WO2020031794A1 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
WO2020031794A1
WO2020031794A1 PCT/JP2019/029874 JP2019029874W WO2020031794A1 WO 2020031794 A1 WO2020031794 A1 WO 2020031794A1 JP 2019029874 W JP2019029874 W JP 2019029874W WO 2020031794 A1 WO2020031794 A1 WO 2020031794A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
pore diameter
catalyst layer
partition wall
Prior art date
Application number
PCT/JP2019/029874
Other languages
French (fr)
Japanese (ja)
Inventor
万陽 城取
大司 望月
豪人 高山
禎憲 高橋
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to CN201980036868.8A priority Critical patent/CN112218719B/en
Publication of WO2020031794A1 publication Critical patent/WO2020031794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to an exhaust gas purifying catalyst.
  • the exhaust gas discharged from the internal combustion engine contains particulate matter (PM) mainly composed of carbon, ash composed of non-combustible components, etc., and is known to cause air pollution.
  • PM particulate matter
  • the emission of particulate matter was strictly regulated in diesel engines, which emit relatively more particulate matter than gasoline engines, but in recent years, regulations on emission of particulate matter have also been tightened in gasoline engines. Is being done.
  • the properties such as viscosity and solid content of the slurry are adjusted, and one of the introduction-side cell and the discharge-side cell is pressurized to form the introduction-side cell.
  • a method of adjusting the permeation of the catalyst slurry into the partition walls by causing a pressure difference between the fuel cell and the discharge side cell is known (for example, see Patent Document 1).
  • the particulate filter as described in Patent Document 1 has a wall flow type structure from the viewpoint of removing particulate matter, and is configured so that exhaust gas passes through the pores of the partition walls.
  • soot collection performance there is still room for improvement in soot collection performance.
  • particulate matter emitted from automobile diesel engines has been regulated by emission mass.
  • the ultra-fine particles which easily enter the human body and are likely to have an effect on health, are hardly reflected in the numerical value. Therefore, in recent years, a PN (Particle Rate Number) regulation that regulates particles by the number of discharged particles has been introduced.
  • the amount of particulate matter emitted from a gasoline engine is different from the amount of particulate matter emitted from a diesel engine.
  • the PM particle number regulation (6 ⁇ 10 11 / km) in the case of a gasoline engine is said to correspond to 0.4 to 0.5 mg / km in terms of PM mass.
  • the regulation value of particulate matter in diesel engines is 5 mg / km (0.005 g / km). As described above, even with regard to the regulation of particulate matter, there is a difference in required collecting performance between a gasoline engine and a diesel engine.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust gas purifying catalyst in which soot collection performance is increased without increasing pressure loss in order to comply with PN regulations. is there.
  • the present invention is not limited to the object described above, and is an operation and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and also has an operation and effect that cannot be obtained by the conventional technology. It can be positioned for other purposes.
  • the present inventors have conducted intensive studies on a method for improving soot collecting performance. As a result, it has been found that the soot collection performance is improved by forming a catalyst layer that does not reduce the small-diameter pores suitable for soot collection, while reducing the large-diameter pores through which soot can easily pass,
  • the present invention has been completed. That is, the present invention provides various specific embodiments described below.
  • An exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine The introduction-side cell whose end on the exhaust gas introduction side is open, and the discharge-side cell whose end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall, , And a catalyst layer formed in the pores of the partition wall, In the pore diameter distribution, when the mode pore diameter of the partition wall of the wall flow type substrate is X, the mode pore diameter of the partition wall on which the catalyst layer is formed is 0.9X or less, Exhaust gas purification catalyst. [2] The mode pore diameter X of the partition wall of the wall flow type substrate is 10 to 30 ⁇ m; The exhaust gas purifying catalyst according to [1].
  • the mode pore diameter of the partition wall on which the catalyst layer is formed is 0.6X or more, The exhaust gas purifying catalyst according to [1] or [2].
  • the exhaust gas purifying catalyst according to any one of [1] to [3].
  • the internal combustion engine is a gasoline engine
  • the exhaust gas purifying catalyst according to any one of [1] to [4].
  • [6] A method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine, An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall.
  • the step of preparing A catalyst layer forming step of applying a catalyst slurry to at least a part of the pore surface in the partition wall of the wall flow type substrate to form a catalyst layer,
  • the catalyst layer forming step in the pore diameter distribution, when the mode pore diameter of the partition of the wall flow type substrate is X, the mode pore diameter of the partition on which the catalyst layer is formed is 0.9X or less.
  • the exhaust gas purifying catalyst can be effectively used as a gasoline particulate filter (GPF) supporting the catalyst, and the performance of an exhaust gas treatment system equipped with such a particulate filter can be further enhanced.
  • GPF gasoline particulate filter
  • FIG. 3 is a view showing a pore size distribution of Example 1, Comparative Example 1, and a substrate.
  • FIG. 9 is a graph showing a relationship between a soot collection rate and a pore narrowing ratio (a ratio of a mode pore diameter of a partition wall on which a catalyst layer is formed to a mode pore diameter of a partition wall of a wall flow type substrate) in Examples and Comparative Examples. is there.
  • the present invention will be described in detail.
  • the following embodiments are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these.
  • the present invention can be arbitrarily modified and implemented without departing from the gist thereof.
  • positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings unless otherwise specified.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • the “mode pore diameter” refers to the pore diameter (maximum value of the distribution) having the largest appearance ratio in the frequency distribution of the pore diameter
  • the “D30 pore diameter” refers to the minimum pore diameter of 1 ⁇ m.
  • the pore diameter when the integrated value from the small pore diameter reaches 30% of the whole is referred to.
  • D70 pore diameter is the volume-based pore diameter with the minimum pore diameter being 1 ⁇ m. Means the pore size when the integrated value from the small pore size reaches 70% of the total in the cumulative distribution of.
  • the “D90 particle size” refers to the particle size when the integrated value from the small particle size reaches 90% of the whole in the cumulative distribution of the volume-based particle size.
  • a numerical value or a property value is sandwiched before and after using “to”, it is used as including the values before and after.
  • the notation of the numerical range of “1 to 100” includes both the lower limit “1” and the upper limit “100”. The same applies to the notation of other numerical ranges.
  • the exhaust gas purifying catalyst of the present embodiment is an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine which is an internal combustion engine, and includes an inlet cell 11 having an open end 11a on the exhaust gas inlet side, A discharge-side cell 12 adjacent to the cell 11 and having an open end 12 a on the exhaust gas discharge side has a wall-flow-type substrate 10 defined by a porous partition wall 13, and a catalyst layer formed in pores of the partition wall 13.
  • the mode pore diameter of the partition 13 of the wall flow type substrate 10 is X
  • the mode pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.6X or more.
  • the D30 of the partition wall of the wall flow type substrate is Y
  • the D3 of the partition wall on which the catalyst layer is formed is D3.
  • the D70 pore diameter of the partition wall on which the catalyst layer is formed is 0.70 to 0.80Y. 0.90Z.
  • the exhaust gas purifying catalyst of the present embodiment has a wall flow type structure.
  • the exhaust gas discharged from the internal combustion engine flows into the introduction-side cell 11 from the end portion 11a (opening) on the exhaust gas introduction side, passes through the pores of the partition wall 13, and passes through. Flows into the adjacent discharge-side cell 12 and flows out from the end portion 12a (opening) on the exhaust gas discharge side.
  • the particulate matter (PM) that hardly passes through the pores of the partition 13 is generally deposited on the partition 13 in the introduction-side cell 11 and / or in the pores of the partition 13, and the deposited particulate matter is:
  • the fuel is removed by burning due to the catalytic function of the catalyst layer 21 or at a predetermined temperature (for example, about 500 to 700 ° C.).
  • the exhaust gas comes into contact with the catalyst layer 21 formed in the pores of the partition 13, whereby carbon monoxide (CO) and hydrocarbon (HC) contained in the exhaust gas are converted into water (H 2 O) and carbon dioxide ( CO 2 ) and the like, nitrogen oxides (NOx) are reduced to nitrogen (N 2 ), and harmful components are purified (made harmless).
  • the removal of particulate matter and the purification of harmful components such as carbon monoxide (CO) are also collectively referred to as “exhaust gas purification performance”.
  • each configuration will be described in more detail.
  • the collection mode of the particulate matter differs depending on the diameter.
  • the particle size of particulate matter discharged from a gasoline engine is generally about 100 nm.
  • the diffusion contribution of the particles is large. That is, it is considered that the filter is designed so as to reduce the diameter of the pores through which the particulate matter passes and to increase the frequency of contact with the particle, thereby leading to an improvement in the trapping performance of the particulate matter.
  • the exhaust gas purifying catalyst of the present embodiment reduces the large-diameter pores through which soot passes by reducing the pore diameter by forming the catalyst layer 21, and closes the pores by forming the catalyst layer 21.
  • the pore size distribution of the partition 13 before forming the catalyst layer 21 and the pore size distribution of the partition 13 on which the catalyst layer 21 is formed have a predetermined relationship. I do.
  • each pore diameter distribution is obtained.
  • the relationship between the respective pore diameter distributions is defined in more detail, the partition walls 13 before the formation of the catalyst layer 21 and the partition walls 13 on which the catalyst layer 21 is formed have a D30 pore diameter and a D70 pore diameter. The relationship is also specified.
  • the mode pore diameter of the partition 13 of the wall flow type substrate 10 is X
  • the mode pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.9X or less, and preferably 0 or less. It is 0.6X or more and 0.89X or less, more preferably 0.65X or more and 0.88X or less, and 0.65X or more and 0.85X or less.
  • the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.9X or less, soot collecting performance is further improved.
  • the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.6X or more, an increase in pressure loss tends to be further suppressed.
  • the multiplier of “0.9” in the notation of “0.9X” indicates a ratio of the mode pore diameter of the partition wall on which the catalyst layer is formed to the mode pore diameter of the partition wall of the wall flow type substrate. In 100% notation is also referred to as a pore narrowing ratio.
  • the pores narrowing ratio mode pore diameter called NR M
  • pore narrowing ratio of D30 pore diameter which will be described later called NR D30
  • NR D70 the pores narrowing ratio of D70 pore diameter of NR D70.
  • the pore size distribution with the minimum pore size of 1 ⁇ m is used.
  • the diameter of D30 pores of the partition 13 of the wall flow type substrate 10 is Y
  • the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.55Y or more and 0.80Y or less, preferably 0.60Y or more and 0.80Y or less, and more preferably 0.65Y or more and 0.80Y or less. And more preferably 0.65Y or more and 0.75Y or less.
  • the soot collecting performance tends to be further improved. Further, when the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.55Y or more, an increase in pressure loss tends to be further suppressed.
  • the D70 pore diameter of the partition wall of the flow-type base material is Z
  • the D70 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.70Z or more and 0.90Z or less, preferably 0.75Z or more and 0.90Z or less, more preferably 0.80Z or more and 0.90Z or less. It is.
  • pore narrowing rate NR M mode pore diameter D30 pore narrowing ratio of pore diameter NR D30 pore narrowing ratio NR D70 of D70 pore diameter preferably has the following relationship.
  • the ratio of the pore narrowing ratio NR D30 for pore narrowing rate NR M is preferably less than 1, more preferably 0.5 to 0.95, and more preferably 0.6 to 0 .9.
  • the ratio of the pore narrowing ratio NR D70 for pore narrowing rate NR M is preferably 0.9-1.3, more preferably 1.01 to 1.2 further Preferably it is 1.02 to 1.1.
  • the total pore volume of the exhaust gas purifying catalyst is 0.4 cc / g or more, more preferably 0.4 to 0.8 cc / g, and still more preferably 0.5 to 0.7 cc / g.
  • improvement in pressure loss tends to be further suppressed.
  • each pore diameter and total pore volume mean values calculated by the mercury intrusion method under the conditions described in the following examples.
  • the method for adjusting the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is not particularly limited.
  • the coating amount of the catalyst layer formed in the pores of the partition wall 13 Under the conditions of the coating amount, there is a method of reducing small-diameter pores closed by the catalyst layer 21.
  • a method of suppressing the blockage of the small-diameter pores there is a method of adjusting the viscosity of the catalyst slurry by adjusting the pH of the catalyst slurry to reduce the concentration of the catalyst slurry in the small-diameter pores due to the capillary phenomenon.
  • the mode pore diameter X, the D30 pore diameter Y, and the D70 pore diameter Z of the partition wall 13 before forming the catalyst layer 21 can be adjusted by selecting a wall flow type substrate.
  • the method for adjusting the D70 pore diameter of the partition wall on which the catalyst layer is formed and the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed can be the same as described above. Further, as a method of adjusting the total pore volume to a predetermined range, a method of adjusting the coating amount of the catalyst layer can be mentioned.
  • the wall flow type base material 10 has an introduction-side cell 11 having an open end 11a on the exhaust gas introduction side, and a discharge-side cell 12 having an open end 12a on the exhaust gas discharge side adjacent to the introduction-side cell 11 having a porous structure. It has a wall flow type structure which is separated by a quality partition wall 13.
  • the material of the base material may be exposed to high-temperature (for example, 400 ° C. or more) exhaust gas generated when the internal combustion engine is operated under high load conditions, or may be used to burn and remove particulate matter at a high temperature.
  • a material made of a heat-resistant material is preferable so as to be compatible.
  • the heat-resistant material include ceramics such as cordierite, mullite, aluminum titanate, and silicon carbide (SiC); and alloys such as stainless steel.
  • the shape of the base material can be appropriately adjusted from the viewpoint of exhaust gas purification performance, suppression of pressure loss rise, and the like.
  • the outer shape of the substrate can be a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, or the like.
  • the capacity of the base material is preferably 0.1 to 5 L, more preferably 0.5 to 3 L, although it depends on the space in which the substrate is incorporated.
  • the total length of the substrate in the stretching direction is preferably 10 to 500 mm, more preferably 50 to 300 mm.
  • the introduction-side cell 11 and the discharge-side cell 12 are regularly arranged along the axial direction of the cylindrical shape, and adjacent cells alternately have one open end and the other open end in the extending direction. It is sealed.
  • the introduction-side cell 11 and the discharge-side cell 12 can be set to appropriate shapes and sizes in consideration of the flow rate and components of the supplied exhaust gas.
  • the opening shapes of the inlet-side cell 11 and the outlet-side cell 12 can be triangular; rectangular such as square, parallelogram, rectangular, and trapezoidal; other polygons such as hexagonal and octagonal; circular.
  • the cross-sectional area of the introduction-side cell 11 and the cross-sectional area of the discharge-side cell 12 may have a High Ash Capacity (HAC) structure.
  • HAC High Ash Capacity
  • the number of the introduction-side cells 11 and the number of the discharge-side cells 12 can be appropriately set so as to promote the generation of turbulent flow of exhaust gas and to suppress clogging due to fine particles and the like contained in the exhaust gas.
  • it is preferably 200 cpsi to 400 cpsi.
  • the thickness (length in the thickness direction orthogonal to the stretching direction) of the partition wall 13 is preferably 6 to 12 mil, and more preferably 6 to 10 mil.
  • the partition wall 13 that separates adjacent cells is not particularly limited as long as it has a porous structure through which exhaust gas can pass, and the configuration thereof includes exhaust gas purification performance, suppression of increase in pressure loss, and mechanical strength of the substrate. It can be adjusted appropriately from the viewpoint of improvement of the quality.
  • the catalyst layer 21 is formed on the surface of the pores in the partition walls 13 using a catalyst slurry described later, when the mode pore diameter X and the pore volume are large, the pores are hardly clogged by the catalyst layer 21, and the Although the exhaust gas purifying catalyst tends to have a low pressure loss, the trapping capacity of particulate matter is reduced and the mechanical strength of the base material is also reduced.
  • the pore diameter and the pore volume are small, the pressure loss tends to increase, but the trapping ability of the particulate matter is improved and the mechanical strength of the base material tends to be improved.
  • the porosity of the partition wall 13 is preferably 20 to 80%, more preferably 40 to 70%, and further preferably 60 to 70%.
  • the porosity is equal to or more than the lower limit, an increase in pressure loss tends to be further suppressed.
  • the porosity is equal to or less than the upper limit, the strength of the base material tends to be further improved.
  • the porosity means a value calculated by the mercury porosimetry under the conditions described in the following examples.
  • the mode pore diameter X of the partition wall of the wall flow type base material is soot when the mode pore diameter of the partition wall 13 before the catalyst layer 21 is formed and the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed have the above relationships. From the viewpoint of exhibiting a more balanced collection performance and suppression of pressure loss increase.
  • the mode pore diameter X of the partition wall of the wall flow type substrate is preferably 10 to 30 ⁇ m, more preferably 12 to 28 ⁇ m, and further preferably 15 to 25 ⁇ m.
  • the catalyst layer 21 formed in the pores of the partition 13 will be described.
  • the catalyst layer 21 various modes used in conventional applications of this type can be used.
  • an embodiment of the catalyst layer 21 includes a catalyst layer obtained by firing a catalyst slurry containing catalyst metal particles and carrier particles.
  • the catalyst layer 21 formed by firing the catalyst slurry containing various particles as described above has a microporous structure in which the particles are welded by firing.
  • the catalyst metal contained in the catalyst layer 21 is not particularly limited, and various metal species that can function as various oxidation catalysts and reduction catalysts can be used.
  • platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used.
  • palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity
  • rhodium (Rh) is preferable from the viewpoint of reduction activity.
  • the catalyst layer 21 contains one or more catalyst metals in a mixed state as described above. In particular, when two or more kinds of catalyst metals are used in combination, a synergistic effect due to having different catalytic activities is expected.
  • the embodiment of the combination of such catalyst metals is not particularly limited, and a combination of two or more catalyst metals having excellent oxidation activity, a combination of two or more catalyst metals having excellent reduction activity, and a catalyst metal having excellent oxidation activity and reduction. Combinations of catalyst metals having excellent activity are mentioned. Among these, as one aspect of the synergistic effect, a combination of a catalyst metal having excellent oxidation activity and a catalyst metal having excellent reduction activity is preferable, and a combination containing at least Rh, Pd and Rh, or Pt and Rh is more preferable. With such a combination, the exhaust gas purification performance tends to be further improved.
  • the fact that the catalyst layer 21 contains the catalyst metal can be confirmed by a scanning electron microscope or the like on the cross section of the partition wall 13 of the exhaust gas purifying catalyst. Specifically, it can be confirmed by performing energy dispersive X-ray analysis in the field of view of a scanning electron microscope.
  • oxygen storage materials such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • OSC materials oxygen storage materials
  • cerium oxide ceria: CeO 2
  • CZ composite oxide ceria-zirconia composite oxide
  • aluminum oxide alumina: Al 2 O 3
  • zirconium oxide zirconia: ZrO 2
  • oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • the oxygen storage material means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel.
  • the amount of the catalyst layer of the exhaust gas purifying catalyst 100 is an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine, in particular, a gasoline engine, and particularly used for collecting particulate matter.
  • Coating amount of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g. / L.
  • the production method of the present embodiment is a method for producing an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine as an internal combustion engine.
  • the production method includes: an introduction-side cell 11 having an open end 11a on the exhaust gas introduction side; A step S0 of preparing a wall flow type base material 10 defined by a porous partition wall 13 and a discharge side cell 12 adjacent to the introduction side cell 11 and having an open end 12a on the exhaust gas discharge side; A catalyst slurry is applied to at least a part of the pore surface in the partition 13 of the material 10 to form a catalyst layer 21; and a catalyst layer forming step S1 is performed in the catalyst layer forming step S1.
  • the mode pore size of the partition 13 of the wall flow type substrate 10 is X
  • the mode pore size of the partition 13 on which the catalyst layer 21 is formed is 0.6X or more and 0.9X or less.
  • the D30 pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.55 to Exhaust gas wherein the D70 pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.70 to 0.90Z, where Z is the D70 pore diameter of the partition 13 of the wall flow type substrate 10. It is characterized in that the purification catalyst 100 is obtained.
  • the wall flow type base material before forming the catalyst layer 21 is referred to as “base material 10”, and the wall flow type base material after forming the catalyst layer 21 is referred to as “exhaust gas purifying catalyst 100”. ".
  • a catalyst slurry is applied to the pore surfaces of the partition walls 13, dried, and fired to form the catalyst layer 21.
  • the method for applying the catalyst slurry is not particularly limited.
  • a method in which a part of the base material 10 is impregnated with the catalyst slurry and spread over the entire partition 13 of the base material 10 is exemplified. More specifically, the impregnating step S1a of impregnating the catalyst slurry into the end portion 11a on the exhaust gas introduction side or the end portion 12a on the exhaust gas discharge side, and gas is introduced into the base material 10 from the end portion impregnated with the catalyst slurry.
  • a method including a coating step S1b for coating the partition walls 13 with the catalyst slurry impregnated in the base material 10 by introducing the base material 10 may be used.
  • the method of impregnating the catalyst slurry in the impregnation step S1a is not particularly limited, and includes, for example, a method of immersing the end of the base material 10 in the catalyst slurry.
  • the catalyst slurry may be pulled up by discharging (sucking) gas from the opposite end.
  • the end to be impregnated with the catalyst slurry may be either the end 11a on the exhaust gas introduction side or the end 12a on the exhaust gas discharge side, but it is preferable to impregnate the end 11a on the exhaust gas introduction side with the catalyst slurry.
  • the gas can be introduced in the coating step S1b in the same direction as the exhaust gas introduction direction, and the catalyst slurry can be applied to the complicated pore shape along the flow of the exhaust gas. Therefore, suppression of a rise in pressure loss of the obtained exhaust gas purifying catalyst is expected, and improvement in exhaust gas purifying performance can be expected.
  • the catalyst slurry moves from the introduction side of the substrate 10 to the back along the flow of the gas F, and reaches the end on the gas F discharge side.
  • the catalyst slurry can be applied to the inside of the pores by passing the catalyst slurry through the inside of the pores of the partition 13, and the catalyst slurry is applied to the entire partition.
  • the coated catalyst slurry is dried.
  • the drying conditions in the drying step S1c are not particularly limited as long as the solvent evaporates from the catalyst slurry.
  • the drying temperature is preferably from 100 to 225 ° C, more preferably from 100 to 200 ° C, and even more preferably from 125 to 175 ° C.
  • the drying time is preferably 0.5 to 2 hours, and preferably 0.5 to 1.5 hours.
  • the catalyst slurry is fired to form the catalyst layer 21.
  • the firing conditions in the firing step S1d are not particularly limited as long as the catalyst layer 21 can be formed from the catalyst slurry.
  • the firing temperature is not particularly limited, but is preferably from 400 to 650 ° C, more preferably from 450 to 600 ° C, and still more preferably from 500 to 600 ° C.
  • the firing time is preferably 0.5 to 2 hours, preferably 0.5 to 1.5 hours.
  • the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 obtained through the calcination step S1d is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g. / L.
  • the catalyst slurry for forming the catalyst layer 21 will be described.
  • the catalyst slurry contains a catalyst powder and a solvent such as water.
  • the catalyst powder is a group of a plurality of catalyst particles including catalyst metal particles and carrier particles supporting the catalyst metal particles, and forms the catalyst layer 21 through a firing step described later.
  • the catalyst particles are not particularly limited, and can be appropriately selected from known catalyst particles and used.
  • the solid content of the catalyst slurry is preferably 1 to 50% by mass, more preferably 15 to 40% by mass, and still more preferably 20 to 40% by mass, from the viewpoint of coatability into the pores of the partition wall 13. 35% by mass. With such a solid content ratio, the catalyst slurry tends to be easily applied to the introduction-side cells 11 in the partition walls 13.
  • the D90 particle size of the catalyst powder contained in the catalyst slurry is preferably 1 to 7 ⁇ m, more preferably 1 to 5 ⁇ m, and still more preferably 1 to 3 ⁇ m.
  • the D90 particle diameter is 1 ⁇ m or more, the pulverization time when the catalyst powder is crushed by a milling device can be reduced, and the working efficiency tends to be further improved.
  • the D90 particle diameter is 7 ⁇ m or less, it is suppressed that the coarse particles block the pores in the partition wall 13 and the increase in pressure loss tends to be suppressed.
  • the D90 particle size can be measured with a laser diffraction particle size distribution analyzer (eg, a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation).
  • the catalyst metal contained in the catalyst slurry is not particularly limited, and various metal species that can function as various oxidation catalysts and reduction catalysts can be used.
  • platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used.
  • palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity
  • rhodium (Rh) is preferable from the viewpoint of reduction activity.
  • oxygen storage materials such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • OSC materials oxygen storage materials
  • cerium oxide ceria: CeO 2
  • CZ composite oxide ceria-zirconia composite oxide
  • aluminum oxide alumina: Al 2 O 3
  • zirconium oxide zirconia: ZrO 2
  • oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components.
  • the carrier particles may be a composite oxide or a solid solution to which a rare earth element such as lanthanum or yttrium, a transition metal element, or an alkaline earth metal element is added.
  • These carrier particles may be used alone or in combination of two or more.
  • the oxygen storage material means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel.
  • the specific surface area of the carrier particles contained in the catalyst slurry is preferably from 10 to 500 m 2 / g, and more preferably from 30 to 200 m 2 / g.
  • a catalyst layer is formed that reduces large-diameter pores through which soot easily passes and does not decrease small-diameter pores suitable for soot collection. Accordingly, when the mode pore diameter of the partition 13 of the wall flow type substrate 10 is X, the mode pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.6X or more and 0.9X or less, In the pore diameter distribution having a pore diameter of 1 ⁇ m, when the D30 pore diameter of the partition wall of the wall flow type substrate 10 is Y, the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.55 to 0.80 Y.
  • the exhaust gas purification in which the D70 pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.70 to 0.90Z.
  • the medium 100 the catalyst slurry can have various properties, such as a property of easily drying in a state of infiltration into small-diameter pores due to a capillary phenomenon and a property of not easily penetrating into small-diameter pores.
  • the pore diameter can be reduced by forming the catalyst layer 21 in the large-diameter pores, soot can easily pass through.
  • An air-fuel mixture containing oxygen and fuel gas is supplied to an internal combustion engine, and the air-fuel mixture is burned to convert combustion energy into mechanical energy.
  • the air-fuel mixture burned at this time is discharged as exhaust gas to an exhaust system.
  • the exhaust system is provided with an exhaust gas purifying device provided with an exhaust gas purifying catalyst, and harmful components (for example, carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) contained in exhaust gas by the exhaust gas purifying catalyst are provided. )) Is purified, and particulate matter (PM) contained in the exhaust gas is collected and removed.
  • the exhaust gas purifying catalyst 100 of the present embodiment is preferably used for a gasoline particulate filter (GPF) that can collect and remove particulate matter contained in exhaust gas of a gasoline engine.
  • GPF gasoline particulate filter
  • Example 1 Alumina powder, zirconia powder and ceria-zirconia composite oxide powder were impregnated with an aqueous solution of palladium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Pd-supported powder. Further, an alumina powder and a zirconia powder were impregnated with an aqueous solution of rhodium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Rh-supported powder.
  • a cordierite wall flow type honeycomb substrate (cell number / mil thickness: 300 cpsi / 8.5 mil, diameter: 118.4 mm, total length: 127 mm, mode pore diameter X: 20 ⁇ m, porosity: 65%) is prepared.
  • the end of the base material on the exhaust gas introduction side was immersed in the catalyst slurry, and vacuum suction was performed from the opposite end side to impregnate and hold the catalyst slurry at the end of the base material.
  • By flowing gas into the base material from the end on the exhaust gas introduction side coating the catalyst slurry on the pore surface in the partition wall, and blowing off excess catalyst slurry from the end on the exhaust gas discharge side of the base material The gas flow was stopped.
  • the base material coated with the catalyst slurry was dried at 150 ° C., and then calcined at 550 ° C. in an air atmosphere to prepare an exhaust gas purifying catalyst.
  • the coating amount of the catalyst layer after the firing was 59.1 g (excluding the weight of the platinum group metal) per 1 L of the base material.
  • Example 2 An alumina powder was impregnated with an aqueous solution of palladium nitrate to obtain a Pd-supported powder. Further, an alumina powder was impregnated with an aqueous rhodium nitrate solution to obtain a Rh-supported powder.
  • Exhaust gas purification catalyst was prepared in the same manner as in Example 1 except that the obtained Pd-supported powder and Rh-supported powder were mixed with ceria-zirconia composite oxide powder, a 46% lanthanum nitrate aqueous solution, and ion-exchanged water. did.
  • the coating amount of the catalyst layer after firing was 60.9 g per 1 L of the substrate (excluding the weight of the platinum group metal).
  • Example 3 An exhaust gas purifying catalyst was prepared in the same manner as in Example 1 except that 44.9 g of ammonium carbonate (pH adjuster) was mixed with the obtained catalyst slurry to obtain a catalyst slurry having a pH of 5.1. .
  • the coating amount of the catalyst layer after firing was 60.0 g (excluding the weight of the platinum group metal) per 1 L of the base material.
  • Example 4 An aqueous solution of palladium nitrate was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. Further, an rhodium nitrate aqueous solution was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Rh-supporting powder.
  • Example 2 was repeated except that 33 g of ammonium carbonate (pH adjuster) was mixed with the catalyst slurry prepared using the obtained Pd-supported powder and Rh-supported powder to obtain a catalyst slurry having a pH of 5.1. Similarly, an exhaust gas purifying catalyst was produced. The coating amount of the catalyst layer after firing was 62.0 g per 1 L of the substrate (excluding the weight of the platinum group metal).
  • Example 5 An aqueous solution of palladium nitrate was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. In addition, a rhodium nitrate aqueous solution was impregnated into the zirconia powder to obtain a Rh-supported powder. The obtained Pd-supported powder and Rh-supported powder, the ceria-zirconia composite oxide powder, a 46% lanthanum nitrate aqueous solution, and ion-exchanged water were mixed, and 96 g of barium hydroxide octahydrate was added to the obtained catalyst slurry.
  • Example 1 An exhaust gas purifying catalyst was prepared in the same manner as in Example 1, except that barium hydroxide octahydrate and 60% nitric acid were not mixed with the catalyst slurry in the preparation of the catalyst slurry.
  • the coating amount of the catalyst layer after firing was 60.0 g (excluding the weight of the platinum group metal) per 1 L of the base material.
  • Example 2 An exhaust gas purifying catalyst was prepared in the same manner as in Example 1, except that barium hydroxide octahydrate and 60% nitric acid were not mixed with the catalyst slurry in the preparation of the catalyst slurry.
  • the coating amount of the catalyst layer after firing was 60.9 g per 1 L of the substrate (excluding the weight of the platinum group metal).
  • the D90 particle size of the catalyst slurry was measured by a laser scattering method using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation.
  • the low pressure region (0 to 400 Kpa) was measured by PASCAL140, and the high pressure region (0.1 Mpa to 400 Mpa) was measured by PASCAL440.
  • the mode pore diameter, D30 pore diameter, and D70 pore diameter were determined, and the pore volume of pores having a pore diameter of 1 ⁇ m or more was calculated.
  • the values of the pore diameter and the pore volume the average values of the values obtained in the exhaust gas introduction side portion, the exhaust gas discharge side portion, and the intermediate portion were used.
  • FIG. 2 shows the pore volume distributions of the example and the comparative example.
  • the results are shown as a relationship between the pore narrowing ratio (the ratio of the mode pore diameter of the partition wall on which the catalyst layer is formed to the mode pore diameter of the partition wall of the wall flow type base material) and the soot collection rate in Examples and Comparative Examples. Are collectively shown in FIG. As shown in FIG. 3, there is a correlation between the pore narrowing rate and the soot collection rate.
  • the exhaust gas purifying catalyst of the present invention can be widely and effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of a gasoline engine. Further, the exhaust gas purifying catalyst of the present invention can be effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of not only gasoline engines but also jet engines, boilers, gas turbines and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

An exhaust gas purification catalyst that purifies exhaust gas discharged from an internal combustion engine, wherein the exhaust gas purification catalyst has: a wall-flow-type base material, in which an introduction-side cell having an end opened on the exhaust-gas-introduction side and a discharge-side cell adjacent to the introduction-side cell and having an end opened on the exhaust-gas-discharge side are divided by a porous partition wall; and a catalyst layer formed in the pores of the partition wall. In the pore diameter distribution, the mode pore diameter of the partition wall where the catalyst layer is formed is 0.9X or less, where X is the mode pore diameter of the partition wall of the wall-flow-type base material.

Description

排ガス浄化触媒Exhaust gas purification catalyst
 本発明は、排ガス浄化触媒に関する。 The present invention relates to an exhaust gas purifying catalyst.
 内燃機関から排出される排ガスには、炭素を主成分とする粒子状物質(PM)、不燃成分からなるアッシュなどが含まれ、大気汚染の原因となることが知られている。従来、ガソリンエンジンよりも比較的に粒子状物質を排出しやすいディーゼルエンジンでは、粒子状物質の排出量が厳しく規制されていたが、近年、ガソリンエンジンにおいても粒子状物質の排出量の規制が強化されつつある。 排 ガ ス The exhaust gas discharged from the internal combustion engine contains particulate matter (PM) mainly composed of carbon, ash composed of non-combustible components, etc., and is known to cause air pollution. Conventionally, the emission of particulate matter was strictly regulated in diesel engines, which emit relatively more particulate matter than gasoline engines, but in recent years, regulations on emission of particulate matter have also been tightened in gasoline engines. Is being done.
 粒子状物質の排出量を低減するための手段としては、内燃機関の排ガス通路に粒子状物質を堆積させ捕集することを目的としたパティキュレートフィルタを設ける方法が知られている。特に、近年では、搭載スペースの省スペース化等の観点から、粒子状物質の排出抑制と、一酸化炭素(CO)、炭化水素(HC)及び窒素酸化物(NOx)等の有害成分の除去を同時に行うために、パティキュレートフィルタに触媒スラリーを塗工し、これを焼成することで触媒層を設けることが検討されている。 As a means for reducing the emission of particulate matter, there is known a method of providing a particulate filter for depositing and collecting particulate matter in an exhaust gas passage of an internal combustion engine. In particular, in recent years, from the viewpoint of space saving of mounting space, etc., emission control of particulate matter and removal of harmful components such as carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) have been carried out. In order to perform the treatment at the same time, it has been studied to apply a catalyst slurry to a particulate filter and to provide a catalyst layer by firing the catalyst slurry.
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を備えるパティキュレートフィルタに対して、このような触媒層の形成方法としては、スラリーの粘度や固形分率などの性状を調整し、導入側セル又は排出側セルの一方を加圧して、導入側セルと排出側セルに圧力差を生じさせることにより、触媒スラリーの隔壁内への浸透を調整する方法が知られている(例えば、特許文献1参照)。 An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall. With respect to the particulate filter provided, as a method for forming such a catalyst layer, the properties such as viscosity and solid content of the slurry are adjusted, and one of the introduction-side cell and the discharge-side cell is pressurized to form the introduction-side cell. A method of adjusting the permeation of the catalyst slurry into the partition walls by causing a pressure difference between the fuel cell and the discharge side cell is known (for example, see Patent Document 1).
WO2016/060048WO2016 / 060048
 特許文献1に記載されるようなパティキュレートフィルタは、粒子状物質の除去の観点からウォールフロー型構造を有し、排ガスが隔壁の気孔内を通過するように構成される。しかしながら、スス捕集性能に関して、依然として改善の余地がある。 パ The particulate filter as described in Patent Document 1 has a wall flow type structure from the viewpoint of removing particulate matter, and is configured so that exhaust gas passes through the pores of the partition walls. However, there is still room for improvement in soot collection performance.
 また、従来、自動車のディーゼルエンジンから排出される粒子状物質は排出質量で規制されてきた。しかし、排出質量では人体に侵入しやすく健康への影響が懸念されている超微小粒子は数値に反映されにくい。そのため、近年では排出個数で粒子を規制するPN(Particulate Number)規制が導入されている。 従 来 Also, particulate matter emitted from automobile diesel engines has been regulated by emission mass. However, the ultra-fine particles, which easily enter the human body and are likely to have an effect on health, are hardly reflected in the numerical value. Therefore, in recent years, a PN (Particle Rate Number) regulation that regulates particles by the number of discharged particles has been introduced.
 これまでは、ガソリンエンジンでは粒子状物質の排出質量がディーゼルエンジンに比べて極めて少なかった。そのため、ガソリンエンジンに対する粒子状物質の排出質量規制はディーゼルエンジンに比べると積極的に行われてこなかった。しかし、近年ではガソリンエンジン向けにPN規制が導入されつつある。 ガ ソ リ ン In the past, gasoline engines emitted much less particulate matter than diesel engines. Therefore, emission control of particulate matter for gasoline engines has not been actively carried out compared to diesel engines. In recent years, however, PN regulations have been introduced for gasoline engines.
 ガソリンエンジンにおいて排出される粒子状物質の量と、ディーゼルエンジンにおいて排出される粒子状物質の量は異なるものである。例えば、ガソリンエンジンの場合のPM粒子数規制(6×1011/km)は、PM質量に換算すると0.4~0.5mg/kmに相当するといわれる。これに対し、ディーゼルエンジンにおける粒子状物質の規制値は5mg/km(0.005g/km)とされている。このように、粒子状物質の規制と言えど、ガソリンエンジンとディーゼルエンジンとは、求められる捕集性能に違いがある。 The amount of particulate matter emitted from a gasoline engine is different from the amount of particulate matter emitted from a diesel engine. For example, the PM particle number regulation (6 × 10 11 / km) in the case of a gasoline engine is said to correspond to 0.4 to 0.5 mg / km in terms of PM mass. On the other hand, the regulation value of particulate matter in diesel engines is 5 mg / km (0.005 g / km). As described above, even with regard to the regulation of particulate matter, there is a difference in required collecting performance between a gasoline engine and a diesel engine.
 一般的に、捕集性能を向上させようとすれば、目の細かいフィルターを用いることとなり圧力損失の増大を招く。そのため、ディーゼルエンジンとは燃焼方式や排気温度などが全く異なるガソリンエンジンに対するPN規制に対応しつつ、圧力損失を増加させずに、ガソリンエンジンから排出されるススの排出個数の低減を達成可能な技術が望まれる。 Generally, in order to improve the trapping performance, a fine filter is used, which causes an increase in pressure loss. Therefore, technology that can reduce the number of soot emissions from gasoline engines without increasing pressure loss while complying with PN regulations for gasoline engines whose combustion method and exhaust temperature are completely different from diesel engines Is desired.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、PN規制に対応すべく、圧力損失を増大させずにススの捕集性能が高められた排ガス浄化触媒を提供することにある。なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust gas purifying catalyst in which soot collection performance is increased without increasing pressure loss in order to comply with PN regulations. is there. In addition, the present invention is not limited to the object described above, and is an operation and effect derived from each configuration shown in the embodiment for carrying out the invention described later, and also has an operation and effect that cannot be obtained by the conventional technology. It can be positioned for other purposes.
 本発明者らは、ススの捕集性能の向上方法について鋭意検討を重ねた。その結果、ススが通過しやすい大径の気孔を減少させるとともに、スス捕集に適した小径の気孔を減少させないような触媒層を形成することによりススの捕集性能が向上することを見出し、本発明を完成するに至った。すなわち、本発明は、以下に示す種々の具体的態様を提供する。 The present inventors have conducted intensive studies on a method for improving soot collecting performance. As a result, it has been found that the soot collection performance is improved by forming a catalyst layer that does not reduce the small-diameter pores suitable for soot collection, while reducing the large-diameter pores through which soot can easily pass, The present invention has been completed. That is, the present invention provides various specific embodiments described below.
〔1〕
 内燃機関から排出される排ガスを浄化する排ガス浄化触媒であって、
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、
 前記隔壁の気孔内に形成された触媒層と、を有し、
 気孔径分布において、前記ウォールフロー型基材の前記隔壁のモード気孔径をXとしたときに、前記触媒層が形成された前記隔壁のモード気孔径が0.9X以下である、
 排ガス浄化触媒。
〔2〕
 前記ウォールフロー型基材の前記隔壁の前記モード気孔径Xが、10~30μmである、
 〔1〕に記載の排ガス浄化触媒。
〔3〕
 前記触媒層が形成された前記隔壁の前記モード気孔径が、0.6X以上である、
 〔1〕又は〔2〕に記載の排ガス浄化触媒。
〔4〕
 最小気孔径を1μmとする気孔径分布において、
 前記ウォールフロー型基材の隔壁のD30気孔径をYとしたときに、前記触媒層が形成された前記隔壁のD30気孔径が0.6~0.9Yであり、
 前記ウォールフロー型基材の隔壁のD70気孔径をZとしたときに、前記触媒層が形成された前記隔壁のD70気孔径が0.5~0.8Zである、
 〔1〕~〔3〕のいずれか1項に記載の排ガス浄化触媒。
〔5〕
 前記内燃機関が、ガソリンエンジンである、
 〔1〕~〔4〕のいずれか一項に記載の排ガス浄化触媒。
〔6〕
 内燃機関から排出される排ガスを浄化する排ガス浄化触媒の製造方法であって、
 排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を準備する工程と、
 前記ウォールフロー型基材の前記隔壁内の気孔表面上の少なくとも一部に、触媒スラリーを塗工して、触媒層を形成する触媒層形成工程と、を有し、
 該触媒層形成工程において、気孔径分布において、前記ウォールフロー型基材の隔壁のモード気孔径をXとしたときに、前記触媒層が形成された前記隔壁のモード気孔径が0.9X以下である前記排ガス浄化触媒を得る、
 排ガス浄化触媒の製造方法。
〔7〕
 前記内燃機関が、ガソリンエンジンである、
 〔6〕に記載の排ガス浄化触媒の製造方法。
[1]
An exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine,
The introduction-side cell whose end on the exhaust gas introduction side is open, and the discharge-side cell whose end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall, ,
And a catalyst layer formed in the pores of the partition wall,
In the pore diameter distribution, when the mode pore diameter of the partition wall of the wall flow type substrate is X, the mode pore diameter of the partition wall on which the catalyst layer is formed is 0.9X or less,
Exhaust gas purification catalyst.
[2]
The mode pore diameter X of the partition wall of the wall flow type substrate is 10 to 30 μm;
The exhaust gas purifying catalyst according to [1].
[3]
The mode pore diameter of the partition wall on which the catalyst layer is formed is 0.6X or more,
The exhaust gas purifying catalyst according to [1] or [2].
[4]
In the pore size distribution where the minimum pore size is 1 μm,
When the D30 pore diameter of the partition wall of the wall flow type substrate is Y, the D30 pore diameter of the partition wall on which the catalyst layer is formed is 0.6 to 0.9Y,
When the D70 pore diameter of the partition wall of the wall flow type substrate is Z, the D70 pore diameter of the partition wall on which the catalyst layer is formed is 0.5 to 0.8Z.
The exhaust gas purifying catalyst according to any one of [1] to [3].
[5]
The internal combustion engine is a gasoline engine,
The exhaust gas purifying catalyst according to any one of [1] to [4].
[6]
A method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine,
An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall. The step of preparing,
A catalyst layer forming step of applying a catalyst slurry to at least a part of the pore surface in the partition wall of the wall flow type substrate to form a catalyst layer,
In the catalyst layer forming step, in the pore diameter distribution, when the mode pore diameter of the partition of the wall flow type substrate is X, the mode pore diameter of the partition on which the catalyst layer is formed is 0.9X or less. Obtaining the exhaust gas purifying catalyst,
A method for producing an exhaust gas purifying catalyst.
[7]
The internal combustion engine is a gasoline engine,
The method for producing an exhaust gas purifying catalyst according to [6].
 本発明によれば、ススの捕集性能が高められた排ガス浄化触媒等を提供することができる。そして、この排ガス浄化触媒は、触媒を担持したガソリンパティキュレートフィルタ(GPF)として有効に利用することができ、このようなパティキュレートフィルタを搭載した排ガス処理システムの一層の高性能化が図られる。 According to the present invention, it is possible to provide an exhaust gas purifying catalyst and the like having improved soot trapping performance. The exhaust gas purifying catalyst can be effectively used as a gasoline particulate filter (GPF) supporting the catalyst, and the performance of an exhaust gas treatment system equipped with such a particulate filter can be further enhanced.
本実施形態の排ガス浄化触媒の一態様を模式的に示す断面図である。It is a sectional view showing typically one mode of an exhaust gas purification catalyst of this embodiment. 実施例1、比較例1及び基材の気孔径分布を示す図である。FIG. 3 is a view showing a pore size distribution of Example 1, Comparative Example 1, and a substrate. 実施例及び比較例における、気孔狭小率(ウォールフロー型基材の隔壁のモード気孔径に対する、触媒層が形成された隔壁のモード気孔径の割合)とスス捕集率との関係を示す図である。FIG. 9 is a graph showing a relationship between a soot collection rate and a pore narrowing ratio (a ratio of a mode pore diameter of a partition wall on which a catalyst layer is formed to a mode pore diameter of a partition wall of a wall flow type substrate) in Examples and Comparative Examples. is there.
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。本明細書において、「モード気孔径」とは、気孔径の頻度分布における出現比率がもっとも大きい気孔径(分布の極大値)をいい、「D30気孔径」とは、最小気孔径を1μmとする体積基準の気孔径の累積分布において小孔径からの積算値が全体の30%に達したときの気孔径をいい、「D70気孔径」とは、最小気孔径を1μmとする体積基準の気孔径の累積分布において小孔径からの積算値が全体の70%に達したときの気孔径をいう。また、「D90粒子径」とは、体積基準の粒子径の累積分布において小粒径からの積算値が全体の90%に達したときの粒子径をいう。また、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。 Hereinafter, embodiments of the present invention will be described in detail. The following embodiments are examples (representative examples) of the embodiments of the present invention, and the present invention is not limited to these. In addition, the present invention can be arbitrarily modified and implemented without departing from the gist thereof. In this specification, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. The dimensional ratios in the drawings are not limited to the illustrated ratios. In this specification, the “mode pore diameter” refers to the pore diameter (maximum value of the distribution) having the largest appearance ratio in the frequency distribution of the pore diameter, and the “D30 pore diameter” refers to the minimum pore diameter of 1 μm. In the cumulative distribution of volume-based pore diameters, the pore diameter when the integrated value from the small pore diameter reaches 30% of the whole is referred to. "D70 pore diameter" is the volume-based pore diameter with the minimum pore diameter being 1 µm. Means the pore size when the integrated value from the small pore size reaches 70% of the total in the cumulative distribution of. The “D90 particle size” refers to the particle size when the integrated value from the small particle size reaches 90% of the whole in the cumulative distribution of the volume-based particle size. Further, in the present specification, when a numerical value or a property value is sandwiched before and after using “to”, it is used as including the values before and after. For example, the notation of the numerical range of “1 to 100” includes both the lower limit “1” and the upper limit “100”. The same applies to the notation of other numerical ranges.
[排ガス浄化触媒]
 本実施形態の排ガス浄化触媒は、内燃機関であるガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒100であって、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13により画定されたウォールフロー型基材10と、隔壁13の気孔内に形成された触媒層21と、を有し、気孔径分布において、ウォールフロー型基材10の隔壁13のモード気孔径をXとしたときに、触媒層21が形成された隔壁13のモード気孔径が0.6X以上0.9X以下であり、最小気孔径を1μmとする気孔径分布において、前記ウォールフロー型基材の隔壁のD30気孔径をYとしたときに、前記触媒層が形成された前記隔壁のD30気孔径が0.55~0.80Yであり、前記ウォールフロー型基材の隔壁のD70気孔径をZとしたときに、前記触媒層が形成された前記隔壁のD70気孔径が0.70~0.90Zであることを特徴とする。
[Exhaust gas purification catalyst]
The exhaust gas purifying catalyst of the present embodiment is an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine which is an internal combustion engine, and includes an inlet cell 11 having an open end 11a on the exhaust gas inlet side, A discharge-side cell 12 adjacent to the cell 11 and having an open end 12 a on the exhaust gas discharge side has a wall-flow-type substrate 10 defined by a porous partition wall 13, and a catalyst layer formed in pores of the partition wall 13. In the pore diameter distribution, when the mode pore diameter of the partition 13 of the wall flow type substrate 10 is X, the mode pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.6X or more. In a pore size distribution of 0.9X or less and a minimum pore size of 1 μm, when the pore size D30 of the partition wall of the wall flow type substrate is Y, the D3 of the partition wall on which the catalyst layer is formed is D3. When the pore diameter is 0.55 to 0.80Y and the D70 pore diameter of the partition wall of the wall flow type substrate is Z, the D70 pore diameter of the partition wall on which the catalyst layer is formed is 0.70 to 0.80Y. 0.90Z.
 以下、図1に示す、本実施形態の排ガス浄化触媒を模式的に示す断面図を参照しつつ、各構成について説明する。本実施形態の排ガス浄化触媒はウォールフロー型構造を有する。このような構造を有する排ガス浄化触媒100では、内燃機関から排出される排ガスが、排ガス導入側の端部11a(開口)から導入側セル11内へと流入し、隔壁13の気孔内を通過して隣接する排出側セル12内へ流入し、排ガス排出側の端部12a(開口)から流出する。この過程において、隔壁13の気孔内を通り難い粒子状物質(PM)は、一般に、導入側セル11内の隔壁13上及び/又は隔壁13の気孔内に堆積し、堆積した粒子状物質は、触媒層21の触媒機能によって、或いは所定の温度(例えば500~700℃程度)で燃焼し、除去される。また、排ガスは、隔壁13の気孔内に形成された触媒層21と接触し、これによって排ガスに含まれる一酸化炭素(CO)や炭化水素(HC)は水(HO)や二酸化炭素(CO)などへ酸化され、窒素酸化物(NOx)は窒素(N)へ還元され、有害成分が浄化(無害化)される。なお、本明細書においては、粒子状物質の除去及び一酸化炭素(CO)等の有害成分の浄化をまとめて「排ガス浄化性能」ともいう。以下、各構成についてより詳細に説明する。 Hereinafter, each configuration will be described with reference to a cross-sectional view schematically illustrating the exhaust gas purification catalyst of the present embodiment illustrated in FIG. 1. The exhaust gas purifying catalyst of the present embodiment has a wall flow type structure. In the exhaust gas purifying catalyst 100 having such a structure, the exhaust gas discharged from the internal combustion engine flows into the introduction-side cell 11 from the end portion 11a (opening) on the exhaust gas introduction side, passes through the pores of the partition wall 13, and passes through. Flows into the adjacent discharge-side cell 12 and flows out from the end portion 12a (opening) on the exhaust gas discharge side. In this process, the particulate matter (PM) that hardly passes through the pores of the partition 13 is generally deposited on the partition 13 in the introduction-side cell 11 and / or in the pores of the partition 13, and the deposited particulate matter is: The fuel is removed by burning due to the catalytic function of the catalyst layer 21 or at a predetermined temperature (for example, about 500 to 700 ° C.). Further, the exhaust gas comes into contact with the catalyst layer 21 formed in the pores of the partition 13, whereby carbon monoxide (CO) and hydrocarbon (HC) contained in the exhaust gas are converted into water (H 2 O) and carbon dioxide ( CO 2 ) and the like, nitrogen oxides (NOx) are reduced to nitrogen (N 2 ), and harmful components are purified (made harmless). In this specification, the removal of particulate matter and the purification of harmful components such as carbon monoxide (CO) are also collectively referred to as “exhaust gas purification performance”. Hereinafter, each configuration will be described in more detail.
 (気孔径)
 ガソリンエンジンはディーゼルエンジンよりもより高温で稼働するため、排ガスに含まれる粒子状物質の径はディーゼルエンジンよりもより小さくなる傾向にある。粒子状物質は、その径によって捕集モードが異なる。ガソリンエンジンから排出される粒子状物質の粒子径は一般に百nm程度である。このような小径の粒子状物質の捕集モードとしては、粒子の拡散寄与が大きい。つまり、フィルターにおいては粒子状物質が通過する細孔の径を狭小化し、粒子との接触頻度を向上するように設計することで粒子状物質の捕集性能の向上に繋がると考えられる。
(Pore diameter)
Since gasoline engines operate at higher temperatures than diesel engines, the size of particulate matter in exhaust gas tends to be smaller than diesel engines. The collection mode of the particulate matter differs depending on the diameter. The particle size of particulate matter discharged from a gasoline engine is generally about 100 nm. As a mode for trapping such small-diameter particulate matter, the diffusion contribution of the particles is large. That is, it is considered that the filter is designed so as to reduce the diameter of the pores through which the particulate matter passes and to increase the frequency of contact with the particle, thereby leading to an improvement in the trapping performance of the particulate matter.
 これを踏まえ、本実施形態の排ガス浄化触媒は、触媒層21の形成により気孔径を小径化することでススが通過しやすい大径の気孔を減少させるとともに、触媒層21の形成による気孔の閉塞を抑制することでスス捕集に適した小径の気孔を維持することにより、スス捕集性能を向上させる。このような観点から、本実施形態においては、触媒層21を形成する前の隔壁13の気孔径分布と、触媒層21が形成された隔壁13の気孔径分布が所定の関係を有することを規定する。具体的には、触媒層21を形成する前の隔壁13のモード気孔径Xに対して、触媒層21が形成された隔壁13のモード気孔径の関係を規定することにより、それぞれの気孔径分布の関係を規定する。また、それぞれの気孔径分布の関係をより詳細に規定する好ましい態様においては、触媒層21を形成する前の隔壁13と触媒層21が形成された隔壁13におけるD30気孔径及びD70気孔径が有する関係についてもそれぞれ規定する。 Based on this, the exhaust gas purifying catalyst of the present embodiment reduces the large-diameter pores through which soot passes by reducing the pore diameter by forming the catalyst layer 21, and closes the pores by forming the catalyst layer 21. By maintaining the small pores suitable for soot collection by suppressing the soot collection, soot collection performance is improved. From such a viewpoint, in the present embodiment, it is specified that the pore size distribution of the partition 13 before forming the catalyst layer 21 and the pore size distribution of the partition 13 on which the catalyst layer 21 is formed have a predetermined relationship. I do. Specifically, by defining the relationship between the mode pore diameter X of the partition 13 on which the catalyst layer 21 is formed and the mode pore diameter X of the partition 13 before the catalyst layer 21 is formed, each pore diameter distribution is obtained. Define the relationship. Further, in a preferred embodiment in which the relationship between the respective pore diameter distributions is defined in more detail, the partition walls 13 before the formation of the catalyst layer 21 and the partition walls 13 on which the catalyst layer 21 is formed have a D30 pore diameter and a D70 pore diameter. The relationship is also specified.
 気孔径分布において、ウォールフロー型基材10の隔壁13のモード気孔径をXとしたときに、触媒層21が形成された隔壁13のモード気孔径は、0.9X以下であり、好ましくは0.6X以上0.89X以下であり、より好ましくは0.65X以上0.88X以下であり、0.65X以上0.85X以下である。触媒層21が形成された隔壁13のモード気孔径が0.9X以下であることにより、ススの捕集性能がより向上する。また、触媒層21が形成された隔壁13のモード気孔径が0.6X以上であることにより、圧力損失の上昇がより抑制される傾向にある。なお、「0.9X」という表記における「0.9」という乗数は、ウォールフロー型基材の隔壁のモード気孔径に対する、触媒層が形成された隔壁のモード気孔径の割合を示し、当該乗数を100%表記で示したものを気孔狭小率ともいう。以下、モード気孔径の気孔狭小率をNRといい、後述するD30気孔径の気孔狭小率をNRD30といい、D70気孔径の気孔狭小率をNRD70という。 In the pore diameter distribution, when the mode pore diameter of the partition 13 of the wall flow type substrate 10 is X, the mode pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.9X or less, and preferably 0 or less. It is 0.6X or more and 0.89X or less, more preferably 0.65X or more and 0.88X or less, and 0.65X or more and 0.85X or less. When the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.9X or less, soot collecting performance is further improved. Further, when the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.6X or more, an increase in pressure loss tends to be further suppressed. The multiplier of “0.9” in the notation of “0.9X” indicates a ratio of the mode pore diameter of the partition wall on which the catalyst layer is formed to the mode pore diameter of the partition wall of the wall flow type substrate. In 100% notation is also referred to as a pore narrowing ratio. Hereinafter, the pores narrowing ratio mode pore diameter called NR M, pore narrowing ratio of D30 pore diameter, which will be described later called NR D30, the pores narrowing ratio of D70 pore diameter of NR D70.
 また、触媒層21の形成による気孔の閉塞を抑制し、スス捕集に適した小径の気孔が維持されることをより直接的に規定する観点から、最小気孔径を1μmとする気孔径分布において、ウォールフロー型基材10の隔壁13のD30気孔径をYとしたときの、触媒層21が形成された隔壁13のD30気孔径を規定することが好ましい。触媒層21が形成された隔壁13のD30気孔径は、0.55Y以上0.80Y以下であり、好ましくは0.60Y以上0.80Y以下であり、より好ましくは0.65Y以上0.80Y以下であり、さらに好ましくは0.65Y以上0.75Y以下である。触媒層21が形成された隔壁13のD30気孔径が0.80Y以下であることにより、ススの捕集性能がより向上する傾向にある。また、触媒層21が形成された隔壁13のD30気孔径が0.55Y以上であることにより、圧力損失の上昇がより抑制される傾向にある。 Further, from the viewpoint of suppressing pore blockage due to the formation of the catalyst layer 21 and more directly defining that small pores suitable for soot collection are maintained, the pore size distribution with the minimum pore size of 1 μm is used. When the diameter of D30 pores of the partition 13 of the wall flow type substrate 10 is Y, it is preferable to define the diameter of D30 pores of the partition 13 on which the catalyst layer 21 is formed. The D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.55Y or more and 0.80Y or less, preferably 0.60Y or more and 0.80Y or less, and more preferably 0.65Y or more and 0.80Y or less. And more preferably 0.65Y or more and 0.75Y or less. When the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.80Y or less, the soot collecting performance tends to be further improved. Further, when the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.55Y or more, an increase in pressure loss tends to be further suppressed.
 さらに、触媒層21の形成により気孔径を小径化し、ススが通過しやすい大径の気孔が減少することをより直接的に規定する観点から、最小気孔径を1μmとする気孔径分布において、ウォールフロー型基材の隔壁のD70気孔径をZとしたときの、触媒層21が形成された隔壁13のD70気孔径を規定することが好ましい。触媒層21が形成された隔壁13のD70気孔径は、0.70Z以上0.90Z以下であり、好ましくは0.75Z以上0.90Z以下であり、より好ましくは0.80Z以上0.90Z以下である。触媒層21が形成された隔壁13のD70気孔径が0.90Z以下であることにより、ススの捕集性能がより向上する傾向にある。また、触媒層21が形成された隔壁13のD70気孔径が0.70Z以上であることにより、圧力損失の上昇がより抑制される傾向にある。 Further, from the viewpoint of reducing the pore diameter by the formation of the catalyst layer 21 and more directly defining the reduction of large pores through which soot passes easily, in the pore diameter distribution where the minimum pore diameter is 1 μm, When the D70 pore diameter of the partition wall of the flow-type base material is Z, it is preferable to define the D70 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed. The D70 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.70Z or more and 0.90Z or less, preferably 0.75Z or more and 0.90Z or less, more preferably 0.80Z or more and 0.90Z or less. It is. When the D70 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.90Z or less, soot collecting performance tends to be further improved. Further, when the D70 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.70Z or more, an increase in pressure loss tends to be further suppressed.
 また、触媒層21の形成により気孔径を小径化することでススが通過しやすい大径の気孔を減少させるとともに、触媒層21の形成による気孔の閉塞を抑制することでスス捕集に適した小径の気孔を維持するという観点から、モード気孔径の気孔狭小率NRM、D30気孔径の気孔狭小率NRD30、D70気孔径の気孔狭小率NRD70は以下の関係を有することが好ましい。 In addition, by reducing the pore diameter by forming the catalyst layer 21, it is possible to reduce large-diameter pores through which soot is likely to pass, and to suppress so-called pore blocking due to the formation of the catalyst layer 21. from the viewpoint of maintaining the small diameter pores, pore narrowing rate NR M mode pore diameter, D30 pore narrowing ratio of pore diameter NR D30 pore narrowing ratio NR D70 of D70 pore diameter preferably has the following relationship.
 気孔狭小率NRMに対する気孔狭小率NRD30の比率(NRD30/NRM)は、好ましくは1未満であり、より好ましくは0.5~0.95であり、さらに好ましくは0.6~0.9である。また、気孔狭小率NRMに対する気孔狭小率NRD70の比率(NRD70/NRM)は、好ましくは0.9~1.3であり、より好ましくは1.01~1.2であり、さらに好ましくは1.02~1.1である。このように、ススが通過しやすい大径の気孔を減少させつつ、スス捕集に適した小径の気孔を維持することにより、圧力損失の上昇を抑制しつつススの捕集率が向上する傾向にある。 The ratio of the pore narrowing ratio NR D30 for pore narrowing rate NR M (NR D30 / NR M ) is preferably less than 1, more preferably 0.5 to 0.95, and more preferably 0.6 to 0 .9. The ratio of the pore narrowing ratio NR D70 for pore narrowing rate NR M (NR D70 / NR M ) is preferably 0.9-1.3, more preferably 1.01 to 1.2 further Preferably it is 1.02 to 1.1. Thus, by reducing the large-diameter pores through which soot is likely to pass, by maintaining small-diameter pores suitable for soot collection, the soot collection rate tends to improve while suppressing an increase in pressure loss. It is in.
 また、排ガス浄化触媒の全気孔容積は、0.4cc/g以上であり、より好ましくは0.4~0.8cc/gであり、さらに好ましくは0.5~0.7cc/gである。全気孔容積が0.4cc/g以上であることにより、圧力損失の向上がより抑制される傾向にある。 The total pore volume of the exhaust gas purifying catalyst is 0.4 cc / g or more, more preferably 0.4 to 0.8 cc / g, and still more preferably 0.5 to 0.7 cc / g. When the total pore volume is 0.4 cc / g or more, improvement in pressure loss tends to be further suppressed.
 なお、各気孔径及び全気孔容積は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。 In addition, each pore diameter and total pore volume mean values calculated by the mercury intrusion method under the conditions described in the following examples.
 触媒層21が形成された隔壁13のモード気孔径を調整する方法としては、特に制限されないが、例えば、隔壁13の気孔内に形成する触媒層の塗工量を調整するとともに、所定の触媒層の塗工量条件下において、触媒層21により閉塞する小径の気孔を減少させる方法が挙げられる。小径の気孔の閉塞を抑制する方法としては、触媒スラリーのpHの調整により、触媒スラリーの粘度を調整することにより、毛細管現象による小径の気孔への触媒スラリーの集中を緩和する方法が挙げられる。なお、触媒層21を形成する前の隔壁13のモード気孔径X、D30気孔径Y、D70気孔径Zは、ウォールフロー型基材の選択によって調整することができる。 The method for adjusting the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is not particularly limited. For example, while adjusting the coating amount of the catalyst layer formed in the pores of the partition wall 13, Under the conditions of the coating amount, there is a method of reducing small-diameter pores closed by the catalyst layer 21. As a method of suppressing the blockage of the small-diameter pores, there is a method of adjusting the viscosity of the catalyst slurry by adjusting the pH of the catalyst slurry to reduce the concentration of the catalyst slurry in the small-diameter pores due to the capillary phenomenon. In addition, the mode pore diameter X, the D30 pore diameter Y, and the D70 pore diameter Z of the partition wall 13 before forming the catalyst layer 21 can be adjusted by selecting a wall flow type substrate.
 なお、触媒層が形成された隔壁のD70気孔径、及び、触媒層21が形成された隔壁13のD30気孔径を所定の範囲に調整する方法も上記と同様とすることができる。また、全気孔容積を所定の範囲に調整する方法としては、触媒層の塗工量を調整する方法が挙げられる。 The method for adjusting the D70 pore diameter of the partition wall on which the catalyst layer is formed and the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed can be the same as described above. Further, as a method of adjusting the total pore volume to a predetermined range, a method of adjusting the coating amount of the catalyst layer can be mentioned.
 (基材)
 ウォールフロー型基材10は、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13によって仕切られているウォールフロー型構造を有する。
(Base material)
The wall flow type base material 10 has an introduction-side cell 11 having an open end 11a on the exhaust gas introduction side, and a discharge-side cell 12 having an open end 12a on the exhaust gas discharge side adjacent to the introduction-side cell 11 having a porous structure. It has a wall flow type structure which is separated by a quality partition wall 13.
 基材10としては、従来のこの種の用途に用いられる種々の材質及び形体のものが使用可能である。例えば、基材の材質は、内燃機関が高負荷条件で運転された際に生じる高温(例えば400℃以上)の排ガスに曝された場合や、粒子状物質を高温で燃焼除去する場合などにも対応可能なように、耐熱性素材からなるものが好ましい。耐熱性素材としては、例えば、コージェライト、ムライト、チタン酸アルミニウム、及び炭化ケイ素(SiC)等のセラミック;ステンレス鋼などの合金が挙げられる。また、基材の形体は、排ガス浄化性能及び圧力損失上昇抑制等の観点から適宜調整することが可能である。例えば、基材の外形は、円筒形状、楕円筒形状、又は多角筒形状等とすることができる。また、組み込む先のスペースなどにもよるが、基材の容量(セルの総体積)は、好ましくは0.1~5Lであり、より好ましくは0.5~3Lである。また、基材の延伸方向の全長(隔壁13の延伸方向の全長)は、好ましくは10~500mm、より好ましくは50~300mmである。 As the base material 10, various materials and shapes used in conventional applications of this kind can be used. For example, the material of the base material may be exposed to high-temperature (for example, 400 ° C. or more) exhaust gas generated when the internal combustion engine is operated under high load conditions, or may be used to burn and remove particulate matter at a high temperature. A material made of a heat-resistant material is preferable so as to be compatible. Examples of the heat-resistant material include ceramics such as cordierite, mullite, aluminum titanate, and silicon carbide (SiC); and alloys such as stainless steel. Further, the shape of the base material can be appropriately adjusted from the viewpoint of exhaust gas purification performance, suppression of pressure loss rise, and the like. For example, the outer shape of the substrate can be a cylindrical shape, an elliptical cylindrical shape, a polygonal cylindrical shape, or the like. In addition, the capacity of the base material (total volume of the cell) is preferably 0.1 to 5 L, more preferably 0.5 to 3 L, although it depends on the space in which the substrate is incorporated. The total length of the substrate in the stretching direction (the total length of the partition 13 in the stretching direction) is preferably 10 to 500 mm, more preferably 50 to 300 mm.
 導入側セル11と排出側セル12は、筒形状の軸方向に沿って規則的に配列されており、隣り合うセル同士は延伸方向の一の開口端と他の一の開口端とが交互に封止されている。導入側セル11及び排出側セル12は、供給される排ガスの流量や成分を考慮して適当な形状および大きさに設定することができる。例えば、導入側セル11及び排出側セル12の口形状は、三角形;正方形、平行四辺形、長方形、及び台形等の矩形;六角形及び八角形等のその他の多角形;円形とすることができる。また、導入側セル11の断面積と、排出側セル12の断面積とを異ならせたHigh Ash Capacity(HAC)構造を有するものであってもよい。 The introduction-side cell 11 and the discharge-side cell 12 are regularly arranged along the axial direction of the cylindrical shape, and adjacent cells alternately have one open end and the other open end in the extending direction. It is sealed. The introduction-side cell 11 and the discharge-side cell 12 can be set to appropriate shapes and sizes in consideration of the flow rate and components of the supplied exhaust gas. For example, the opening shapes of the inlet-side cell 11 and the outlet-side cell 12 can be triangular; rectangular such as square, parallelogram, rectangular, and trapezoidal; other polygons such as hexagonal and octagonal; circular. . Further, the cross-sectional area of the introduction-side cell 11 and the cross-sectional area of the discharge-side cell 12 may have a High Ash Capacity (HAC) structure.
 なお、導入側セル11及び排出側セル12の個数は、排ガスの乱流の発生を促進し、かつ、排ガスに含まれる微粒子等による目詰まりを抑制できるように適宜設定することができ、特に限定されないが、好ましくは200cpsi~400cpsiである。また、隔壁13の厚み(延伸方向に直交する厚さ方向の長さ)は、好ましくは6~12milであり、より好ましくは6~10milである。 In addition, the number of the introduction-side cells 11 and the number of the discharge-side cells 12 can be appropriately set so as to promote the generation of turbulent flow of exhaust gas and to suppress clogging due to fine particles and the like contained in the exhaust gas. However, it is preferably 200 cpsi to 400 cpsi. The thickness (length in the thickness direction orthogonal to the stretching direction) of the partition wall 13 is preferably 6 to 12 mil, and more preferably 6 to 10 mil.
 隣り合うセル同士を仕切る隔壁13は、排ガスが通過可能な多孔質構造を有するものであれば特に制限されず、その構成については、排ガス浄化性能や圧力損失の上昇抑制、基材の機械的強度の向上等の観点から適宜調整することができる。例えば、後述する触媒スラリーを用いて該隔壁13内の気孔表面に触媒層21を形成する場合、モード気孔径Xや気孔容積が大きい場合には、触媒層21による気孔の閉塞が生じにくく、得られる排ガス浄化触媒は圧力損失が上昇しにくいものとなる傾向にあるが、粒子状物質の捕集能力が低下し、また、基材の機械的強度も低下する傾向にある。一方で、気孔径や気孔容積が小さい場合には、圧力損失が上昇しやすいものとなるが、粒子状物質の捕集能力は向上し、基材の機械的強度も向上する傾向にある。 The partition wall 13 that separates adjacent cells is not particularly limited as long as it has a porous structure through which exhaust gas can pass, and the configuration thereof includes exhaust gas purification performance, suppression of increase in pressure loss, and mechanical strength of the substrate. It can be adjusted appropriately from the viewpoint of improvement of the quality. For example, when the catalyst layer 21 is formed on the surface of the pores in the partition walls 13 using a catalyst slurry described later, when the mode pore diameter X and the pore volume are large, the pores are hardly clogged by the catalyst layer 21, and the Although the exhaust gas purifying catalyst tends to have a low pressure loss, the trapping capacity of particulate matter is reduced and the mechanical strength of the base material is also reduced. On the other hand, when the pore diameter and the pore volume are small, the pressure loss tends to increase, but the trapping ability of the particulate matter is improved and the mechanical strength of the base material tends to be improved.
 このような観点から、隔壁13の気孔率は、好ましくは20~80%であり、より好ましくは40~70%であり、さらに好ましくは60~70%である。気孔率が下限以上であることにより、圧力損失の上昇がより抑制される傾向にある。また、気孔率が上限以下であることにより、基材の強度がより向上する傾向にある。なお、気孔率は、下記実施例に記載の条件において水銀圧入法により算出される値を意味する。 From such a viewpoint, the porosity of the partition wall 13 is preferably 20 to 80%, more preferably 40 to 70%, and further preferably 60 to 70%. When the porosity is equal to or more than the lower limit, an increase in pressure loss tends to be further suppressed. When the porosity is equal to or less than the upper limit, the strength of the base material tends to be further improved. The porosity means a value calculated by the mercury porosimetry under the conditions described in the following examples.
 また、ウォールフロー型基材の隔壁のモード気孔径Xは、触媒層21を形成する前の隔壁13と触媒層21が形成された隔壁13におけるモード気孔径が上記各関係を有する場合において、ススの捕集性能と圧力損失の上昇抑制をよりバランスよく発揮する観点から、規定することができる。具体的には、気孔径分布において、ウォールフロー型基材の隔壁のモード気孔径Xは、好ましくは10~30μmであり、より好ましくは12~28μmであり、さらに好ましくは15~25μmである。 The mode pore diameter X of the partition wall of the wall flow type base material is soot when the mode pore diameter of the partition wall 13 before the catalyst layer 21 is formed and the mode pore diameter of the partition wall 13 on which the catalyst layer 21 is formed have the above relationships. From the viewpoint of exhibiting a more balanced collection performance and suppression of pressure loss increase. Specifically, in the pore diameter distribution, the mode pore diameter X of the partition wall of the wall flow type substrate is preferably 10 to 30 μm, more preferably 12 to 28 μm, and further preferably 15 to 25 μm.
 (触媒層)
 次に、隔壁13の気孔内に形成された触媒層21について説明する。触媒層21は、従来のこの種の用途に用いられる種々の態様のものが使用可能である。例えば、触媒層21の態様として、触媒金属粒子と担体粒子とを含む触媒スラリーを焼成してなるものが挙げ有られる。このように各種粒子を含む触媒スラリーを焼成して形成される触媒層21は、焼成により粒子同士が溶着した微多孔構造を有する。
(Catalyst layer)
Next, the catalyst layer 21 formed in the pores of the partition 13 will be described. As the catalyst layer 21, various modes used in conventional applications of this type can be used. For example, an embodiment of the catalyst layer 21 includes a catalyst layer obtained by firing a catalyst slurry containing catalyst metal particles and carrier particles. The catalyst layer 21 formed by firing the catalyst slurry containing various particles as described above has a microporous structure in which the particles are welded by firing.
 触媒層21に含まれる触媒金属としては、特に制限されず、種々の酸化触媒や還元触媒として機能し得る金属種を用いることができる。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)等の白金族金属が挙げられる。このなかでも、酸化活性の観点からはパラジウム(Pd)、白金(Pt)が好ましく、還元活性の観点からはロジウム(Rh)が好ましい。本実施形態においては、上記のとおり一種以上の触媒金属を混合された状態で含有する触媒層21を有する。特に二種以上の触媒金属の併用により、異なる触媒活性を有することによる相乗的な効果が期待される。 触媒 The catalyst metal contained in the catalyst layer 21 is not particularly limited, and various metal species that can function as various oxidation catalysts and reduction catalysts can be used. For example, platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used. Among them, palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity, and rhodium (Rh) is preferable from the viewpoint of reduction activity. In the present embodiment, the catalyst layer 21 contains one or more catalyst metals in a mixed state as described above. In particular, when two or more kinds of catalyst metals are used in combination, a synergistic effect due to having different catalytic activities is expected.
 このような触媒金属の組み合わせの態様は、特に制限されず、酸化活性に優れる二種以上の触媒金属の組み合わせ、還元活性に優れる二種以上の触媒金属の組み合わせ、酸化活性に優れる触媒金属と還元活性に優れる触媒金属の組み合わせが挙げられる。このなかでも、相乗効果の一つの態様として、酸化活性に優れる触媒金属と還元活性に優れる触媒金属の組み合わせが好ましく、Rh、Pd及びRh、または、Pt及びRhを少なくとも含む組合せがより好ましい。このような組み合わせとすることにより、排ガス浄化性能がより向上する傾向にある。 The embodiment of the combination of such catalyst metals is not particularly limited, and a combination of two or more catalyst metals having excellent oxidation activity, a combination of two or more catalyst metals having excellent reduction activity, and a catalyst metal having excellent oxidation activity and reduction. Combinations of catalyst metals having excellent activity are mentioned. Among these, as one aspect of the synergistic effect, a combination of a catalyst metal having excellent oxidation activity and a catalyst metal having excellent reduction activity is preferable, and a combination containing at least Rh, Pd and Rh, or Pt and Rh is more preferable. With such a combination, the exhaust gas purification performance tends to be further improved.
 なお、触媒層21が触媒金属を含有することは、排ガス浄化触媒の隔壁13の断面の走査型電子顕微鏡などにより確認することができる。具体的には、走査型電子顕微鏡の視野においてエネルギー分散型X線分析を行うことにより確認することができる。 The fact that the catalyst layer 21 contains the catalyst metal can be confirmed by a scanning electron microscope or the like on the cross section of the partition wall 13 of the exhaust gas purifying catalyst. Specifically, it can be confirmed by performing energy dispersive X-ray analysis in the field of view of a scanning electron microscope.
 触媒層21に含まれ、触媒金属を担持する担体粒子としては、従来この種の排ガス浄化触媒で使用される無機化合物を考慮することができる。例えば、酸化セリウム(セリア:CeO)、セリア-ジルコニア複合酸化物(CZ複合酸化物)等の酸素吸蔵材(OSC材)、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、酸化チタン(チタニア:TiO)等の酸化物やこれらの酸化物を主成分とした複合酸化物を挙げることができる。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。なお、これら担体粒子は、一種単独で用いても、二種以上を併用してもよい。ここで、酸素吸蔵材(OSC材)とは、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものをいう。 As the carrier particles contained in the catalyst layer 21 and supporting the catalyst metal, inorganic compounds conventionally used in this type of exhaust gas purifying catalyst can be considered. For example, oxygen storage materials (OSC materials) such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components. These may be a composite oxide or a solid solution to which a rare earth element such as lanthanum or yttrium, a transition metal element, or an alkaline earth metal element is added. These carrier particles may be used alone or in combination of two or more. Here, the oxygen storage material (OSC material) means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel.
 なお、内燃機関、特にガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒であって、特に、粒子状物質の捕集用途に用いられるという観点から、排ガス浄化触媒100の触媒層の塗工量(ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)は、好ましくは20~110g/Lであり、より好ましくは40~90g/Lであり、さらに好ましくは50~70g/Lである。 The amount of the catalyst layer of the exhaust gas purifying catalyst 100 is an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine, in particular, a gasoline engine, and particularly used for collecting particulate matter. (Coating amount of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate) is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g. / L.
[排ガス浄化触媒の製造方法]
 本実施形態の製造方法は、内燃機関であるガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒100の製造方法であって、排ガス導入側の端部11aが開口した導入側セル11と、該導入側セル11に隣接し排ガス排出側の端部12aが開口した排出側セル12とが、多孔質の隔壁13により画定されたウォールフロー型基材10を準備する工程S0と、ウォールフロー型基材10の隔壁13内の気孔表面上の少なくとも一部に、触媒スラリーを塗工して、触媒層21を形成する触媒層形成工程S1と、を有し、該触媒層形成工程S1において、気孔径分布において、ウォールフロー型基材10の隔壁13のモード気孔径をXとしたときに、触媒層21が形成された隔壁13のモード気孔径が0.6X以上0.9X以下であり、最小気孔径を1μmとする気孔径分布において、ウォールフロー型基材10の隔壁13のD30気孔径をYとしたときに、触媒層21が形成された隔壁13のD30気孔径が0.55~0.80Yであり、ウォールフロー型基材10の隔壁13のD70気孔径をZとしたときに、触媒層21が形成された隔壁13のD70気孔径が0.70~0.90Zである排ガス浄化触媒100を得ることを特徴とする。
[Method of manufacturing exhaust gas purifying catalyst]
The production method of the present embodiment is a method for producing an exhaust gas purifying catalyst 100 for purifying exhaust gas discharged from a gasoline engine as an internal combustion engine. The production method includes: an introduction-side cell 11 having an open end 11a on the exhaust gas introduction side; A step S0 of preparing a wall flow type base material 10 defined by a porous partition wall 13 and a discharge side cell 12 adjacent to the introduction side cell 11 and having an open end 12a on the exhaust gas discharge side; A catalyst slurry is applied to at least a part of the pore surface in the partition 13 of the material 10 to form a catalyst layer 21; and a catalyst layer forming step S1 is performed in the catalyst layer forming step S1. In the pore size distribution, when the mode pore size of the partition 13 of the wall flow type substrate 10 is X, the mode pore size of the partition 13 on which the catalyst layer 21 is formed is 0.6X or more and 0.9X or less. In the pore diameter distribution where the minimum pore diameter is 1 μm, when the D30 pore diameter of the partition 13 of the wall flow type substrate 10 is Y, the D30 pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.55 to Exhaust gas wherein the D70 pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.70 to 0.90Z, where Z is the D70 pore diameter of the partition 13 of the wall flow type substrate 10. It is characterized in that the purification catalyst 100 is obtained.
 以下、各工程について説明する。なお、本明細書においては、触媒層21を形成する前のウォールフロー型基材を「基材10」と表記し、触媒層21を形成した後のウォールフロー型基材を「排ガス浄化触媒100」と表記する。 Hereinafter, each step will be described. In this specification, the wall flow type base material before forming the catalyst layer 21 is referred to as “base material 10”, and the wall flow type base material after forming the catalyst layer 21 is referred to as “exhaust gas purifying catalyst 100”. ".
<準備工程>
 この準備工程S0では、基材として、上記排ガス浄化触媒100において述べたウォールフロー型基材10を準備する。
<Preparation process>
In this preparation step S0, the wall flow type substrate 10 described in the exhaust gas purifying catalyst 100 is prepared as a substrate.
<触媒層形成工程>
 この触媒層形成工程S1では、隔壁13の気孔表面に触媒スラリーを塗工して、乾燥させ、焼成することで、触媒層21を形成する。触媒スラリーの塗工方法は、特に制限されないが、例えば、基材10の一部に触媒スラリーを含浸させて、それを基材10の隔壁13全体に広げる方法が挙げられる。より具体的には、排ガス導入側の端部11a又は排ガス排出側の端部12aに、触媒スラリーを含浸させる含浸工程S1aと、触媒スラリーを含浸させた端部側から基材10内に気体を導入させることにより、基材10に含浸された触媒スラリーを隔壁13に塗工する塗工工程S1bを有する方法が挙げられる。
<Catalyst layer forming step>
In the catalyst layer forming step S1, a catalyst slurry is applied to the pore surfaces of the partition walls 13, dried, and fired to form the catalyst layer 21. The method for applying the catalyst slurry is not particularly limited. For example, a method in which a part of the base material 10 is impregnated with the catalyst slurry and spread over the entire partition 13 of the base material 10 is exemplified. More specifically, the impregnating step S1a of impregnating the catalyst slurry into the end portion 11a on the exhaust gas introduction side or the end portion 12a on the exhaust gas discharge side, and gas is introduced into the base material 10 from the end portion impregnated with the catalyst slurry. A method including a coating step S1b for coating the partition walls 13 with the catalyst slurry impregnated in the base material 10 by introducing the base material 10 may be used.
 含浸工程S1aにおける触媒スラリーの含浸方法としては、特に制限されないが、例えば、触媒スラリーに基材10の端部を浸漬させる方法が挙げられる。この方法においては、必要に応じて、反対側の端部から気体を排出(吸引)させることにより触媒スラリーを引き上げてもよい。触媒スラリーを含浸させる端部は、排ガス導入側の端部11a又は排ガス排出側の端部12aのどちらでもよいが、排ガス導入側の端部11aに触媒スラリーを含浸させることが好ましい。これにより、排ガスの導入方向と同じ方向で塗工工程S1bにおいて気体を導入することができ、複雑な気孔形状に対して、排ガスの流れに沿った形で触媒スラリーを塗工することができる。そのため、得られる排ガス浄化触媒の圧力損失の上昇抑制が見込まれ、また、排ガス浄化性能の向上も期待できる。 (4) The method of impregnating the catalyst slurry in the impregnation step S1a is not particularly limited, and includes, for example, a method of immersing the end of the base material 10 in the catalyst slurry. In this method, if necessary, the catalyst slurry may be pulled up by discharging (sucking) gas from the opposite end. The end to be impregnated with the catalyst slurry may be either the end 11a on the exhaust gas introduction side or the end 12a on the exhaust gas discharge side, but it is preferable to impregnate the end 11a on the exhaust gas introduction side with the catalyst slurry. Thus, the gas can be introduced in the coating step S1b in the same direction as the exhaust gas introduction direction, and the catalyst slurry can be applied to the complicated pore shape along the flow of the exhaust gas. Therefore, suppression of a rise in pressure loss of the obtained exhaust gas purifying catalyst is expected, and improvement in exhaust gas purifying performance can be expected.
 また、塗工工程S1bでは、触媒スラリーは、基材10の導入側から奥へ気体Fの流れに沿って移動し、気体Fの排出側の端部へ到達する。その過程において、隔壁13の気孔内部を触媒スラリーが通過することで、気孔内部に触媒スラリーを塗工することができ、隔壁の全体に触媒スラリーが塗工される。 {Circle around (4)} In the coating step S1b, the catalyst slurry moves from the introduction side of the substrate 10 to the back along the flow of the gas F, and reaches the end on the gas F discharge side. In the process, the catalyst slurry can be applied to the inside of the pores by passing the catalyst slurry through the inside of the pores of the partition 13, and the catalyst slurry is applied to the entire partition.
 乾燥工程S1cでは、塗工した触媒スラリーを乾燥させる。乾燥工程S1cにおける乾燥条件は、触媒スラリーから溶媒が揮発するような条件であれば特に制限されない。例えば、乾燥温度は、好ましくは100~225℃であり、より好ましくは100~200℃であり、さらに好ましくは125~175℃である。また、乾燥時間は、好ましくは0.5~2時間であり、好ましくは0.5~1.5時間である。 In the drying step S1c, the coated catalyst slurry is dried. The drying conditions in the drying step S1c are not particularly limited as long as the solvent evaporates from the catalyst slurry. For example, the drying temperature is preferably from 100 to 225 ° C, more preferably from 100 to 200 ° C, and even more preferably from 125 to 175 ° C. Further, the drying time is preferably 0.5 to 2 hours, and preferably 0.5 to 1.5 hours.
 焼成工程S1dでは、触媒スラリーを焼成して、触媒層21を形成する。焼成工程S1dにおける焼成条件は、触媒スラリーから触媒層21が形成できるような条件であれば特に制限されない。例えば、焼成温度は、特に制限されないが、好ましくは400~650℃であり、より好ましくは450~600℃であり、さらに好ましくは500~600℃である。また、焼成時間は、好ましくは0.5~2時間であり、好ましくは0.5~1.5時間である。 In the firing step S1d, the catalyst slurry is fired to form the catalyst layer 21. The firing conditions in the firing step S1d are not particularly limited as long as the catalyst layer 21 can be formed from the catalyst slurry. For example, the firing temperature is not particularly limited, but is preferably from 400 to 650 ° C, more preferably from 450 to 600 ° C, and still more preferably from 500 to 600 ° C. Further, the firing time is preferably 0.5 to 2 hours, preferably 0.5 to 1.5 hours.
 なお、ガソリンエンジンから排出される排ガスを浄化する排ガス浄化触媒、特に、粒子状物質の捕集用途に用いられるという観点から、焼成工程S1dを経て得られる排ガス浄化触媒100の触媒層の塗工量(ウォールフロー型基材1Lあたりの触媒金属質量を除く触媒層の塗工量)は、好ましくは20~110g/Lであり、より好ましくは40~90g/Lであり、さらに好ましくは50~70g/Lである。 In addition, from the viewpoint of being used for exhaust gas purifying catalyst for purifying exhaust gas discharged from a gasoline engine, particularly for use in collecting particulate matter, the coating amount of the catalyst layer of the exhaust gas purifying catalyst 100 obtained through the calcination step S1d. (Coating amount of the catalyst layer excluding the weight of the catalyst metal per 1 L of the wall flow type substrate) is preferably 20 to 110 g / L, more preferably 40 to 90 g / L, and further preferably 50 to 70 g. / L.
 (触媒スラリー)
 触媒層21を形成するための触媒スラリーについて説明する。触媒スラリーは、触媒粉体と、水などの溶剤とを含む。触媒粉体は、触媒金属粒子と該触媒金属粒子を担持する担体粒子とを含む、複数の触媒粒子の集団であり、後述する焼成工程を経て、触媒層21を形成する。触媒粒子は、特に限定されず、公知の触媒粒子から適宜選択して用いることができる。なお、隔壁13の気孔内への塗工性の観点から、触媒スラリーの固形分率は、好ましくは1~50質量%であり、より好ましくは15~40質量%であり、さらに好ましくは20~35質量%である。このような固形分率とすることにより、触媒スラリーを隔壁13内の導入側セル11側に塗工しやすくなる傾向にある。
(Catalyst slurry)
The catalyst slurry for forming the catalyst layer 21 will be described. The catalyst slurry contains a catalyst powder and a solvent such as water. The catalyst powder is a group of a plurality of catalyst particles including catalyst metal particles and carrier particles supporting the catalyst metal particles, and forms the catalyst layer 21 through a firing step described later. The catalyst particles are not particularly limited, and can be appropriately selected from known catalyst particles and used. The solid content of the catalyst slurry is preferably 1 to 50% by mass, more preferably 15 to 40% by mass, and still more preferably 20 to 40% by mass, from the viewpoint of coatability into the pores of the partition wall 13. 35% by mass. With such a solid content ratio, the catalyst slurry tends to be easily applied to the introduction-side cells 11 in the partition walls 13.
 触媒スラリーに含まれる触媒粉体のD90粒子径は、好ましくは1~7μmであり、より好ましくは1~5μmであり、さらに好ましくは1~3μmである。D90粒子径が1μm以上であることにより、触媒粉体をミリング装置で破砕する場合の粉砕時間を短縮することができ、作業効率がより向上する傾向にある。また、D90粒子径が7μm以下であることにより、粗大粒子が隔壁13内の気孔を閉塞することが抑制され、圧力損失の上昇が抑制される傾向にある。なお、本明細書において、D90粒子径は、レーザー回折式粒子径分布測定装置(例えば、島津製作所社製、レーザー回折式粒子径分布測定装置SALD-3100等)で測定することができる。 触媒 The D90 particle size of the catalyst powder contained in the catalyst slurry is preferably 1 to 7 μm, more preferably 1 to 5 μm, and still more preferably 1 to 3 μm. When the D90 particle diameter is 1 μm or more, the pulverization time when the catalyst powder is crushed by a milling device can be reduced, and the working efficiency tends to be further improved. Further, when the D90 particle diameter is 7 μm or less, it is suppressed that the coarse particles block the pores in the partition wall 13 and the increase in pressure loss tends to be suppressed. In this specification, the D90 particle size can be measured with a laser diffraction particle size distribution analyzer (eg, a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation).
 触媒スラリーに含まれる触媒金属としては、特に制限されず、種々の酸化触媒や還元触媒として機能し得る金属種を用いることができる。例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)及びオスミウム(Os)等の白金族金属が挙げられる。このなかでも、酸化活性の観点からはパラジウム(Pd)、白金(Pt)が好ましく、還元活性の観点からはロジウム(Rh)が好ましい。 触媒 The catalyst metal contained in the catalyst slurry is not particularly limited, and various metal species that can function as various oxidation catalysts and reduction catalysts can be used. For example, platinum group metals such as platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), iridium (Ir), and osmium (Os) can be used. Among them, palladium (Pd) and platinum (Pt) are preferable from the viewpoint of oxidation activity, and rhodium (Rh) is preferable from the viewpoint of reduction activity.
 触媒金属粒子を担持する担体粒子としては、従来この種の排ガス浄化触媒で使用される無機化合物を考慮することができる。例えば、酸化セリウム(セリア:CeO)、セリア-ジルコニア複合酸化物(CZ複合酸化物)等の酸素吸蔵材(OSC材)、酸化アルミニウム(アルミナ:Al)、酸化ジルコニウム(ジルコニア:ZrO)、酸化ケイ素(シリカ:SiO)、酸化チタン(チタニア:TiO)等の酸化物やこれらの酸化物を主成分とした複合酸化物を挙げることができる。これらは、ランタン、イットリウム等の希土類元素、遷移金属元素、アルカリ土類金属元素が添加された複合酸化物若しくは固溶体であってもよい。なお、これら担体粒子は、一種単独で用いても、二種以上を併用してもよい。ここで、酸素吸蔵材(OSC材)とは、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものをいう。なお、排ガス浄化性能の観点から、触媒スラリーに含まれる担体粒子の比表面積は、好ましくは10~500m/g、より好ましくは30~200m/gである。 As the carrier particles supporting the catalytic metal particles, inorganic compounds conventionally used in this type of exhaust gas purifying catalyst can be considered. For example, oxygen storage materials (OSC materials) such as cerium oxide (ceria: CeO 2 ) and ceria-zirconia composite oxide (CZ composite oxide), aluminum oxide (alumina: Al 2 O 3 ), zirconium oxide (zirconia: ZrO 2 ) 2 ), oxides such as silicon oxide (silica: SiO 2 ), titanium oxide (titania: TiO 2 ), and composite oxides containing these oxides as main components. These may be a composite oxide or a solid solution to which a rare earth element such as lanthanum or yttrium, a transition metal element, or an alkaline earth metal element is added. These carrier particles may be used alone or in combination of two or more. Here, the oxygen storage material (OSC material) means that when the air-fuel ratio of the exhaust gas is lean (that is, the atmosphere on the oxygen excess side), oxygen in the exhaust gas is stored and the air-fuel ratio of the exhaust gas is rich ( That is, the atmosphere that releases the occluded oxygen is referred to as the atmosphere on the side of excess fuel. From the viewpoint of exhaust gas purification performance, the specific surface area of the carrier particles contained in the catalyst slurry is preferably from 10 to 500 m 2 / g, and more preferably from 30 to 200 m 2 / g.
 本実施形態においては、上記塗工工程S1bから焼成工程S1dにおいて、ススが通過しやすい大径の気孔を減少させるとともに、スス捕集に適した小径の気孔を減少させないような触媒層を形成することにより、ウォールフロー型基材10の隔壁13のモード気孔径をXとしたときに、触媒層21が形成された隔壁13のモード気孔径が0.6X以上0.9X以下であり、最小気孔径を1μmとする気孔径分布において、ウォールフロー型基材10の隔壁のD30気孔径をYとしたときに、触媒層21が形成された隔壁13のD30気孔径が0.55~0.80Yであり、ウォールフロー型基材10の隔壁13のD70気孔径をZとしたときに、触媒層21が形成された隔壁13のD70気孔径が0.70~0.90Zである排ガス浄化触媒100を得る。触媒スラリーは、その粘度や表面張力に応じて、毛細管現象により小径の気孔に浸入した状態で乾燥しやすい性質や、小径の気孔に浸入しにくい性質など種々の性質を取り得る。ここで、小径の気孔に集中して浸入しにくい物性を有する触媒スラリーを用いることにより、大径の気孔においては触媒層21に形成により気孔径を小径化することができ、ススが通過しやすい大径の気孔を減少させるとともに、小径の気孔においては、触媒層21の形成による閉塞を抑制し、気孔閉塞によりスス捕集に適した小径の気孔が減少することを抑制することができる。 In the present embodiment, in the coating step S1b to the baking step S1d, a catalyst layer is formed that reduces large-diameter pores through which soot easily passes and does not decrease small-diameter pores suitable for soot collection. Accordingly, when the mode pore diameter of the partition 13 of the wall flow type substrate 10 is X, the mode pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.6X or more and 0.9X or less, In the pore diameter distribution having a pore diameter of 1 μm, when the D30 pore diameter of the partition wall of the wall flow type substrate 10 is Y, the D30 pore diameter of the partition wall 13 on which the catalyst layer 21 is formed is 0.55 to 0.80 Y. When the D70 pore diameter of the partition 13 of the wall flow type substrate 10 is Z, the exhaust gas purification in which the D70 pore diameter of the partition 13 on which the catalyst layer 21 is formed is 0.70 to 0.90Z. Get the medium 100. Depending on its viscosity and surface tension, the catalyst slurry can have various properties, such as a property of easily drying in a state of infiltration into small-diameter pores due to a capillary phenomenon and a property of not easily penetrating into small-diameter pores. Here, by using a catalyst slurry having physical properties that are hard to penetrate into the small-diameter pores, the pore diameter can be reduced by forming the catalyst layer 21 in the large-diameter pores, soot can easily pass through. In addition to reducing the large-diameter pores, in the small-diameter pores, blockage due to the formation of the catalyst layer 21 can be suppressed, and the decrease in small-diameter pores suitable for soot collection due to pore blockage can be suppressed.
[用途]
 内燃機関(エンジン)には、酸素と燃料ガスとを含む混合気が供給され、この混合気が燃焼されて、燃焼エネルギーが力学的エネルギーに変換される。このときに燃焼された混合気は排ガスとなって排気系に排出される。排気系には、排ガス浄化触媒を備える排ガス浄化装置が設けられており、排ガス浄化触媒により排ガスに含まれる有害成分(例えば、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx))が浄化されるとともに、排ガスに含まれる粒子状物質(PM)が捕集され、除去される。特に、本実施形態の排ガス浄化触媒100は、ガソリンエンジンの排ガスに含まれる粒子状物質を捕集し、除去できるガソリンパティキュレートフィルタ(GPF)に用いられるものであることが好ましい。
[Use]
An air-fuel mixture containing oxygen and fuel gas is supplied to an internal combustion engine, and the air-fuel mixture is burned to convert combustion energy into mechanical energy. The air-fuel mixture burned at this time is discharged as exhaust gas to an exhaust system. The exhaust system is provided with an exhaust gas purifying device provided with an exhaust gas purifying catalyst, and harmful components (for example, carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) contained in exhaust gas by the exhaust gas purifying catalyst are provided. )) Is purified, and particulate matter (PM) contained in the exhaust gas is collected and removed. In particular, the exhaust gas purifying catalyst 100 of the present embodiment is preferably used for a gasoline particulate filter (GPF) that can collect and remove particulate matter contained in exhaust gas of a gasoline engine.
 以下に試験例、実施例と比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 特 徴 The characteristics of the present invention will be described more specifically with reference to Test Examples, Examples and Comparative Examples below, but the present invention is not limited thereto. That is, the materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Further, the values of various production conditions and evaluation results in the following examples have meanings as preferred upper limits or preferred lower limits in the embodiments of the present invention, and preferred ranges are the upper limit or lower limit values described above. And a range defined by a combination of the values of the following examples or the values of the examples.
(実施例1)
 アルミナ粉末およびジルコニア粉末およびセリアジルコニア複合酸化物粉末に、硝酸パラジウム水溶液を含浸させ、その後、500℃で1時間焼成して、Pd担持粉末を得た。また、アルミナ粉末およびジルコニア粉末に、硝酸ロジウム水溶液を含浸させ、その後、500℃で1時間焼成して、Rh担持粉末を得た。
(Example 1)
Alumina powder, zirconia powder and ceria-zirconia composite oxide powder were impregnated with an aqueous solution of palladium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Pd-supported powder. Further, an alumina powder and a zirconia powder were impregnated with an aqueous solution of rhodium nitrate, and then calcined at 500 ° C. for 1 hour to obtain a Rh-supported powder.
 得られたPd担持粉末480g及びRh担持粉末390gと、セリアジルコニア複合酸化物粉末95gと、イオン交換水とを混合し、得られた混合物をボールミルに投入し、触媒粉体が所定の粒子径分布になるまでミリングし、D90粒子径が3.0μmである触媒スラリーを得た。得られた触媒スラリーに、水酸化バリウム八水和物29gと、60%硝酸とを混合し、pHが6.7の触媒スラリーを得た。 480 g of the obtained Pd-supported powder and 390 g of Rh-supported powder, 95 g of ceria-zirconia composite oxide powder, and ion-exchanged water are mixed, and the obtained mixture is charged into a ball mill, and the catalyst powder has a predetermined particle size distribution. To obtain a catalyst slurry having a D90 particle size of 3.0 μm. 29 g of barium hydroxide octahydrate and 60% nitric acid were mixed with the obtained catalyst slurry to obtain a catalyst slurry having a pH of 6.7.
 次いで、コージェライト製のウォールフロー型ハニカム基材(セル数/ミル厚:300cpsi/8.5mil、直径:118.4mm、全長:127mm、モード気孔径X:20μm、気孔率:65%)を用意した。この基材の排ガス導入側の端部を触媒スラリーに浸漬させ、反対側の端部側から減圧吸引して、基材端部に触媒スラリーを含浸保持させた。排ガス導入側の端部から基材内へ気体を流入させて、隔壁内の気孔表面に触媒スラリーを塗工するとともに、基材の排ガス排出側の端部から過剰分の触媒スラリーを吹き払って、気体の流入を停止した。その後、触媒スラリーを塗工した基材を150℃で乾燥させた後、大気雰囲気下、550℃で焼成して、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり59.1g(白金族金属の重量を除く)であった。 Next, a cordierite wall flow type honeycomb substrate (cell number / mil thickness: 300 cpsi / 8.5 mil, diameter: 118.4 mm, total length: 127 mm, mode pore diameter X: 20 μm, porosity: 65%) is prepared. did. The end of the base material on the exhaust gas introduction side was immersed in the catalyst slurry, and vacuum suction was performed from the opposite end side to impregnate and hold the catalyst slurry at the end of the base material. By flowing gas into the base material from the end on the exhaust gas introduction side, coating the catalyst slurry on the pore surface in the partition wall, and blowing off excess catalyst slurry from the end on the exhaust gas discharge side of the base material The gas flow was stopped. Thereafter, the base material coated with the catalyst slurry was dried at 150 ° C., and then calcined at 550 ° C. in an air atmosphere to prepare an exhaust gas purifying catalyst. In addition, the coating amount of the catalyst layer after the firing was 59.1 g (excluding the weight of the platinum group metal) per 1 L of the base material.
(実施例2)
 硝酸パラジウム水溶液をアルミナ粉末に含侵して、Pd担持粉末を得た。また、硝酸ロジウム水溶液をアルミナ粉末に含浸して、Rh担持粉末を得た。得られたPd担持粉末およびRh担持粉末にセリアジルコニア複合酸化物粉末と、46%硝酸ランタン水溶液と、イオン交換水とを混合したこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.9g(白金族金属の重量を除く)であった。
(Example 2)
An alumina powder was impregnated with an aqueous solution of palladium nitrate to obtain a Pd-supported powder. Further, an alumina powder was impregnated with an aqueous rhodium nitrate solution to obtain a Rh-supported powder. Exhaust gas purification catalyst was prepared in the same manner as in Example 1 except that the obtained Pd-supported powder and Rh-supported powder were mixed with ceria-zirconia composite oxide powder, a 46% lanthanum nitrate aqueous solution, and ion-exchanged water. did. The coating amount of the catalyst layer after firing was 60.9 g per 1 L of the substrate (excluding the weight of the platinum group metal).
(実施例3)
 得られた触媒スラリーに、炭酸アンモニウム44.9g(pH調整剤)を混合し、pHが5.1の触媒スラリーを得たこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.0g(白金族金属の重量を除く)であった。
(Example 3)
An exhaust gas purifying catalyst was prepared in the same manner as in Example 1 except that 44.9 g of ammonium carbonate (pH adjuster) was mixed with the obtained catalyst slurry to obtain a catalyst slurry having a pH of 5.1. . The coating amount of the catalyst layer after firing was 60.0 g (excluding the weight of the platinum group metal) per 1 L of the base material.
(実施例4)
 硝酸パラジウム水溶液をアルミナ粉末およびセリアジルコニア複合酸化物粉末に含侵させて、Pd担持粉末を得た。また、硝酸ロジウム水溶液をアルミナ粉末およびセリアジルコニア複合酸化物粉末に含侵させて、Rh担持粉末を得た。得られたPd担持粉末およびRh担持粉末を用いて調製した触媒スラリーに、炭酸アンモニウム33g(pH調整剤)を混合し、pHが5.1の触媒スラリーを得たこと以外は、実施例2と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり62.0g(白金族金属の重量を除く)であった。
(Example 4)
An aqueous solution of palladium nitrate was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. Further, an rhodium nitrate aqueous solution was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Rh-supporting powder. Example 2 was repeated except that 33 g of ammonium carbonate (pH adjuster) was mixed with the catalyst slurry prepared using the obtained Pd-supported powder and Rh-supported powder to obtain a catalyst slurry having a pH of 5.1. Similarly, an exhaust gas purifying catalyst was produced. The coating amount of the catalyst layer after firing was 62.0 g per 1 L of the substrate (excluding the weight of the platinum group metal).
(実施例5)
 硝酸パラジウム水溶液をアルミナ粉末およびセリアジルコニア複合酸化物粉末に含侵して、Pd担持粉末を得た。また、硝酸ロジウム水溶液をジルコニア粉末に含侵して、Rh担持粉末を得た。得られたPd担持粉末及びRh担持粉末と、セリアジルコニア複合酸化物粉末と、46%硝酸ランタン水溶液と、イオン交換水とを混合し、得られた触媒スラリーに、水酸化バリウム八水和物96gと炭酸アンモニウム27g(pH調整剤)を混合し、pHが5.5の触媒スラリーを得たこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり61.8g(白金族金属の重量を除く)であった。
(Example 5)
An aqueous solution of palladium nitrate was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. In addition, a rhodium nitrate aqueous solution was impregnated into the zirconia powder to obtain a Rh-supported powder. The obtained Pd-supported powder and Rh-supported powder, the ceria-zirconia composite oxide powder, a 46% lanthanum nitrate aqueous solution, and ion-exchanged water were mixed, and 96 g of barium hydroxide octahydrate was added to the obtained catalyst slurry. And 27 g of ammonium carbonate (pH adjuster) were mixed to obtain an exhaust gas purifying catalyst in the same manner as in Example 1 except that a catalyst slurry having a pH of 5.5 was obtained. The coating amount of the catalyst layer after firing was 61.8 g (excluding the weight of the platinum group metal) per 1 L of the base material.
(比較例1)
 触媒スラリーの調製において、触媒スラリーに、水酸化バリウム八水和物と、60%硝酸とを混合しなかったこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.0g(白金族金属の重量を除く)であった。
(Comparative Example 1)
An exhaust gas purifying catalyst was prepared in the same manner as in Example 1, except that barium hydroxide octahydrate and 60% nitric acid were not mixed with the catalyst slurry in the preparation of the catalyst slurry. The coating amount of the catalyst layer after firing was 60.0 g (excluding the weight of the platinum group metal) per 1 L of the base material.
(比較例2)
触媒スラリーの調製において、触媒スラリーに、水酸化バリウム八水和物と、60%硝酸とを混合しなかったこと以外は、実施例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.9g(白金族金属の重量を除く)であった。
(Comparative Example 2)
An exhaust gas purifying catalyst was prepared in the same manner as in Example 1, except that barium hydroxide octahydrate and 60% nitric acid were not mixed with the catalyst slurry in the preparation of the catalyst slurry. The coating amount of the catalyst layer after firing was 60.9 g per 1 L of the substrate (excluding the weight of the platinum group metal).
(比較例3)
 硝酸パラジウム水溶液をアルミナ粉末およびセリアジルコニア複合酸化物粉末に含侵させて、Pd担持粉末を得た。また、硝酸ロジウム水溶液をセリアジルコニア複合酸化物粉末に含侵させて、Rh担持粉末を得た。得られたPd担持粉末およびRh担持粉末と、硫酸バリウム粉末と、イオン交換水とを混合したこと以外は、比較例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.0g(白金族金属の重量を除く)であった。
(Comparative Example 3)
An aqueous solution of palladium nitrate was impregnated into the alumina powder and the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. In addition, an aqueous rhodium nitrate solution was impregnated into the ceria-zirconia composite oxide powder to obtain a Rh-supported powder. An exhaust gas purifying catalyst was produced in the same manner as in Comparative Example 1, except that the obtained Pd-supported powder and Rh-supported powder, barium sulfate powder, and ion-exchanged water were mixed. The coating amount of the catalyst layer after firing was 60.0 g (excluding the weight of the platinum group metal) per 1 L of the base material.
(比較例4)
 硝酸パラジウム水溶液をセリアジルコニア複合酸化物粉末に含侵させて、Pd担持粉末を得た。また、硝酸ロジウム水溶液をジルコニア粉末に含侵して、Rh担持粉末を得た。得られたPd担持粉末およびRh担持粉末を用いて触媒スラリーを調製したこと以外は、比較例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.9g(白金族金属の重量を除く)であった。
(Comparative Example 4)
An aqueous solution of palladium nitrate was impregnated into the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. Also, an aqueous rhodium nitrate solution was impregnated into the zirconia powder to obtain a Rh-supported powder. An exhaust gas purifying catalyst was produced in the same manner as in Comparative Example 1, except that a catalyst slurry was prepared using the obtained Pd-supported powder and Rh-supported powder. The coating amount of the catalyst layer after firing was 60.9 g per 1 L of the substrate (excluding the weight of the platinum group metal).
(比較例5)
 硝酸パラジウム水溶液をセリアジルコニア複合酸化物粉末に含侵させて、Pd担持粉末を得た。また、硝酸ロジウム水溶液をアルミナ粉末に含侵して、Rh担持粉末を得た。得られたPd担持粉末およびRh担持粉末を用いて触媒スラリーを調製した以外は、比較例1と同様にして、排ガス浄化触媒を作製した。なお、焼成後における触媒層の塗工量は、基材1L当たり60.9g(白金族金属の重量を除く)であった。
(Comparative Example 5)
An aqueous solution of palladium nitrate was impregnated into the ceria-zirconia composite oxide powder to obtain a Pd-supported powder. In addition, an rhodium nitrate aqueous solution was impregnated into alumina powder to obtain a Rh-supported powder. An exhaust gas purifying catalyst was produced in the same manner as in Comparative Example 1, except that a catalyst slurry was prepared using the obtained Pd-supported powder and Rh-supported powder. The coating amount of the catalyst layer after firing was 60.9 g per 1 L of the substrate (excluding the weight of the platinum group metal).
[粒子径分布測定]
 触媒スラリーのD90粒子径は、島津製作所社製レーザー回折式粒子径分布測定装置SALD-3100を用いて、レーザー散乱法により測定した。
[Particle size distribution measurement]
The D90 particle size of the catalyst slurry was measured by a laser scattering method using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation.
[水銀圧入法]
 実施例及び比較例で作製した排ガス浄化触媒、並びに、触媒スラリーを塗工する前の基材の、排ガス導入側部分、排ガス排出側部分、及び中間部分の各隔壁から、モード気孔径、D30気孔径、D70気孔径、及び気孔容積の測定用サンプル(1cm)をそれぞれ採取した。測定用サンプルを乾燥後、水銀ポロシメーター(Thermo Fisher Scientific社製、商品名:PASCAL140及びPASCAL440)を用いて、水銀圧入法により気孔分布を測定した。この際、PASCAL140により低圧領域(0~400Kpa)を測定し、PASCAL440により高圧領域(0.1Mpa~400Mpa)を測定した。得られた気孔分布から、モード気孔径、D30気孔径、D70気孔径、を求め、また、気孔径1μm以上の気孔における気孔容積を算出した。なお、気孔径及び気孔容積の値としては、排ガス導入側部分、排ガス排出側部分、及び中間部分それぞれで得られた値の平均値を採用した。
[Mercury intrusion method]
The exhaust gas purifying catalysts prepared in Examples and Comparative Examples, and the base material before applying the catalyst slurry, from each partition of the exhaust gas introduction side portion, the exhaust gas discharge side portion, and the intermediate portion, the mode pore diameter, D30 Samples (1 cm 3 ) for measuring pore diameter, D70 pore diameter, and pore volume were collected. After drying the measurement sample, the pore distribution was measured by a mercury intrusion method using a mercury porosimeter (manufactured by Thermo Fisher Scientific, trade names: PASCAL140 and PASCAL440). At this time, the low pressure region (0 to 400 Kpa) was measured by PASCAL140, and the high pressure region (0.1 Mpa to 400 Mpa) was measured by PASCAL440. From the obtained pore distribution, the mode pore diameter, D30 pore diameter, and D70 pore diameter were determined, and the pore volume of pores having a pore diameter of 1 μm or more was calculated. In addition, as the values of the pore diameter and the pore volume, the average values of the values obtained in the exhaust gas introduction side portion, the exhaust gas discharge side portion, and the intermediate portion were used.
 次いで、下記式により、実施例及び比較例で作製した排ガス浄化触媒の気孔率を算出した。その結果を、下記表1に示す。また、図2に、実施例及び比較例の気孔容積分布を示す。
 排ガス浄化触媒の気孔率(%)=触媒層が形成された隔壁の気孔容積(cc/g)÷基材の気孔容積(cc/g)×基材の気孔率(%)
 基材の気孔率(%)=65%
Next, the porosity of the exhaust gas purifying catalysts manufactured in Examples and Comparative Examples was calculated by the following equation. The results are shown in Table 1 below. FIG. 2 shows the pore volume distributions of the example and the comparative example.
Porosity of exhaust gas purifying catalyst (%) = Porous volume (cc / g) of partition wall on which catalyst layer is formed / Porous volume of substrate (cc / g) x Porosity of substrate (%)
Porosity (%) of base material = 65%
[スス捕集性能の測定]
 ガソリンエンジンにおけるPN規制を前提として、スス捕集性能の測定を行った。具体的には、実施例及び比較例で作製した排ガス浄化触媒を、1.5L直噴ターボエンジン搭載車に取り付け、固体粒子数測定装置(堀場製作所製、商品名:MEXA-2100 SPCS)を用いて、WLTCモード走行時のスス排出数量(PNtest)を測定した。なお、ススの捕集率は、排ガス浄化触媒を搭載せずに上記試験を行った際に測定したスス量(PNblank)からの減少率として、下記式により算出した。その結果を、下記表1に示す。
 ススの捕集率(%)=(PNblank-PNtest)/PNblank × 100(%)
[Measurement of soot collection performance]
The soot collection performance was measured on the premise of PN regulations for gasoline engines. Specifically, the exhaust gas purifying catalysts produced in Examples and Comparative Examples were mounted on a vehicle equipped with a 1.5 L direct injection turbo engine, and a solid particle counting device (manufactured by HORIBA, Ltd., trade name: MEXA-2100 SPCS) was used. The soot emission quantity (PN test ) during the WLTC mode running was measured. The soot collection rate was calculated by the following equation as a reduction rate from the soot amount (PN blank ) measured when the above test was carried out without mounting the exhaust gas purifying catalyst. The results are shown in Table 1 below.
Soot collection rate (%) = (PN blank −PN test ) / PN blank × 100 (%)
 その結果を、実施例及び比較例における、気孔狭小率(ウォールフロー型基材の隔壁のモード気孔径に対する、触媒層が形成された隔壁のモード気孔径の割合)とスス捕集率との関係としてまとめて図3に示す。図3に示されるように、気孔狭小率とスス捕集率との間には、相関関係が認められる。 The results are shown as a relationship between the pore narrowing ratio (the ratio of the mode pore diameter of the partition wall on which the catalyst layer is formed to the mode pore diameter of the partition wall of the wall flow type base material) and the soot collection rate in Examples and Comparative Examples. Are collectively shown in FIG. As shown in FIG. 3, there is a correlation between the pore narrowing rate and the soot collection rate.
[圧力損失の測定]
 実施例及び比較例で作製した排ガス浄化触媒、並びに、触媒スラリーを塗布する前の基材を圧力損失測定装置(ツクバリカセイキ株式会社製)にそれぞれ設置し、設置した排ガス浄化触媒に室温の空気を導入させた。排ガス浄化触媒からの空気の排出量が4m3/minとなったときの空気の導入側と排出側の差圧を測定して得られた値を、排ガス浄化触媒の圧力損失とした。その結果を、下記表1に示す。
[Measurement of pressure loss]
The exhaust gas purifying catalysts prepared in Examples and Comparative Examples, and the base material before applying the catalyst slurry were each installed in a pressure loss measuring device (manufactured by Tsukuba Riki Seiki Co., Ltd.). Was introduced. The value obtained by measuring the differential pressure between the air introduction side and the air discharge side when the amount of air discharged from the exhaust gas purification catalyst was 4 m 3 / min was defined as the pressure loss of the exhaust gas purification catalyst. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 本発明の排ガス浄化触媒は、ガソリンエンジンの排ガス中に含まれる粒子状物質を除去するため排ガス浄化触媒として広く且つ有効に利用することができる。また、本発明の排ガス浄化触媒は、ガソリンエンジンのみならず、ジェットエンジン、ボイラー、ガスタービン等の排ガス中に含まれる粒子状物質を除去するため排ガス浄化触媒としても有効に利用可能である。 The exhaust gas purifying catalyst of the present invention can be widely and effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of a gasoline engine. Further, the exhaust gas purifying catalyst of the present invention can be effectively used as an exhaust gas purifying catalyst for removing particulate matter contained in exhaust gas of not only gasoline engines but also jet engines, boilers, gas turbines and the like.
 10 ・・・ウォールフロー型基材
 11 ・・・導入側セル
 11a・・・排ガス導入側の端部
 12 ・・・排出側セル
 12a・・・排ガス排出側の端部
 13 ・・・隔壁
 21 ・・・触媒層
100 ・・・排ガス浄化触媒
DESCRIPTION OF SYMBOLS 10 ... Wall flow type base material 11 ... Introducing cell 11a ... End part on exhaust gas introduction side 12 ... Discharge side cell 12a ... End part on exhaust gas discharge side 13 ... Partition wall 21 ..Catalyst layer 100 ... Exhaust gas purification catalyst

Claims (7)

  1.  内燃機関から排出される排ガスを浄化する排ガス浄化触媒であって、
     排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材と、
     前記隔壁の気孔内に形成された触媒層と、を有し、
     気孔径分布において、前記ウォールフロー型基材の前記隔壁のモード気孔径をXとしたときに、前記触媒層が形成された前記隔壁のモード気孔径が0.9X以下である、
     排ガス浄化触媒。
    An exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine,
    The introduction-side cell whose end on the exhaust gas introduction side is open, and the discharge-side cell whose end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall, ,
    And a catalyst layer formed in the pores of the partition wall,
    In the pore diameter distribution, when the mode pore diameter of the partition wall of the wall flow type substrate is X, the mode pore diameter of the partition wall on which the catalyst layer is formed is 0.9X or less,
    Exhaust gas purification catalyst.
  2.  前記ウォールフロー型基材の前記隔壁の前記モード気孔径Xが、10~30μmである、
     請求項1に記載の排ガス浄化触媒。
    The mode pore diameter X of the partition wall of the wall flow type substrate is 10 to 30 μm;
    The exhaust gas purifying catalyst according to claim 1.
  3.  前記触媒層が形成された前記隔壁の前記モード気孔径が、0.6X以上である、
     請求項1又は2に記載の排ガス浄化触媒。
    The mode pore diameter of the partition wall on which the catalyst layer is formed is 0.6X or more,
    The exhaust gas purifying catalyst according to claim 1.
  4.  最小気孔径を1μmとする気孔径分布において、
     前記ウォールフロー型基材の隔壁のD30気孔径をYとしたときに、前記触媒層が形成された前記隔壁のD30気孔径が0.6~0.9Yであり、
     前記ウォールフロー型基材の隔壁のD70気孔径をZとしたときに、前記触媒層が形成された前記隔壁のD70気孔径が0.5~0.8Zである、
     請求項1~3のいずれか1項に記載の排ガス浄化触媒。
    In the pore size distribution where the minimum pore size is 1 μm,
    When the D30 pore diameter of the partition wall of the wall flow type substrate is Y, the D30 pore diameter of the partition wall on which the catalyst layer is formed is 0.6 to 0.9Y,
    When the D70 pore diameter of the partition wall of the wall flow type substrate is Z, the D70 pore diameter of the partition wall on which the catalyst layer is formed is 0.5 to 0.8Z.
    The exhaust gas purifying catalyst according to any one of claims 1 to 3.
  5.  前記内燃機関が、ガソリンエンジンである、
     請求項1~4のいずれか一項に記載の排ガス浄化触媒。
    The internal combustion engine is a gasoline engine,
    The exhaust gas purifying catalyst according to any one of claims 1 to 4.
  6.  内燃機関から排出される排ガスを浄化する排ガス浄化触媒の製造方法であって、
     排ガス導入側の端部が開口した導入側セルと、該導入側セルに隣接し排ガス排出側の端部が開口した排出側セルとが、多孔質の隔壁により画定されたウォールフロー型基材を準備する工程と、
     前記ウォールフロー型基材の前記隔壁内の気孔表面上の少なくとも一部に、触媒スラリーを塗工して、触媒層を形成する触媒層形成工程と、を有し、
     該触媒層形成工程において、気孔径分布において、前記ウォールフロー型基材の隔壁のモード気孔径をXとしたときに、前記触媒層が形成された前記隔壁のモード気孔径が0.9X以下である前記排ガス浄化触媒を得る、
     排ガス浄化触媒の製造方法。
    A method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine,
    An introduction-side cell in which the end on the exhaust gas introduction side is open, and a discharge-side cell in which the end on the exhaust gas discharge side is open adjacent to the introduction-side cell, a wall flow type substrate defined by a porous partition wall. The step of preparing,
    A catalyst layer forming step of applying a catalyst slurry to at least a part of the pore surface in the partition wall of the wall flow type substrate to form a catalyst layer,
    In the catalyst layer forming step, in the pore diameter distribution, when the mode pore diameter of the partition of the wall flow type substrate is X, the mode pore diameter of the partition on which the catalyst layer is formed is 0.9X or less. Obtaining the exhaust gas purifying catalyst,
    A method for producing an exhaust gas purifying catalyst.
  7.  前記内燃機関が、ガソリンエンジンである、
     請求項6に記載の排ガス浄化触媒の製造方法。
    The internal combustion engine is a gasoline engine,
    A method for producing the exhaust gas purifying catalyst according to claim 6.
PCT/JP2019/029874 2018-08-09 2019-07-30 Exhaust gas purification catalyst WO2020031794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980036868.8A CN112218719B (en) 2018-08-09 2019-07-30 Exhaust gas purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018149978 2018-08-09
JP2018-149978 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020031794A1 true WO2020031794A1 (en) 2020-02-13

Family

ID=68611046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029874 WO2020031794A1 (en) 2018-08-09 2019-07-30 Exhaust gas purification catalyst

Country Status (3)

Country Link
JP (1) JP6608090B1 (en)
CN (1) CN112218719B (en)
WO (1) WO2020031794A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022111085A (en) * 2021-01-19 2022-07-29 本田技研工業株式会社 Exhaust gas purification filter
JPWO2022163720A1 (en) * 2021-02-01 2022-08-04

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330118A (en) * 2003-05-09 2004-11-25 Tokyo Yogyo Co Ltd Filter for clarifying exhaust gas
WO2008126331A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Honeycomb filter
JP2009136788A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Oxidation catalyst device for cleaning exhaust gas
JP2012518753A (en) * 2009-02-26 2012-08-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Filter for collecting particulate matter from exhaust gas discharged from a positive ignition engine
JP2013053589A (en) * 2011-09-05 2013-03-21 Ngk Insulators Ltd Wall flow type exhaust gas purification filter
JP2017217646A (en) * 2016-06-02 2017-12-14 株式会社キャタラー Exhaust purification filter
JP2019118856A (en) * 2017-12-28 2019-07-22 本田技研工業株式会社 Exhaust gas purification filter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2735249C (en) * 2008-08-27 2017-01-03 Ict Co., Ltd. Exhaust gas purification catalyst and method for purifying exhaust gas by using same
JP6594149B2 (en) * 2015-10-05 2019-10-23 株式会社キャタラー Exhaust gas purification device
JP6689641B2 (en) * 2016-03-25 2020-04-28 日本碍子株式会社 Honeycomb structure
CN106799225B (en) * 2016-12-27 2019-06-11 中国科学院上海硅酸盐研究所 A kind of potassium support type soot combustion catalyst and its preparation method and application
WO2019058948A1 (en) * 2017-09-21 2019-03-28 株式会社キャタラー Catalyst for exhaust gas purification

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330118A (en) * 2003-05-09 2004-11-25 Tokyo Yogyo Co Ltd Filter for clarifying exhaust gas
WO2008126331A1 (en) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. Honeycomb filter
JP2009136788A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Oxidation catalyst device for cleaning exhaust gas
JP2012518753A (en) * 2009-02-26 2012-08-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Filter for collecting particulate matter from exhaust gas discharged from a positive ignition engine
JP2013053589A (en) * 2011-09-05 2013-03-21 Ngk Insulators Ltd Wall flow type exhaust gas purification filter
JP2017217646A (en) * 2016-06-02 2017-12-14 株式会社キャタラー Exhaust purification filter
JP2019118856A (en) * 2017-12-28 2019-07-22 本田技研工業株式会社 Exhaust gas purification filter

Also Published As

Publication number Publication date
CN112218719A (en) 2021-01-12
JP6608090B1 (en) 2019-11-20
CN112218719B (en) 2021-09-14
JP2020025954A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7228065B2 (en) Catalyst-coated gasoline particulate filter and its manufacturing method
JP7051186B2 (en) Exhaust gas purification catalyst
JP6526847B1 (en) Exhaust gas purification catalyst and method for producing the same
WO2020031794A1 (en) Exhaust gas purification catalyst
JP6523496B1 (en) Exhaust gas purification catalyst and method for producing the same
JP6617181B1 (en) Exhaust gas purification catalyst
WO2019221214A1 (en) Exhaust gas purifying catalyst
WO2019221216A1 (en) Method for manufacturing exhaust gas purification catalyst
WO2019221212A1 (en) Exhaust gas purification catalyst and method for producing same
JP6581262B1 (en) Method for producing exhaust gas purification catalyst
JP7319293B2 (en) Exhaust gas purification catalyst and its manufacturing method
JP7075282B2 (en) Exhaust gas purification catalyst
WO2022163720A1 (en) Exhaust gas purification catalyst filter for gasoline engine
WO2019221217A1 (en) Exhaust gas purification catalyst
WO2021059883A1 (en) Exhaust-gas-purifying catalyst production method
JP6526846B1 (en) Exhaust gas purification catalyst and method for producing the same
JP2022156448A (en) Exhaust gas purification catalyst for gasoline engine and exhaust gas purification system using the same
JP2023072745A (en) Catalyst for exhaust gas purification, and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847378

Country of ref document: EP

Kind code of ref document: A1