JP2007244951A - Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst - Google Patents
Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst Download PDFInfo
- Publication number
- JP2007244951A JP2007244951A JP2006069123A JP2006069123A JP2007244951A JP 2007244951 A JP2007244951 A JP 2007244951A JP 2006069123 A JP2006069123 A JP 2006069123A JP 2006069123 A JP2006069123 A JP 2006069123A JP 2007244951 A JP2007244951 A JP 2007244951A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- particulate filter
- filter type
- type exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 124
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000004140 cleaning Methods 0.000 title abstract 6
- 239000000835 fiber Substances 0.000 claims abstract description 65
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims abstract description 35
- 239000011148 porous material Substances 0.000 claims abstract description 28
- 239000012018 catalyst precursor Substances 0.000 claims abstract description 25
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000001354 calcination Methods 0.000 claims abstract description 3
- 238000000746 purification Methods 0.000 claims description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 2
- 239000004917 carbon fiber Substances 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 239000004088 foaming agent Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 51
- 210000004027 cell Anatomy 0.000 description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 210000002421 cell wall Anatomy 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Filtering Materials (AREA)
Abstract
Description
本発明は、パティキュレートフィルター型排ガス浄化触媒の製造方法及びパティキュレートフィルター型排ガス浄化触媒に係り、更に詳細には、パティキュレートマター(PM)低減性能を向上させ得るパティキュレートフィルター型排ガス浄化触媒の製造方法及びこれにより得られるパティキュレートフィルター型排ガス浄化触媒に関する。 The present invention relates to a method for producing a particulate filter type exhaust gas purification catalyst and a particulate filter type exhaust gas purification catalyst. The present invention relates to a production method and a particulate filter type exhaust gas purification catalyst obtained thereby.
ディーゼルエンジンから排出されるPMの低減には、一般的にディーゼルパティキュレートフィルタ(DPF)が用いられる。従来のDPFにおいては、PMの捕集がセル壁で行われるため、PMがセル壁表面に堆積し、排ガスの圧力損失が急激に上昇する。
そのために、DPFを自己再生する際に、燃料噴射によって600℃以上の過熱燃焼処理を定期的に行うシステムが提案されている(特許文献1及び2参照。)。
A diesel particulate filter (DPF) is generally used for reducing PM discharged from a diesel engine. In the conventional DPF, since PM is collected on the cell wall, PM accumulates on the cell wall surface, and the pressure loss of the exhaust gas rapidly increases.
For this reason, a system has been proposed in which overheating combustion processing at 600 ° C. or higher is periodically performed by fuel injection when the DPF self-regenerates (see Patent Documents 1 and 2).
また、無機繊維(主に耐熱性に優れる炭化ケイ素)を不織布に加工し、これを用いてPMを捕集し、更に熱源を用いて処理するシステムが提案されている(特許文献3参照。)。
しかしながら、特許文献1及び2に記載のシステムにおいては、例えばPM捕集量を感知する必要があり、システムが複雑なものになるという問題がある。また、自己再生する際に燃費が悪化するという問題がある。
一方、特許文献3に記載のシステムにおいては、大掛かりな熱源とシステムが必要となり、小型化が困難であるという問題がある。また、無機繊維は単独では形状を維持することが困難であるという問題もある。
However, the systems described in Patent Documents 1 and 2 have a problem that, for example, it is necessary to sense the amount of PM trapped, and the system becomes complicated. In addition, there is a problem that fuel efficiency deteriorates during self-regeneration.
On the other hand, the system described in Patent Document 3 requires a large heat source and system, and there is a problem that miniaturization is difficult. In addition, there is a problem that it is difficult to maintain the shape of inorganic fibers alone.
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、PM低減性能を向上させ得るパティキュレートフィルター型排ガス浄化触媒の製造方法及びこれにより作製されるパティキュレートフィルター型排ガス浄化触媒を提供することにある。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to produce a particulate filter type exhaust gas purification catalyst capable of improving PM reduction performance, and to be produced thereby. It is an object of the present invention to provide a particulate filter type exhaust gas purification catalyst.
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、従来のDPFにおいてPM除去効率が向上しない原因が、PM除去効率を向上させるためにDPFに担持した白金などの触媒成分がセル壁中に埋没しているのに対して、PMがセル壁表面に堆積しているため、触媒成分の性能が十分に発揮されておらず、PM除去効率を向上させるにはPMと触媒成分の接触率を向上させ得る構造とすることが必要であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the reason why the PM removal efficiency is not improved in the conventional DPF is that the catalyst component such as platinum supported on the DPF in order to improve the PM removal efficiency. Since PM is deposited on the cell wall surface while being buried in the cell wall, the performance of the catalyst component is not fully exhibited, and PM and the catalyst component are required to improve PM removal efficiency. The present inventors have found that it is necessary to have a structure capable of improving the contact rate of the present invention, and have completed the present invention.
即ち、本発明のパティキュレートフィルター型排ガス浄化触媒の製造方法は、セルを有する構造体と、無機質の長繊維及び短繊維を含む三次元網目状構造体に触媒成分を担持して成る触媒と、を備え、該触媒が、該セル内に配設されて成るパティキュレートフィルター型排ガス浄化触媒の製造方法であって、下記の工程(1)〜(4)を含むことを特徴とする。
(1)無機質の長繊維及び短繊維を混合して無機繊維混合物を得る工程
(2)上記無機繊維混合物に触媒成分を担持させて触媒成分担持無機繊維混合物を得る工程
(3)上記触媒成分担持無機繊維混合物に造孔材を加え、混合して触媒前駆体を得る工程
(4)上記触媒前駆体を上記構造体のセル内で焼成し、上記造孔材を焼失させることにより該セル内に触媒を配設してパティキュレートフィルター型排ガス浄化触媒を得る工程
That is, the method for producing a particulate filter type exhaust gas purification catalyst of the present invention includes a structure having cells, a catalyst comprising a catalyst component supported on a three-dimensional network structure including inorganic long fibers and short fibers, And the catalyst is a method for producing a particulate filter type exhaust gas purification catalyst disposed in the cell, characterized in that it includes the following steps (1) to (4).
(1) Step of obtaining an inorganic fiber mixture by mixing inorganic long fibers and short fibers (2) Step of obtaining a catalyst component-supported inorganic fiber mixture by supporting a catalyst component on the inorganic fiber mixture (3) Supporting the catalyst component Step of adding a pore former to the inorganic fiber mixture and mixing to obtain a catalyst precursor (4) The catalyst precursor is calcined in the cell of the structure, and the pore former is burned away in the cell. A step of obtaining a particulate filter type exhaust gas purification catalyst by disposing a catalyst
また、本発明のパティキュレートフィルター型排ガス浄化触媒は、上記本発明のパティキュレートフィルター型排ガス浄化触媒の製造方法により作製されたことを特徴とする。 In addition, the particulate filter type exhaust gas purification catalyst of the present invention is produced by the method for producing the particulate filter type exhaust gas purification catalyst of the present invention.
本発明によれば、PMと触媒成分の接触率を向上させ得る構造を構築することなどとしたため、PM低減性能を向上させ得るパティキュレートフィルター型排ガス浄化触媒の製造方法及びこれにより作製されるパティキュレートフィルター型排ガス浄化触媒を提供することができる。 According to the present invention, since a structure capable of improving the contact ratio between PM and the catalyst component is constructed, etc., a method for producing a particulate filter type exhaust gas purification catalyst capable of improving PM reduction performance, and a particle produced thereby. A curated filter type exhaust gas purification catalyst can be provided.
以下、本発明のパティキュレートフィルター型排ガス浄化触媒の製造方法について詳細に説明する。なお、本明細書及び特許請求の範囲において、濃度や添加量についての「%」は、特記しない限り質量百分率を表すものとする。
上述の如く、本発明のパティキュレートフィルター型排ガス浄化触媒の製造方法は、セルを有する構造体と、無機質の長繊維及び短繊維を含む三次元網目状構造体に触媒成分を担持して成る触媒と、を備え、かかる触媒が、かかるセル内に配設されて成るパティキュレートフィルター型排ガス浄化触媒の製造方法であって、下記の工程(1)〜(4)を含む。
(1)無機質の長繊維及び短繊維を混合して無機繊維混合物を得る工程
(2)得られた無機繊維混合物に触媒成分を担持させて触媒成分担持無機繊維混合物を得る工程
(3)得られた触媒成分担持無機繊維混合物に造孔材を加え、混合して触媒前駆体を得る工程
(4)得られた触媒前駆体を構造体のセル内で焼成し、造孔材を焼失させることによりそのセル内に触媒を配設してパティキュレートフィルター型排ガス浄化触媒を得る工程
Hereinafter, the manufacturing method of the particulate filter type exhaust gas purification catalyst of the present invention will be described in detail. In the present specification and claims, “%” for concentration and addition amount represents a mass percentage unless otherwise specified.
As described above, the method for producing a particulate filter type exhaust gas purifying catalyst of the present invention comprises a catalyst having a structure having cells and a catalyst component supported on a three-dimensional network structure including inorganic long fibers and short fibers. And the catalyst is a method for producing a particulate filter type exhaust gas purification catalyst provided in the cell, and includes the following steps (1) to (4).
(1) Step of obtaining an inorganic fiber mixture by mixing inorganic long fibers and short fibers (2) Step (3) of obtaining a catalyst component-supported inorganic fiber mixture by supporting a catalyst component on the obtained inorganic fiber mixture Step of adding a pore former to the catalyst component-supported inorganic fiber mixture and mixing to obtain a catalyst precursor (4) By calcining the obtained catalyst precursor in a cell of the structure and burning out the pore former A step of obtaining a particulate filter type exhaust gas purification catalyst by disposing a catalyst in the cell
このような構成とすることにより、PM低減性能を向上させ得るパティキュレートフィルター型排ガス浄化触媒が生産性よく得られる。 By adopting such a configuration, a particulate filter type exhaust gas purification catalyst capable of improving the PM reduction performance can be obtained with high productivity.
ここで、上記各工程(1)〜(4)について更に詳細に説明する。
まず、無機質の長繊維及び短繊維を混合して無機繊維混合物を得る工程(1)においては、無機繊維混合物が得られれば、その混合方法については特に限定されるものではなく、また、無機質の長繊維及び短繊維の混合比や成分についても特に限定されるものではない。
例えば、本発明においては、長繊維と短繊維とが、質量比で2:8〜5:5の割合で含まれていることが好ましく、3:7〜4:6の割合で含まれていることがより好ましい。
長繊維と短繊維の割合が2:8より多くなる(例えば長繊維と短繊維の割合が1:9)と、短繊維が多くなるなるため細孔の閉塞を招き、PMとの接触率が低下することがある。
一方、長繊維と短繊維の割合が5:5より少なくなる(例えば長繊維と短繊維の割合が6:4)と、長繊維を用いて短繊維構造を補強しているため、所望の繊維構造体を形成し難くなる。また、密度の低下を招き、PMの捕集効率が低下する。
Here, each said process (1)-(4) is demonstrated still in detail.
First, in the step (1) of mixing inorganic long fibers and short fibers to obtain an inorganic fiber mixture, the mixing method is not particularly limited as long as an inorganic fiber mixture is obtained. The mixing ratio and components of the long fibers and the short fibers are not particularly limited.
For example, in the present invention, long fibers and short fibers are preferably contained in a mass ratio of 2: 8 to 5: 5, and are contained in a ratio of 3: 7 to 4: 6. It is more preferable.
When the ratio of long fibers to short fibers is more than 2: 8 (for example, the ratio of long fibers to short fibers is 1: 9), the short fibers increase, leading to blockage of pores, and the contact ratio with PM is increased. May decrease.
On the other hand, when the ratio of long fibers to short fibers is less than 5: 5 (for example, the ratio of long fibers to short fibers is 6: 4), the short fiber structure is reinforced with the long fibers, so that the desired fiber It becomes difficult to form a structure. In addition, the density is lowered, and the PM collection efficiency is lowered.
また、本発明においては、長繊維の繊維長さが2〜10mmであることことが好ましく、2〜4mmであることが更に好ましい。
更に、本発明においては、長繊維の繊維径が5〜35μmであることが好ましく、7〜10μmであることが更に好ましい。
Moreover, in this invention, it is preferable that the fiber length of a long fiber is 2-10 mm, and it is still more preferable that it is 2-4 mm.
Furthermore, in this invention, it is preferable that the fiber diameter of a long fiber is 5-35 micrometers, and it is still more preferable that it is 7-10 micrometers.
更に、本発明においては、短繊維の繊維長さが0.1〜50mmであることが好ましく、0.1〜2mmであることが更に好ましい。但し、短繊維は製造条件上、長さが不均一であるため、この限りでない。
更にまた、本発明においては、短繊維の繊維径が1〜10μmであることが好ましく、3〜5μmであることが更に好ましい。
上述したような長繊維及び短繊維を混合させると、繊維が均一に分散され、触媒成分を担持した触媒において、PMと触媒成分との接触率をより向上させることができ、所望の空隙率が得られるようにもなる。
Furthermore, in this invention, it is preferable that the fiber length of a short fiber is 0.1-50 mm, and it is still more preferable that it is 0.1-2 mm. However, this is not the case because the short fiber has a non-uniform length due to manufacturing conditions.
Furthermore, in the present invention, the fiber diameter of the short fibers is preferably 1 to 10 μm, and more preferably 3 to 5 μm.
When long fibers and short fibers as described above are mixed, the fibers are uniformly dispersed, and in the catalyst supporting the catalyst component, the contact ratio between PM and the catalyst component can be further improved, and a desired porosity can be obtained. It will also be obtained.
また、本発明においては、無機質の長繊維や短繊維としては、パティキュレートフィルター型排ガス浄化触媒としての使用に耐え得るものであれば、特に限定されるものではないが、例えば炭化ケイ素、アルミナ、シリカ又はアルミナシリカ繊維、及びこれらを任意に組合わせたものを挙げることができ、任意に組合わせたものとしては、これらの混合物や複合化合物などを挙げることができる。更に、アルカリ金属やアルカリ土類金属を含むいわゆるガラス繊維を用いることもできる。 Further, in the present invention, the inorganic long fibers and short fibers are not particularly limited as long as they can withstand use as a particulate filter type exhaust gas purification catalyst. For example, silicon carbide, alumina, Silica or alumina silica fibers and any combination thereof can be exemplified, and examples of any combination thereof include mixtures and composite compounds thereof. Furthermore, so-called glass fibers containing an alkali metal or an alkaline earth metal can also be used.
更に、本発明においては、無機質の長繊維や短繊維としては、アルミナとシリカを含有しているものが望ましく、アルミナの含有量が70%以上であることが好ましい。
アルミナとシリカを含有することにより、耐熱性と強度が優れたものとなり、かかる無機繊維はPMと触媒成分の接触率を向上させ得る構造を維持し易く、よりPM低減性能を向上させ得るものとなる。
また、アルミナの含有量が70%以上の場合には、触媒成分の担持性能が大幅に向上するため、PMと触媒成分の接触率をより向上させることができ、PM低減性能をより向上させ得るものとなる。
Furthermore, in the present invention, the inorganic long fibers and short fibers are preferably those containing alumina and silica, and the alumina content is preferably 70% or more.
By containing alumina and silica, heat resistance and strength are excellent, and such inorganic fibers can easily maintain a structure capable of improving the contact ratio between PM and catalyst components, and can further improve PM reduction performance. Become.
Also, when the alumina content is 70% or more, the catalyst component loading performance is greatly improved, so that the contact rate between PM and the catalyst component can be further improved, and the PM reduction performance can be further improved. It will be a thing.
次に、得られた無機繊維混合物に触媒成分を担持させて触媒成分担持無機繊維混合物を得る工程(2)においては、触媒成分担持無機繊維混合物を得られれば、その担持方法について特に限定されるものではなく、その触媒成分もPM低減性能を促進し得れば特に限定されるものではない。
例えば、本発明においては、無機繊維混合物を触媒成分を含有する溶液やスラリーに浸漬して触媒成分を担持させてもよく、更に乾燥・焼成して触媒成分を担持させてもよい。
また、本発明においては、上述した触媒成分として、例えば白金やパラジウム、ロジウムなどの貴金属を含んでいることが望ましい。また、助触媒として、セリアやチタニアなどを含んでいてもよい。
Next, in the step (2) of obtaining the catalyst component-supported inorganic fiber mixture by supporting the catalyst component on the obtained inorganic fiber mixture, the support method is particularly limited as long as the catalyst component-supported inorganic fiber mixture can be obtained. The catalyst component is not particularly limited as long as it can promote the PM reduction performance.
For example, in the present invention, the catalyst component may be supported by immersing the inorganic fiber mixture in a solution or slurry containing the catalyst component, or may be dried and calcined to support the catalyst component.
In the present invention, it is desirable that the catalyst component described above contains a noble metal such as platinum, palladium, or rhodium. Moreover, ceria, titania, etc. may be included as a co-catalyst.
次に、得られた触媒成分担持無機繊維混合物に造孔材を加え、混合して触媒前駆体を得る工程(3)においては、触媒前駆体を得ることができれば、その造孔材の添加方法や種類について特に限定されるものではない。
例えば、本発明においては、造孔材を添加する際に、触媒成分担持無機繊維混合物と十分混合させることにより、PMと触媒成分の接触率を向上させ得る構造を維持し易く、よりPM低減性能を向上させ得るものとなり、また、所望の空隙率を得ることができる。
Next, in the step (3) of adding a pore former to the obtained catalyst component-supporting inorganic fiber mixture and mixing to obtain a catalyst precursor, if the catalyst precursor can be obtained, a method for adding the pore former There is no particular limitation on the type and type.
For example, in the present invention, when the pore former is added, by sufficiently mixing with the catalyst component-supporting inorganic fiber mixture, it is easy to maintain a structure that can improve the contact ratio between PM and the catalyst component, and the PM reduction performance. And a desired porosity can be obtained.
また、本発明において、造孔材の添加量は、特に限定されるものではないが、造孔材を触媒前駆体全量基準で10〜50%となるように加えることが好ましく、15〜40%となるように加えることがより好ましく、15〜30%となるように加えることが更に好ましい。
造孔材の添加量が10%未満の場合には、細孔の閉塞を招くことがある。一方、造孔材の添加量が50%超の場合には、繊維構造体の破壊を招くことがある。
In the present invention, the addition amount of the pore former is not particularly limited, but the pore former is preferably added so as to be 10 to 50% based on the total amount of the catalyst precursor. It is more preferable to add so that it may become, and it is still more preferable to add so that it may become 15 to 30%.
When the amount of pore former added is less than 10%, pores may be blocked. On the other hand, when the amount of pore former added exceeds 50%, the fiber structure may be destroyed.
更に、本発明において、造孔材の種類は、焼成した際に焼失して空隙を形成すれば特に限定されるものではないが、例えば黒鉛、炭素繊維、活性炭、発泡剤又はパルプ、及びこれらの混合物を用いることができる。 Furthermore, in the present invention, the type of pore former is not particularly limited as long as it is burned to form voids when fired, but for example, graphite, carbon fiber, activated carbon, blowing agent or pulp, and these Mixtures can be used.
なお、上述した工程(1)〜(3)については、所望の触媒前駆体を得ることができれば、ほぼ同時に行ってもよく、例えば上述した無機質の長繊維及び短繊維と触媒成分と造孔材を混合して、触媒成分前駆体を得てもよい。 In addition, about the process (1)-(3) mentioned above, as long as a desired catalyst precursor can be obtained, you may carry out substantially simultaneously, for example, the inorganic long fiber and short fiber mentioned above, a catalyst component, and a pore making material. May be mixed to obtain a catalyst component precursor.
次に、得られた触媒前駆体をセルを有する構造体のセル内で焼成し、上記造孔材を焼失させることによりそのセル内に触媒を配設してパティキュレートフィルター型排ガス浄化触媒を得る工程(4)においては、所望のパティキュレートフィルター型排ガス浄化触媒を得ることができれば、触媒前駆体のセル内への配設方法や焼成方法などについて、特に限定されるものではない。
例えば、本発明においては、粉末やスラリー状態の触媒前駆体をセル内に充填させて、セル内に配設すればよい。また、焼成条件は、用いる造孔材が焼失する条件であれば特に限定されるものではなく、造孔材の種類により条件は異なるが、例えば大気中、100〜400℃程度で焼成すればよい。
Next, the obtained catalyst precursor is calcined in a cell having a structure having cells, and the pore-forming material is burned out to dispose the catalyst in the cells to obtain a particulate filter type exhaust gas purification catalyst. In the step (4), as long as a desired particulate filter type exhaust gas purification catalyst can be obtained, the method for disposing the catalyst precursor in the cell, the firing method and the like are not particularly limited.
For example, in the present invention, a powder or slurry catalyst precursor may be filled in a cell and disposed in the cell. The firing conditions are not particularly limited as long as the pore former to be used is burned out, and the conditions vary depending on the type of the pore former. For example, the firing may be performed at about 100 to 400 ° C. in the air. .
ここで、本発明のパティキュレートフィルター型排ガス浄化触媒の製造方法の一例を図面を用いて説明する。
図1は、本発明のパティキュレートフィルター型排ガス浄化触媒の製造方法の一例を示す説明図である。同図(a)に示すように、無機繊維混合物と触媒成分と造孔材を混合して、これらを含有する均一なスラリー状態の触媒前駆体26を得、次いで、同図(b)に示すようにこれを従来のDPFのような構造体10のセル12の内部に投入し、乾燥・焼成し、同図(c)に示すようにセル内に触媒20を配設して、パティキュレートフィルター型排ガス浄化触媒が得られる。
Here, an example of the manufacturing method of the particulate filter type exhaust gas purification catalyst of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing an example of a method for producing a particulate filter type exhaust gas purification catalyst of the present invention. As shown in FIG. 6A, the inorganic fiber mixture, the catalyst component, and the pore former are mixed to obtain a uniform
次に、本発明のパティキュレートフィルター型排ガス浄化触媒について説明する。
上述の如く、本発明のパティキュレートフィルター型排ガス浄化触媒は、上記本発明の排ガス浄化触媒の製造方法によって作製されたものである。
このようにして得られたパティキュレートフィルター型排ガス浄化触媒は、PM低減性能を向上させ得るものとなる。
Next, the particulate filter type exhaust gas purification catalyst of the present invention will be described.
As described above, the particulate filter type exhaust gas purification catalyst of the present invention is produced by the method for producing an exhaust gas purification catalyst of the present invention.
The particulate filter type exhaust gas purification catalyst obtained in this way can improve the PM reduction performance.
その結果、従来より低い温度条件下でPMを低減させ得るので、連続的なPM低減を実現し得る。
また、連続的なPM低減を実現し得るため、従来のDPFにおいて、自己再生するために定期的に行っていた燃料噴射による600℃以上の過熱燃焼処理を必ずしも行う必要が無くなり、燃費を向上させることが可能となる。更に、システムを構築する場合に簡略化や小型化することができる。
更にまた、触媒成分の性能を十分に発揮し得るように適正配置することが可能となり、触媒成分の一例である貴金属の使用量を低減することができるという利点もある。
なお、触媒成分はセル内壁に担持されていてもよいことは言うまでもない。
As a result, since PM can be reduced under a temperature condition lower than that in the prior art, continuous PM reduction can be realized.
Further, since continuous PM reduction can be realized, it is not always necessary to perform overheat combustion processing at 600 ° C. or higher by fuel injection that is regularly performed for self-regeneration in the conventional DPF, thereby improving fuel efficiency. It becomes possible. Furthermore, simplification and miniaturization can be achieved when constructing a system.
Furthermore, it is possible to arrange them appropriately so that the performance of the catalyst component can be sufficiently exhibited, and there is an advantage that the amount of noble metal used as an example of the catalyst component can be reduced.
Needless to say, the catalyst component may be supported on the inner wall of the cell.
ここで、本発明においては、備える構造体の形状としては、排ガスを流通させ得る構造を有し、構造体のセル内に無機繊維を保持し得る構造を有するものであれば特に限定されるものではない。例えば、いわゆるハニカム担体のような複数個のセルを有する構造体やいわゆるウォールフロー型ハニカム担体のような構造体を用いることができる。
また、本発明においては、備える構造体の材質としては、特に限定されるものではないが、コーディエライトなどのセラミックスやフェライト系ステンレスなどを挙げることができ、特に多孔質セラミックス製のものを好適に用いることができる。
Here, in the present invention, the shape of the structure provided is particularly limited as long as it has a structure capable of circulating exhaust gas and a structure capable of holding inorganic fibers in the cells of the structure. is not. For example, a structure having a plurality of cells such as a so-called honeycomb carrier or a structure such as a so-called wall flow type honeycomb carrier can be used.
Further, in the present invention, the material of the structure provided is not particularly limited, but may include ceramics such as cordierite and ferritic stainless steel, particularly those made of porous ceramics. Can be used.
また、本発明においては、備える構造体が上述したいわゆるハニカム担体のような複数個のセルを有する構造体である場合には、排ガスの圧力損失を著しく上昇させない程度に且つPMを除去するように、かかる構造体のセル内に、触媒成分を担持した無機繊維を配設すればよい。
このような構成とすることにより、PM低減性能を向上させ得るものとなる。
なお、このとき構造体は、ウォールフロー型、ストレートフロー型のいずれであってもよい。
Further, in the present invention, when the structure provided is a structure having a plurality of cells such as the so-called honeycomb carrier described above, PM is removed to such an extent that the pressure loss of the exhaust gas is not significantly increased. The inorganic fiber carrying the catalyst component may be disposed in the cell of the structure.
By setting it as such a structure, PM reduction performance can be improved.
At this time, the structure may be either a wall flow type or a straight flow type.
一方、本発明においては、備える構造体が上述したいわゆるウォールフロー型ハニカム担体のような構造体である場合、即ちガス流通可能な壁で形成され、一端が閉塞した複数個のセルを有し、これらセルの閉塞端と開放端とが交互に配置された端面を有する構造体である場合には、かかる構造体のガス流れ方向に対して上流側に開放端を有するセル内に、触媒成分を担持した無機繊維を配設すればよい。
このような構成とすることにより、PM低減性能を向上させ得ると共に、PMの除去性能がより優れたものとなる。
On the other hand, in the present invention, when the structure provided is a structure such as the so-called wall flow type honeycomb carrier described above, that is, it has a plurality of cells formed with walls through which gas can flow and closed at one end. In the case of a structure having an end face in which the closed end and the open end of these cells are alternately arranged, the catalyst component is contained in the cell having the open end upstream of the gas flow direction of the structure. What is necessary is just to arrange | position the supported inorganic fiber.
By adopting such a configuration, the PM reduction performance can be improved, and the PM removal performance can be further improved.
ここで、本発明のパティキュレートフィルター型排ガス浄化触媒の一実施形態を図面を用いて説明する。
図2(a)は、従来のパティキュレートフィルター型排ガス浄化触媒の一実施形態の拡大断面図である。同図に示すように、ウォールフロー型ハニカム担体のような構造体であって、構造体10が有するセル12のセル壁12aに触媒成分24が担持されている。
このとき、セル壁12aに担持した触媒成分24とPMの接触率は、十分でなく、矢印Aで示す排ガス流れにおいて、排ガス中のPMはセル壁12aの表面に堆積する。
一方、同図(b)は、本発明のパティキュレートフィルター型排ガス浄化触媒の一実施形態の拡大断面図である。同図に示すように、ウォールフロー型ハニカム担体のような構造体であって、構造体10が有するセル12の内部に無機質の長繊維及び短繊維を含む三次元網目状構造体22が配設されており、三次元網目状構造体22には触媒成分24が担持されており、触媒20が形成されている。
このとき、セル12の内部の触媒成分24とPMの接触率は、十分なものとなり、矢印Aで示す排ガス流れにおいて、排ガス中のPMがセル壁12aの表面にあまり堆積しないうちにPMを低減することができる。
Here, an embodiment of the particulate filter type exhaust gas purification catalyst of the present invention will be described with reference to the drawings.
FIG. 2A is an enlarged cross-sectional view of an embodiment of a conventional particulate filter type exhaust gas purification catalyst. As shown in the figure, the
At this time, the contact ratio between the
On the other hand, FIG. 5B is an enlarged cross-sectional view of an embodiment of the particulate filter type exhaust gas purification catalyst of the present invention. As shown in the figure, a structure such as a wall flow type honeycomb carrier, in which a three-
At this time, the contact ratio between the
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
(実施例1)
アルミナ−シリカ繊維(Al/Si=80/20、)の長繊維(繊維長さ:2〜4mm、繊維径:3〜10μm)及び短繊維(繊維長さ:0.05〜2mm、繊維径:3〜10μm)を用意した。これらを長繊維と短繊維とが質量比で5:5の割合となるように混合し、振動ミルに投入して、長繊維と短繊維の無機繊維混合物を得た。
3%のPt溶液500mLに上記得られた無機繊維混合物50gを浸漬し、次いで、100℃で1時間乾燥し、しかる後、400℃で1時間焼成して、55gの触媒成分担持無機繊維混合物を得た(Pt担持量は3%であった。)。
得られた触媒成分担持無機繊維混合物に、混合用の水1Lと造孔材として活性炭を加え、触媒前駆体を得た(活性炭の添加量は、触媒前駆体全量基準で10%であった。)。
得られた触媒前駆体1160gをハニカム担体(容量:1.0L、セル数:400Cpsi)のセル内に投入し、焼成し、造孔材を焼失させ、触媒を配設して、本例のパティキュレートフィルター型排ガス浄化触媒を得た。
Example 1
Long fibers (fiber length: 2 to 4 mm, fiber diameter: 3 to 10 μm) and short fibers (fiber length: 0.05 to 2 mm, fiber diameter) of alumina-silica fiber (Al / Si = 80/20) 3 to 10 μm) were prepared. These were mixed such that the long fibers and the short fibers were in a mass ratio of 5: 5 and put into a vibration mill to obtain an inorganic fiber mixture of long fibers and short fibers.
50 g of the inorganic fiber mixture obtained above was immersed in 500 mL of 3% Pt solution, then dried at 100 ° C. for 1 hour, and then calcined at 400 ° C. for 1 hour to obtain 55 g of the catalyst component-supported inorganic fiber mixture. Obtained (Pt loading was 3%).
To the obtained catalyst component-supported inorganic fiber mixture, 1 L of mixing water and activated carbon as a pore former were added to obtain a catalyst precursor (the amount of activated carbon added was 10% based on the total amount of the catalyst precursor). ).
1160 g of the obtained catalyst precursor was put into a cell of a honeycomb carrier (capacity: 1.0 L, number of cells: 400 Cpsi), fired, the pore former was burned out, a catalyst was disposed, and A curated filter type exhaust gas purification catalyst was obtained.
(実施例2)
得られた触媒成分担持無機繊維混合物に、造孔材として活性炭を加え、触媒前駆体を得るに際し、活性炭の添加量を、触媒前駆体全量基準で20%とした以外は、実施例1と同様の操作を繰り返し、本例のパティキュレートフィルター型排ガス浄化触媒を得た。
(Example 2)
In the same manner as in Example 1 except that activated carbon is added as a pore former to the obtained catalyst component-supporting inorganic fiber mixture to obtain a catalyst precursor, the amount of activated carbon added is 20% based on the total amount of the catalyst precursor. The above operation was repeated to obtain a particulate filter type exhaust gas purification catalyst of this example.
(実施例3)
得られた触媒成分担持無機繊維混合物に、造孔材として活性炭を加え、触媒前駆体を得るに際し、活性炭の添加量を、触媒前駆体全量基準で30%とした以外は、実施例1と同様の操作を繰り返し、本例のパティキュレートフィルター型排ガス浄化触媒を得た。
(Example 3)
In the same manner as in Example 1 except that activated carbon is added as a pore former to the obtained catalyst component-supported inorganic fiber mixture to obtain a catalyst precursor, the amount of activated carbon added is 30% based on the total amount of the catalyst precursor. The above operation was repeated to obtain a particulate filter type exhaust gas purification catalyst of this example.
(比較例1)
得られた触媒成分担持無機繊維混合物に、造孔材を加えなかったこと以外は、実施例1と同様の操作を繰り返し、本例のパティキュレートフィルター型排ガス浄化触媒を得た。
(Comparative Example 1)
The particulate filter type exhaust gas purification catalyst of this example was obtained by repeating the same operation as in Example 1 except that no pore former was added to the obtained catalyst component-supporting inorganic fiber mixture.
(比較例2)
実施例1と同様のハニカム担体のセル内壁に、Pt溶液を塗布し、次いで、100℃で1時間乾燥し、しかる後、400℃で1時間焼成して、本例のパティキュレートフィルター型排ガス浄化触媒を得た。なお、Ptの担持量は、実施例1のパティキュレートフィルター型排ガス浄化触媒と同じである。
(Comparative Example 2)
Particulate filter type exhaust gas purification of this example by applying a Pt solution to the inner wall of the cell of the same honeycomb carrier as in Example 1, then drying at 100 ° C. for 1 hour, and then firing at 400 ° C. for 1 hour. A catalyst was obtained. The amount of Pt supported is the same as that of the particulate filter type exhaust gas purification catalyst of Example 1.
[性能評価]
上記各例のパティキュレートフィルター型排ガス浄化触媒を評価装置に設置し、下記条件下でメタンの転化率を測定した。得られた結果を表1に示す。
[Performance evaluation]
The particulate filter type exhaust gas purification catalyst of each of the above examples was installed in an evaluation apparatus, and the conversion rate of methane was measured under the following conditions. The obtained results are shown in Table 1.
(試験条件)
・ガス組成 :メタン;4vol%、酸素;10vol%、残部;窒素
・ガス流速 :200cm3/min
・触媒温度 :500℃
(Test conditions)
・ Gas composition: methane; 4 vol%, oxygen; 10 vol%, balance: nitrogen, gas flow rate: 200 cm 3 / min
Catalyst temperature: 500 ° C
表1より、本発明の範囲に含まれる実施例1〜3は、本発明外の比較例1及び2よりもメタン転化率が優れていることが分かる。
これは、触媒成分とメタンの接触率が向上しているためと推測され、このようなパティキュレートフィルター型排ガス浄化触媒は、PM低減性能を向上させ得る。
From Table 1, it can be seen that Examples 1 to 3 included in the scope of the present invention have a higher methane conversion rate than Comparative Examples 1 and 2 outside the present invention.
This is presumed to be because the contact ratio between the catalyst component and methane is improved, and such a particulate filter type exhaust gas purification catalyst can improve the PM reduction performance.
10 構造体
12 セル
12a セル壁
20 触媒
22 三次元網目状構造体
24 触媒成分
26 触媒前駆体
DESCRIPTION OF
Claims (4)
上記触媒が、上記セル内に配設されて成るパティキュレートフィルター型排ガス浄化触媒の製造方法であって、下記の工程(1)〜(4)
(1)無機質の長繊維及び短繊維を混合して無機繊維混合物を得る工程、
(2)上記無機繊維混合物に触媒成分を担持させて触媒成分担持無機繊維混合物を得る工程、
(3)上記触媒成分担持無機繊維混合物に造孔材を加え、混合して触媒前駆体を得る工程、
(4)上記触媒前駆体を上記構造体のセル内で焼成し、上記造孔材を焼失させることにより該セル内に触媒を配設してパティキュレートフィルター型排ガス浄化触媒を得る工程、
を含むことを特徴とするパティキュレートフィルター型排ガス浄化触媒の製造方法。 A structure having cells, and a catalyst comprising a catalyst component supported on a three-dimensional network structure including inorganic long fibers and short fibers,
A method for producing a particulate filter type exhaust gas purification catalyst in which the catalyst is disposed in the cell, wherein the following steps (1) to (4)
(1) A step of mixing inorganic long fibers and short fibers to obtain an inorganic fiber mixture,
(2) a step of obtaining a catalyst component-supported inorganic fiber mixture by supporting a catalyst component on the inorganic fiber mixture;
(3) adding a pore former to the catalyst component-supported inorganic fiber mixture and mixing to obtain a catalyst precursor;
(4) The step of calcining the catalyst precursor in the cell of the structure and disposing the pore former to dispose the catalyst in the cell to obtain a particulate filter type exhaust gas purification catalyst;
A method for producing a particulate filter type exhaust gas purifying catalyst, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006069123A JP2007244951A (en) | 2006-03-14 | 2006-03-14 | Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006069123A JP2007244951A (en) | 2006-03-14 | 2006-03-14 | Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007244951A true JP2007244951A (en) | 2007-09-27 |
Family
ID=38589803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006069123A Pending JP2007244951A (en) | 2006-03-14 | 2006-03-14 | Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007244951A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007244950A (en) * | 2006-03-14 | 2007-09-27 | Nissan Motor Co Ltd | Particulate filter type exhaust gas cleaning catalyst and particulate filter |
JP2009000663A (en) * | 2007-06-25 | 2009-01-08 | Honda Motor Co Ltd | Exhaust gas purifying filter and its manufacturing method |
EP2119500A1 (en) * | 2007-03-14 | 2009-11-18 | Nissan Motor Co., Ltd. | Fiber structure and particulate-filter-type exhaust gas clean-up catalyst |
KR101776749B1 (en) * | 2016-01-07 | 2017-09-08 | 현대자동차 주식회사 | Catalyzed particulate filter |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56164025A (en) * | 1980-05-22 | 1981-12-16 | Nippon Sheet Glass Co Ltd | Method of welding rods |
JPH06218859A (en) * | 1993-01-22 | 1994-08-09 | Sekisui Chem Co Ltd | Laminate and production thereof |
JPH07109916A (en) * | 1993-10-13 | 1995-04-25 | Hakubunshiya:Kk | Filter for collecting fine grain in exhaust gas |
JPH08243325A (en) * | 1995-03-09 | 1996-09-24 | Isuzu Ceramics Kenkyusho:Kk | Diesel particulate filter |
JP2002276339A (en) * | 2001-03-16 | 2002-09-25 | Isuzu Motors Ltd | Diesel exhaust gas processing device |
JP2002295226A (en) * | 2001-03-30 | 2002-10-09 | Isuzu Motors Ltd | Particulate cleaner for diesel exhaust gas |
JP2002309923A (en) * | 2001-04-11 | 2002-10-23 | Isuzu Motors Ltd | Diesel exhaust emission purifier |
WO2003081001A1 (en) * | 2002-03-22 | 2003-10-02 | Ibiden Co., Ltd. | Honeycomb filter for clarification of exhaust gas |
JP2004216226A (en) * | 2003-01-10 | 2004-08-05 | Toyota Motor Corp | Exhaust gas purification filter catalyst |
JP2005262061A (en) * | 2004-03-17 | 2005-09-29 | Nomura Micro Sci Co Ltd | Recycle method of used slurry for polishing semiconductor |
JP2007275874A (en) * | 2006-03-14 | 2007-10-25 | Nissan Motor Co Ltd | Catalyst and particulate filter type catalyst for cleaning exhaust gas |
-
2006
- 2006-03-14 JP JP2006069123A patent/JP2007244951A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56164025A (en) * | 1980-05-22 | 1981-12-16 | Nippon Sheet Glass Co Ltd | Method of welding rods |
JPH06218859A (en) * | 1993-01-22 | 1994-08-09 | Sekisui Chem Co Ltd | Laminate and production thereof |
JPH07109916A (en) * | 1993-10-13 | 1995-04-25 | Hakubunshiya:Kk | Filter for collecting fine grain in exhaust gas |
JPH08243325A (en) * | 1995-03-09 | 1996-09-24 | Isuzu Ceramics Kenkyusho:Kk | Diesel particulate filter |
JP2002276339A (en) * | 2001-03-16 | 2002-09-25 | Isuzu Motors Ltd | Diesel exhaust gas processing device |
JP2002295226A (en) * | 2001-03-30 | 2002-10-09 | Isuzu Motors Ltd | Particulate cleaner for diesel exhaust gas |
JP2002309923A (en) * | 2001-04-11 | 2002-10-23 | Isuzu Motors Ltd | Diesel exhaust emission purifier |
WO2003081001A1 (en) * | 2002-03-22 | 2003-10-02 | Ibiden Co., Ltd. | Honeycomb filter for clarification of exhaust gas |
JP2004216226A (en) * | 2003-01-10 | 2004-08-05 | Toyota Motor Corp | Exhaust gas purification filter catalyst |
JP2005262061A (en) * | 2004-03-17 | 2005-09-29 | Nomura Micro Sci Co Ltd | Recycle method of used slurry for polishing semiconductor |
JP2007275874A (en) * | 2006-03-14 | 2007-10-25 | Nissan Motor Co Ltd | Catalyst and particulate filter type catalyst for cleaning exhaust gas |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007244950A (en) * | 2006-03-14 | 2007-09-27 | Nissan Motor Co Ltd | Particulate filter type exhaust gas cleaning catalyst and particulate filter |
EP2119500A1 (en) * | 2007-03-14 | 2009-11-18 | Nissan Motor Co., Ltd. | Fiber structure and particulate-filter-type exhaust gas clean-up catalyst |
EP2119500A4 (en) * | 2007-03-14 | 2012-12-26 | Nissan Motor | Fiber structure and particulate-filter-type exhaust gas clean-up catalyst |
US8529843B2 (en) | 2007-03-14 | 2013-09-10 | Nissan Motor Co., Ltd. | Fibrous structure and particulate filter type exhaust gas purifying catalyst |
JP2009000663A (en) * | 2007-06-25 | 2009-01-08 | Honda Motor Co Ltd | Exhaust gas purifying filter and its manufacturing method |
KR101776749B1 (en) * | 2016-01-07 | 2017-09-08 | 현대자동차 주식회사 | Catalyzed particulate filter |
US10054018B2 (en) | 2016-01-07 | 2018-08-21 | Hyundai Motor Company | Catalyzed particulate filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5237630B2 (en) | Honeycomb structure | |
KR100680078B1 (en) | Honeycomb structure body | |
JP6809942B2 (en) | Honeycomb structure | |
US7785695B2 (en) | Honeycomb structured body | |
JP6577895B2 (en) | Honeycomb structure | |
JP4845795B2 (en) | Exhaust gas purification filter and manufacturing method thereof | |
JP5193437B2 (en) | Exhaust gas purification catalyst | |
JP5270879B2 (en) | Honeycomb structure | |
WO2009118816A1 (en) | Honeycomb structure | |
WO2006070540A1 (en) | Ceramic honeycomb structure | |
JP4471622B2 (en) | Honeycomb structure | |
WO2008044269A1 (en) | Honeycomb structure | |
JP2018122261A (en) | Plugged Honeycomb Structure | |
JP2005218935A (en) | Honeycomb structure, honeycomb aggregate and honeycomb catalyst | |
JPWO2005110578A1 (en) | Honeycomb structure and exhaust gas purification device | |
JP2008296141A (en) | Honeycomb filter | |
CN102728413A (en) | Honeycomb structure, manufacturing method thereof, and catalyst carrying honeycomb structure | |
JP2010269205A (en) | Catalyst for cleaning exhaust gas | |
JPWO2008126329A1 (en) | Honeycomb filter | |
EP2108448B1 (en) | Honeycomb catalyst body | |
JP2009502710A (en) | High specific surface area silicon carbide catalyst filter and support | |
JP2009160547A (en) | Exhaust-gas cleaning catalyst and its production method | |
JP2013212500A (en) | Honeycomb structure and honeycomb catalyst body | |
JP2021155236A (en) | Manufacturing method of honeycomb structure containing silicon carbide | |
JP2007244951A (en) | Manufacturing method of particulate filter type exhaust gas cleaning catalyst, and particulate filter type exhaust gas cleaning catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110309 |