JP6265813B2 - Exhaust purification filter - Google Patents

Exhaust purification filter Download PDF

Info

Publication number
JP6265813B2
JP6265813B2 JP2014069168A JP2014069168A JP6265813B2 JP 6265813 B2 JP6265813 B2 JP 6265813B2 JP 2014069168 A JP2014069168 A JP 2014069168A JP 2014069168 A JP2014069168 A JP 2014069168A JP 6265813 B2 JP6265813 B2 JP 6265813B2
Authority
JP
Japan
Prior art keywords
catalyst
particle diameter
catalyst particles
average particle
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014069168A
Other languages
Japanese (ja)
Other versions
JP2015098015A (en
Inventor
千晶 関
千晶 関
森 武史
武史 森
亮策 高原
亮策 高原
祐太 保志
祐太 保志
昌史 迫田
昌史 迫田
康司 根本
康司 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014069168A priority Critical patent/JP6265813B2/en
Priority to DE102014220879.3A priority patent/DE102014220879A1/en
Publication of JP2015098015A publication Critical patent/JP2015098015A/en
Application granted granted Critical
Publication of JP6265813B2 publication Critical patent/JP6265813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles

Description

本発明は、排気浄化フィルタに関する。詳しくは、内燃機関から排出される排気中の粒子状物質を捕捉して浄化する排気浄化フィルタに関する。   The present invention relates to an exhaust purification filter. Specifically, the present invention relates to an exhaust gas purification filter that captures and purifies particulate matter in exhaust gas discharged from an internal combustion engine.

自動車等に搭載される内燃機関、特に圧縮着火式内燃機関においては、排出される排気中に多量の粒子状物質が含まれることが知られている。この粒子状物質(Particulate Matter、以下「PM」という。)は、人体に有害であり、エミッション規制対象物質である。そのため、通常、PMを捕捉する排気浄化フィルタとしてのDPF(Diesel Particulate Filter)が内燃機関の排気通路に設けられている。   In an internal combustion engine mounted on an automobile or the like, in particular, a compression ignition type internal combustion engine, it is known that a large amount of particulate matter is contained in the exhaust gas discharged. This particulate matter (Particulate Matter, hereinafter referred to as “PM”) is harmful to the human body and is an emission-regulated substance. Therefore, a DPF (Diesel Particulate Filter) as an exhaust gas purification filter that captures PM is usually provided in the exhaust passage of the internal combustion engine.

上記DPFでは、捕捉されたPMが次第に堆積する。すると、DPFの上流側と下流側との間で差圧が生じ、出力の低下や燃費の悪化を招く。そのため、上記DPFには、PMがある程度堆積した段階で、堆積したPMを燃焼除去するための触媒が担持されるのが一般的である。   In the DPF, trapped PM gradually accumulates. Then, a differential pressure is generated between the upstream side and the downstream side of the DPF, leading to a decrease in output and a deterioration in fuel consumption. For this reason, the DPF generally carries a catalyst for burning and removing the deposited PM when PM is accumulated to some extent.

上記触媒としては、PMに対して特に優れた浄化活性を示すAg系触媒が知られている。例えば、Ag粒子の周囲をCe微粒子で覆うことで形成された平均粒子径が0.05μm〜0.5μmの凝集体を、排気管内に配置する技術が提案されている(特許文献1参照)。この技術によれば、比較的低温でPMを燃焼除去できるとされている。   As said catalyst, the Ag type catalyst which shows the especially outstanding purification | cleaning activity with respect to PM is known. For example, a technique has been proposed in which aggregates having an average particle diameter of 0.05 μm to 0.5 μm formed by covering the periphery of Ag particles with Ce fine particles are disposed in an exhaust pipe (see Patent Document 1). According to this technique, it is said that PM can be burned and removed at a relatively low temperature.

しかしながら、特許文献1の技術では、活性種であるAgがCe微粒子で覆われているうえ、凝集体の平均粒子径が0.05μm〜0.5μmと非常に小さいため、PMとの接触性が悪い。Ag系触媒は、活性酸素の放出によりPMを燃焼するため、AgとPMとの接触性がPMの浄化率に大きく影響を及ぼす特性を有することから、特許文献1の技術では実際にはPMを効率良く燃焼除去できないことは明らかである。   However, in the technique of Patent Document 1, Ag, which is an active species, is covered with Ce fine particles, and the average particle diameter of the aggregate is as small as 0.05 μm to 0.5 μm. bad. Since the Ag-based catalyst burns PM by releasing active oxygen, the contact property between Ag and PM has a characteristic that greatly affects the PM purification rate. It is clear that it cannot be burned and removed efficiently.

そこで、Ag系触媒中にTiO等の針状物質を含有させることで、触媒層内に所定の大きさの空隙を形成する技術が提案されている(特許文献2参照)。この技術によれば、触媒層中の空隙内にPMを侵入させることができるため、Ag系触媒とPMの良好な接触性を確保(即ち、大きな接触面積を確保)でき、従来に比して効率良くPMを浄化できるとされている。 In view of this, a technique has been proposed in which a needle-shaped substance such as TiO 2 is contained in an Ag-based catalyst to form voids of a predetermined size in the catalyst layer (see Patent Document 2). According to this technology, since PM can be penetrated into the voids in the catalyst layer, good contact between the Ag-based catalyst and PM can be ensured (that is, a large contact area can be ensured). It is said that PM can be purified efficiently.

特許第5092281号公報Japanese Patent No. 5092281 特開2011−036742号公報JP 2011-036742 A

しかしながら、特許文献2の技術では、空隙の大きさが0.5μm〜1.0μmであるのに対して、好ましい触媒層の厚みが25μm〜100μmであるため、PMが触媒層の奥深くまで侵入し難い。また、特許文献2の触媒は、針状物質を用いた針状触媒であるため、針状触媒が折り重なって有効に機能し得ない触媒が多く、PM浄化機能を十分に発揮できていないのが現状である。   However, in the technique of Patent Document 2, the size of the void is 0.5 μm to 1.0 μm, whereas the preferred catalyst layer thickness is 25 μm to 100 μm, so that PM penetrates deep into the catalyst layer. hard. Moreover, since the catalyst of patent document 2 is a needle-shaped catalyst using a needle-shaped substance, there are many catalysts in which the needle-shaped catalyst is folded and cannot function effectively, and the PM purification function cannot be sufficiently exhibited. Currently.

本発明は上記に鑑みてなされたものであり、その目的は、Ag系触媒を備える排気浄化フィルタにおいて、従来よりも触媒とPMとの接触性を向上でき、PMを効率良く浄化できる排気浄化フィルタを提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide an exhaust purification filter equipped with an Ag-based catalyst, which can improve the contact between the catalyst and PM, and can efficiently purify PM. Is to provide.

上記目的を達成するため本発明は、内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質を捕捉して浄化する排気浄化フィルタであって、フィルタ基材と、前記フィルタ基材上に形成され、前記粒子状物質を酸化浄化する触媒層と、を備え、前記触媒層は、Ceを含有するCe含有酸化物と、当該Ce含有酸化物上に担持されたAgと、を有し、前記Agが担持されたCe含有酸化物の平均粒子径が、0.4μm〜6.3μmであることを特徴とする排気浄化フィルタを提供する。   In order to achieve the above object, the present invention provides an exhaust purification filter that is provided in an exhaust passage of an internal combustion engine and captures and purifies particulate matter in the exhaust of the internal combustion engine, comprising a filter base material and the filter base. A catalyst layer formed on the material and oxidizing and purifying the particulate matter, wherein the catalyst layer includes a Ce-containing oxide containing Ce and Ag supported on the Ce-containing oxide. And an Ce-containing oxide on which Ag is supported has an average particle size of 0.4 μm to 6.3 μm.

本発明では、粒子状物質を酸化浄化する触媒層を、Ce含有酸化物上にAgを担持してなるAg系触媒により形成するとともに、Agが担持されたCe含有酸化物の平均粒子径を、0.4μm〜6.3μmとする。
本発明によれば、Agが担持されたCe含有酸化物(以下、「触媒粒子」という。)の平均粒子径を0.4μm〜6.3μmとすることにより、触媒層の表面に凹凸を形成させることができるため、十分な触媒粒子とPMの接触面積を確保できる。同時に、触媒粒子同士が隣接することで、PMが内部に侵入できる多数の溝を触媒粒子間に形成できる。また、これにより、溝内に侵入してAgに近接したPMを効率良く着火でき、良好な伝播性が得られる。従って本発明によれば、従来よりも触媒とPMとの接触性を向上でき、PMを効率良く浄化できる。ひいては、DPF再生時間を短縮でき、燃費及びエミッションを改善できる。
In the present invention, the catalyst layer for oxidizing and purifying the particulate matter is formed of an Ag-based catalyst in which Ag is supported on a Ce-containing oxide, and the average particle size of the Ce-containing oxide on which Ag is supported is 0.4 μm to 6.3 μm.
According to the present invention, unevenness is formed on the surface of the catalyst layer by setting the average particle diameter of the Ce-containing oxide (hereinafter referred to as “catalyst particles”) supporting Ag to 0.4 μm to 6.3 μm. Therefore, a sufficient contact area between the catalyst particles and PM can be ensured. At the same time, when the catalyst particles are adjacent to each other, a large number of grooves that allow PM to enter the inside can be formed between the catalyst particles. In addition, this makes it possible to efficiently ignite PM that has entered the groove and is close to Ag, and good propagation characteristics can be obtained. Therefore, according to the present invention, the contact property between the catalyst and the PM can be improved as compared with the prior art, and the PM can be purified efficiently. As a result, the DPF regeneration time can be shortened, and fuel consumption and emission can be improved.

前記Agが担持されたCe含有酸化物の平均粒子径が、0.8μm〜5μmであることが好ましい。   The average particle diameter of the Ce-containing oxide on which Ag is supported is preferably 0.8 μm to 5 μm.

この発明では、Agを担持するCe含有酸化物の平均粒子径を0.8μm〜5μmとする。この発明によれば、上述の効果がより確実に発揮される。   In this invention, the average particle diameter of the Ce-containing oxide supporting Ag is set to 0.8 μm to 5 μm. According to the present invention, the above-described effects are more reliably exhibited.

前記Agが担持されたCe含有酸化物間に形成される溝の数は、前記触媒層の表面10μm四方あたり2.5個〜1250個であることが好ましい。   The number of grooves formed between the Ce-containing oxides on which Ag is supported is preferably 2.5 to 1250 per 10 μm square of the surface of the catalyst layer.

この発明では、Agが担持されたCe含有酸化物間に形成される溝の数は、前記触媒層の表面10μm四方あたり2.5個〜1250個とする。この発明によれば、上述の効果がより確実に発揮される。   In the present invention, the number of grooves formed between the Ce-containing oxides on which Ag is supported is 2.5 to 1250 per 10 μm square of the surface of the catalyst layer. According to the present invention, the above-described effects are more reliably exhibited.

前記Agが担持されたCe含有酸化物の形状が、球状であることが好ましい。   The shape of the Ce-containing oxide on which Ag is supported is preferably spherical.

この発明では、Ce含有酸化物の形状を球状とする。この発明によれば、Agを担持するCe含有酸化物の形状が球状であるため、他の形状と比べてPM接触面積を増加できる。また、Ce含有酸化物の形状が球状であるため、触媒層中にCe含有酸化物を最密充填できる。従ってこの発明によれば、触媒粒子間の溝数を最適化でき、上述の効果が顕著に発揮される。   In the present invention, the Ce-containing oxide has a spherical shape. According to this invention, since the shape of the Ce-containing oxide supporting Ag is spherical, the PM contact area can be increased as compared with other shapes. Moreover, since the shape of the Ce-containing oxide is spherical, the Ce-containing oxide can be packed most closely in the catalyst layer. Therefore, according to the present invention, the number of grooves between the catalyst particles can be optimized, and the above-described effects are remarkably exhibited.

本発明によれば、Ag系触媒を備える排気浄化フィルタにおいて、従来よりも触媒とPMとの接触性を向上でき、PMを効率良く浄化できる排気浄化フィルタを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, in the exhaust gas purification filter provided with Ag type catalyst, the contact property of a catalyst and PM can be improved conventionally, and the exhaust gas purification filter which can purify PM efficiently can be provided.

触媒層中の触媒粒子の平均粒子径が0.4μm未満であるDPFの表面にPMが堆積した状態を示す断面図である。It is sectional drawing which shows the state in which PM deposited on the surface of DPF whose average particle diameter of the catalyst particle in a catalyst layer is less than 0.4 micrometer. 図1中のA部分の拡大図である。It is an enlarged view of the A part in FIG. 触媒層中の触媒粒子の平均粒子径が2μmであるDPFの表面にPMが堆積した状態を示す断面図である。It is sectional drawing which shows the state which PM accumulated on the surface of DPF whose average particle diameter of the catalyst particle in a catalyst layer is 2 micrometers. 図3中のB部分の拡大図である。FIG. 4 is an enlarged view of a portion B in FIG. 3. 触媒層中の触媒粒子の平均粒子径が0.4μm未満、2μm及び6.3μm超である各DPFの表面にPMが堆積した状態を模式的に示す断面図である。It is sectional drawing which shows typically the state in which PM deposited on the surface of each DPF whose average particle diameter of the catalyst particle in a catalyst layer is less than 0.4 micrometer, 2 micrometer, and more than 6.3 micrometers. 触媒粒子の充填構造を示すであり、(a)が最密充填構造を示す図であり、(b)が非最密充填構造を示す図である。It is a figure which shows the packing structure of a catalyst particle | grain, (a) is a figure which shows the closest packing structure, (b) is a figure which shows a non-close packing structure. 触媒層の表面のSEM画像である。It is a SEM image of the surface of a catalyst layer. 実施例及び比較例のT90と触媒平均粒子径との関係を示す図である。It is a figure which shows the relationship between T90 of an Example and a comparative example, and a catalyst average particle diameter.

以下、本発明の実施形態について図面を参照しながら詳しく説明する。
本発明の第一実施形態に係る排気浄化フィルタは、例えばディーゼルエンジン等の内燃機関の排気通路に設けられ、内燃機関の排気中のPMを捕捉して浄化する。本実施形態に係る排気浄化フィルタは、フィルタ基材としてのDPFと、DPFの表面に形成されたAg系触媒からなる触媒層と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The exhaust purification filter according to the first embodiment of the present invention is provided in an exhaust passage of an internal combustion engine such as a diesel engine, for example, and captures and purifies PM in the exhaust of the internal combustion engine. The exhaust purification filter according to the present embodiment includes a DPF as a filter base and a catalyst layer made of an Ag-based catalyst formed on the surface of the DPF.

本実施形態のDPFは、三次元網目構造を有し、炭化珪素やコージェライト等の多孔質材料から形成される。また、PM捕集能を有する発泡金属や発泡セラミックス又は金属やセラミックス繊維を重ね合わせた不織布、ウォールフロータイプのフィルタ等、如何なる形態でも使用可能である。これらのうち、ウォールフロータイプのハニカム構造のフィルタが、PM捕集効率及び触媒とPMの接触性の観点から好ましく用いられる。   The DPF of the present embodiment has a three-dimensional network structure and is formed from a porous material such as silicon carbide or cordierite. Further, any form such as foam metal or foam ceramic having PM collecting ability, a nonwoven fabric in which metals and ceramic fibers are superimposed, a wall flow type filter, or the like can be used. Among these, a wall flow type honeycomb structure filter is preferably used from the viewpoint of PM collection efficiency and contact between the catalyst and PM.

本実施形態のDPFは、触媒とPMの接触面積を大きくできる観点から、セル形状が4〜8角形のうちのいずれかであることが好ましい。また、同様の観点から、セル数が1平方インチあたり200〜400セルであることが好ましい。セル数が200セル未満であると、触媒とPMの接触面積を十分確保できず、400セルを超えると、セルにPMが目詰まりして圧損の上昇に繋がる。   In the DPF of this embodiment, the cell shape is preferably any one of 4 to 8 octagons from the viewpoint of increasing the contact area between the catalyst and the PM. From the same viewpoint, the number of cells is preferably 200 to 400 cells per square inch. When the number of cells is less than 200 cells, a sufficient contact area between the catalyst and PM cannot be ensured. When the number exceeds 400 cells, PM is clogged in the cells, leading to an increase in pressure loss.

本実施形態の触媒層は、活性種である触媒金属としてAgを含有するAg系触媒からなる。Ag系触媒は、現状、PMの燃焼に最も有効な触媒であり、Pt等の他の貴金属系触媒よりも低温でPMを燃焼できる。例えば、PMとの接触性が良好であれば、200℃以下からPMを着火させることができ、400℃でPMの燃焼を完了させることができる。   The catalyst layer of this embodiment is composed of an Ag-based catalyst containing Ag as a catalytic metal that is an active species. An Ag-based catalyst is currently the most effective catalyst for burning PM, and can burn PM at a lower temperature than other noble metal-based catalysts such as Pt. For example, if the contact property with the PM is good, the PM can be ignited from 200 ° C. or less, and the combustion of the PM can be completed at 400 ° C.

ここで、Ag系触媒のPM燃焼メカニズムについて説明する。
Ag系触媒では、表面近傍のAgは、酸化雰囲気下ではAgOとして存在し、還元雰囲気下ではAgメタルとして存在する。そして、AgOは、酸素脱離エネルギーが最も小さく、PMの燃焼に対して最も有効な化合物である。
後述する酸素放出能を有するCe含有酸化物から、表面付近のAgメタルに酸素が供給されると、Agメタルは活性種であるAgOに変換される。そして、このAgOは、PMと反応することによりAgメタルに戻るものの、直ちにCe含有酸化物からの酸素がAgメタルに供給される結果、常に表面付近のAgは、AgOの状態で存在する。このようにして、Ag系触媒は、表面付近に存在する活性種AgOの作用によって、低温下で効率良くPMを燃焼除去する。従って、Ag系触媒は、AgとPMとの接触性がPM浄化性能に大きく影響を及ぼす特性を有する。
Here, the PM combustion mechanism of the Ag-based catalyst will be described.
In the Ag-based catalyst, Ag in the vicinity of the surface exists as Ag 2 O in an oxidizing atmosphere and as Ag metal in a reducing atmosphere. Ag 2 O has the smallest oxygen desorption energy and is the most effective compound for PM combustion.
When oxygen is supplied to the Ag metal near the surface from a Ce-containing oxide having an oxygen releasing ability, which will be described later, the Ag metal is converted to Ag 2 O which is an active species. And although this Ag 2 O returns to the Ag metal by reacting with PM, as a result of immediately supplying oxygen from the Ce-containing oxide to the Ag metal, the Ag near the surface is always in the state of Ag 2 O. Exists. In this way, the Ag-based catalyst efficiently removes PM at a low temperature by the action of the active species Ag 2 O existing near the surface. Therefore, the Ag-based catalyst has a characteristic that the contact property between Ag and PM greatly affects the PM purification performance.

本実施形態のAg系触媒は、Agを担持する触媒担体として、Ceを含有するCe含有酸化物が用いられる。Ce含有酸化物は、酸素放出能を有するものとして知られている。Ce含有酸化物としては、CeO、CeZrO、CePrLaSiOが好ましく使用される。これにより、酸素放出能を有するCe含有酸化物から放出される酸素によって、上記AgOの安定性が確保される。 In the Ag-based catalyst of the present embodiment, a Ce-containing oxide containing Ce is used as a catalyst carrier that supports Ag. Ce-containing oxides are known to have oxygen releasing ability. As the Ce-containing oxide, CeO 2 , CeZrO 2 , and CePrLaSiO 2 are preferably used. Thereby, the stability of the Ag 2 O is ensured by oxygen released from the Ce-containing oxide having oxygen releasing ability.

Ce含有酸化物としては、ペロブスカイト型、スピネル型、ルチル型、デラフォサイト型、マグネトプランバイト型、イルメナイト型、及びフルオライト型からなる群より選択される少なくとも1種を用いることができる。これらの中でも、酸素放出能の観点から、フルオライト型の複合酸化物が好ましく用いられる。
また、複合酸化物は、アルカリ土類金属元素、遷移金属元素、第12族元素、及び第13族元素からなる群より選択される少なくとも2種以上を構成元素として含むことにより、構成元素の価数を変化させて酸素の吸収及び放出を行うものが好ましい。
また、複合酸化物が酸素放出能を有するために、多原子価を持つ元素が少なくとも1種含まれていることが好ましい。具体的には、Zr、V、Cr、Mn、Fe、Co、Cu、Nb、Ta、Mo、W、Ce、Pr、Sm、Eu、Tb、Yb、Pt、Pd、Rh、Ir、Ru等の遷移金属元素が少なくとも1種含まれていることが好ましい。酸素放出は、複合酸化物を構成する元素の価数の変化に応じて、電荷のバランスを保つために複合酸化物の格子中の酸素が脱離する現象である。このため、Agとの組合せによる酸素放出能の観点から、上記遷移金属元素のうち、Ce、Zr、Pr、La、及びYが特に好ましい。
As the Ce-containing oxide, at least one selected from the group consisting of perovskite type, spinel type, rutile type, delafossite type, magnetoplumbite type, ilmenite type, and fluorite type can be used. Among these, a fluorite-type complex oxide is preferably used from the viewpoint of oxygen releasing ability.
In addition, the composite oxide contains at least two kinds selected from the group consisting of alkaline earth metal elements, transition metal elements, Group 12 elements, and Group 13 elements as constituent elements. What absorbs and discharge | releases oxygen by changing a number is preferable.
In addition, since the composite oxide has an oxygen releasing ability, it is preferable that at least one element having a polyvalence is included. Specifically, Zr, V, Cr, Mn, Fe, Co, Cu, Nb, Ta, Mo, W, Ce, Pr, Sm, Eu, Tb, Yb, Pt, Pd, Rh, Ir, Ru, etc. It is preferable that at least one transition metal element is contained. Oxygen release is a phenomenon in which oxygen in the lattice of the composite oxide is desorbed in order to maintain a charge balance in accordance with a change in the valence of the elements constituting the composite oxide. For this reason, Ce, Zr, Pr, La, and Y are particularly preferable among the above transition metal elements from the viewpoint of oxygen releasing ability in combination with Ag.

また、本実施形態のAg系触媒は、Ru、Pd、及びPtからなる群より選択される少なくとも1種の貴金属を、Agとともに上記触媒担体に共担持するものであってもよい。   Further, the Ag-based catalyst of the present embodiment may be one in which at least one noble metal selected from the group consisting of Ru, Pd, and Pt is co-supported on the catalyst carrier together with Ag.

なお、本実施形態では、Ag系触媒中のAgの含有量は、15質量%〜50質量%であることが好ましい。   In the present embodiment, the content of Ag in the Ag-based catalyst is preferably 15% by mass to 50% by mass.

次に、本実施形態の触媒粒子の平均粒子径について説明する。
図1は、触媒層中の触媒粒子の平均粒子径が0.4μm未満であるDPFの表面にPMが堆積した状態を示す断面図である。また、図2は、図1中のA部分の拡大図である。
図1に示すように、通常、DPFの表面には、PMが微細な孔を有するケーキ層として堆積する。このPMケーキ層は、図2に示すように、平均して0.5μm間隔で触媒層と接触する。また、触媒粒子の平均粒子径が0.4μm未満で小さいため、緻密な触媒層が形成されており、その表面はほぼ平面状となっている。そのため、触媒層の表面積が小さいことから、十分な触媒粒子とPMの接触面積(以下、「PM接触面積」という。)を確保できない。特に、触媒粒子の平均粒子径がPM接点間隔0.5μmよりも小さい0.4μm未満であるため、PMと接触できない触媒粒子が存在することとなり、触媒粒子とPMの接触確率は低い。従って、上述したようにAg系触媒ではPMとの接触性が浄化率に大きく影響を及ぼすことから、触媒粒子の平均粒子径が0.4μm未満である場合には、PMを効率良く浄化することはできない。
Next, the average particle diameter of the catalyst particles of this embodiment will be described.
FIG. 1 is a cross-sectional view showing a state where PM is deposited on the surface of a DPF in which the average particle diameter of catalyst particles in the catalyst layer is less than 0.4 μm. FIG. 2 is an enlarged view of a portion A in FIG.
As shown in FIG. 1, usually, PM is deposited as a cake layer having fine pores on the surface of the DPF. As shown in FIG. 2, the PM cake layer contacts the catalyst layer at an average interval of 0.5 μm. Further, since the average particle diameter of the catalyst particles is smaller than 0.4 μm, a dense catalyst layer is formed, and the surface thereof is substantially planar. Therefore, since the surface area of the catalyst layer is small, a sufficient contact area between the catalyst particles and PM (hereinafter referred to as “PM contact area”) cannot be ensured. In particular, since the average particle diameter of the catalyst particles is less than 0.4 μm, which is smaller than the PM contact interval of 0.5 μm, there are catalyst particles that cannot come into contact with PM, and the contact probability between the catalyst particles and PM is low. Therefore, as described above, in the Ag-based catalyst, the contact property with the PM greatly affects the purification rate. Therefore, when the average particle diameter of the catalyst particles is less than 0.4 μm, the PM is efficiently purified. I can't.

これに対して、図3は、触媒層中の触媒粒子の平均粒子径が2μmであるDPFの表面にPMが堆積した状態を示す断面図である。また、図4は、図3中のB部分の拡大図である。
図3に示すように、触媒粒子の平均粒子径が2μmである場合においても、DPFの表面には図1と同様のPMケーキ層が堆積する。また、触媒粒子の平均粒子径が2μmと比較的大きいため、大きな触媒粒子同士が隣接することで触媒粒子間に多数の溝が形成される結果、触媒粒子の平均粒子径が0.4μm未満の場合と比べて触媒層の表面は凹凸状となっている。そのため、触媒層の表面積が大きいことから、十分なPM接触面積を確保できる。また、図4に示すように、触媒粒子間に形成された溝内にPMが多量に侵入するため、PM接触面積をより増大できる。さらには図4に示すように、DPF再生時には、溝内に侵入した多量のPMは触媒層中の活性種であるAgにより近い位置に存在するため、DPFの表面に堆積しているPMと比べて着火し易く、伝播性が良好で効率良く燃焼する。従って、触媒粒子の平均粒子径が2μmである場合には、十分なPM接触面積と良好な伝播性が得られるため、PMを効率良く浄化することができる。
In contrast, FIG. 3 is a cross-sectional view showing a state where PM is deposited on the surface of the DPF in which the average particle diameter of the catalyst particles in the catalyst layer is 2 μm. 4 is an enlarged view of a portion B in FIG.
As shown in FIG. 3, even when the average particle diameter of the catalyst particles is 2 μm, the same PM cake layer as in FIG. 1 is deposited on the surface of the DPF. In addition, since the average particle diameter of the catalyst particles is relatively large as 2 μm, a large number of grooves are formed between the catalyst particles by adjoining the large catalyst particles, and as a result, the average particle diameter of the catalyst particles is less than 0.4 μm. Compared to the case, the surface of the catalyst layer is uneven. Therefore, since the surface area of the catalyst layer is large, a sufficient PM contact area can be ensured. Further, as shown in FIG. 4, since a large amount of PM enters the grooves formed between the catalyst particles, the PM contact area can be further increased. Furthermore, as shown in FIG. 4, at the time of DPF regeneration, a large amount of PM that has entered the groove exists closer to Ag, which is the active species in the catalyst layer, and therefore compared with the PM deposited on the surface of the DPF. It is easy to ignite, has good propagation properties and burns efficiently. Therefore, when the average particle diameter of the catalyst particles is 2 μm, a sufficient PM contact area and good propagation properties can be obtained, so that PM can be efficiently purified.

以上のように、触媒粒子の平均粒子径は、PM接触面積と、触媒粒子間の溝の形成に対して大きく影響を及ぼす。そこで、触媒粒子の平均粒子径について、図5を参照してさらに詳しく説明する。図5は、触媒層中の触媒粒子の平均粒子径が0.4μm未満、2μm及び6.3μm超である各DPFの表面にPMが堆積した状態を模式的に示す断面図である。なお、上述したように、DPFの表面には、PMが微細な孔を有するケーキ層として堆積し、このPMケーキ層と触媒層との接点の間隔(PM接点間隔)は、いずれも平均して0.5μmである。   As described above, the average particle diameter of the catalyst particles greatly affects the PM contact area and the formation of grooves between the catalyst particles. Therefore, the average particle diameter of the catalyst particles will be described in more detail with reference to FIG. FIG. 5 is a cross-sectional view schematically showing a state in which PM is deposited on the surface of each DPF in which the average particle diameter of the catalyst particles in the catalyst layer is less than 0.4 μm, 2 μm and more than 6.3 μm. As described above, PM is deposited on the surface of the DPF as a cake layer having fine pores, and the interval between the PM cake layer and the catalyst layer (PM contact interval) is averaged. 0.5 μm.

先ず、触媒粒子の平均粒子径と、PM接触面積との関係について説明する。
触媒粒子の平均粒子径が0.4μm未満で小さい場合には、上述したように触媒層の表面は、後述する触媒粒子の平均粒子径が2μmの場合や6.3μmを超える場合と比べてほぼ平面状となっており、触媒層の表面積は小さいため、十分なPM接触面積を確保できない。ここで、平面状とは、後述するように触媒粒子間に形成された溝内に触媒粒子が侵入できない表面状態を意味する。
これに対して、触媒粒子の平均粒子径が2μmで比較的大きい場合には、上述したように触媒層の表面は凹凸状となっており、触媒層の表面積は大きいため、十分なPM接触面積を確保できる。
同様に、触媒粒子の平均粒子径が6.3μmを超えるほど大きい場合には、図5に示すように、触媒層の表面はより大きな凹凸形状となり、触媒層の表面積は十分大きいため、十分なPM接触面積を確保できる。
なお、触媒粒子を真球と仮定したとき、触媒層の表面が完全な平面の場合と比べて、触媒層の表面が凹凸状の場合には、後述するように幾何学的にPM接触面積は増加する。従って、触媒層の表面に凹凸が形成される程度に触媒粒子の平均粒子径を大きくすることで、PM接触面積を増大でき、PMを効率良く浄化できることが分かる。
First, the relationship between the average particle diameter of catalyst particles and the PM contact area will be described.
When the average particle diameter of the catalyst particles is smaller than 0.4 μm, the surface of the catalyst layer is almost as compared with the case where the average particle diameter of the catalyst particles described later is 2 μm or exceeds 6.3 μm as described above. Since it is planar and the surface area of the catalyst layer is small, a sufficient PM contact area cannot be ensured. Here, the planar shape means a surface state in which the catalyst particles cannot enter into the grooves formed between the catalyst particles as described later.
On the other hand, when the average particle diameter of the catalyst particles is 2 μm and relatively large, the surface of the catalyst layer is uneven as described above, and the surface area of the catalyst layer is large. Can be secured.
Similarly, when the average particle diameter of the catalyst particles is larger than 6.3 μm, as shown in FIG. 5, the surface of the catalyst layer has a larger uneven shape, and the surface area of the catalyst layer is sufficiently large. The PM contact area can be secured.
When the catalyst particles are assumed to be true spheres, when the surface of the catalyst layer is uneven as compared to the case where the surface of the catalyst layer is a perfect plane, the PM contact area is geometrically as described later. To increase. Therefore, it can be seen that the PM contact area can be increased and PM can be efficiently purified by increasing the average particle diameter of the catalyst particles to such an extent that irregularities are formed on the surface of the catalyst layer.

次に、触媒粒子の平均粒子径と、触媒粒子間の溝の形成との関係について説明する。
先ず、触媒粒子の平均粒子径が0.4μm未満で小さい場合には、上述したように触媒層の表面はほぼ平面状であり、PMが侵入できる溝は形成されない。
これに対して、触媒粒子の平均粒子径が2μmで比較的大きい場合には、上述したように、大きな触媒粒子同士が隣接することで触媒粒子間に多数の溝が形成され、形成された溝内にPMが多量に侵入する。そして、DPF再生時には、溝内に侵入した多量のPMは、Agにより近い位置に存在するため着火し易く、伝播性が良好で効率良く燃焼する。
一方、触媒粒子の平均粒子径が6.3μmを超えるほど大きい場合には、触媒粒子の平均粒子径が2μmの場合と同様に、触媒粒子間に溝が形成される。しかしながら、触媒粒子の平均粒子径が2μmの場合と比べて、触媒粒子が大き過ぎるため単位面積あたりのPMが侵入できる溝の数は減少する。
従って、触媒粒子の平均粒子径を、0.4μm〜6.3μmの最適な範囲に設定することで、触媒粒子間にPMが侵入できる溝を多数形成でき、PMを効率良く燃焼できることが分かる。
Next, the relationship between the average particle diameter of the catalyst particles and the formation of grooves between the catalyst particles will be described.
First, when the average particle diameter of the catalyst particles is smaller than 0.4 μm, the surface of the catalyst layer is substantially planar as described above, and no groove into which PM can enter is not formed.
On the other hand, when the average particle diameter of the catalyst particles is 2 μm and relatively large, as described above, a large number of grooves are formed between the catalyst particles because the large catalyst particles are adjacent to each other. A large amount of PM enters the inside. At the time of DPF regeneration, a large amount of PM that has entered the groove is easily ignited because it exists in a position closer to Ag, and has good propagation properties and burns efficiently.
On the other hand, when the average particle diameter of the catalyst particles is larger than 6.3 μm, grooves are formed between the catalyst particles as in the case where the average particle diameter of the catalyst particles is 2 μm. However, compared with the case where the average particle diameter of the catalyst particles is 2 μm, the number of grooves into which PM per unit area can enter decreases because the catalyst particles are too large.
Therefore, it can be seen that by setting the average particle diameter of the catalyst particles in an optimal range of 0.4 μm to 6.3 μm, many grooves into which PM can enter between the catalyst particles can be formed, and PM can be burned efficiently.

以上のことから、本実施形態では、Agが担持されたCe含有酸化物、即ち触媒粒子の平均粒子径は、0.4μm〜6.3μmに設定されている。従って、触媒粒子の平均粒子径が0.4μm未満の場合には、十分なPM接触面積が得られない。また、触媒粒子間にPMが侵入できる溝を形成できないため、良好な伝播性能が得られず、効率良くPMを浄化できない。一方、触媒粒子の平均粒子径が6.3μmを超えると、十分なPM接触面積は得られるものの、触媒粒子間に形成される溝の数が減少するため、良好な伝播性能が得られなくなり、効率良くPMを浄化できなくなる。なお、より好ましい触媒粒子の平均粒子径は、0.8μm〜5μmである。   From the above, in the present embodiment, the average particle diameter of the Ce-containing oxide on which Ag is supported, that is, the catalyst particles is set to 0.4 μm to 6.3 μm. Therefore, when the average particle diameter of the catalyst particles is less than 0.4 μm, a sufficient PM contact area cannot be obtained. Moreover, since the groove | channel which PM can penetrate | invade between catalyst particles cannot be formed, favorable propagation performance cannot be obtained and PM cannot be purified efficiently. On the other hand, when the average particle diameter of the catalyst particles exceeds 6.3 μm, a sufficient PM contact area can be obtained, but the number of grooves formed between the catalyst particles decreases, so that good propagation performance cannot be obtained. PM cannot be purified efficiently. In addition, the more preferable average particle diameter of the catalyst particles is 0.8 μm to 5 μm.

本実施形態では、触媒粒子の平均粒子径は、ミリング加工時間を調整することで設定可能となっている。ミリング加工時間を長く設定することで、触媒粒子の平均粒子径を小さくできるとともに、触媒粒子の形状を後述するように球状とすることができる。   In this embodiment, the average particle diameter of the catalyst particles can be set by adjusting the milling time. By setting the milling time to be long, the average particle diameter of the catalyst particles can be reduced, and the shape of the catalyst particles can be made spherical as described later.

なお、本実施形態における触媒粒子の平均粒子径は、Ag系触媒をDPFに担持させて焼成した後に、形成された触媒層の表面をSEM観察することにより測定される。より具体的には、先ず、市販のSEMを用いて触媒層の表面を倍率500倍で拡大観察する。次いで、得られた観察像において、任意に選択した20個の触媒粒子のそれぞれについて、短径と長径を測定し、これら測定値の平均値を触媒粒子の平均粒子径とする。   The average particle diameter of the catalyst particles in the present embodiment is measured by observing the surface of the formed catalyst layer with an SEM after firing an Ag-based catalyst supported on a DPF. More specifically, first, the surface of the catalyst layer is enlarged and observed at a magnification of 500 times using a commercially available SEM. Next, in the obtained observed image, the minor axis and the major axis are measured for each of 20 arbitrarily selected catalyst particles, and the average value of these measured values is taken as the average particle diameter of the catalyst particles.

ここで、触媒粒子とPMとの接触面積について、さらに詳しく説明する。
先ず前提として、触媒粒子径が均一であり、触媒粒子が整列して並んで配置されており、触媒粒子の重なりが無く、触媒粒子とPMの接触面積は触媒粒子を真球としたときの半球の表面積であるとする。このような前提で、例えば触媒粒子の平均粒子径が下限値の0.4μmである場合には、半球の表面積=4×3.14×(0.4/2)/2=0.25μmとなる。また、10μm×10μm=100μmを1単位あたりとしたときに、1単位に入る触媒粒子の個数は、(10/0.4)×(10/0.4)=625個となる。そうすると、触媒粒子とPMの接触面積は、0.25×625=157μmとなる。従って、1単位が平面であるときの面積100μmの1.57倍であり、上述したようにPMが侵入可能な溝が形成されずに平面とみなせる場合(即ち、触媒粒子の平均粒子径が0.4μm未満の場合)と比べて、平均粒子径が0.4μm以上の場合には接触面積が平面の1.57倍以上となり、接触面積が増加することが分かる。
Here, the contact area between the catalyst particles and PM will be described in more detail.
First, as a premise, the catalyst particle diameter is uniform, the catalyst particles are arranged side by side, the catalyst particles do not overlap, and the contact area between the catalyst particles and the PM is a hemisphere when the catalyst particles are assumed to be true spheres. The surface area of Under such a premise, for example, when the average particle diameter of the catalyst particles is the lower limit of 0.4 μm, the surface area of the hemisphere = 4 × 3.14 × (0.4 / 2) 2 /2=0.25 μm 2 . Further, when 10 μm × 10 μm = 100 μm 2 is defined as one unit, the number of catalyst particles entering one unit is (10 / 0.4) × (10 / 0.4) = 625. Then, the contact area between the catalyst particles and PM is 0.25 × 625 = 157 μm 2 . Accordingly, the area is 1.57 times the area of 100 μm 2 when one unit is a flat surface, and it can be regarded as a flat surface without forming grooves into which PM can enter as described above (that is, the average particle diameter of the catalyst particles is It can be seen that when the average particle size is 0.4 μm or more, the contact area is 1.57 times or more of the plane, and the contact area increases when the average particle size is 0.4 μm or more.

次に、触媒粒子間の溝について、さらに詳しく説明する。
上述したように、溝内に侵入したPMは、伝播性の向上に寄与するが、伝播性の向上は溝の数により決定され、触媒粒子サイズによらないと考えられる。例えば、伝播性の向上に有効な溝の深さを考えた場合、深さ方向で2μmまでが伝播性の向上に有効な溝深さとすると、2μmの触媒粒子でも6.3μmの触媒粒子でも伝播性の向上に有効な溝の深さ2μmは変わらないからである。
Next, the grooves between the catalyst particles will be described in more detail.
As described above, PM that has entered the groove contributes to the improvement of the propagating property, but the improvement of the propagating property is determined by the number of grooves and is considered not to depend on the catalyst particle size. For example, when considering the depth of the groove effective for improving the propagation property, if the groove depth is effective for improving the propagation property up to 2 μm in the depth direction, both the 2 μm catalyst particle and the 6.3 μm catalyst particle propagate. This is because the groove depth of 2 μm, which is effective for improving the property, does not change.

図6は、触媒粒子の充填構造を示す図である。具体的には、(a)が最密充填構造を示す図であり、(b)が非最密充填構造を示す図である。なお、これらいずれの構造においても、触媒粒子とPMの接触面積は粒子の半球の表面積であることに変わりはない。
図6(a)に示すような最密充填構造の場合には、最も多くの溝が形成され、触媒粒子個数の2倍個の溝が形成される。これに対して、図6(b)に示すような非最密充填構造の場合には、触媒粒子個数と同じ数の溝が形成される。上述したように100μm四方を1単位あたりとしたときに1単位に入る触媒粒子の個数は625個であるから、例えば触媒粒子の平均粒子径が下限値の0.4μmである場合には、粒子径が小さいため図6(a)に示す最密充填構造となり、625×2=1250個の溝が形成されることとなる。また、例えば触媒粒子の平均粒子径が上限値の6.3μmである場合には、粒子径が比較的大きいため図6(b)に示す非最密充填構造となり、(10/6.3)×(10/6.3)=2.5個の溝が形成されることとなる。従って、触媒粒子の平均粒子径が0.4〜6.3μmの場合には、2.5個〜1250個の溝が形成されることが分かる。即ち、触媒粒子間に形成される溝の数は、触媒表面10μm四方あたり2.5個〜1250個であることが好ましいことが分かる。
また、同様にして計算すると、触媒粒子の平均粒子径が0.8μm〜5μmの場合には、4個〜156個の溝が形成されることが分かり、触媒粒子間に形成される溝の数は、触媒表面10μm四方あたり4個〜156個であることがより好ましいことが分かる。
FIG. 6 is a view showing a packed structure of catalyst particles. Specifically, (a) shows a close-packed structure, and (b) shows a non-close-packed structure. In any of these structures, the contact area between the catalyst particles and PM is still the surface area of the hemisphere of the particles.
In the case of the close-packed structure as shown in FIG. 6A, the largest number of grooves are formed, and grooves twice as many as the number of catalyst particles are formed. On the other hand, in the non-close-packed structure as shown in FIG. 6B, the same number of grooves as the number of catalyst particles are formed. As described above, since the number of catalyst particles entering one unit when 100 μm 2 squares per unit is 625, for example, when the average particle diameter of the catalyst particles is the lower limit of 0.4 μm, Since the particle diameter is small, the close-packed structure shown in FIG. 6A is formed, and 625 × 2 = 1250 grooves are formed. Further, for example, when the average particle diameter of the catalyst particles is the upper limit value of 6.3 μm, the particle diameter is relatively large, so that the non-close-packed structure shown in FIG. 6B is obtained (10 / 6.3). X (10 / 6.3) = 2.5 grooves are formed. Therefore, it can be seen that 2.5 to 1250 grooves are formed when the average particle diameter of the catalyst particles is 0.4 to 6.3 μm. That is, it can be seen that the number of grooves formed between the catalyst particles is preferably 2.5 to 1250 per 10 μm square of the catalyst surface.
Further, when calculated in the same manner, it can be seen that when the average particle diameter of the catalyst particles is 0.8 μm to 5 μm, 4 to 156 grooves are formed, and the number of grooves formed between the catalyst particles. Is more preferably 4 to 156 per 10 μm square of the catalyst surface.

また、本実施形態の触媒粒子の形状は、球状であることが好ましい。本実施形態における球状は、直方体以外の形状を広く含み、真円や楕円の他、断面多角形状の歪な形状も含まれる。触媒粒子の形状が例えば針状である場合には、折り重なることで十分機能を発揮し得ないところ、球状であれば、確実に他の形状と比べてPM接触面積を増大できる。また、触媒粒子が球状であることにより、触媒層中に触媒粒子を最密充填できる。従って、触媒粒子間の溝数を最適化でき、PMをより効率良く浄化できる。
より具体的には、本実施形態の触媒粒子は、粒子径のアスペクト比が1.5以内のものが60%以上であることが好ましい。これにより、本実施形態の触媒粒子の形状は球状となる。
Moreover, it is preferable that the shape of the catalyst particle of this embodiment is spherical. The spherical shape in the present embodiment widely includes shapes other than a rectangular parallelepiped, and includes a distorted shape having a polygonal cross section in addition to a perfect circle and an ellipse. When the shape of the catalyst particles is, for example, a needle shape, the PM contact area cannot be fully exerted by folding, but if it is spherical, the PM contact area can be reliably increased compared to other shapes. In addition, since the catalyst particles are spherical, the catalyst particles can be packed most closely in the catalyst layer. Therefore, the number of grooves between the catalyst particles can be optimized, and PM can be purified more efficiently.
More specifically, the catalyst particles of the present embodiment preferably have a particle diameter aspect ratio of 1.5 or less of 60% or more. Thereby, the shape of the catalyst particle of this embodiment becomes spherical.

本実施形態に係る排気浄化フィルタでは、ディッピング法の他、クエン酸等を用いた微細発泡法が好ましく採用される。
ディッピング法では、例えば、Ag系触媒の構成材料を所定量含むスラリーを湿式粉砕等により作製し、作製したスラリー中にDPFを浸漬させた後、DPFを引き上げて所定の温度条件で焼成を行うことにより、DPFにAg系触媒を担持させることができる。
また、微細発泡法では、上記のようにして作製したスラリー中に、クエン酸等の有機酸を添加することにより、焼成時に触媒粒子を発泡させ、分散させる。これにより、触媒粒子がDPF全体に分散担持され、DPF表面にAg系触媒を均一に担持させることができる。
In the exhaust purification filter according to the present embodiment, a fine foaming method using citric acid or the like is preferably employed in addition to the dipping method.
In the dipping method, for example, a slurry containing a predetermined amount of a constituent material of an Ag-based catalyst is prepared by wet pulverization or the like. After the DPF is immersed in the prepared slurry, the DPF is pulled up and fired at a predetermined temperature condition. Thus, an Ag-based catalyst can be supported on the DPF.
In the fine foaming method, an organic acid such as citric acid is added to the slurry produced as described above to foam and disperse the catalyst particles during firing. Thereby, the catalyst particles are dispersed and supported on the entire DPF, and the Ag-based catalyst can be uniformly supported on the surface of the DPF.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

次に本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to these examples.

[実施例1〜8、比較例1〜3]
Ag系触媒を、表1に示す割合で、以下の手順により調製した。
先ず、ナスフラスコに、1100℃×2時間焼成したCePrLaSiO、硝酸Ag、硝酸Pdを所定量入れた後、エバポレーターにおいて減圧下で乾燥させた。その後、さらに電気炉で乾燥させた後、700℃×2時間焼成した。
次いで、水系媒体、Siゾルを触媒に対して5質量%添加した後、ボールミルにて混合してスラリー化し、分散剤としてクエン酸を混合した。
次いで、ディッピング法にてDPFにAg系触媒を担持させた。その後、700℃×2時間焼成することで、Ag系触媒付きDPFを得た。
なお、表1中の触媒平均粒子径の違いは、ミリングの時間を変更することで得た。また、DPFとしては、NGK製のハニカム構造体(内径30mm、壁厚12ミル、セル数300、材質SiC)を用いた。
[Examples 1-8, Comparative Examples 1-3]
An Ag-based catalyst was prepared according to the following procedure at the ratio shown in Table 1.
First, a predetermined amount of CePrLaSiO 2 , Ag nitrate Ag, and Pd nitrate calcined at 1100 ° C. × 2 hours was put in an eggplant flask and then dried under reduced pressure in an evaporator. Then, after further drying in an electric furnace, baking was performed at 700 ° C. for 2 hours.
Next, 5% by mass of an aqueous medium and Si sol was added to the catalyst, and then mixed with a ball mill to form a slurry, and citric acid was mixed as a dispersant.
Next, an Ag-based catalyst was supported on the DPF by dipping. Then, DPF with an Ag type catalyst was obtained by baking at 700 ° C. for 2 hours.
The difference in the average particle size of the catalyst in Table 1 was obtained by changing the milling time. As the DPF, an NGK honeycomb structure (inner diameter 30 mm, wall thickness 12 mil, cell number 300, material SiC) was used.

[触媒平均粒子径]
得られたAg系触媒付きDPFの触媒平均粒子径を、SEM観察することにより測定した。より具体的には、先ず、市販のSEMを用いて触媒層の表面を拡大観察した。得られたSEM像の一例を図7に示した。次いで、得られたSEM像において、任意に選択した20個の触媒粒子のそれぞれについて、短径と長径を測定し、これら測定値の平均値を触媒粒子の平均粒子径とした。測定結果を表1に示した。なお、本実施例の触媒粒子はいずれも球状であった。
[Average catalyst particle size]
The catalyst average particle diameter of the obtained DPF with an Ag-based catalyst was measured by SEM observation. More specifically, first, the surface of the catalyst layer was enlarged and observed using a commercially available SEM. An example of the obtained SEM image is shown in FIG. Next, in the obtained SEM image, the short diameter and the long diameter were measured for each of 20 arbitrarily selected catalyst particles, and the average value of these measured values was taken as the average particle diameter of the catalyst particles. The measurement results are shown in Table 1. The catalyst particles of this example were all spherical.

[PM浄化率評価]
先ず、実施例及び比較例で得た各Ag系触媒付きDPFに、実機エンジンの排気を導入することで、6.5g/LのPMを捕捉させた。次いで、PMを捕捉した各Ag系触媒付きDPFを、窒素雰囲気中で600℃まで昇温して安定化させた。次いで、そこに排気モデルガス(O=3%、NO=75ppm、Nバランスガス、SV=10万/時)を一気に導入することで、捕捉されているPMを燃焼除去した。そして、このときのCOとCOの排出量を指標として、PMの90%が燃焼除去されるまでの時間T90を求めた。
[PM purification rate evaluation]
First, 6.5 g / L of PM was captured by introducing the exhaust of an actual engine into each Ag-based catalyst-provided DPF obtained in Examples and Comparative Examples. Next, each DPF with an Ag-based catalyst that captured PM was heated to 600 ° C. in a nitrogen atmosphere and stabilized. Next, exhausted model gas (O 2 = 3%, NO = 75 ppm, N 2 balance gas, SV = 100,000 / hour) was introduced at once to burn and remove the trapped PM. Then, using the CO and CO 2 emission at this time as an index, a time T90 until 90% of PM was burned and removed was obtained.

図8は、実施例1〜3及び比較例1〜3のT90と触媒平均粒子径との関係を示す図である。図8に示すように、触媒平均粒子径が0.4μm〜6.3μmの範囲内である実施例1〜8は、触媒平均粒子径が0.4μm〜6.3μmの範囲外である比較例1〜3と比べて、T90時間が短いことが分かった。この結果から、触媒粒子の平均粒子径が0.4μm〜6.3μmであることにより、効率良くPMを浄化できることが確認された。また、図8の結果から、触媒平均粒子径のより好ましい範囲は、0.8μm〜5μmであることが確認された。   FIG. 8 is a graph showing the relationship between T90 and the average catalyst particle size in Examples 1 to 3 and Comparative Examples 1 to 3. As shown in FIG. 8, Examples 1 to 8 in which the catalyst average particle diameter is in the range of 0.4 μm to 6.3 μm are comparative examples in which the catalyst average particle diameter is outside the range of 0.4 μm to 6.3 μm. It was found that T90 time was shorter than 1 to 3. From this result, it was confirmed that the PM can be efficiently purified when the average particle diameter of the catalyst particles is 0.4 μm to 6.3 μm. Moreover, from the result of FIG. 8, it was confirmed that the more preferable range of a catalyst average particle diameter is 0.8 micrometer-5 micrometers.

Claims (3)

内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質を捕捉して浄化する排気浄化フィルタであって、
フィルタ基材と、
前記フィルタ基材上に形成され、前記粒子状物質を酸化浄化する触媒層と、を備え、
前記触媒層は、Ceを含有するCe含有酸化物と、当該Ce含有酸化物上に担持されたAgと、を有し、
前記触媒層中のAgの含有量は、15質量%〜50質量%であり、
前記Agが担持されたCe含有酸化物を500倍で拡大観察したSEM画像において、任意に選択した20個の粒子のそれぞれについて短径と長径を測定して得られる測定値の平均値を平均粒径とした時の平均粒子径が、0.4μm〜6.3μmであり、
前記粒子は、粒子径のアスペクト比が1.5以内のものが60%以上であることを特徴とする排気浄化フィルタ。
An exhaust purification filter that is provided in an exhaust passage of an internal combustion engine and captures and purifies particulate matter in the exhaust of the internal combustion engine,
A filter substrate;
A catalyst layer formed on the filter substrate and oxidizing and purifying the particulate matter,
The catalyst layer has a Ce-containing oxide containing Ce, and Ag supported on the Ce-containing oxide,
The content of Ag in the catalyst layer is 15% by mass to 50% by mass,
In the SEM image obtained by magnifying and observing the Ce-containing oxide supporting Ag, the average value of measured values obtained by measuring the minor axis and the major axis of each of 20 arbitrarily selected particles is the average grain size. The average particle diameter when the diameter is 0.4 μm to 6.3 μm,
The exhaust gas purification filter according to claim 1, wherein the particles having an aspect ratio of a particle diameter of 1.5 or less are 60% or more .
前記Agが担持されたCe含有酸化物を500倍で拡大観察したSEM画像において、任意に選択した20個の粒子のそれぞれについて短径と長径を測定して得られる測定値の平均値を平均粒径とした時の平均粒子径が、0.8μm〜5μmであることを特徴とする請求項1に記載の排気浄化フィルタ。 In the SEM image obtained by magnifying and observing the Ce-containing oxide supporting Ag, the average value of measured values obtained by measuring the minor axis and the major axis of each of 20 arbitrarily selected particles is the average grain size. 2. The exhaust gas purification filter according to claim 1, wherein an average particle diameter is 0.8 μm to 5 μm. 前記Agが担持されたCe含有酸化物間に形成される溝の数は、前記触媒層の表面10μm四方あたり2.5個〜1250個であることを特徴とする請求項1又は2に記載の排気浄化フィルタ。   The number of grooves formed between the Ce-containing oxides on which Ag is supported is 2.5 to 1250 per 10 μm square of the surface of the catalyst layer. Exhaust purification filter.
JP2014069168A 2013-10-15 2014-03-28 Exhaust purification filter Expired - Fee Related JP6265813B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014069168A JP6265813B2 (en) 2013-10-15 2014-03-28 Exhaust purification filter
DE102014220879.3A DE102014220879A1 (en) 2013-10-15 2014-10-15 exhaust gas purifying filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013214747 2013-10-15
JP2013214747 2013-10-15
JP2014069168A JP6265813B2 (en) 2013-10-15 2014-03-28 Exhaust purification filter

Publications (2)

Publication Number Publication Date
JP2015098015A JP2015098015A (en) 2015-05-28
JP6265813B2 true JP6265813B2 (en) 2018-01-24

Family

ID=53375021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069168A Expired - Fee Related JP6265813B2 (en) 2013-10-15 2014-03-28 Exhaust purification filter

Country Status (2)

Country Link
JP (1) JP6265813B2 (en)
DE (1) DE102014220879A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143620B (en) * 2013-05-22 2017-09-19 三井金属矿业株式会社 Diesel particulate filter and waste gas purification apparatus

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592281A (en) 1991-03-06 1993-04-16 Ishikawajima Harima Heavy Ind Co Ltd Method for improving corrorsion resistance of welding part of through tube to container
JPH10151348A (en) * 1996-11-22 1998-06-09 Toyota Central Res & Dev Lab Inc Oxidation catalyst
EP1918046B1 (en) * 2005-07-21 2012-04-25 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite material, composite material substrate, composite material dispersed fluid, and methods for producing those
JP2008307528A (en) * 2007-03-30 2008-12-25 Toto Ltd Coated-photocatalyst object and photocatalyst coating liquid therefor
ES2630707T3 (en) * 2008-04-14 2017-08-23 Mitsui Mining And Smelting Co., Ltd. Particle combustion catalyst, particle filter and exhaust gas purifying device
JP5006855B2 (en) * 2008-09-24 2012-08-22 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification filter using the same
BRPI0921967B1 (en) * 2008-11-21 2017-11-07 Nissan Motor Co., Ltd. PARTICULATE MATTER PURIFYING MATERIAL, FILTRATION CATALYST FOR PURIFYING PARTICULATE MATTER USING PARTICULATE MATTER PURIFICATION MATERIAL AND METHOD OF REGENERATION OF FILTER CATALYST TO PURIFY PARTICULATE MATTER.
JP5519181B2 (en) * 2009-05-13 2014-06-11 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP5519208B2 (en) 2009-08-06 2014-06-11 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
WO2012073975A1 (en) * 2010-11-30 2012-06-07 Agcセイミケミカル株式会社 Method for manufacturing catalyst for exhaust gas cleaning and exhaust gas cleaning apparatus
JP5854262B2 (en) * 2011-09-14 2016-02-09 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2013072334A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Exhaust gas purifying device and exhaust gas purifying catalyst unit
US20130260025A1 (en) 2012-03-30 2013-10-03 Air Products And Chemicals, Inc. Group 2 Imidazolate Formulations for Direct Liquid Injection
JP2014069168A (en) 2012-10-01 2014-04-21 Ishii Hyoki Corp Effluent treatment apparatus
US20140301909A1 (en) * 2013-04-04 2014-10-09 Cdti System and Method for ZPGM Catalytic Converters

Also Published As

Publication number Publication date
DE102014220879A1 (en) 2015-07-23
JP2015098015A (en) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5094234B2 (en) Exhaust gas purification filter and manufacturing method thereof
JP6016916B2 (en) Diesel particulate filter and exhaust gas purification device
JP4618046B2 (en) Diesel particulate filter
JP7228065B2 (en) Catalyst-coated gasoline particulate filter and its manufacturing method
JPWO2018159214A1 (en) Exhaust gas purification filter and method of manufacturing the same
JP4715032B2 (en) Diesel exhaust gas purification filter
JP6526847B1 (en) Exhaust gas purification catalyst and method for producing the same
JP2011036742A (en) Exhaust gas-treating device for internal combustion engine
US20100083645A1 (en) Method for obtaining a porous structure based on silicon carbide
JP6265813B2 (en) Exhaust purification filter
JP6523496B1 (en) Exhaust gas purification catalyst and method for producing the same
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP5942550B2 (en) Particulate combustion catalyst and method for producing the same
CN112218718B (en) Exhaust gas purifying catalyst
JP7358157B2 (en) Complex oxide catalyst, porous composite, and method for producing complex oxide catalyst
JP2013092090A (en) Particulate filter with catalyst
WO2020031794A1 (en) Exhaust gas purification catalyst
JP2007275874A (en) Catalyst and particulate filter type catalyst for cleaning exhaust gas
JP2015077532A (en) Exhaust cleaning filter
JP6076936B2 (en) Exhaust purification filter
JP6483468B2 (en) Honeycomb structure
JP6581262B1 (en) Method for producing exhaust gas purification catalyst
WO2021059883A1 (en) Exhaust-gas-purifying catalyst production method
JP6526846B1 (en) Exhaust gas purification catalyst and method for producing the same
CN112512687B (en) Exhaust gas purifying catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6265813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees