JP5094234B2 - Exhaust gas purification filter and manufacturing method thereof - Google Patents
Exhaust gas purification filter and manufacturing method thereof Download PDFInfo
- Publication number
- JP5094234B2 JP5094234B2 JP2007165967A JP2007165967A JP5094234B2 JP 5094234 B2 JP5094234 B2 JP 5094234B2 JP 2007165967 A JP2007165967 A JP 2007165967A JP 2007165967 A JP2007165967 A JP 2007165967A JP 5094234 B2 JP5094234 B2 JP 5094234B2
- Authority
- JP
- Japan
- Prior art keywords
- pores
- catalyst
- exhaust gas
- pore
- gas purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000746 purification Methods 0.000 title claims description 48
- 238000004519 manufacturing process Methods 0.000 title description 7
- 239000011148 porous material Substances 0.000 claims description 144
- 239000003054 catalyst Substances 0.000 claims description 111
- 239000013618 particulate matter Substances 0.000 claims description 88
- 238000002485 combustion reaction Methods 0.000 claims description 41
- 239000003795 chemical substances by application Substances 0.000 claims description 32
- 239000002002 slurry Substances 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011163 secondary particle Substances 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001961 silver nitrate Inorganic materials 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910016978 MnOx Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Description
本発明は、内燃機関から排出される排ガス中の粒子状物質の浄化に用いられる排ガス浄化フィルタ及びその製造方法に関し、特に、ディーゼルエンジンから排出される排ガス中の粒子状物質の浄化に好適に用いられる排ガス浄化フィルタ及びその製造方法に関する。 TECHNICAL FIELD The present invention relates to an exhaust gas purification filter used for purification of particulate matter in exhaust gas discharged from an internal combustion engine and a method for manufacturing the same, and in particular, it is suitably used for purification of particulate matter in exhaust gas discharged from a diesel engine. The present invention relates to an exhaust gas purification filter and a method for manufacturing the same.
従来より、内燃機関、特に、ディーゼルエンジンから排出される排ガス中に含まれる粒子状物質(PM:particulate matter)の浄化には、ディーゼル微粒子除去装置(DPF:diesel particulate filter)や、キャタライズドスートフィルタ(CSF:catalyzed soot filter)が用いられている。 Conventionally, in order to purify particulate matter (PM) contained in exhaust gas discharged from an internal combustion engine, in particular, a diesel engine, a diesel particulate filter (DPF) or a catalyzed soot is used. A filter (CSF: catalytic soot filter) is used.
PMの燃焼温度は550℃〜650℃と高く、PMの燃焼には高温を要する。このため、DPFにおけるPMの燃焼は、再生技術や添加剤等の付加技術を用いて強制的に行っているのが現状である。一方、CSFのように触媒を用いた場合にあっても、低温化はあまり期待できない。その理由としては、PMと触媒の反応が固体−固体反応であるため、触媒との接触状態が悪いPMは燃焼し難いからである。 The combustion temperature of PM is as high as 550 ° C. to 650 ° C., and high temperature is required for PM combustion. For this reason, the current state is that the combustion of PM in the DPF is forcibly performed by using an additional technique such as a regeneration technique or an additive. On the other hand, even when a catalyst is used as in CSF, a low temperature cannot be expected. This is because the reaction between PM and the catalyst is a solid-solid reaction, and thus PM having poor contact with the catalyst is difficult to burn.
例えば、セル隔壁表面に存在するオープンポアの開口合計面積が、セル隔壁の全表面積に対して30%以上であり、且つ開口の孔径が30μm以上である大オープンポアの開口面積の合計が、オープンポアの全開口面積の50%以上であることを特徴とするディーゼル排ガス浄化フィルタが提案されている(特許文献1参照)。このディーゼル排ガス浄化フィルタによれば、PMをセル隔壁の表面のみならず、細孔内部においても捕集することができる。このため、細孔の内表面をも触媒の反応場として利用でき、PMの燃焼効率を高めることができるとされている。 For example, the total opening area of the open pores existing on the cell partition wall surface is 30% or more with respect to the total surface area of the cell partition wall, and the total opening area of large open pores having an opening hole diameter of 30 μm or more is open. A diesel exhaust gas purification filter characterized by being 50% or more of the total opening area of the pore has been proposed (see Patent Document 1). According to this diesel exhaust gas purification filter, PM can be collected not only on the surface of the cell partition wall but also inside the pores. For this reason, it is said that the inner surface of the pore can also be used as a reaction field of the catalyst, and PM combustion efficiency can be increased.
また、細孔のセル隔壁表面に開口する表面空孔の分布において、直接観察法で求めた最大直径10μm〜50μmの表面空孔の合計開口面積が、全表面空孔の合計開口面積の8%以上を占め、CTスキャンによる断面観察で求めた内部細孔の分布において、直径300μm以上の円に相当する断面積を有する細孔の断面積の合計が、全細孔の合計断面積の20%以上を占めることを特徴とする排ガス浄化フィルタ触媒用基材が提案されている(特許文献2参照)。この排ガス浄化フィルタ触媒用基材によれば、PMが短時間に集中して多量に排出された場合であっても、PMが各細孔に分散して捕集されるため捕集効率が高いうえ、PMの堆積が抑制されるため圧損の増大を抑制できるとされている。 In addition, in the distribution of surface vacancies opening on the surface of the cell partition walls of the pores, the total open area of the surface vacancies having a maximum diameter of 10 μm to 50 μm determined by the direct observation method is 8% of the total open area of all the surface vacancies. In the distribution of internal pores obtained by cross-sectional observation by CT scan, the total cross-sectional area of pores having a cross-sectional area corresponding to a circle having a diameter of 300 μm or more is 20% of the total cross-sectional area of all pores. An exhaust gas purifying filter catalyst base material that occupies the above has been proposed (see Patent Document 2). According to this exhaust gas purifying filter catalyst base material, even when PM is concentrated in a short time and discharged in a large amount, the PM is dispersed and collected in each pore, so that the collection efficiency is high. In addition, it is said that an increase in pressure loss can be suppressed because PM accumulation is suppressed.
また、多孔質炭化珪素焼結体を構成する炭化珪素粒子表面に細孔を有するセラミックス酸化物粒子が設けられ、更にセラミック酸化物粒子中の細孔内に、捕集された排ガス中の粒子状物質を酸化燃焼するための酸化触媒が含有されているウォールフロー型の排ガス浄化用フィルタであって、セラミック酸化物粒子の平均粒径が炭化珪素粒子の平均粒径に対して0.002倍〜0.2倍であることを特徴とする排ガス浄化用フィルタが提案されている(特許文献3参照)。この排ガス浄化用フィルタによれば、実用条件下においても、触媒が脱落することがなく、長時間に亘って高い触媒活性を維持できるとされている。また、PMの捕集効率が高く、圧力損失も低い排ガス浄化用フィルタを提供できるとされている。 In addition, ceramic oxide particles having pores are provided on the surface of the silicon carbide particles constituting the porous silicon carbide sintered body, and further in the pores of the ceramic oxide particles, the particles in the collected exhaust gas A wall flow type exhaust gas purification filter containing an oxidation catalyst for oxidizing and burning a substance, wherein an average particle diameter of ceramic oxide particles is 0.002 times to an average particle diameter of silicon carbide particles An exhaust gas purifying filter characterized by being 0.2 times has been proposed (see Patent Document 3). According to this exhaust gas purification filter, it is said that even under practical conditions, the catalyst does not fall off, and high catalytic activity can be maintained for a long time. Further, it is said that an exhaust gas purifying filter with high PM collection efficiency and low pressure loss can be provided.
また、担体と、この担体上に形成された触媒層と、を少なくとも備えてなる排気ガス浄化触媒であって、触媒層中に空隙を有し、触媒層及び/又は担体が排気ガス中の微粒子状物質を補足可能とされてなるものであることを特徴とする排気ガス浄化触媒が提案されている(特許文献4参照)。この排気ガス浄化触媒によれば、排気ガスのガス拡散性、特に排気ガス中のガス性SOF、及び分子サイズの大きい炭化水素の拡散性を向上させることができる結果、微粒子状物質を効率良く補足し、処理できるとされている。 An exhaust gas purification catalyst comprising at least a carrier and a catalyst layer formed on the carrier, wherein the catalyst layer has voids, and the catalyst layer and / or the carrier are fine particles in the exhaust gas. There has been proposed an exhaust gas purification catalyst characterized in that it can be supplemented with particulate matter (see Patent Document 4). According to this exhaust gas purification catalyst, it is possible to improve the gas diffusibility of the exhaust gas, particularly the gas SOF in the exhaust gas, and the diffusivity of hydrocarbons having a large molecular size. And can be processed.
また、連続した細孔を有する耐熱性多孔質体よりなる触媒担体基材と、触媒担体基材の表面上に形成されたPMを燃焼する触媒層と、を有するフィルタ触媒において、1μm〜20μmの細孔を11%以上の気孔率で有することを特徴とするフィルタ触媒が提案されている(特許文献5参照)。このフィルタ触媒によれば、PMが多量に堆積した場合であっても、圧損の上昇を抑制できるとされている。 Further, in a filter catalyst having a catalyst carrier substrate made of a heat-resistant porous body having continuous pores and a catalyst layer for burning PM formed on the surface of the catalyst carrier substrate, the filter catalyst has a thickness of 1 μm to 20 μm. A filter catalyst characterized by having pores with a porosity of 11% or more has been proposed (see Patent Document 5). According to this filter catalyst, an increase in pressure loss can be suppressed even when a large amount of PM is accumulated.
上述の通り、特許文献1〜5いずれにおいても、触媒が担持されたDPF壁内の細孔を最適に制御することにより、PMと触媒との接触性を高め、PMの燃焼を促進することができるとされている。ここでいう「接触性」とは、堆積PM量に対するPMと触媒との接触比率を意味する。接触性が高い場合とは、堆積PMのほとんどが触媒と接触点を有する場合であり、接触性が低い場合とは、堆積PMのほとんどが触媒と接触点を有さない場合である。また、適切な径の細孔を設けることにより、PMが堆積した場合であっても、PMによる細孔の閉塞を抑制し、圧損上昇を抑制できるとされている。
しかしながら、上記特許文献1〜5では、模式図4に示されるように、DPF壁(担体壁)43及び触媒層42中にランダムに細孔41が形成されているため、隣接する細孔41同士が連結していない、独立した細孔41が存在する。このような独立した細孔41では、排ガスが通り抜けることができないため、PMの燃焼に利用される頻度は小さい。
However, in Patent Documents 1 to 5, since the
また、僅かな速度でしかPMを燃焼することができない細孔では、燃焼能力を大幅に上回るPMが流入した場合にあっては、PMが堆積して流路が閉塞してしまう。流路が閉塞してしまうと排ガスが流入できなくなるため、PM燃焼に利用される細孔は減少し、結果としてPMの燃焼効率が低下してしまう。 Moreover, in the pore which can burn PM only at a slight speed, when PM significantly exceeding the combustion capacity flows, PM accumulates and the flow path is blocked. If the flow path is blocked, the exhaust gas cannot flow in, so the number of pores used for PM combustion decreases, and as a result, the PM combustion efficiency decreases.
更には、PMの燃焼効率を向上させるため、全ての細孔を連結させるべく細孔を多く設けた場合にあっては、DPF壁及び触媒層の機械的強度が低下してしまう。ひいては、DPFの破損や触媒の剥離といった問題を引き起こす。 Furthermore, in order to improve the combustion efficiency of PM, when many pores are provided to connect all the pores, the mechanical strength of the DPF wall and the catalyst layer is lowered. Eventually, problems such as breakage of the DPF and peeling of the catalyst are caused.
本発明は、以上のような課題に鑑みてなされたものであり、その目的は、従来に比して効率良くPMを燃焼できる排ガス浄化フィルタを提供することにある。 This invention is made | formed in view of the above subjects, The objective is to provide the exhaust gas purification filter which can combust PM more efficiently compared with the past.
本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、球状細孔同士を柱状細孔で連結してネットワーク化することにより、DPFや触媒層の機械的強度を低下させることなく、効率良くPMを燃焼できる排ガス浄化フィルタを提供できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that by connecting spherical pores with columnar pores to form a network, an exhaust gas purification filter capable of efficiently burning PM can be provided without lowering the mechanical strength of the DPF or catalyst layer. The present invention has been completed. More specifically, the present invention provides the following.
(1) 内燃機関から排出される排ガス中の粒子状物質の浄化に用いられる排ガス浄化フィルタであって、担体と、この担体に担持された触媒層と、を備え、前記触媒層は、複数の球状細孔と、これら複数の球状細孔同士を連結する複数の柱状細孔と、を有することを特徴とする排ガス浄化フィルタ。 (1) An exhaust gas purification filter used for purification of particulate matter in exhaust gas discharged from an internal combustion engine, comprising a carrier and a catalyst layer carried on the carrier, wherein the catalyst layer comprises a plurality of An exhaust gas purification filter having spherical pores and a plurality of columnar pores connecting the plurality of spherical pores.
(2) 前記複数の球状細孔の容量と、前記複数の柱状細孔の容量と、の合計容量は、前記触媒層の重量1gに対して、0.08ml〜0.2mlである(1)記載の排ガス浄化フィルタ。 (2) The total capacity of the capacity of the plurality of spherical pores and the capacity of the plurality of columnar pores is 0.08 ml to 0.2 ml with respect to 1 g of the weight of the catalyst layer (1) The exhaust gas purification filter as described.
(3) 前記担体は、長径が1μm〜50μmの気孔を有し、且つ気孔率が40%〜60%である(1)又は(2)記載の排ガス浄化フィルタ。 (3) The exhaust gas purification filter according to (1) or (2), wherein the carrier has pores having a major axis of 1 μm to 50 μm and a porosity of 40% to 60%.
(4) 前記触媒層は、Ag、Au、Cu、Pd、Rh、Pt、Ru、及びIrよりなる群から選ばれる少なくとも1種の活性触媒元素を含む(1)から(3)いずれか記載の排ガス浄化フィルタ。 (4) The catalyst layer includes at least one active catalyst element selected from the group consisting of Ag, Au, Cu, Pd, Rh, Pt, Ru, and Ir. Exhaust gas purification filter.
(5) 前記触媒層は、サポート触媒元素を更に含み、前記サポート触媒元素は、Ni、Co、Fe、Mn、V、Mo、W、及びCeよりなる群から選ばれる少なくとも1種の元素と、希土類元素及びアルカリ金属元素よりなる群から選ばれる少なくとも1種の元素と、からなる(1)から(4)いずれか記載の排ガス浄化フィルタ。 (5) The catalyst layer further includes a support catalyst element, and the support catalyst element includes at least one element selected from the group consisting of Ni, Co, Fe, Mn, V, Mo, W, and Ce; The exhaust gas purification filter according to any one of (1) to (4), comprising at least one element selected from the group consisting of rare earth elements and alkali metal elements.
(6) 内燃機関から排出される排ガス中の粒子状物質の浄化に用いられる排ガス浄化フィルタの製造方法であって、少なくとも活性触媒元素を含む触媒を調製する工程と、調製した触媒に、球状の造孔剤、柱状の造孔剤、及び無機バインダを所定量添加して混合し、触媒スラリーを調製する工程と、調製した触媒スラリーに、担体を浸漬させた後、引き上げて焼成することにより、前記球状の造孔剤及び柱状の造孔剤を燃焼消失させ、球状細孔及び柱状細孔を有する触媒層を形成する工程と、を有することを特徴とする排ガス浄化フィルタの製造方法。 (6) A method for producing an exhaust gas purification filter used for purification of particulate matter in exhaust gas discharged from an internal combustion engine, comprising: a step of preparing a catalyst containing at least an active catalytic element; A step of adding a predetermined amount of a pore-forming agent, a columnar pore-forming agent, and an inorganic binder, preparing a catalyst slurry, and immersing the carrier in the prepared catalyst slurry, then lifting and firing, And a step of burning and extinguishing the spherical pore former and the columnar pore former to form a catalyst layer having spherical pores and columnar pores.
(7) 前記球状の造孔剤として、直径が1μm〜30μmである球状の造孔剤を用いる(6)記載の排ガス浄化フィルタの製造方法。 (7) The method for producing an exhaust gas purification filter according to (6), wherein a spherical pore-forming agent having a diameter of 1 μm to 30 μm is used as the spherical pore-forming agent.
(8) 前記柱状の造孔剤として、開口面の長径が30μm以下であり、且つアスペクト比が10〜1000である柱状の造孔剤を用いる(6)又は(7)記載の排ガス浄化フィルタの製造方法。 (8) The exhaust gas purification filter according to (6) or (7), wherein as the columnar pore former, a columnar pore former having a major axis of an opening surface of 30 μm or less and an aspect ratio of 10 to 1000 is used. Production method.
本発明によれば、触媒層中の球状細孔が柱状細孔で連結されてネットワーク化されているため、PMの燃焼に対する細孔の利用率を向上させることができ、効率良くPMを燃焼させることができる。また、触媒層が十分な機械的強度を有するため、触媒層の剥離を抑制できるうえ、PMの堆積による圧力損失も抑制できる。 According to the present invention, since the spherical pores in the catalyst layer are connected by the columnar pores and networked, the utilization rate of the pores for PM combustion can be improved, and PM is efficiently burned. be able to. In addition, since the catalyst layer has sufficient mechanical strength, it is possible to suppress separation of the catalyst layer and to suppress pressure loss due to PM deposition.
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本実施形態に係る排ガス浄化フィルタは、内燃機関の排気系に設けられ、内燃機関から排出される排ガス中の粒子状物質、特にカーボンを主成分とする粒子状物質の浄化に好適に用いられる。構成としては、担体と、この担体に担持された触媒層と、を備える。 The exhaust gas purification filter according to the present embodiment is provided in an exhaust system of an internal combustion engine, and is suitably used for purification of particulate matter in exhaust gas discharged from the internal combustion engine, particularly particulate matter mainly composed of carbon. The configuration includes a carrier and a catalyst layer carried on the carrier.
<担体>
本実施形態に係る排ガス浄化フィルタの担体としては、特に限定されず、従来公知の担体を用いることができる。好ましくは、セラミックス製のウォールフロー型ハニカム状DPF担体が用いられる。材質としては、コージェライト、シリコンカーバイド、ムライト、アルミナ等が好ましく用いられる。ウォールフロー型であれば、そのセル数、壁厚は特に限定されない。
<Carrier>
The carrier of the exhaust gas purification filter according to the present embodiment is not particularly limited, and a conventionally known carrier can be used. Preferably, a ceramic wall flow type honeycomb DPF carrier is used. As the material, cordierite, silicon carbide, mullite, alumina or the like is preferably used. If it is a wall flow type, the number of cells and the wall thickness are not particularly limited.
担体は、濾過機能を有することが好ましく、長径が1μm〜50μmの気孔を有することが好ましい。気孔の長径が1μm未満である場合には、特に内燃機関から排出されるPM2次粒子の粒度分布のメインピークよりも小さいため、PM2次粒子による細孔の閉塞を招き易くなり、圧損の上昇を招くため好ましくない。また、気孔の閉塞により、PMと触媒の接触状態が悪化し、PM燃焼に関しても好ましくない。一方、50μmを超える場合には担体の強度、PMの捕集率低下という問題があり、好ましくない。より好ましくは、9μm〜30μmである。 The carrier preferably has a filtration function, and preferably has pores having a major axis of 1 μm to 50 μm. When the major diameter of the pores is less than 1 μm, it is smaller than the main peak of the particle size distribution of the PM secondary particles discharged from the internal combustion engine, so that the pores are easily blocked by the PM secondary particles, and the pressure loss increases. Since it invites, it is not preferable. Further, the contact state between the PM and the catalyst deteriorates due to the clogging of the pores, which is not preferable for PM combustion. On the other hand, when the thickness exceeds 50 μm, there are problems that the strength of the carrier and the collection rate of PM are lowered, which is not preferable. More preferably, it is 9 μm to 30 μm.
また、担体の気孔率は、40%〜60%であることが好ましい。気孔率が40%未満である場合には、PM2次粒子による細孔の閉塞を招き易くなり、圧損の上昇を招くため好ましくない。また、気孔の閉塞により、PMと触媒の接触状態が悪化し、PM燃焼に関しても好ましくない。より好ましくは、45%〜55%である。 The porosity of the carrier is preferably 40% to 60%. A porosity of less than 40% is not preferable because it tends to cause pore clogging by PM secondary particles, leading to an increase in pressure loss. Further, the contact state between the PM and the catalyst deteriorates due to the clogging of the pores, which is not preferable for PM combustion. More preferably, it is 45% to 55%.
<触媒層>
本実施形態に係る排ガス浄化フィルタの触媒層は、複数の球状細孔と、これら複数の球状細孔同士を連結する複数の柱状細孔と、を有する。即ち、隣接する複数の球状細孔同士が、複数の柱状細孔により連結され、ネットワーク化されている。
<Catalyst layer>
The catalyst layer of the exhaust gas purification filter according to the present embodiment has a plurality of spherical pores and a plurality of columnar pores that connect the plurality of spherical pores. That is, a plurality of adjacent spherical pores are connected by a plurality of columnar pores to form a network.
本実施形態に係る排ガス浄化フィルタにおいて、複数の球状細孔の容量と、複数の柱状細孔の容量と、の合計容量は、触媒層の重量1gに対して、0.08ml〜0.2mlであることが好ましい。0.08ml未満である場合には、PM燃焼に適切な細孔の量が少ないため、PM燃焼には好ましくない。一方、0.2mlを超える場合には、触媒層中の細孔容量が多くなりすぎるため、触媒層の強度が低下し、触媒が剥離するおそれがある。より好ましくは、0.1〜0.2mlである。 In the exhaust gas purification filter according to the present embodiment, the total capacity of the capacity of the plurality of spherical pores and the capacity of the plurality of columnar pores is 0.08 ml to 0.2 ml with respect to 1 g of the weight of the catalyst layer. Preferably there is. When the amount is less than 0.08 ml, the amount of pores suitable for PM combustion is small, which is not preferable for PM combustion. On the other hand, when it exceeds 0.2 ml, the pore volume in the catalyst layer becomes too large, so that the strength of the catalyst layer is lowered and the catalyst may be peeled off. More preferably, it is 0.1-0.2 ml.
本実施形態に係る排ガス浄化フィルタの触媒層は、活性触媒元素を含む。活性触媒元素としては、Ag、Au、Cu、Pd、Rh、Pt、Ru、及びIrよりなる群から選ばれる少なくとも1種であることが好ましい。これらのうち、活性触媒元素としてAgがより好ましく用いられる。 The catalyst layer of the exhaust gas purification filter according to the present embodiment contains an active catalyst element. The active catalyst element is preferably at least one selected from the group consisting of Ag, Au, Cu, Pd, Rh, Pt, Ru, and Ir. Of these, Ag is more preferably used as the active catalyst element.
また、本実施形態に係る排ガス浄化フィルタの触媒層は、サポート触媒元素を含む。サポート触媒元素は、Ni、Co、Fe、Mn、V、Mo、W、及びCeよりなる群から選ばれる少なくとも1種の元素と、希土類元素及びアルカリ金属元素よりなる群から選ばれる少なくとも1種の元素と、からなる。前者の群からなる元素のうち、Ceがより好ましく用いられる。 Moreover, the catalyst layer of the exhaust gas purification filter according to the present embodiment includes a support catalyst element. The support catalyst element is at least one element selected from the group consisting of Ni, Co, Fe, Mn, V, Mo, W, and Ce, and at least one element selected from the group consisting of rare earth elements and alkali metal elements. Elements. Of the elements of the former group, Ce is more preferably used.
アルカリ金属元素は、炭酸塩や硫酸塩として用いられ、アルカリ金属元素以外は、Fe2O3、Co3O4のように、これら元素の酸化物をそのまま用いたり、K2NiO4、K2MnOxのように複合酸化物として用いるのが好ましい。また、アルミナ、シリカ等の高比表面積担体上に高分子担持して用いることもできる。 Alkali metal elements are used as carbonates and sulfates. Except for alkali metal elements, oxides of these elements such as Fe 2 O 3 and Co 3 O 4 are used as they are, or K 2 NiO 4 and K 2 are used. It is preferable to use it as a complex oxide like MnOx. In addition, a polymer can be supported on a high specific surface area carrier such as alumina or silica.
<製造方法>
本実施形態に係る排ガス浄化フィルタは、活性触媒元素及び助触媒元素を含む触媒を調製する工程と、調製した触媒に、球状の造孔剤、柱状の造孔剤、及び無機バインダを所定量添加して混合し、触媒スラリーを調製する工程と、調製した触媒スラリーに担体を浸漬させた後、引き上げて焼成することにより、球状の造孔剤及び柱状の造孔剤を燃焼消失させ、球状細孔及び柱状細孔を有する触媒層を形成する工程と、を経ることにより製造される。
<Manufacturing method>
The exhaust gas purification filter according to this embodiment includes a step of preparing a catalyst containing an active catalyst element and a promoter element, and adding a predetermined amount of a spherical pore forming agent, a columnar pore forming agent, and an inorganic binder to the prepared catalyst. And mixing to prepare a catalyst slurry, and after immersing the carrier in the prepared catalyst slurry, raising and firing, the spherical pore-forming agent and the columnar pore-forming agent are burned off and the spherical fine particles are burned. And a step of forming a catalyst layer having pores and columnar pores.
即ち、本実施形態に係る排ガス浄化フィルタの特徴であるネットワーク細孔は、球状造孔剤と柱状造孔剤とを同時に触媒スラリーに混入させ、焼成時に消失させることにより形成される。触媒や触媒スラリーの調製方法、浸漬方法、乾燥方法、焼成方法は特に限定されず、従来公知の方法を用いることができる。 That is, the network pores, which are the characteristics of the exhaust gas purifying filter according to the present embodiment, are formed by mixing the spherical pore forming agent and the columnar pore forming agent into the catalyst slurry at the same time and disappearing at the time of firing. The method for preparing the catalyst or catalyst slurry, the dipping method, the drying method, and the firing method are not particularly limited, and conventionally known methods can be used.
球状造孔剤としては特に限定されないが、例えば、炭素粉末、木粉末、でんぷん粉末、樹脂粉末等の可燃性粉末を用いることができる。また、柱状造孔剤も特に限定されないが、炭素織維、樹脂繊維、羊毛等の可燃性繊維を用いることができる。 Although it does not specifically limit as a spherical pore making agent, For example, combustible powders, such as carbon powder, wood powder, starch powder, resin powder, can be used. Further, the columnar pore-forming agent is not particularly limited, but flammable fibers such as carbon fiber, resin fiber, and wool can be used.
球状造孔剤の直径は、1μm〜30μmであることが好ましい。球状造孔剤の直径が1μm未満である場合には、PM燃焼効果が低く、30μmより大きい場合には、造孔剤がDPF内に進入しないためPM燃焼効果が低い。より好ましくは、1μm〜20μmである。 The diameter of the spherical pore forming agent is preferably 1 μm to 30 μm. When the diameter of the spherical pore forming agent is less than 1 μm, the PM combustion effect is low, and when it is larger than 30 μm, the PM burning effect is low because the pore forming agent does not enter the DPF. More preferably, it is 1 μm to 20 μm.
柱状の造孔剤の開口面の長径は、30μm以下であることが好ましい。長径が30μmを超える場合には、柱状細孔のサイズが大きくなってしまい、PM燃焼に適した細孔サイズではなくなるため、PM燃焼に悪影響を及ぼす。また、アスペクト比は、10〜1000であることが好ましい。アスペクト比が1000を超える場合には、DPF細孔内に進入しないため、細孔の連結率が低くなり、PM燃焼に悪影響を及ぼす。より好ましくは、10〜100である。 The major axis of the opening surface of the columnar pore former is preferably 30 μm or less. When the major axis exceeds 30 μm, the size of the columnar pores is increased, and the pore size is not suitable for PM combustion, and thus adversely affects PM combustion. The aspect ratio is preferably 10 to 1000. When the aspect ratio exceeds 1000, since it does not enter the DPF pores, the pore coupling rate is lowered, which adversely affects PM combustion. More preferably, it is 10-100.
<作用・効果>
本実施形態に係る排ガス浄化フィルタ10の作用・効果について、図1を参照しながら説明する。図1に示される通り、本実施形態に係る排ガス浄化フィルタ10の触媒層12中には、複数の球状細孔11aと、これら複数の球状細孔11a同士を連結する複数の柱状細孔11bとによりネットワーク化された複数の細孔11が存在する。このため、内燃機関から排出された粒子状物質を含む排ガスがスムーズに流入でき、粒子状物質による流路の閉塞が抑制される。これにより、PMの燃焼に対する細孔11の利用率を向上させることができ、効率良くPMを燃焼させることができる。また、球状細孔を多量に形成する従来のものとは異なり、球状細孔11a間を柱状細孔11bが橋架けするような形態であり、トータルの細孔容量を抑えた構成となっている。このため、本実施形態に係る排ガス浄化フィルタ10の触媒層12は、十分な機械的強度を有し、触媒の剥離を抑制することができるうえ、PMの堆積による圧力損失も抑制できる。
<Action and effect>
The operation and effect of the exhaust
次に、本発明を実施例に基づいて説明するが、本発明はこれに限定されるものではない。 Next, although this invention is demonstrated based on an Example, this invention is not limited to this.
<実施例1>
[Ag/CeO2触媒の調製]
CeO2に対するAgの重量が30wt%となるように、所定量の硝酸銀を水に溶解させ、この硝酸銀水溶液とCeO2粉末とをナスフラスコに入れてロータリーエバポレータで蒸発乾固させた。これを700℃で2時間焼成し、Ag/CeO2触媒を作製した。
<Example 1>
[Preparation of Ag / CeO 2 catalyst]
A predetermined amount of silver nitrate was dissolved in water so that the weight of Ag with respect to CeO 2 was 30 wt%, and this silver nitrate aqueous solution and CeO 2 powder were placed in an eggplant flask and evaporated to dryness with a rotary evaporator. This was calcined at 700 ° C. for 2 hours to produce an Ag / CeO 2 catalyst.
[ハニカム担持]
上記のようにして調製したAg/CeO2触媒に対し、球状の造孔剤を触媒重量比で25%、柱状の造孔剤を触媒重量比で25%、及びSiO2バインダを触媒重量比で10%となるように配合した後、所定量の水を加え、ボールミルで撹絆して触媒スラリーとした。球状の造孔剤としては、平均直径が30μmであり、且つ1μm〜100μmの径分布を有する球状のとうもろこしでんぷん粉末を用いた。また、球状の細孔を連結させるために、柱状の造孔剤として、平均直径が150nmであり、且つアスペクト比が10〜1000である炭素繊維を用いた。
[Honeycomb support]
With respect to the Ag / CeO 2 catalyst prepared as described above, the spherical pore former is 25% by catalyst weight ratio, the columnar pore former is 25% catalyst weight ratio, and the SiO 2 binder is catalyst weight ratio. After blending to 10%, a predetermined amount of water was added, and the mixture was stirred with a ball mill to form a catalyst slurry. As the spherical pore-forming agent, a spherical corn starch powder having an average diameter of 30 μm and a diameter distribution of 1 μm to 100 μm was used. Further, in order to connect the spherical pores, as columnar pore forming agent, the average diameter is 150 nm, and an aspect ratio using the carbon fiber is 1 0-10 00.
次いで、300セルのSiC−DPFハニカムを用意し、上記で得られた触媒スラリーにハニカムを浸漬させた。浸漬後、ハニカムを引き上げて余分な触媒スラリーをエアーナイフで良く切った後、200℃の乾燥工程を所定の重量になるまで繰り返し、セル内が触媒スラリー乾固物で充填されるようにした。 Next, a 300-cell SiC-DPF honeycomb was prepared, and the honeycomb was immersed in the catalyst slurry obtained above. After soaking, the honeycomb was pulled up and the excess catalyst slurry was cut well with an air knife, and then the drying process at 200 ° C. was repeated until a predetermined weight was reached, so that the inside of the cell was filled with the dried catalyst slurry.
得られた触媒付きハニカムを600℃で2時間焼成し、とうもろこしでんぷん粉末及び炭素繊維の造孔剤成分を燃焼除去させた。これにより、触媒付DPF1L当たり30g/Lの触媒が充填され、ハニカムセル内において球状の細孔が柱状の細孔で連結された触媒層を有する触媒付DPF(排ガス浄化フィルタ)を得た。 The obtained honeycomb with catalyst was fired at 600 ° C. for 2 hours to burn and remove the corn starch powder and the carbon fiber pore former component. As a result, a catalyst-attached DPF (exhaust gas purification filter) having a catalyst layer in which 30 g / L of catalyst per 1 L of catalyst-attached DPF was filled and spherical pores were connected by columnar pores in the honeycomb cell was obtained.
<実施例2>
触媒の調製は、実施例1と同様にして行った。ハニカムへの担持は、球状の造孔剤及び柱状の造孔剤いずれも、実施例1の2倍量を用いた以外は実施例1と同様の方法により行った。
<Example 2>
The catalyst was prepared in the same manner as in Example 1. The honeycomb was supported by the same method as in Example 1 except that both the spherical pore former and the columnar pore former were used in an amount twice that of Example 1.
<比較例1>
触媒の調製は、実施例1と同様にして行った。ハニカムへの担持は、球状の造孔剤及び柱状の造孔剤いずれも用いなかった以外は実施例1と同様の方法により行った。
<Comparative Example 1>
The catalyst was prepared in the same manner as in Example 1. The honeycomb was supported by the same method as in Example 1 except that neither a spherical pore forming agent nor a columnar pore forming agent was used.
<比較例2>
触媒の調製は、実施例1と同様にして行った。ハニカムへの担持は、柱状の造孔剤を用いなかった以外は実施例1と同様の方法により行った。
<Comparative example 2>
The catalyst was prepared in the same manner as in Example 1. The honeycomb was supported by the same method as in Example 1 except that the columnar pore former was not used.
<比較例3>
触媒の調製は、実施例1と同様にして行った。ハニカムへの担持は、球状の造孔剤を用いなかった以外は実施例1と同様の方法により行った。
<Comparative Example 3>
The catalyst was prepared in the same manner as in Example 1. The honeycomb was supported by the same method as in Example 1 except that the spherical pore former was not used.
<評価>
実施例及び比較例で得られた触媒付DPFについて、全て初期状態下で評価を実施した。
<Evaluation>
All the DPFs with catalysts obtained in the examples and comparative examples were evaluated under the initial state.
[PM捕集方法]
PMの捕集は、ディーゼル発電機から排出される排ガスを、実施例及び比較例でそれぞれ得られた触媒付DPFに流通させることにより行った。捕集したPMの重量は、捕集前後の触媒付DPFの重量を測定することにより算出した。重量測定の際には、水、ハイドロカーボンの影響を除去するために、200℃で15min、乾燥器内で保持して乾燥させてから行った。
[PM collection method]
The PM was collected by circulating the exhaust gas discharged from the diesel generator through the DPF with catalyst obtained in each of the examples and comparative examples. The weight of the collected PM was calculated by measuring the weight of the DPF with catalyst before and after the collection. In measuring the weight, in order to remove the influence of water and hydrocarbon, it was held at 200 ° C. for 15 min and dried in a dryer.
[PM燃焼性能評価]
PMを捕集した触媒付DPFに、O2を10%、NOxを700ppm含み、N2をbalanceガスとするガスを500℃で流通させ(SV=50000h−1)、90%のPMが燃焼するまでの時間(以下、T90という)を指標として、触媒のPM燃焼性能を評価した。目的の500℃に到達するまでは、昇温中にPMが燃焼しないように、N2を流して昇温した。
[PM combustion performance evaluation]
A gas containing 10% O 2 , 700 ppm NOx, and N 2 balance gas is circulated at 500 ° C. (SV = 50000 h −1 ) in a DPF with a catalyst that collects PM, and 90% of PM burns. The PM combustion performance of the catalyst was evaluated using the time until (hereinafter referred to as T90) as an index. Until the target temperature reached 500 ° C., the temperature was raised by flowing N 2 so that PM would not burn during the temperature rise.
[細孔容量測定]
実施例及び比較例で作製した触媒付DPFを所定の大きさに崩し、水銀ポロシメーターを用いて、DPFの細孔及び触媒層中の細孔分布を測定した。
[Pore volume measurement]
The catalyst-attached DPF produced in Examples and Comparative Examples was broken into a predetermined size, and the pore distribution of the DPF and the pore distribution in the catalyst layer were measured using a mercury porosimeter.
<評価結果>
表1に、実施例及び比較例の触媒種、造孔剤種、造孔剤添加量、90%PM燃焼時間(T90)を示す。また、表2に、実施例及び比較例の造孔剤種、造孔剤によって形成された細孔容量を示す。また、表3に、実施例及び比較例の造孔剤によって形成された細孔容量、T90を示す。
<Evaluation results>
Table 1 shows the catalyst type, pore forming agent type, pore forming agent addition amount, and 90% PM combustion time (T90) of Examples and Comparative Examples. Table 2 shows the pore volume formed by the pore former types and the pore formers of Examples and Comparative Examples. Table 3 shows the pore volume, T90, formed by the pore formers of Examples and Comparative Examples.
比較例1と比較例2、3とを比較すると、造孔剤を用いた比較例2、3の方が明らかに効率良くPMが燃焼していることが分かる。これは、PMと触媒の接触性が良好となり、PMの燃焼効率が向上したためであると考えられる。 Comparing Comparative Example 1 with Comparative Examples 2 and 3, it can be seen that Comparative Examples 2 and 3 using a pore-forming agent clearly burn PM more efficiently. This is considered to be because the contact property between the PM and the catalyst is improved and the combustion efficiency of the PM is improved.
実施例1と比較例2、3とを比較すると、比較例2又は3のように球状細孔又は柱状細孔を単独で生成させるよりも、実施例1のように球状細孔と柱状細孔とを同時に生成させた方が(図2参照)、排ガスがスムーズに流入し、PMを効率的に燃焼できていることが分かる。また、PM燃焼効率は、触媒中の細孔容量によらない(表3参照)ことからも、球状細孔と柱状細孔とが同時に存在することが重要であることが分かる。 When Example 1 and Comparative Examples 2 and 3 are compared, spherical pores and columnar pores as in Example 1 are produced rather than spherical pores or columnar pores alone as in Comparative Example 2 or 3. It can be seen that the exhaust gas flows more smoothly and PM can be burned efficiently if both are generated simultaneously (see FIG. 2). In addition, since PM combustion efficiency does not depend on the pore volume in the catalyst (see Table 3), it can be seen that it is important that spherical pores and columnar pores exist simultaneously.
比較例2のPM燃焼効率が実施例1より低い理由としては、図3に示すように、生成された細孔は球状細孔のみであるため、細孔の連結率が低く、PMの燃焼に有効に利用される細孔の数が少ないためであると考えられる。 The reason why the PM combustion efficiency of Comparative Example 2 is lower than that of Example 1 is that the generated pores are only spherical pores as shown in FIG. This is probably because the number of pores that are effectively used is small.
比較例3のPM燃焼効率が実施例1より低い理由としては、柱状細孔はPMを燃焼させるのに適した形状ではないことが考えられる。柱状細孔は、その形状から、球状細孔と比較して開口部付近にPMが堆積し易いことから、内部の細孔は利用されず、比較例2と同様に、PM燃焼に有効に利用される細孔の数が少ないためであると考えられる。ただし、今回用いた柱状細孔生成用の炭素繊維は、同じ重量当たりの体積が大きいため(表2参照)に、連結率が高くなると考えられる。従って、柱状細孔はPMを燃焼させるには不向きな形状ではあるものの連結率が高いため、結果として比較例3は比較例2と同等のPM燃焼効率が得られたと考えられる。 The reason why the PM combustion efficiency of Comparative Example 3 is lower than that of Example 1 is considered that the columnar pores are not in a shape suitable for burning PM. Due to the shape of the columnar pores, PM tends to deposit near the opening compared to the spherical pores, so the internal pores are not used and are effectively used for PM combustion as in Comparative Example 2. This is probably because the number of pores formed is small. However, the carbon fibers for generating columnar pores used this time have a large volume per weight (see Table 2), and thus the connection rate is considered to be high. Therefore, although the columnar pores are in a shape unsuitable for burning PM, the coupling rate is high, and as a result, it is considered that the PM combustion efficiency equivalent to that of Comparative Example 2 was obtained in Comparative Example 3.
今回使用した球状造孔剤の直径は、1μm〜30μm程度である。球状造孔剤の直径がこの範囲であれば、PM燃焼効率を高くできる。また、担体の気孔径が9μm〜30μmであり、担体が有する気孔径以上の細孔は原理的に生成できないことを考慮すると、その最大径よりも大きな造孔剤を用いることによる効果は小さいと考えられる。 The diameter of the spherical pore former used this time is about 1 μm to 30 μm. If the diameter of the spherical pore former is within this range, the PM combustion efficiency can be increased. In addition, considering that the pore size of the carrier is 9 μm to 30 μm and pores larger than the pore size of the carrier cannot be generated in principle, the effect of using a pore forming agent larger than the maximum diameter is small. Conceivable.
柱状細孔を生成させる繊維状造孔剤は、球状細孔を連結させるという役割からも、球状細孔径よりも直径が小さいことが望ましいと考えられる。また、今回用いた炭素繊維造孔剤のアスペクト比は10〜1000であり、この範囲であれば、球状細孔の連結効果により、PMの燃焼効率を向上できることが確認された。 In view of the role of connecting the spherical pores, it is considered that the fibrous pore-forming agent for generating the columnar pores is desirably smaller in diameter than the spherical pore diameter. Moreover, the aspect ratio of the carbon fiber pore-forming agent used this time is 10 to 1000, and it was confirmed that the combustion efficiency of PM can be improved by the connection effect of the spherical pores within this range.
実施例2は、造孔剤の量を実施例1の2倍量としたものであり、PMの燃焼効率は実施例1と比較して更に向上していた。これは、PMと触媒が接触できる細孔が増加したためであると考えられる。このことから、造孔剤の量は、触媒重量と同量まで配合しても効果があり、そのときの造孔剤によって形成された細孔の容量は、球状細孔と柱状細孔とを合わせて、触媒付DPF1g当たり0.17mlであった。 In Example 2, the amount of pore-forming agent was twice that of Example 1, and the PM combustion efficiency was further improved as compared with Example 1. This is considered to be due to an increase in pores where PM and the catalyst can come into contact. From this, the amount of pore-forming agent is effective even when blended up to the same amount as the catalyst weight, and the capacity of the pores formed by the pore-forming agent at that time includes spherical pores and columnar pores. The combined amount was 0.17 ml per 1 g of the DPF with catalyst.
10、20、30、40 排ガス浄化フィルタ
11、21、31、41 細孔
11a、21a、31a、41a 球状細孔
11b、21b、31b、41b 柱状細孔
12、22、32、42 触媒層
13、23、33、43 担体壁
10, 20, 30, 40 Exhaust
Claims (4)
担体と、球状の造孔剤及び柱状の造孔剤を含む触媒スラリーにより形成され且つ前記担体に担持された触媒層と、を備え、
前記触媒層中には、前記球状の造孔剤により形成された複数の球状細孔と、前記柱状の造孔剤により形成され且つ前記複数の球状細孔同士を連結する複数の柱状細孔と、が設けられ、
前記複数の球状細孔の容量と、前記複数の柱状細孔の容量と、の合計容量は、前記触媒層の重量1gに対して、0.08ml〜0.2mlであることを特徴とする排ガス浄化フィルタ。 An exhaust gas purification filter used for purification of particulate matter in exhaust gas discharged from an internal combustion engine,
A support and a catalyst layer formed by a catalyst slurry containing a spherical pore-forming agent and a columnar pore-forming agent and supported on the support;
In the catalyst layer , a plurality of spherical pores formed by the spherical pore- forming agent, and a plurality of columnar pores formed by the columnar pore- forming agent and connecting the plurality of spherical pores to each other Is provided,
The total capacity of the volume of the plurality of spherical pores and the volume of the plurality of columnar pores is 0.08 ml to 0.2 ml with respect to 1 g of the weight of the catalyst layer. Purification filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007165967A JP5094234B2 (en) | 2007-06-25 | 2007-06-25 | Exhaust gas purification filter and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007165967A JP5094234B2 (en) | 2007-06-25 | 2007-06-25 | Exhaust gas purification filter and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009000663A JP2009000663A (en) | 2009-01-08 |
JP5094234B2 true JP5094234B2 (en) | 2012-12-12 |
Family
ID=40317634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007165967A Expired - Fee Related JP5094234B2 (en) | 2007-06-25 | 2007-06-25 | Exhaust gas purification filter and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5094234B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5587420B2 (en) | 2010-10-04 | 2014-09-10 | 大塚化学株式会社 | Exhaust gas purification filter and manufacturing method thereof |
JP5895600B2 (en) * | 2012-03-01 | 2016-03-30 | 日産自動車株式会社 | Exhaust gas purification catalyst and method for producing the same |
JP2014227324A (en) * | 2013-05-23 | 2014-12-08 | 宮川化成工業株式会社 | Porous ceramics sintered body and method for producing the same |
JP2015077532A (en) * | 2013-10-15 | 2015-04-23 | 本田技研工業株式会社 | Exhaust cleaning filter |
WO2016136560A1 (en) * | 2015-02-27 | 2016-09-01 | 株式会社豊田中央研究所 | Exhaust gas purification catalyst, manufacturing method therefor, and exhaust gas purification method using same |
JP6542549B2 (en) * | 2015-03-13 | 2019-07-10 | 日野自動車株式会社 | Method of manufacturing honeycomb structure |
JP6130424B2 (en) | 2015-03-27 | 2017-05-17 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP6130423B2 (en) * | 2015-03-27 | 2017-05-17 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP6243372B2 (en) * | 2015-03-27 | 2017-12-06 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP6219871B2 (en) | 2015-03-27 | 2017-10-25 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP6243371B2 (en) * | 2015-03-27 | 2017-12-06 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP6594163B2 (en) | 2015-10-30 | 2019-10-23 | 株式会社キャタラー | Exhaust gas purification device |
JP6552437B2 (en) * | 2016-03-09 | 2019-07-31 | 株式会社豊田中央研究所 | Catalyst for purifying exhaust gas, method for producing the same, and method for purifying exhaust gas using the same |
WO2020195237A1 (en) * | 2019-03-26 | 2020-10-01 | サクラ工業株式会社 | Catalyst layer forming material, catalyst device constituent material, catalyst device, and production methods thereof |
CN113164945B (en) * | 2019-08-09 | 2022-03-18 | 三井金属矿业株式会社 | Exhaust gas purifying catalyst and method for producing same |
WO2021181487A1 (en) * | 2020-03-09 | 2021-09-16 | 三井金属鉱業株式会社 | Exhaust gas purification catalyst |
JP6770214B1 (en) * | 2020-06-08 | 2020-10-14 | エヌ・イーケムキャット株式会社 | Exhaust gas treatment member |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07106290B2 (en) * | 1984-04-23 | 1995-11-15 | エンゲルハード・コーポレーシヨン | Diesel Exhaust Particle Filter |
JP3560408B2 (en) * | 1996-02-15 | 2004-09-02 | 株式会社日本自動車部品総合研究所 | Diesel exhaust gas purification filter and method for producing the same |
JP2003002760A (en) * | 2001-06-13 | 2003-01-08 | Fine Ceramics Research Association | Method for producing ceramics porous body |
JP2003210922A (en) * | 2002-01-23 | 2003-07-29 | Ibiden Co Ltd | Ceramic honeycomb filter |
JP2004011592A (en) * | 2002-06-10 | 2004-01-15 | Toyota Motor Corp | Exhaust emission control device |
JP4284588B2 (en) * | 2003-01-10 | 2009-06-24 | トヨタ自動車株式会社 | Exhaust gas purification filter catalyst |
WO2006057344A1 (en) * | 2004-11-26 | 2006-06-01 | Ibiden Co., Ltd. | Honeycomb structure |
JP4812316B2 (en) * | 2005-03-16 | 2011-11-09 | イビデン株式会社 | Honeycomb structure |
JP4591164B2 (en) * | 2005-04-07 | 2010-12-01 | トヨタ自動車株式会社 | Exhaust gas purification method and exhaust gas purification device |
JP4449828B2 (en) * | 2005-06-06 | 2010-04-14 | トヨタ自動車株式会社 | Exhaust gas purification filter |
JP2007238409A (en) * | 2006-03-10 | 2007-09-20 | Asahi Glass Co Ltd | Method for manufacturing silicon nitride filter |
JP2007244951A (en) * | 2006-03-14 | 2007-09-27 | Nissan Motor Co Ltd | Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst |
-
2007
- 2007-06-25 JP JP2007165967A patent/JP5094234B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009000663A (en) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5094234B2 (en) | Exhaust gas purification filter and manufacturing method thereof | |
US7718143B2 (en) | Filter catalyst for purifying exhaust gases | |
JP5273446B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP6016916B2 (en) | Diesel particulate filter and exhaust gas purification device | |
JP5085176B2 (en) | Exhaust gas purification catalyst and exhaust gas purification device | |
JP5193437B2 (en) | Exhaust gas purification catalyst | |
JP5519181B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004019498A (en) | Emission gas purification filter type promoter | |
JP2010269205A (en) | Catalyst for cleaning exhaust gas | |
JP2009160547A (en) | Exhaust-gas cleaning catalyst and its production method | |
JPWO2020031975A1 (en) | Catalyst coated gasoline particulate filter and its manufacturing method | |
JP3855267B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP4715032B2 (en) | Diesel exhaust gas purification filter | |
JP4420655B2 (en) | Particulate filter catalyst and method for producing the same | |
JP5023969B2 (en) | Exhaust gas component purification catalyst material and particulate filter with the catalyst material | |
JP2008151100A (en) | Exhaust emission control device | |
JP2006231116A (en) | Exhaust gas-cleaning filter catalyst | |
JP2006314894A (en) | Production method of catalyst for cleaning emission gas | |
JP4239864B2 (en) | Diesel exhaust gas purification device | |
JP2007117954A (en) | Catalyst for cleaning exhaust gas from diesel engine | |
JP5006855B2 (en) | Exhaust gas purification catalyst and exhaust gas purification filter using the same | |
JP4218559B2 (en) | Diesel exhaust gas purification device | |
JP2009228618A (en) | Exhaust emission control device | |
JP2007190459A (en) | Catalyst for pm purification | |
JP6617181B1 (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110526 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120918 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |