JP6076936B2 - Exhaust purification filter - Google Patents

Exhaust purification filter Download PDF

Info

Publication number
JP6076936B2
JP6076936B2 JP2014069179A JP2014069179A JP6076936B2 JP 6076936 B2 JP6076936 B2 JP 6076936B2 JP 2014069179 A JP2014069179 A JP 2014069179A JP 2014069179 A JP2014069179 A JP 2014069179A JP 6076936 B2 JP6076936 B2 JP 6076936B2
Authority
JP
Japan
Prior art keywords
containing oxide
catalyst
surface area
specific surface
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014069179A
Other languages
Japanese (ja)
Other versions
JP2015107480A (en
Inventor
亮策 高原
亮策 高原
森 武史
武史 森
千晶 関
千晶 関
康司 根本
康司 根本
昌史 迫田
昌史 迫田
祐太 保志
祐太 保志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014069179A priority Critical patent/JP6076936B2/en
Priority to DE102014221169.7A priority patent/DE102014221169B4/en
Publication of JP2015107480A publication Critical patent/JP2015107480A/en
Application granted granted Critical
Publication of JP6076936B2 publication Critical patent/JP6076936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排気浄化フィルタに関する。詳しくは、内燃機関から排出される排気中の粒子状物質を捕捉して浄化する排気浄化フィルタに関する。   The present invention relates to an exhaust purification filter. Specifically, the present invention relates to an exhaust gas purification filter that captures and purifies particulate matter in exhaust gas discharged from an internal combustion engine.

自動車等に搭載される内燃機関、特に圧縮着火式内燃機関においては、排出される排気中に多量の粒子状物質が含まれることが知られている。この粒子状物質(Particulate Matter、以下「PM」という。)は、人体に有害であり、エミッション規制対象物質である。そのため、通常、PMを捕捉する排気浄化フィルタとしてのDPF(Diesel Particulate Filter)が内燃機関の排気通路に設けられている。   In an internal combustion engine mounted on an automobile or the like, in particular, a compression ignition type internal combustion engine, it is known that a large amount of particulate matter is contained in the exhaust gas discharged. This particulate matter (Particulate Matter, hereinafter referred to as “PM”) is harmful to the human body and is an emission-regulated substance. Therefore, a DPF (Diesel Particulate Filter) as an exhaust gas purification filter that captures PM is usually provided in the exhaust passage of the internal combustion engine.

上記DPFでは、捕捉されたPMが次第に堆積する。すると、DPFの上流側と下流側との間で差圧が生じ、出力の低下や燃費の悪化を招く。そのため、上記DPFには、PMがある程度堆積した段階で、堆積したPMを燃焼除去するための触媒が担持されるのが一般的である。   In the DPF, trapped PM gradually accumulates. Then, a differential pressure is generated between the upstream side and the downstream side of the DPF, leading to a decrease in output and a deterioration in fuel consumption. For this reason, the DPF generally carries a catalyst for burning and removing the deposited PM when PM is accumulated to some extent.

上記触媒としては、PMに対して特に優れた浄化活性を示すAg系触媒が知られている。Ag系触媒としては、例えばCeを含有するCe含有酸化物にAgを担持してなる触媒が提案されている(例えば、特許文献1〜3参照)。これらの触媒によれば、低温でPMを燃焼除去できるとされている。   As said catalyst, the Ag type catalyst which shows the especially outstanding purification | cleaning activity with respect to PM is known. As an Ag-based catalyst, for example, a catalyst in which Ag is supported on a Ce-containing oxide containing Ce has been proposed (see, for example, Patent Documents 1 to 3). According to these catalysts, it is said that PM can be removed by combustion at a low temperature.

特許第5092281号公報Japanese Patent No. 5092281 特許第4678596号公報Japanese Patent No. 4678596 特開2011−143352号公報JP 2011-143352 A

ところで、Ag系触媒は、活性酸素を放出することでPMを燃焼するため、AgとPMの接触性がPM浄化性能に大きく影響を及ぼす特性を有する。そこで、従来の触媒では、触媒中のAgの含有量を増加させることで、PM浄化性能の向上を図っている。しかしながらAgの含有量を増加させると、実際には、Agが凝集してCe含有酸化物に対するAgの被覆率が低下し、AgとPMの接触性が低下するため、PM浄化性能の向上が期待できない。また、Agの含有量を増加させると、過剰のAgによるシンタリングが発生してPM浄化性能が低下するうえ、コストの増加を招く。   By the way, since an Ag-based catalyst burns PM by releasing active oxygen, the contact property between Ag and PM has a characteristic that greatly affects the PM purification performance. Therefore, in the conventional catalyst, the PM purification performance is improved by increasing the content of Ag in the catalyst. However, when the Ag content is increased, in reality, Ag aggregates and the coverage of Ag with respect to the Ce-containing oxide is lowered, and the contact property between Ag and PM is lowered. Can not. Further, when the content of Ag is increased, sintering due to excessive Ag occurs, resulting in a decrease in PM purification performance and an increase in cost.

本発明は上記に鑑みてなされたものであり、その目的は、コストを抑制しつつ、PM浄化性能を向上できる排気浄化フィルタを提供することにある。   This invention is made | formed in view of the above, The objective is to provide the exhaust gas purification filter which can improve PM purification performance, suppressing cost.

上記目的を達成するため本発明は、内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質を捕捉して浄化する排気浄化フィルタであって、多孔質のフィルタ基材と、前記フィルタ基材上に担持され、前記粒子状物質を酸化浄化する触媒と、を備え、前記触媒は、Ceを含有するCe含有酸化物と、当該Ce含有酸化物上に担持されたAgと、を有し、前記触媒中の前記Agの含有量は、50質量%以下であり、前記Ce含有酸化物の比表面積は、0.5m/g〜105.6m/gであり、前記Ce含有酸化物上の前記Agの表面濃度は、元素換算で25.1%〜67.7%であることを特徴とする排気浄化フィルタを提供する。 In order to achieve the above object, the present invention provides an exhaust purification filter that is provided in an exhaust passage of an internal combustion engine and captures and purifies particulate matter in the exhaust of the internal combustion engine, comprising a porous filter substrate, A catalyst which is supported on the filter base material and oxidizes and purifies the particulate matter, and the catalyst includes a Ce-containing oxide containing Ce, and Ag supported on the Ce-containing oxide, has a content of said Ag in said catalyst is more than 50 wt%, the specific surface area of the Ce-containing oxide is 0.5m 2 /g~105.6m 2 / g, the Ce A surface concentration of Ag on the contained oxide is 25.1% to 67.7% in terms of element.

本発明では、粒子状物質を酸化浄化する触媒を、Ce含有酸化物にAgを担持してなるAg系触媒により形成する。また、触媒中のAgの含有量を50質量%以下とし、Ce含有酸化物の比表面積を0.5m/g〜105.6m/gと低く設定することで、Ce含有酸化物上のAgの表面濃度を元素換算で25.1%〜67.7%とする。
本発明によれば、Ce含有酸化物の比表面積を低下させることにより、触媒中のAg含有量を変化させずに一定のままで、Ce含有酸化物上のAgの表面濃度を高くできる。即ち、Ce含有酸化物の比表面積を低下させることで、Ce含有酸化物の細孔へのAgの埋没を抑制できるため、Ce含有酸化物の表面にAgを多く露出させることができる。従って、本発明によれば、AgとPMとの接触性が向上するため、PM浄化性能を向上できる。
また、従来の触媒では、Ag含有量を増加することで凝集したAg粒子が、Ce含有酸化物の表面から細孔内に滑り落ち、より大きな凝集体となって細孔内に偏在するため、AgとPMの接触性が低下し、PM浄化性能が低下する。これに対して本発明によれば、Ce含有酸化物の比表面積を低下させることで、Agの凝集を抑制できるため、PM浄化性能を向上できる。
さらには、本発明によれば、従来のようにAg含有量を増加する必要が無いため、過剰のAgによるシンタリングの発生を抑制でき、PM浄化性能を向上できるとともに、コストを抑制できる。
In the present invention, a catalyst for oxidizing and purifying particulate matter is formed by an Ag-based catalyst in which Ag is supported on a Ce-containing oxide. Further, the content of Ag in the catalyst was 50 wt% or less, the specific surface area of Ce-containing oxide by setting low as 0.5m 2 /g~105.6m 2 / g, on the Ce-containing oxide The surface concentration of Ag is set to 25.1% to 67.7% in terms of element.
According to the present invention, by reducing the specific surface area of the Ce-containing oxide, the surface concentration of Ag on the Ce-containing oxide can be increased without changing the Ag content in the catalyst. That is, by reducing the specific surface area of the Ce-containing oxide, it is possible to suppress the burying of Ag in the pores of the Ce-containing oxide, so that a large amount of Ag can be exposed on the surface of the Ce-containing oxide. Therefore, according to the present invention, the contact between Ag and PM is improved, so that the PM purification performance can be improved.
Moreover, in the conventional catalyst, Ag particles aggregated by increasing the Ag content slide down into the pores from the surface of the Ce-containing oxide, and become larger aggregates and unevenly distributed in the pores. The contact property between Ag and PM is lowered, and the PM purification performance is lowered. On the other hand, according to the present invention, Ag purification can be suppressed by reducing the specific surface area of the Ce-containing oxide, so that the PM purification performance can be improved.
Furthermore, according to the present invention, since there is no need to increase the Ag content as in the prior art, the occurrence of sintering due to excessive Ag can be suppressed, the PM purification performance can be improved, and the cost can be suppressed.

前記Ce含有酸化物の比表面積は、13.0m/g以上であり、前記Ce含有酸化物上の前記Agの表面濃度は、元素換算で45.7%以下であることが好ましい。 The specific surface area of the Ce-containing oxide is preferably 13.0 m 2 / g or more, and the surface concentration of the Ag on the Ce-containing oxide is preferably 45.7% or less in terms of element.

この発明では、Ce含有酸化物の比表面積を13.0m/g以上とし、Ce含有酸化物上のAgの表面濃度を元素換算で45.7%以下とする。
排気浄化フィルタでは、高いPM浄化性能に加えて、高いCO/HC浄化性能も求められるところ、Ce含有酸化物の比表面積が低すぎると、Ce含有酸化物が有する酸素放出機能(OSC)が失われてCO/HC浄化性能が低下する。これに対して、この発明によれば、Ce含有酸化物の比表面積の下限値を13.0m/gとすることで、CO/HC浄化性能の低下を回避しつつ、PM浄化性能を向上できる。
In this invention, the specific surface area of the Ce-containing oxide is set to 13.0 m 2 / g or more, and the surface concentration of Ag on the Ce-containing oxide is set to 45.7% or less in terms of element.
An exhaust purification filter is required to have high CO / HC purification performance in addition to high PM purification performance. If the specific surface area of the Ce-containing oxide is too low, the oxygen release function (OSC) of the Ce-containing oxide is lost. As a result, the CO / HC purification performance decreases. On the other hand, according to the present invention, the lower limit value of the specific surface area of the Ce-containing oxide is 13.0 m 2 / g, thereby improving the PM purification performance while avoiding the deterioration of the CO / HC purification performance. it can.

前記Ce含有酸化物の比表面積は、13.0m/g〜65.0m/gであり、前記Ce含有酸化物上の前記Agの表面濃度は、元素換算で29.6%〜45.7%であることが好ましい。 The specific surface area of the Ce-containing oxide is 13.0m 2 /g~65.0m 2 / g, the surface concentration of the Ag on the Ce-containing oxide 29.6% to 45 in terms of an element. 7% is preferable.

この発明では、Ce含有酸化物の比表面積を13.0m/g〜65.0m/gとし、Ce含有酸化物上のAgの表面濃度を元素換算で29.6%〜45.7%とする。この発明によれば、上述の効果がより顕著に発揮される。 In this invention, the specific surface area of Ce containing oxide and 13.0m 2 /g~65.0m 2 / g, 29.6 % ~45.7% of the surface concentration of Ag on Ce-containing oxide in terms of element And According to the present invention, the above-described effects are more remarkably exhibited.

前記触媒中の前記Agの含有量は、30質量%〜45質量%であることが好ましい。   The Ag content in the catalyst is preferably 30% by mass to 45% by mass.

この発明では、触媒中のAgの含有量を30質量%〜45質量%とする。この発明によれば、上述の効果がさらに顕著に発揮される。   In this invention, the content of Ag in the catalyst is 30% by mass to 45% by mass. According to the present invention, the above-described effects are more remarkably exhibited.

本発明によれば、コストを抑制しつつ、PM浄化性能を向上できる排気浄化フィルタを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the exhaust gas purification filter which can improve PM purification performance can be provided, suppressing cost.

Ce含有酸化物の比表面積とAg表面濃度との関係を説明するための図であり、(a)がCe含有酸化物の比表面積を変化させたときのAgの存在位置を示す模式図であり、(b)が(a)のときのAg表面濃度を示す図である。It is a figure for demonstrating the relationship between the specific surface area of Ce containing oxide, and Ag surface concentration, (a) is a schematic diagram which shows the presence position of Ag when changing the specific surface area of Ce containing oxide. It is a figure which shows Ag surface concentration when (b) is (a). Ag含有量及びCe含有酸化物の比表面積とPM浄化性能との関係を示す図である。It is a figure which shows the relationship between the specific surface area of Ag content and Ce containing oxide, and PM purification performance. Ce含有酸化物の焼成温度と比表面積との関係を示す図である。It is a figure which shows the relationship between the calcination temperature of Ce containing oxide, and a specific surface area. Ce含有酸化物の焼成温度とAg表面濃度との関係を示す図である。It is a figure which shows the relationship between the calcination temperature of Ce containing oxide, and Ag surface concentration. 反応時間とPM浄化率との関係を示す図である。It is a figure which shows the relationship between reaction time and PM purification rate. 各実施例及び比較例のT90を示す図である。It is a figure which shows T90 of each Example and a comparative example. Ag表面濃度とT90との関係を示す図である。It is a figure which shows the relationship between Ag surface concentration and T90. 実施例2、4、5のCO浄化率を示す図である。It is a figure which shows the CO purification rate of Example 2, 4, and 5. FIG. 実施例6〜10及び比較例2の触媒におけるAg含有量とAg表面濃度との関係を示す図である。It is a figure which shows the relationship between Ag content in the catalyst of Examples 6-10 and the comparative example 2, and Ag surface concentration. 実施例6〜10の触媒におけるAg含有量とT90との関係を示す図である。It is a figure which shows the relationship between Ag content and T90 in the catalyst of Examples 6-10. 実施例11〜13の触媒におけるCe含有酸化物の比表面積とT90との関係を示す図である。It is a figure which shows the relationship between the specific surface area of Ce containing oxide in the catalyst of Examples 11-13, and T90.

以下、本発明の実施形態について図面を参照しながら詳しく説明する。
本発明の第一実施形態に係る排気浄化フィルタは、例えばディーゼルエンジン等の内燃機関の排気通路に設けられ、内燃機関の排気中のPMを捕捉して浄化する。本実施形態に係る排気浄化フィルタは、フィルタ基材としてのDPFと、DPF上に担持されたAg系触媒と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The exhaust purification filter according to the first embodiment of the present invention is provided in an exhaust passage of an internal combustion engine such as a diesel engine, for example, and captures and purifies PM in the exhaust of the internal combustion engine. The exhaust purification filter according to the present embodiment includes a DPF as a filter base material, and an Ag-based catalyst supported on the DPF.

本実施形態のDPFは、三次元網目構造を有し、炭化珪素やコージェライト等の多孔質材料から形成される。また、PM捕集能を有する発泡金属や発泡セラミックス又は金属やセラミックス繊維を重ね合わせた不織布、ウォールフロータイプのフィルタ等、如何なる形態でも使用可能である。これらのうち、ウォールフロータイプのハニカム構造のフィルタが、PM捕集効率及び触媒とPMの接触性の観点から好ましく用いられる。   The DPF of the present embodiment has a three-dimensional network structure and is formed from a porous material such as silicon carbide or cordierite. Further, any form such as foam metal or foam ceramic having PM collecting ability, a nonwoven fabric in which metals and ceramic fibers are superimposed, a wall flow type filter, or the like can be used. Among these, a wall flow type honeycomb structure filter is preferably used from the viewpoint of PM collection efficiency and contact between the catalyst and PM.

本実施形態のDPFは、触媒とPMの接触面積を大きくできる観点から、セル形状が4〜8角形のうちのいずれかであることが好ましい。また、同様の観点から、セル数が1平方インチあたり200〜400セルであることが好ましい。セル数が200セル未満であると、触媒とPMの接触面積を十分確保できず、400セルを超えると、セルにPMが目詰まりして圧損の上昇に繋がる。   In the DPF of this embodiment, the cell shape is preferably any one of 4 to 8 octagons from the viewpoint of increasing the contact area between the catalyst and the PM. From the same viewpoint, the number of cells is preferably 200 to 400 cells per square inch. When the number of cells is less than 200 cells, a sufficient contact area between the catalyst and PM cannot be ensured. When the number exceeds 400 cells, PM is clogged in the cells, leading to an increase in pressure loss.

本実施形態の触媒層は、活性種である触媒金属としてAgを含有するAg系触媒からなる。Ag系触媒は、現状、PMの燃焼に最も有効な触媒であり、Pt等の他の貴金属系触媒よりも低温でPMを燃焼できる。例えば、PMとの接触性が良好であれば、200℃以下からPMを着火させることができ、400℃でPMの燃焼を完了させることができる。   The catalyst layer of this embodiment is composed of an Ag-based catalyst containing Ag as a catalytic metal that is an active species. An Ag-based catalyst is currently the most effective catalyst for burning PM, and can burn PM at a lower temperature than other noble metal-based catalysts such as Pt. For example, if the contact property with the PM is good, the PM can be ignited from 200 ° C. or less, and the combustion of the PM can be completed at 400 ° C.

ここで、Ag系触媒のPM燃焼メカニズムについて説明する。
Ag系触媒では、表面近傍のAgは、酸化雰囲気下ではAgOとして存在し、還元雰囲気下ではAgメタルとして存在する。そして、AgOは、酸素脱離エネルギーが最も小さく、PMの燃焼に対して最も有効な化合物である。
後述する酸素放出能を有するCe含有酸化物から、表面付近のAgメタルに酸素が供給されると、Agメタルは活性種であるAgOに変換される。そして、このAgOは、PMと反応することによりAgメタルに戻るものの、直ちにCe含有酸化物からの酸素がAgメタルに供給される結果、常に表面付近のAgは、AgOの状態で存在する。このようにして、Ag系触媒は、表面付近に存在する活性種AgOの作用によって、低温下で効率良くPMを燃焼除去する。従って、Ag系触媒は、AgとPMとの接触性がPM浄化性能に大きく影響を及ぼす特性を有する。
Here, the PM combustion mechanism of the Ag-based catalyst will be described.
In the Ag-based catalyst, Ag in the vicinity of the surface exists as Ag 2 O in an oxidizing atmosphere and as Ag metal in a reducing atmosphere. Ag 2 O has the smallest oxygen desorption energy and is the most effective compound for PM combustion.
When oxygen is supplied from a Ce-containing oxide having an oxygen releasing ability, which will be described later, to Ag metal near the surface, Ag metal is converted to Ag 2 O which is an active species. And although this Ag 2 O returns to the Ag metal by reacting with PM, as a result of immediately supplying oxygen from the Ce-containing oxide to the Ag metal, the Ag near the surface is always in the state of Ag 2 O. Exists. In this way, the Ag-based catalyst efficiently removes PM at a low temperature by the action of the active species Ag 2 O existing near the surface. Therefore, the Ag-based catalyst has a characteristic that the contact property between Ag and PM greatly affects the PM purification performance.

本実施形態のAg系触媒は、Agを担持する触媒担体として、Ceを含有するCe含有酸化物が用いられる。Ce含有酸化物は、酸素放出能を有するものとして知られている。Ce含有酸化物としては、CeO、CeZrO、CePrLaSiOが好ましく使用される。これにより、酸素放出能を有するCe含有酸化物から放出される酸素によって、上記AgOの安定性が確保される。 In the Ag-based catalyst of the present embodiment, a Ce-containing oxide containing Ce is used as a catalyst carrier that supports Ag. Ce-containing oxides are known to have oxygen releasing ability. As the Ce-containing oxide, CeO 2 , CeZrO 2 , and CePrLaSiO 2 are preferably used. Thereby, the stability of the Ag 2 O is ensured by oxygen released from the Ce-containing oxide having oxygen releasing ability.

Ce含有酸化物としては、ペロブスカイト型、スピネル型、ルチル型、デラフォサイト型、マグネトプランバイト型、イルメナイト型、及びフルオライト型からなる群より選択される少なくとも1種を用いることができる。これらの中でも、酸素放出能の観点から、フルオライト型の複合酸化物が好ましく用いられる。
また、複合酸化物は、アルカリ土類金属元素、遷移金属元素、第12族元素、及び第13族元素からなる群より選択される少なくとも2種以上を構成元素として含むことにより、構成元素の価数を変化させて酸素の吸収及び放出を行うものが好ましい。
また、複合酸化物が酸素放出能を有するために、多原子価を持つ元素が少なくとも1種含まれていることが好ましい。具体的には、Zr、V、Cr、Mn、Fe、Co、Cu、Nb、Ta、Mo、W、Ce、Pr、Sm、Eu、Tb、Yb、Pt、Pd、Rh、Ir、Ru等の遷移金属元素が少なくとも1種含まれていることが好ましい。酸素放出は、複合酸化物を構成する元素の価数の変化に応じて、電荷のバランスを保つために複合酸化物の格子中の酸素が脱離する現象である。このため、Agとの組合せによる酸素放出能の観点から、上記遷移金属元素のうち、Ce、Zr、Pr、La、及びYが特に好ましい。
As the Ce-containing oxide, at least one selected from the group consisting of perovskite type, spinel type, rutile type, delafossite type, magnetoplumbite type, ilmenite type, and fluorite type can be used. Among these, a fluorite-type complex oxide is preferably used from the viewpoint of oxygen releasing ability.
In addition, the composite oxide contains at least two kinds selected from the group consisting of alkaline earth metal elements, transition metal elements, Group 12 elements, and Group 13 elements as constituent elements. What absorbs and discharge | releases oxygen by changing a number is preferable.
In addition, since the composite oxide has an oxygen releasing ability, it is preferable that at least one element having a polyvalence is included. Specifically, Zr, V, Cr, Mn, Fe, Co, Cu, Nb, Ta, Mo, W, Ce, Pr, Sm, Eu, Tb, Yb, Pt, Pd, Rh, Ir, Ru, etc. It is preferable that at least one transition metal element is contained. Oxygen release is a phenomenon in which oxygen in the lattice of the composite oxide is desorbed in order to maintain a charge balance in accordance with a change in the valence of the elements constituting the composite oxide. For this reason, Ce, Zr, Pr, La, and Y are particularly preferable among the above transition metal elements from the viewpoint of oxygen releasing ability in combination with Ag.

また、本実施形態のAg系触媒は、Ru、Pd、及びPtからなる群より選択される少なくとも1種の貴金属を、Agとともに上記触媒担体に共担持するものであってもよい。   Further, the Ag-based catalyst of the present embodiment may be one in which at least one noble metal selected from the group consisting of Ru, Pd, and Pt is co-supported on the catalyst carrier together with Ag.

本実施形態に係るAg系触媒は、Ce含有酸化物の比表面積が0.5m/g〜105.6m/gであることを特徴とする。Ce含有酸化物の比表面積がこの範囲内であることにより、Ag含有量を増加することなく、後述するAg表面濃度を高めることができる。好ましくは、その下限値が13.0m/gであり、さらに好ましいCe含有酸化物の比表面積は、13.0m/g〜65.0m/gである。 Ag-based catalyst according to the present embodiment has a specific surface area of the Ce-containing oxide is characterized by a 0.5m 2 /g~105.6m 2 / g. When the specific surface area of the Ce-containing oxide is within this range, the Ag surface concentration described later can be increased without increasing the Ag content. Preferably, the lower limit is 13.0m 2 / g, a specific surface area of more preferred Ce-containing oxide is 13.0m 2 /g~65.0m 2 / g.

本実施形態における「比表面積」とは、Ce含有酸化物の単位質量あたりの表面積(m/g)を意味し、BET法により算出される。具体的には、窒素等の気体粒子を固体粒子に吸着させ、そのときの圧力と吸着量との関係からBET式を用いることで、比表面積が算出される。 The “specific surface area” in the present embodiment means the surface area (m 2 / g) per unit mass of the Ce-containing oxide, and is calculated by the BET method. Specifically, the specific surface area is calculated by adsorbing gas particles such as nitrogen to solid particles and using the BET equation from the relationship between the pressure and the adsorption amount at that time.

また、本実施形態に係るAg系触媒は、Ce含有酸化物上のAgの表面濃度が元素換算で25.1%〜67.7%であることを特徴とする。Ce含有酸化物上のAgの表面濃度がこの範囲内であることにより、AgとPMの接触性を向上でき、PM浄化性能を向上できる。好ましくは、その上限値が45.7%であり、さらに好ましいCe含有酸化物上のAgの表面濃度は、元素換算で29.6%〜45.7%である。   The Ag-based catalyst according to the present embodiment is characterized in that the surface concentration of Ag on the Ce-containing oxide is 25.1% to 67.7% in terms of element. When the surface concentration of Ag on the Ce-containing oxide is within this range, the contact between Ag and PM can be improved, and the PM purification performance can be improved. Preferably, the upper limit is 45.7%, and the more preferable surface concentration of Ag on the Ce-containing oxide is 29.6% to 45.7% in terms of element.

本実施形態における「Agの表面濃度」とは、Ce含有酸化物に担持されたAgの元素換算の表面濃度(atm%)を意味し、XPS(X線光電子分光法)測定により測定される。例えば、PHI社製XPS装置「Quantera SXM」を用いた元素分析により測定される。   The “Ag surface concentration” in the present embodiment means an element equivalent surface concentration (atm%) of Ag supported on the Ce-containing oxide, and is measured by XPS (X-ray photoelectron spectroscopy) measurement. For example, it is measured by elemental analysis using an XPS apparatus “Quantera SXM” manufactured by PHI.

Ce含有酸化物の比表面積を上記範囲内に調整する方法としては、Ce含有酸化物の焼成条件を変更することが挙げられる。例えば、Ce含有酸化物の焼成時間を2時間とし、焼成温度を800℃〜1300℃の範囲内とすることで、Ce含有酸化物の比表面積を0.5m/g〜105.6m/gとすることができる。またこれにより、Ce含有酸化物上のAgの表面濃度を25.1%〜67.7%とすることができる。 As a method of adjusting the specific surface area of the Ce-containing oxide within the above range, changing the firing conditions of the Ce-containing oxide can be mentioned. For example, the firing time of the Ce-containing oxide and 2 hours, the calcination temperature is be in the range of 800 ° C. to 1300 ° C., a specific surface area of Ce-containing oxide 0.5m 2 /g~105.6m 2 / g. Thereby, the surface concentration of Ag on the Ce-containing oxide can be set to 25.1% to 67.7%.

ここで、図1は、Ce含有酸化物の比表面積とAg表面濃度との関係を説明するための図である。具体的には、(a)は、Ce含有酸化物の比表面積を変化させたときのAgの存在位置を示す模式図であり、(b)は、(a)のときのAg表面濃度を示す図である。より詳しくは、図1では、後述する比較例1と実施例3のAg系触媒を示している。
図1(a)に示すように、例えばAg含有量を30質量%で一定としたまま、Ce含有酸化物の比表面積を低くすると、Ce含有酸化物の細孔へのAgの埋没が抑制され、Ce含有酸化物の表面にAgが多く露出することが分かる。即ち、図1(b)から明らかであるように、Ce含有酸化物の比表面積を低くすると、Ag表面濃度が高くなる。これにより、Agと接触する接点PMの数が増加する結果、PM浄化性能が向上する。
Here, FIG. 1 is a diagram for explaining the relationship between the specific surface area of the Ce-containing oxide and the Ag surface concentration. Specifically, (a) is a schematic diagram showing the presence position of Ag when the specific surface area of the Ce-containing oxide is changed, and (b) shows the Ag surface concentration at (a). FIG. More specifically, FIG. 1 shows Ag-based catalysts of Comparative Example 1 and Example 3 described later.
As shown in FIG. 1A, for example, when the specific surface area of the Ce-containing oxide is lowered while the Ag content is kept constant at 30% by mass, the burying of Ag in the pores of the Ce-containing oxide is suppressed. It can be seen that a large amount of Ag is exposed on the surface of the Ce-containing oxide. That is, as is clear from FIG. 1B, when the specific surface area of the Ce-containing oxide is lowered, the Ag surface concentration is increased. Thereby, as a result of the increase in the number of contacts PM that come into contact with Ag, PM purification performance is improved.

本実施形態に係るAg系触媒では、Ag系触媒中のAgの含有量が50質量%以下である。Ag系触媒中のAgの含有量がこの範囲内であれば、Ce含有酸化物の比表面積を上述の範囲内とすることで、上述の効果が得られる。より好ましいAg系触媒中のAgの含有量は、30質量%〜45質量%である。   In the Ag-based catalyst according to this embodiment, the content of Ag in the Ag-based catalyst is 50% by mass or less. When the content of Ag in the Ag-based catalyst is within this range, the above-described effects can be obtained by setting the specific surface area of the Ce-containing oxide within the above-described range. The content of Ag in the Ag-based catalyst is more preferably 30% by mass to 45% by mass.

ここで、図2は、Ag含有量及びCe含有酸化物の比表面積とPM浄化性能との関係を示す図である。図2に示すように、Ce含有酸化物の比表面積が低い場合にPM浄化性能が極大となるのは、Ag含有量が少ないときであることが分かる。また、Ce含有酸化物の比表面積が低い場合には、比表面積が高い場合と比べて、Ag含有量が増加するとCe含有酸化物に担持されていないAgが存在する領域が多くなることが分かる。これは、Ce含有酸化物の比表面積が低い場合にAg含有量を増加させると、担持しきれないAgが多量に生じるためである。従って、上述したように本実施形態では、Ag系触媒中のAgの含有量が、50質量%以下の少ない範囲に設定されている。   Here, FIG. 2 is a diagram showing the relationship between the Ag content and the specific surface area of the Ce-containing oxide and the PM purification performance. As shown in FIG. 2, it can be seen that the PM purification performance is maximized when the specific surface area of the Ce-containing oxide is low when the Ag content is low. In addition, when the specific surface area of the Ce-containing oxide is low, it can be seen that when the Ag content is increased, the region where Ag not supported on the Ce-containing oxide is present increases as compared with the case where the specific surface area is high. . This is because when the Ag content is increased when the specific surface area of the Ce-containing oxide is low, a large amount of Ag that cannot be supported is generated. Therefore, as described above, in this embodiment, the Ag content in the Ag-based catalyst is set to a small range of 50% by mass or less.

本実施形態に係る排気浄化フィルタでは、ディッピング法の他、クエン酸等を用いた微細発泡法が好ましく採用される。
ディッピング法では、例えば、Ag系触媒の構成材料を所定量含むスラリーを湿式粉砕等により作製し、作製したスラリー中にDPFを浸漬させた後、DPFを引き上げて所定の温度条件で焼成を行うことにより、DPFにAg系触媒を担持させることができる。
また、微細発泡法では、上記のようにして作製したスラリー中に、クエン酸等の有機酸を添加することにより、焼成時に触媒粒子を発泡させ、分散させる。これにより、触媒粒子がDPF全体に分散担持され、DPF表面にAg系触媒を均一に担持させることができる。
In the exhaust purification filter according to the present embodiment, a fine foaming method using citric acid or the like is preferably employed in addition to the dipping method.
In the dipping method, for example, a slurry containing a predetermined amount of a constituent material of an Ag-based catalyst is prepared by wet pulverization or the like. After the DPF is immersed in the prepared slurry, the DPF is pulled up and fired at a predetermined temperature condition. Thus, an Ag-based catalyst can be supported on the DPF.
In the fine foaming method, an organic acid such as citric acid is added to the slurry produced as described above to foam and disperse the catalyst particles during firing. Thereby, the catalyst particles are dispersed and supported on the entire DPF, and the Ag-based catalyst can be uniformly supported on the surface of the DPF.

本実施形態によれば、以下の効果が奏される。
本実施形態では、PMを酸化浄化する触媒を、Ce含有酸化物にAgを担持してなるAg系触媒により形成した。また、Ag系触媒中のAgの含有量を50質量%以下とし、Ce含有酸化物の比表面積を0.5m/g〜105.6m/gと低く設定することで、Ce含有酸化物上のAgの表面濃度を元素換算で25.1%〜67.7%とした。
本実施形態によれば、Ce含有酸化物の比表面積を低下させることにより、触媒中のAg含有量を変化させずに一定のままで、Ce含有酸化物上のAgの表面濃度を高くできる。即ち、Ce含有酸化物の比表面積を低下させることで、Ce含有酸化物の細孔へのAgの埋没を抑制できるため、Ce含有酸化物の表面にAgを多く露出させることができる。従って、本実施形態によれば、AgとPMとの接触性が向上するため、PM浄化性能を向上できる。
According to this embodiment, the following effects are produced.
In the present embodiment, the catalyst for oxidizing and purifying PM is formed of an Ag-based catalyst in which Ag is supported on a Ce-containing oxide. Further, the content of Ag in the Ag-based catalyst and 50 mass% or less, the specific surface area of Ce-containing oxide by setting low as 0.5m 2 /g~105.6m 2 / g, Ce-containing oxide The surface concentration of the above Ag was 25.1% to 67.7% in terms of element.
According to this embodiment, by reducing the specific surface area of the Ce-containing oxide, it is possible to increase the surface concentration of Ag on the Ce-containing oxide while keeping the Ag content in the catalyst unchanged. That is, by reducing the specific surface area of the Ce-containing oxide, it is possible to suppress the burying of Ag in the pores of the Ce-containing oxide, so that a large amount of Ag can be exposed on the surface of the Ce-containing oxide. Therefore, according to this embodiment, since the contact property between Ag and PM is improved, the PM purification performance can be improved.

また、従来の触媒では、Ag含有量を増加することで凝集したAg粒子が、Ce含有酸化物の表面から細孔内に滑り落ち、より大きな凝集体となって細孔内に偏在するため、AgとPMの接触性が低下し、PM浄化性能が低下する。これに対して本実施形態によれば、Ce含有酸化物の比表面積を低下させることで、Agの凝集を抑制できるため、PM浄化性能を向上できる。
さらには、本実施形態によれば、従来のようにAg含有量を増加する必要が無いため、過剰のAgによるシンタリングの発生を抑制でき、PM浄化性能を向上できるとともに、コストを抑制できる。
Moreover, in the conventional catalyst, Ag particles aggregated by increasing the Ag content slide down into the pores from the surface of the Ce-containing oxide, and become larger aggregates and unevenly distributed in the pores. The contact property between Ag and PM is lowered, and the PM purification performance is lowered. On the other hand, according to this embodiment, since the aggregation of Ag can be suppressed by reducing the specific surface area of the Ce-containing oxide, the PM purification performance can be improved.
Furthermore, according to the present embodiment, since it is not necessary to increase the Ag content as in the prior art, generation of sintering due to excessive Ag can be suppressed, PM purification performance can be improved, and cost can be suppressed.

また本実施形態では、好ましくは、Ce含有酸化物の比表面積を13.0m/g以上とし、Ce含有酸化物上のAgの表面濃度を元素換算で45.7%以下とした。
排気浄化フィルタでは、高いPM浄化性能に加えて、高いCO/HC浄化性能も求められるところ、Ce含有酸化物の比表面積が低すぎると、Ce含有酸化物が有する酸素放出機能(OSC)が失われてCO/HC浄化性能が低下する。これに対して本実施形態によれば、Ce含有酸化物の比表面積の下限値を13.0m/gとすることで、CO/HC浄化性能の低下を回避しつつ、PM浄化性能を向上できる。
In the present embodiment, preferably, the specific surface area of the Ce-containing oxide is set to 13.0 m 2 / g or more, and the surface concentration of Ag on the Ce-containing oxide is set to 45.7% or less in terms of element.
An exhaust purification filter is required to have high CO / HC purification performance in addition to high PM purification performance. If the specific surface area of the Ce-containing oxide is too low, the oxygen release function (OSC) of the Ce-containing oxide is lost. As a result, the CO / HC purification performance decreases. On the other hand, according to the present embodiment, by setting the lower limit value of the specific surface area of the Ce-containing oxide to 13.0 m 2 / g, the PM purification performance is improved while avoiding the deterioration of the CO / HC purification performance. it can.

また本実施形態では、より好ましくは、Ce含有酸化物の比表面積を13.0m/g〜65.0m/gとし、Ce含有酸化物上のAgの表面濃度を元素換算で29.6%〜45.7%とした。これにより、上述の効果がより顕著に発揮される。 In this embodiment also, more preferably, the specific surface area of the Ce-containing oxide and 13.0m 2 /g~65.0m 2 / g, the surface concentration of Ag on Ce-containing oxide in terms of element 29.6 % To 45.7%. Thereby, the above-mentioned effect is exhibited more remarkably.

また本実施形態では、さらに好ましくは、触媒中のAgの含有量を30質量%〜45質量%とした。これにより、上述の効果がさらに顕著に発揮される。   In the present embodiment, more preferably, the content of Ag in the catalyst is 30% by mass to 45% by mass. Thereby, the above-mentioned effect is more remarkably exhibited.

なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

次に本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to these examples.

[実施例1〜5、比較例1]
目標生成量15gに対して、触媒中のAg含有量が30質量%となるように、Ce含有酸化物としてのCe84.9La5.1Pr5.0Si5.0を10.20g、硝酸Agを7.09g、5%硝酸Pd水溶液を2.99gそれぞれ秤量し、蒸留水を適量混合して溶液Aを得た。次いで、溶液Aをエバポレータで蒸発乾固し、Agを担持した触媒Bを得た後、触媒Bを200℃で乾燥後、700℃で2時間焼成することにより、Ag系触媒を調製した。
[Examples 1 to 5, Comparative Example 1]
Ce 84.9 La 5.1 Pr 5.0 Si 5.0 O 2 as the Ce-containing oxide is 10. so that the Ag content in the catalyst is 30% by mass with respect to the target production amount of 15 g. 20 g, 7.09 g of nitric acid Ag, and 2.99 g of a 5% Pd nitric acid aqueous solution were weighed, and an appropriate amount of distilled water was mixed to obtain a solution A. Next, the solution A was evaporated to dryness with an evaporator to obtain a catalyst B carrying Ag, and then the catalyst B was dried at 200 ° C. and then calcined at 700 ° C. for 2 hours to prepare an Ag-based catalyst.

なお、Ce含有酸化物は、800℃で焼成したものを実施例1で用い、1100℃で焼成したものを実施例2で用いた。また、1150℃で焼成したものを実施例3で用い、1200℃で焼成したものを実施例4で用い、1300℃で焼成したものを実施例5で用いた。Ce含有酸化物の焼成時間は、いずれも2時間とした。また、比較例では焼成温度0℃、即ち未焼成のものを用いた。   The Ce-containing oxide used was fired at 800 ° C. in Example 1 and was fired at 1100 ° C. in Example 2. Moreover, what was baked at 1150 degreeC was used in Example 3, what was baked at 1200 degreeC was used in Example 4, and what was baked at 1300 degreeC was used in Example 5. The firing time of the Ce-containing oxide was 2 hours in all cases. In the comparative example, a firing temperature of 0 ° C., that is, an unfired one was used.

[比表面積]
各実施例及び比較例で用いたCe含有酸化物の比表面積を測定した。具体的には、各実施例及び比較例で用いたCe含有酸化物に対して、窒素を吸着させたときの圧力と吸着量との関係から、BET式を用いて算出した。結果を表1に示した。
[Specific surface area]
The specific surface area of the Ce-containing oxide used in each example and comparative example was measured. Specifically, the Ce-containing oxide used in each example and comparative example was calculated using the BET equation from the relationship between the pressure and the amount of adsorption when nitrogen was adsorbed. The results are shown in Table 1.

[Ag表面濃度]
各実施例及び比較例で調製した触媒について、Ag表面濃度を測定した。具体的には、PHI社製XPS装置「Quantera SXM」を用いてCe含有酸化物上に担持された元素換算のAg表面濃度(atm%)を測定した。結果を表1に示した。
[Ag surface concentration]
The Ag surface concentration was measured for the catalysts prepared in each Example and Comparative Example. Specifically, the element-converted Ag surface concentration (atm%) supported on the Ce-containing oxide was measured using an XPS apparatus “Quantera SXM” manufactured by PHI. The results are shown in Table 1.

Figure 0006076936
Figure 0006076936

ここで、図3は、Ce含有酸化物の焼成温度と比表面積との関係を示す図である。図3に示すように、焼成温度800℃(実施例1)以上となると、Ce含有酸化物の比表面積が急激に低下することが分かった。これは、焼成温度が高くなることで生じるシンタリングによるものと考えられた。   Here, FIG. 3 is a diagram showing the relationship between the firing temperature of the Ce-containing oxide and the specific surface area. As shown in FIG. 3, it was found that the specific surface area of the Ce-containing oxide rapidly decreases when the firing temperature is 800 ° C. (Example 1) or higher. This was thought to be due to sintering caused by an increase in the firing temperature.

図4は、Ce含有酸化物の焼成温度とAg表面濃度との関係を示す図である。図4に示すように、焼成温度800℃(実施例1)以上となると、Ag表面濃度が急激に高くなることが分かった。これは、図3に示したように、Ce含有酸化物の比表面積が低下したことで、細孔内に埋没するAgが減少したためで考えられた。   FIG. 4 is a diagram showing the relationship between the firing temperature of the Ce-containing oxide and the Ag surface concentration. As shown in FIG. 4, it was found that the Ag surface concentration rapidly increased when the firing temperature was 800 ° C. (Example 1) or higher. This was considered because Ag buried in the pores decreased as the specific surface area of the Ce-containing oxide decreased as shown in FIG.

[PM浄化性能]
(排気浄化フィルタの調製)
各実施例及び比較例で調製した触媒粉末と、蒸留水と、SiOゾルを、φ10mmのAlボールを容器に入れ、約1時間湿式粉砕を行った。その後、粉末量に対して4倍量のクエン酸を添加した後、再度、湿式粉砕を約1時間行うことで粉末スラリーを得た。次いで、得られたスラリーに、DPFとしてSi−SiCフィルタ(15cc)を含浸し、エアーブロー後、200℃で2時間乾燥させた。
上記の操作を繰り返し、所定担持量になったことを確認した後、700℃で2時間焼成し、目封じすることで各排気浄化フィルタを調製した。
[PM purification performance]
(Preparation of exhaust purification filter)
The catalyst powder prepared in each Example and Comparative Example, distilled water, and SiO 2 sol were placed in a container with 10 mm Al 2 O 3 balls, and wet pulverized for about 1 hour. Then, after adding 4 times amount citric acid with respect to the amount of powder, the powder slurry was obtained by performing wet grinding again for about 1 hour. Next, the obtained slurry was impregnated with a Si—SiC filter (15 cc) as DPF, air-blown, and dried at 200 ° C. for 2 hours.
The above operation was repeated, and after confirming that a predetermined loading amount was obtained, each exhaust gas purification filter was prepared by firing at 700 ° C. for 2 hours and sealing.

(PM堆積)
上記のようにして調製した各排気浄化フィルタを、200℃で5時間、乾燥させて重量Aを測定し、実機エンジンから排出されるPMを堆積させた。その後、200℃で5時間乾燥させた後、重量Bを測定した。PM堆積量は、下記式(1)により算出した。
[数1]

PM堆積量(g/L) = (B−A)/15×1000 ・・・(1)
(PM deposition)
Each exhaust purification filter prepared as described above was dried at 200 ° C. for 5 hours, the weight A was measured, and PM discharged from the actual engine was deposited. Then, after making it dry at 200 degreeC for 5 hours, the weight B was measured. The PM deposition amount was calculated by the following formula (1).
[Equation 1]

PM deposition amount (g / L) = (B−A) / 15 × 1000 (1)

(T90測定)
PM堆積後の各排気浄化フィルタの前段に、NOx吸蔵触媒を設置し、窒素雰囲気下で600℃まで昇温した後、排気モデルガス(O=4%、NO=250ppm、Nバランスガス)をSV=10万/時となるように導入してPMを燃焼除去させた。このときのPM燃焼に伴うCOとCOの排出量を測定し、その積算値から反応時間に対するPM浄化率を得た。
ここで、図5は、反応時間とPM浄化率との関係を示す図である。図5に示すように、PM浄化率が90%に達するまでの反応時間をT90と定義し、PM浄化性能の指標とした。即ち、T90が小さいほどPM浄化性能は高く、T90が大きいほどPM浄化性能は低いことを意味する。
(T90 measurement)
An NOx storage catalyst is installed in front of each exhaust purification filter after PM deposition, and after raising the temperature to 600 ° C. in a nitrogen atmosphere, exhaust model gas (O 2 = 4%, NO = 250 ppm, N 2 balance gas) Was introduced so that SV = 100,000 / hour, and PM was burned and removed. At this time, the CO and CO 2 emissions accompanying PM combustion were measured, and the PM purification rate with respect to the reaction time was obtained from the integrated value.
Here, FIG. 5 is a diagram showing the relationship between the reaction time and the PM purification rate. As shown in FIG. 5, the reaction time until the PM purification rate reaches 90% is defined as T90, which is used as an index of PM purification performance. That is, the smaller the T90, the higher the PM purification performance, and the larger the T90, the lower the PM purification performance.

図6は、各実施例及び比較例のT90を示す図である。
図6に示すように、実施例1〜5はいずれも、比較例と比べてT90が小さくPM浄化性能が高いことが分かった。この結果から、Ce含有酸化物の比表面積を0.5m/g〜105.6m/gとして、Ce含有酸化物上のAg表面濃度を25.1%〜67.7%と高くすることにより、PM浄化性能を向上できることが確認された。
FIG. 6 is a diagram illustrating T90 of each example and comparative example.
As shown in FIG. 6, all of Examples 1 to 5 were found to have small T90 and high PM purification performance as compared with the comparative example. From this result, the specific surface area of the Ce-containing oxide as 0.5m 2 /g~105.6m 2 / g, increasing the Ag surface concentration on the Ce-containing oxide 25.1% ~67.7% Thus, it was confirmed that the PM purification performance can be improved.

また、焼成温度が1200℃(実施例4)を超えると、T90に大きな変化は無く、PM浄化性能のさらなる向上は認められないことが分かった。これは、焼成温度が1200℃を超えると、Agの表面濃度が多くなりすぎてCe含有酸化物からの酸素供給能が低下することと、比表面積が小さくなりすぎてCe含有酸化物にAgを担持しきれないことが原因であると考えられる。この結果から、Ce含有酸化物の比表面積の下限値は13.0m/gであることが好ましく、Ce含有酸化物上のAg表面濃度の上限値は45.7であることが好ましいことが確認された。 Moreover, when a calcination temperature exceeded 1200 degreeC (Example 4), it turned out that there is no big change in T90 and the further improvement of PM purification performance is not recognized. This is because when the firing temperature exceeds 1200 ° C., the surface concentration of Ag is excessively increased, the oxygen supply ability from the Ce-containing oxide is decreased, and the specific surface area is excessively decreased so that Ag is added to the Ce-containing oxide. It is thought that this is because it cannot be supported. From this result, the lower limit value of the specific surface area of the Ce-containing oxide is preferably 13.0 m 2 / g, and the upper limit value of the Ag surface concentration on the Ce-containing oxide is preferably 45.7. confirmed.

また、焼成温度が1100℃(実施例2)〜1200℃(実施例4)の範囲内が、T90が小さく高いPM浄化性能を有することが分かった。中でも、焼成温度が1100℃(実施例2)のときが最もT90が小さく、最も高いPM浄化性能を有することが分かった。この結果から、Ce含有酸化物の比表面積の下限値は、13.0m/gであることが好ましく、Ce含有酸化物上のAg表面濃度が29.6%〜45.7%であることがさらに好ましいことが確認された。 Moreover, it turned out that T90 is small and it has high PM purification performance in the range whose baking temperature is 1100 degreeC (Example 2)-1200 degreeC (Example 4). Among these, when the firing temperature was 1100 ° C. (Example 2), it was found that T90 was the smallest and the highest PM purification performance was obtained. From this result, the lower limit value of the specific surface area of the Ce-containing oxide is preferably 13.0 m 2 / g, and the Ag surface concentration on the Ce-containing oxide is 29.6% to 45.7%. It was confirmed that is more preferable.

図7は、各実施例及び比較例の結果に基づいて作成したAg表面濃度とT90との関係を示す図である。この図7からも、本実施例によれば比較例と比べて高いPM浄化性能が得られることと、本発明で規定するAg表面濃度の数値限定の有用性が確認された。   FIG. 7 is a diagram showing the relationship between the Ag surface concentration and T90 created based on the results of the examples and comparative examples. Also from FIG. 7, according to this example, it was confirmed that the PM purification performance higher than that of the comparative example was obtained, and the usefulness of limiting the numerical value of the Ag surface concentration defined in the present invention was confirmed.

[CO浄化性能]
実施例2、4、5の各排気浄化フィルタについて、排気モデルガス(CO=0.11%、O=10%、Nバランスガス)を流量15L/分(SV=6万/時)となるように導入した。このとき、温度を室温から450℃まで、10℃/分で昇温させた。排出されたガス中のCO含有量をガスクロマトグラフで測定することにより、CO浄化率%を算出した。
[CO purification performance]
For each of the exhaust purification filters of Examples 2, 4, and 5, the exhaust model gas (CO = 0.11%, O 2 = 10%, N 2 balance gas) was flowed at 15 L / min (SV = 60,000 / hour). Introduced to be. At this time, the temperature was raised from room temperature to 450 ° C. at 10 ° C./min. By measuring the CO content in the discharged gas with a gas chromatograph, the CO purification rate% was calculated.

図8は、実施例2、4、5のCO浄化率を示す図である。
図8に示すように、焼成温度が1100℃(実施例2)と1200℃(実施例4)の場合を比べると、CO浄化率はほぼ同等であるが、焼成温度が1300℃(実施例5)になると、CO浄化率が著しく低下していることが分かった。これは、焼成温度が1300℃になると比表面積が1m/g以下と極端に小さく、Ce含有酸化物が有する酸化性能(OSC性能)が失われているためと考えられた。
従って、この結果から、PM浄化性能とCO浄化性能を両立させるためには、Ce含有酸化物の上限値を1200℃とすることで、Ce含有酸化物の比表面積の下限値を13.0m/gとし、Ce含有酸化物上のAg表面濃度の上限値を45.7とすることが好ましいことが確認された。なお、これについては、HC浄化率においてもCO浄化率と同様のことが言える。
FIG. 8 is a graph showing the CO purification rates of Examples 2, 4, and 5.
As shown in FIG. 8, when the firing temperature is 1100 ° C. (Example 2) and 1200 ° C. (Example 4), the CO purification rate is almost the same, but the firing temperature is 1300 ° C. (Example 5). ), It was found that the CO purification rate was significantly reduced. This was thought to be because the specific surface area was extremely small at 1 m 2 / g or less when the firing temperature reached 1300 ° C., and the oxidation performance (OSC performance) of the Ce-containing oxide was lost.
Therefore, from this result, in order to achieve both PM purification performance and CO purification performance, the lower limit value of the specific surface area of the Ce-containing oxide is set to 13.0 m 2 by setting the upper limit value of the Ce-containing oxide to 1200 ° C. It was confirmed that the upper limit of the Ag surface concentration on the Ce-containing oxide is preferably 45.7. In this regard, the same can be said for the HC purification rate as for the CO purification rate.

[実施例6〜10、比較例2]
目標生成量に対して、触媒中のAg含有量が所定質量%となるように、Ce含有酸化物としてのCe84.9La5.1Pr5.0Si5.0、硝酸Ag、5%硝酸Pd水溶液をそれぞれ所定量秤量し、蒸留水を適量混合して溶液Aを得た。次いで、溶液Aをエバポレータで蒸発乾固し、Agを担持した触媒Bを得た後、触媒Bを200℃で乾燥後、700℃で2時間焼成することにより、Ag系触媒を調製した。
[Examples 6 to 10, Comparative Example 2]
Ce 84.9 La 5.1 Pr 5.0 Si 5.0 O 2 as the Ce-containing oxide, Ag nitrate, so that the Ag content in the catalyst is a predetermined mass% with respect to the target production amount. A predetermined amount of each 5% aqueous solution of Pd nitrate was weighed, and an appropriate amount of distilled water was mixed to obtain a solution A. Next, the solution A was evaporated to dryness with an evaporator to obtain a catalyst B carrying Ag, and then the catalyst B was dried at 200 ° C. and then calcined at 700 ° C. for 2 hours to prepare an Ag-based catalyst.

なお、Ce含有酸化物は、上記実施例と同様の測定法により測定した比表面積が50m/gのものを用いた。また、実施例6の触媒中のAg含有量を30質量%とし、実施例7の触媒中のAg含有量を35質量%とし、実施例8の触媒中のAg含有量を40質量%とし、実施例9の触媒中のAg含有量を45質量%とし、実施例10の触媒中のAg含有量を50質量%とし、比較例2の触媒中のAg含有量を60質量%とした。 As the Ce-containing oxide, one having a specific surface area of 50 m 2 / g measured by the same measurement method as in the above example was used. Further, the Ag content in the catalyst of Example 6 is 30% by mass, the Ag content in the catalyst of Example 7 is 35% by mass, the Ag content in the catalyst of Example 8 is 40% by mass, The Ag content in the catalyst of Example 9 was 45% by mass, the Ag content in the catalyst of Example 10 was 50% by mass, and the Ag content in the catalyst of Comparative Example 2 was 60% by mass.

実施例6〜10及び比較例2の触媒について、上記実施例と同様の測定手法によりAg表面濃度を測定した。また、実施例6〜10の触媒について、上記実施例と同様の測定手法によりPM浄化性能を評価した。ただし、エージング条件として、750℃で21時間の水熱エージング(O=10%、HO=6%、Nバランスガス)を実施した。 For the catalysts of Examples 6 to 10 and Comparative Example 2, the Ag surface concentration was measured by the same measurement method as in the above Examples. Further, the PM purification performance of the catalysts of Examples 6 to 10 was evaluated by the same measurement method as in the above Examples. However, as aging conditions, hydrothermal aging (O 2 = 10%, H 2 O = 6%, N 2 balance gas) was performed at 750 ° C. for 21 hours.

図9は、実施例6〜10及び比較例2の触媒におけるAg含有量とAg表面濃度との関係を示す図である。図9に示すように、Ce含有量酸化物の比表面積が一定(50m/g)のもとでは、Ag含有量が多くなるほどAg表面濃度が高くなった後、Ag含有量が50質量%を超えるとAg表面濃度が低下することが分かった。
また、図10は、実施例6〜10の触媒におけるAg含有量とT90との関係を示す図である。図10に示すように、Ce含有量酸化物の比表面積が一定(50m/g)のもとでは、Ag含有量が45質量%を超えるとT90が悪化し始め、50質量%を超えるとT90が大幅に悪化することが分かった。
これは、Ce含有量酸化物の比表面積が50m/gの一定のもとでは、Ag含有量が50質量%を超えるとCe含有酸化物内へのAgの埋没が優先される結果、T90もAg含有量が50質量%を超えると低下するものと考えられた。この結果から、Ag含有量は、30質量%〜45質量%が好ましいことが確認された。
FIG. 9 is a graph showing the relationship between the Ag content and the Ag surface concentration in the catalysts of Examples 6 to 10 and Comparative Example 2. As shown in FIG. 9, when the specific surface area of the Ce content oxide is constant (50 m 2 / g), the Ag content increases to 50% by mass after the Ag surface concentration increases as the Ag content increases. It has been found that the Ag surface concentration decreases when the amount exceeds.
Moreover, FIG. 10 is a figure which shows the relationship between Ag content and T90 in the catalyst of Examples 6-10. As shown in FIG. 10, when the specific surface area of the Ce content oxide is constant (50 m 2 / g), when the Ag content exceeds 45 mass%, T90 starts to deteriorate, and when the Ag content exceeds 50 mass%. It turned out that T90 deteriorates significantly.
This is because, when the specific surface area of the Ce-containing oxide is constant at 50 m 2 / g, when the Ag content exceeds 50% by mass, the embedding of Ag in the Ce-containing oxide is given priority. Was also considered to decrease when the Ag content exceeded 50 mass%. From this result, it was confirmed that the Ag content is preferably 30% by mass to 45% by mass.

[実施例11〜13]
目標生成量に対して、触媒中のAg含有量が40質量%となるように、Ce含有酸化物としてのCe84.9La5.1Pr5.0Si5.0、硝酸Ag、5%硝酸Pd水溶液をそれぞれ所定量秤量し、蒸留水を適量混合して溶液Aを得た。次いで、溶液Aをエバポレータで蒸発乾固し、Agを担持した触媒Bを得た後、触媒Bを200℃で乾燥後、700℃で2時間焼成することにより、Ag系触媒を調製した。
[Examples 11 to 13]
Ce 84.9 La 5.1 Pr 5.0 Si 5.0 O 2 as the Ce-containing oxide, Ag nitrate, so that the Ag content in the catalyst is 40% by mass with respect to the target production amount. A predetermined amount of each 5% aqueous solution of Pd nitrate was weighed, and an appropriate amount of distilled water was mixed to obtain a solution A. Next, the solution A was evaporated to dryness with an evaporator to obtain a catalyst B carrying Ag, and then the catalyst B was dried at 200 ° C. and then calcined at 700 ° C. for 2 hours to prepare an Ag-based catalyst.

なお、実施例11では、Ce含有酸化物として、上記実施例と同様の測定法により測定した比表面積が35m/gのものを用いた。実施例12では、Ce含有酸化物として、上記実施例と同様の測定法により測定した比表面積が50m/gのものを用いた。実施例13では、Ce含有酸化物として、上記実施例と同様の測定法により測定した比表面積が65m/gのものを用いた。 In Example 11, a Ce-containing oxide having a specific surface area of 35 m 2 / g measured by the same measurement method as in the above example was used. In Example 12, a Ce-containing oxide having a specific surface area of 50 m 2 / g measured by the same measurement method as in the above example was used. In Example 13, as the Ce-containing oxide, one having a specific surface area of 65 m 2 / g measured by the same measurement method as in the above example was used.

実施例11〜13の触媒について、上記実施例と同様の測定手法によりPM浄化性能を評価した。ただし、エージング条件として、750℃で21時間の水熱エージング(O=10%、HO=6%、Nバランスガス)を実施した。 About the catalyst of Examples 11-13, PM purification performance was evaluated with the measuring method similar to the said Example. However, as aging conditions, hydrothermal aging (O 2 = 10%, H 2 O = 6%, N 2 balance gas) was performed at 750 ° C. for 21 hours.

図11は、実施例11〜13の触媒におけるCe含有酸化物の比表面積とT90との関係を示す図である。図11に示すように、Ag含有量が40質量%の一定のもとでは、Ce含有量酸化物の比表面積が35〜65m/gの範囲で変化してもT90はほぼ一定であることが分かった。この結果から、Ag含有量が50質量%以下においては、Ce含有量酸化物の比表面積の上限値は65m/gが好ましく、上記実施例の結果と併せると、Ce含有量酸化物の比表面積は、13.0m/g〜65m/gの範囲内が好ましいことが確認された。 FIG. 11 is a diagram showing the relationship between the specific surface area of the Ce-containing oxide and T90 in the catalysts of Examples 11 to 13. As shown in FIG. 11, under the constant Ag content of 40% by mass, the T90 is almost constant even if the specific surface area of the Ce content oxide changes in the range of 35 to 65 m 2 / g. I understood. From this result, when the Ag content is 50% by mass or less, the upper limit of the specific surface area of the Ce content oxide is preferably 65 m 2 / g, and together with the results of the above examples, the ratio of the Ce content oxide surface area, it was confirmed preferably in the range of 13.0m 2 / g~65m 2 / g.

Claims (4)

内燃機関の排気通路に設けられ、前記内燃機関の排気中の粒子状物質を捕捉して浄化する排気浄化フィルタであって、
多孔質のフィルタ基材と、
前記フィルタ基材上に担持され、前記粒子状物質を酸化浄化する触媒と、を備え、
前記触媒は、Ceを含有するCe含有酸化物と、当該Ce含有酸化物上に担持されたAgと、を有し、
前記触媒中の前記Agの含有量は、50質量%以下であり、
前記Ce含有酸化物の比表面積は、0.5m/g〜105.6m/gであり、
前記Ce含有酸化物上の前記Agの表面濃度は、元素換算で25.1%〜67.7%であることを特徴とする排気浄化フィルタ。
An exhaust purification filter that is provided in an exhaust passage of an internal combustion engine and captures and purifies particulate matter in the exhaust of the internal combustion engine,
A porous filter substrate;
A catalyst that is supported on the filter substrate and oxidizes and purifies the particulate matter,
The catalyst has a Ce-containing oxide containing Ce, and Ag supported on the Ce-containing oxide,
The content of Ag in the catalyst is 50% by mass or less,
The specific surface area of the Ce-containing oxide is 0.5m 2 /g~105.6m 2 / g,
The exhaust gas purification filter according to claim 1, wherein the surface concentration of Ag on the Ce-containing oxide is 25.1% to 67.7% in terms of element.
前記Ce含有酸化物の比表面積は、13.0m/g以上であり、
前記Ce含有酸化物上の前記Agの表面濃度は、元素換算で45.7%以下であることを特徴とする請求項1に記載の排気浄化フィルタ。
The Ce-containing oxide has a specific surface area of 13.0 m 2 / g or more,
2. The exhaust gas purification filter according to claim 1, wherein a surface concentration of Ag on the Ce-containing oxide is 45.7% or less in terms of element.
前記Ce含有酸化物の比表面積は、13.0m/g〜65.0m/gであり、
前記Ce含有酸化物上の前記Agの表面濃度は、元素換算で29.6%〜45.7%であることを特徴とする請求項1又は2に記載の排気浄化フィルタ。
The specific surface area of the Ce-containing oxide is 13.0m 2 /g~65.0m 2 / g,
3. The exhaust gas purification filter according to claim 1, wherein the surface concentration of Ag on the Ce-containing oxide is 29.6% to 45.7% in terms of element.
前記触媒中の前記Agの含有量は、30質量%〜45質量%であることを特徴とする請求項1から3いずれかに記載の排気浄化フィルタ。   4. The exhaust gas purification filter according to claim 1, wherein a content of the Ag in the catalyst is 30% by mass to 45% by mass.
JP2014069179A 2013-10-21 2014-03-28 Exhaust purification filter Active JP6076936B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014069179A JP6076936B2 (en) 2013-10-21 2014-03-28 Exhaust purification filter
DE102014221169.7A DE102014221169B4 (en) 2013-10-21 2014-10-17 exhaust gas purifying filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013218527 2013-10-21
JP2013218527 2013-10-21
JP2014069179A JP6076936B2 (en) 2013-10-21 2014-03-28 Exhaust purification filter

Publications (2)

Publication Number Publication Date
JP2015107480A JP2015107480A (en) 2015-06-11
JP6076936B2 true JP6076936B2 (en) 2017-02-08

Family

ID=52829916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014069179A Active JP6076936B2 (en) 2013-10-21 2014-03-28 Exhaust purification filter

Country Status (2)

Country Link
JP (1) JP6076936B2 (en)
DE (1) DE102014221169B4 (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592281A (en) 1991-03-06 1993-04-16 Ishikawajima Harima Heavy Ind Co Ltd Method for improving corrorsion resistance of welding part of through tube to container
EP1378289A3 (en) * 2002-04-18 2004-02-04 Ford Global Technologies, LLC, A subsidary of Ford Motor Company Platinum-group-metal free catalytic washcoats for particulate exhaust gas filter applications
JP4678596B2 (en) * 2004-11-29 2011-04-27 株式会社豊田中央研究所 Exhaust purification device and exhaust purification system
JP5092281B2 (en) * 2006-05-26 2012-12-05 株式会社豊田中央研究所 Exhaust gas purification device
JP5168193B2 (en) * 2008-03-24 2013-03-21 国立大学法人 熊本大学 Particulate combustion catalyst, method for producing the same, and exhaust gas purifying filter
CN102046287A (en) * 2008-05-29 2011-05-04 三井金属矿业株式会社 Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus
WO2010041741A1 (en) * 2008-10-09 2010-04-15 本田技研工業株式会社 Exhaust gas purifying device
JP2010269268A (en) * 2009-05-22 2010-12-02 Sumitomo Osaka Cement Co Ltd Honeycomb structure type filter
JP5422405B2 (en) * 2010-01-14 2014-02-19 三井金属鉱業株式会社 Manufacturing method of diesel exhaust gas purification catalyst
JP5871817B2 (en) * 2010-11-30 2016-03-01 Agcセイミケミカル株式会社 Exhaust gas purification catalyst manufacturing method and exhaust gas purification device
JP5864444B2 (en) * 2011-01-05 2016-02-17 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst structure
US9108155B2 (en) * 2011-10-10 2015-08-18 Hyundai Motor Company Non-PGM catalyst for burning carbon soot, and filtration filter and exhaust gas post-processing apparatus using the same
JP2013218527A (en) 2012-04-09 2013-10-24 Mitsubishi Electric Corp Graphic drawing device
JP5942192B2 (en) 2012-09-28 2016-06-29 新光機器株式会社 Resistance welding machine electrode

Also Published As

Publication number Publication date
JP2015107480A (en) 2015-06-11
DE102014221169A1 (en) 2015-05-07
DE102014221169B4 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP4144898B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
JP5085176B2 (en) Exhaust gas purification catalyst and exhaust gas purification device
JP5519181B2 (en) Exhaust gas purification device for internal combustion engine
WO2017051459A1 (en) Exhaust purification filter
JP2006334490A (en) Catalyst for cleaning exhaust gas
JP2010022918A (en) Honeycomb-structured catalyst for purifying exhaust gas discharged from automobile, method for producing the catalyst, and method for purifying exhaust gas by using the catalyst
JPWO2014002772A1 (en) Diesel particulate filter and exhaust gas purification device
JP6087362B2 (en) Platinum-based oxidation catalyst and exhaust gas purification method using the same
JP5954159B2 (en) Particulate filter with catalyst
JP5974850B2 (en) Particulate filter with catalyst
CN104981289A (en) Catalyst for purifying NOX occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
JP6627813B2 (en) Method for producing particulate filter with catalyst
JP5954031B2 (en) Particulate matter combustion catalyst
JP6076936B2 (en) Exhaust purification filter
JP6265813B2 (en) Exhaust purification filter
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
JP2015077532A (en) Exhaust cleaning filter
JP5412788B2 (en) Exhaust gas purification catalyst
JP5524820B2 (en) Particulate combustion catalyst, method for producing the same, particulate filter and method for producing the same
JP6094544B2 (en) Particulate filter with catalyst and method for producing the same
JP5956496B2 (en) Exhaust gas purification catalyst, exhaust gas purification filter and exhaust gas purification method using the same
US10105627B2 (en) Particulate filter provided with catalyst and method for manufacturing said filter
JP5942812B2 (en) Particulate filter with catalyst
JP2014213272A (en) Exhaust gas purification catalyst and exhaust gas purification device
JP5549453B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R150 Certificate of patent or registration of utility model

Ref document number: 6076936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150