri Oh below the upper end of the first semiconductor layer,
The first semiconductor layer includes a p-type first semiconductor region, and a second semiconductor region between the first semiconductor region and the second semiconductor layer,
The semiconductor device, wherein the second semiconductor region has a structure in which n-type AlGaN-containing layers and p-type AlGaN-containing layers are alternately arranged in a direction from the first semiconductor layer to the third semiconductor layer .
窒化物半導体を有する第1半導体層と、
前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、
前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、前記第3半導体層上には設けられていない第3電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第3電極と、の間の第1部分、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、前記第3電極との間の第2部分、並びに、前記第1半導体層と前記第3電極との間の第3部分と、を含む絶縁膜と、
を備え、
前記第3電極は、前記第1部分の上には設けられておらず、前記第2部分の上にも設けられておらず、
前記第3電極の下端は、前記第1半導体層の上端よりも下であり、
前記第2半導体領域は、前記第1半導体層から前記第3半導体層に向かう方向において、AlGaN含有層とGaN含有層とが交互に配列された構造を有する、半導体装置。
A first semiconductor layer having a nitride semiconductor;
A second semiconductor layer provided on the first semiconductor layer and having a forbidden band larger than the first semiconductor layer and having a nitride semiconductor;
A third semiconductor layer provided on the second semiconductor layer, having a forbidden bandwidth smaller than that of the second semiconductor layer and having a nitride semiconductor;
A first electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
A second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
The third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third semiconductor layer in contact with the second electrode; A third electrode provided between the second semiconductor layer immediately below the second electrode and the first semiconductor layer immediately below the second electrode, and not provided on the third semiconductor layer;
A first portion between the third semiconductor layer, the third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third electrode , The third semiconductor layer in contact with the second electrode, the second semiconductor layer immediately below the second electrode, the first semiconductor layer immediately below the second electrode, and a second portion between the third electrode And an insulating film including a third portion between the first semiconductor layer and the third electrode;
With
The third electrode is not provided on the first part and is not provided on the second part,
The lower end of the third electrode, Ri Oh below the upper end of the first semiconductor layer,
The semiconductor device, wherein the second semiconductor region has a structure in which AlGaN-containing layers and GaN-containing layers are alternately arranged in a direction from the first semiconductor layer to the third semiconductor layer .
前記第2電極に前記第1電極よりも高い電位を印加し、前記第3電極に、第1の電位を印加したときには、前記第1電極と前記第2電極との間が通電せず、前記第3電極に、前記第1の電位よりも高い第2の電位を印加したときは、前記第1電極と第2電極との間が通電可能な請求項1〜7のいずれか1つに記載の半導体装置。 When a potential higher than that of the first electrode is applied to the second electrode and a first potential is applied to the third electrode, no current is passed between the first electrode and the second electrode, the third electrode, the first at the time of applying a second potential higher than the potential is, according to the any one of claims 1-7 capable energization between the first electrode and the second electrode Semiconductor device. 前記第1電極と、前記第3電極と、の間の前記第3半導体層の導電形がn形である請求項1〜のいずれか1つに記載の半導体装置。 Wherein a first electrode, a semiconductor device according to any one of the third electrode and the claim 1-8 conductivity type of the third semiconductor layer is an n-type between. 前記絶縁膜と前記第1半導体層との間に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第4半導体層をさらに備えた請求項1〜のいずれか1つに記載の半導体装置。 Wherein provided between the insulating film and the first semiconductor layer, said large band gap than the first semiconductor layer, any of claims 1 to 9 comprising further a fourth semiconductor layer having a nitride semiconductor The semiconductor device according to one. 前記第2半導体層の厚さは、5nm以上50nm以下である請求項1〜1のいずれか1つに記載の半導体装置。 The thickness of the second semiconductor layer, the semiconductor device according to any one of claims 1 to 1 0 is 5nm or more 50nm or less. 窒化物半導体を有する第1半導体層と、
前記第1半導体層上に設けられ、前記第1半導体層よりも禁止帯幅が大きく、窒化物半導体を有する第2半導体層と、
前記第2半導体層上に設けられ、前記第2半導体層よりも禁止帯幅が小さく、窒化物半導体を有する第3半導体層と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第1電極と、
前記第2半導体層上に設けられ、前記第3半導体層に接する第2電極と、
前記第1電極に接する前記第3半導体層、前記第1電極直下の前記第2半導体層、および前記第1電極直下の前記第1半導体層と、前記第2電極に接する前記第3半導体層、前記第2電極直下の前記第2半導体層、および前記第2電極直下の前記第1半導体層と、の間に設けられ、絶縁膜を介して前記第3半導体層、前記第2半導体層、および前記第1半導体層に対向し、前記第1電極から第2電極に向かう方向に対して交差する方向に配列され、前記第3半導体層上には設けられていない複数の第3電極と、
隣り合う前記第3電極の間に設けられ、前記第3半導体層、前記第2半導体層、および前記第1半導体層に繋がり、窒化物半導体を有する第5半導体層と、
を備え、
前記第1半導体層は、p形GaNと、前記p形GaNと前記第2半導体層との間のGaNと、を含み、
前記第5半導体層は、前記p形GaNよりも高抵抗のGaNを含む、半導体装置。
A first semiconductor layer having a nitride semiconductor;
A second semiconductor layer provided on the first semiconductor layer and having a forbidden band larger than the first semiconductor layer and having a nitride semiconductor;
A third semiconductor layer provided on the second semiconductor layer, having a forbidden bandwidth smaller than that of the second semiconductor layer and having a nitride semiconductor;
A first electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
A second electrode provided on the second semiconductor layer and in contact with the third semiconductor layer;
The third semiconductor layer in contact with the first electrode, the second semiconductor layer immediately below the first electrode, the first semiconductor layer immediately below the first electrode, and the third semiconductor layer in contact with the second electrode; The third semiconductor layer, the second semiconductor layer, and the second semiconductor layer immediately below the second electrode and the first semiconductor layer directly below the second electrode, with an insulating film interposed therebetween, A plurality of third electrodes opposed to the first semiconductor layer and arranged in a direction intersecting with a direction from the first electrode toward the second electrode, and not provided on the third semiconductor layer;
A fifth semiconductor layer provided between the adjacent third electrodes, connected to the third semiconductor layer, the second semiconductor layer, and the first semiconductor layer and having a nitride semiconductor;
With
The first semiconductor layer includes p-type GaN and GaN between the p-type GaN and the second semiconductor layer,
The semiconductor device, wherein the fifth semiconductor layer includes GaN having higher resistance than the p-type GaN.
JP2014051812A 2014-03-14 2014-03-14 Semiconductor device Active JP6268007B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014051812A JP6268007B2 (en) 2014-03-14 2014-03-14 Semiconductor device
US14/612,471 US9837488B2 (en) 2014-03-14 2015-02-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014051812A JP6268007B2 (en) 2014-03-14 2014-03-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2015176991A JP2015176991A (en) 2015-10-05
JP6268007B2 true JP6268007B2 (en) 2018-01-24

Family

ID=54069844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014051812A Active JP6268007B2 (en) 2014-03-14 2014-03-14 Semiconductor device

Country Status (2)

Country Link
US (1) US9837488B2 (en)
JP (1) JP6268007B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20155862A1 (en) * 2015-11-24 2017-05-24 St Microelectronics Srl NORMALLY OFF TYPE TRANSISTOR WITH REDUCED RESISTANCE IN THE STATE ON AND RELATIVE MANUFACTURING METHOD
JP7193349B2 (en) * 2019-01-04 2022-12-20 株式会社東芝 semiconductor equipment
JP7204491B2 (en) * 2019-01-08 2023-01-16 株式会社東芝 semiconductor equipment
JP7458199B2 (en) * 2019-09-02 2024-03-29 株式会社東芝 semiconductor equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251006B2 (en) * 2003-04-25 2009-04-08 パナソニック株式会社 Semiconductor device
JP2009117485A (en) 2007-11-02 2009-05-28 Panasonic Corp Nitride semiconductor device
JP5144326B2 (en) 2008-03-21 2013-02-13 古河電気工業株式会社 Field effect transistor
JP5415806B2 (en) 2009-03-31 2014-02-12 古河電気工業株式会社 Field effect transistor
JP2011124509A (en) * 2009-12-14 2011-06-23 Sharp Corp Semiconductor device
JP5611653B2 (en) * 2010-05-06 2014-10-22 株式会社東芝 Nitride semiconductor device
JP5685917B2 (en) * 2010-12-10 2015-03-18 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
JP5874173B2 (en) * 2011-02-25 2016-03-02 富士通株式会社 Compound semiconductor device and manufacturing method thereof
JP5701721B2 (en) * 2011-09-08 2015-04-15 株式会社東芝 Semiconductor device
JP5864214B2 (en) 2011-10-31 2016-02-17 株式会社日立製作所 Semiconductor device
JP2013105994A (en) 2011-11-16 2013-05-30 Panasonic Corp Nitride semiconductor device
US10290614B2 (en) * 2011-12-19 2019-05-14 Intel Corporation Group III-N transistors for system on chip (SOC) architecture integrating power management and radio frequency circuits
US20130161765A1 (en) 2011-12-26 2013-06-27 Toyoda Gosei Co., Ltd. Mis type semiconductor device and production method therefor
JP5605353B2 (en) 2011-12-26 2014-10-15 豊田合成株式会社 MIS type semiconductor device and manufacturing method thereof
JP5914097B2 (en) 2012-03-29 2016-05-11 株式会社豊田中央研究所 Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
US20150263153A1 (en) 2015-09-17
JP2015176991A (en) 2015-10-05
US9837488B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
JP5654512B2 (en) Nitride semiconductor device
JP5325534B2 (en) Nitride semiconductor device
JP5758132B2 (en) Semiconductor element
JP4002918B2 (en) Nitride-containing semiconductor device
US10833185B2 (en) Heterojunction semiconductor device having source and drain pads with improved current crowding
JP5900698B2 (en) Semiconductor device
US9184230B2 (en) Silicon carbide vertical field effect transistor
JP2010287732A (en) Nitride semiconductor device
WO2016098390A1 (en) Field effect transistor
WO2016098391A1 (en) Field effect transistor
US9472684B2 (en) Lateral GaN JFET with vertical drift region
JP6268007B2 (en) Semiconductor device
US10249717B2 (en) Semiconductor device and method for manufacturing the same
JPWO2016147541A1 (en) Nitride semiconductor device
JP2016163019A (en) Semiconductor device
JP2008263140A (en) Nitride semiconductor device
KR101756580B1 (en) Semiconductor device
WO2013161448A1 (en) Semiconductor device
US9496334B2 (en) Semiconductor device
JP6301861B2 (en) Semiconductor device
US20160276468A1 (en) Semiconductor device
JP6139494B2 (en) Nitride semiconductor device
JP5841624B2 (en) Nitride semiconductor device
JP6280434B2 (en) Insulated gate field effect transistor using nitride semiconductor
JP5701721B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171127

R151 Written notification of patent or utility model registration

Ref document number: 6268007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151