JP6261960B2 - 雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム - Google Patents

雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム Download PDF

Info

Publication number
JP6261960B2
JP6261960B2 JP2013235336A JP2013235336A JP6261960B2 JP 6261960 B2 JP6261960 B2 JP 6261960B2 JP 2013235336 A JP2013235336 A JP 2013235336A JP 2013235336 A JP2013235336 A JP 2013235336A JP 6261960 B2 JP6261960 B2 JP 6261960B2
Authority
JP
Japan
Prior art keywords
water level
rainwater drainage
drainage pump
rainwater
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013235336A
Other languages
English (en)
Other versions
JP2015094322A (ja
Inventor
理 山中
理 山中
由紀夫 平岡
由紀夫 平岡
鉄兵 手島
鉄兵 手島
孝典 石井
孝典 石井
悠美 橋本
悠美 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2013235336A priority Critical patent/JP6261960B2/ja
Publication of JP2015094322A publication Critical patent/JP2015094322A/ja
Application granted granted Critical
Publication of JP6261960B2 publication Critical patent/JP6261960B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Sewage (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

本発明の実施形態は、雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラムに関する。
近年、局地的かつ短時間に降る大雨(局所豪雨)が多発している。局地的豪雨による典型的な被害として、都市の内部で水が溢れる内水氾濫が発生している。洪水を未然に防ぐための取り組みとしては、築堤、河道掘削、護岸整備やダム建設など、主に大規模河川の増水や決壊による洪水を想定した対策が講じられてきた。河川の氾濫は外水氾濫と呼ばれ、従来は外水氾濫に対する対策が重点的に行われてきたが、今後は、内水氾濫も考慮した対策が重要になってくると考えられる。実際、比較的堤防の整備が進んだ都市部では、内水氾濫の被害の方が多い傾向にあり、内水氾濫の防止が新たな課題となっている。
内水氾濫の対策の一つとして、雨水排水施設の制御が挙げられる。雨水排水施設では、雨水排水ポンプによって流入した雨水を河川等に排出することが行われている。こうした雨水排水施設では、雨水が貯留される雨水ポンプ井水位に対して基準水位を設定しておき、雨水ポンプ井水位と基準水位の比較に基づいて雨水排水ポンプの起動または停止を行うという制御が行われることが多い。これに関連し、その基準水位を可変にする技術が開示されている(例えば、特許文献1、2参照)。
特開平09−291888号公報 特開平07−259175号公報
従来の技術では、雨水排水ポンプを好適に制御することができない場合があった。
本発明が解決しようとする課題は、雨水排水ポンプを好適に制御することが可能な雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラムを提供することである。
一実施形態の雨水排水ポンプ制御装置は、起動順序が設定されている複数の雨水排水ポンプを制御する。雨水排水ポンプ制御装置は、ポンプ制御部と、水位設定部とを備える。ポンプ制御部は、雨水が流入する貯留部の水位が、前記複数の雨水排水ポンプのそれぞれについて設定される起動水位以上となったときに、対応する雨水排水ポンプを起動する。水位設定部は、前記複数の雨水排水ポンプのうち少なくとも1つの雨水排水ポンプについて、前記貯留部への雨水の流入量の予測値と、起動水位の設定対象である雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量の合計値との差分、第1の想定時間、および第1の所定水位に基づいて、前記起動水位を設定する。
一実施形態に係る雨水排水ポンプ制御装置100と、これに接続される機器とを模式的に示す図である。 雨水排水ポンプ制御装置100の機能構成の一例を示す図である。 各ポンプについて設定される起動水位および停止水位の一例を示す図である。 流入量予測モデル構築部114により実行される処理の流れの一例を示す図である。 雨水の流入量に対する予測最大値と予測最小値の推移を模式的に示すイメージ図である。 流入量予測部110による処理を模式的に示す図である。 式(15)に基づいて雨水排水ポンプP1〜PNの起動水位H(1)〜H(N)が求められる様子を模式的に示す図である。 式(17)に基づいて雨水排水ポンプP1〜PNの停止水位L(1)〜L(N)が求められる様子を模式的に示す図である。 式(19)に基づいて雨水排水ポンプP1〜PNの起動水位H(1)〜H(N)が求められる様子を模式的に示す図である。 式(20)に基づいて雨水排水ポンプP1〜PNの停止水位L(1)〜L(N)が求められる様子を模式的に示す図である。 起動水位を設定した後に、全体を上昇させる様子を模式的に示す図である。 4台の雨水排水ポンプの起動水位をできる限り下げ、低い起動水位で制御を実施した例を示す図である。 4台の雨水排水ポンプの起動水位をできる限り下げ、低い起動水位で制御を実施した例を示す図である。 4台の雨水排水ポンプの起動水位をできる限り下げ、低い起動水位で制御を実施した例を示す図である。 流入量の予測値の推移と、起動水位や停止水位の推移とを、時間軸を合わせて表示する表示画面IMの一例を示す図である。
以下、図面を参照し、雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラムの実施形態について説明する。
[概略]
図1は、一実施形態に係る雨水排水ポンプ制御装置100と、これに接続される機器とを模式的に示す図である。雨水排水ポンプ制御装置100は、例えば、雨水排水施設(雨水排水システム)1内に設置され、雨水排水施設1の雨水排水ポンプP1〜PN(nは任意の自然数)を制御する。雨水排水施設1は、単独の施設であったり、下水処理場に併設される施設であったりする。雨水排水施設1では、流入幹線10から流入する雨水や工場排水等が、雨水ポンプ井20に貯留される。ポンプP1〜PNは、雨水ポンプ井20に貯留された雨水(工場排水等を除外するものではない)を、河川等に排出する。なお、雨水ポンプ井20は、「貯留部」の一例である。
流入幹線10には、幹線水位計12および流速計14が取り付けられており、これらの出力する水位および流速は、変換器16により単位時間あたりの流量(幹線流量[m3/s])の情報に変換された情報と共に、雨水排水ポンプ制御装置100に入力される。なお、幹線流量は、「貯留部への雨水の流入量」の一例である。また、「貯留部への雨水の流入量」として、流入渠21など、他の箇所の流量が計測されてもよい。
また、雨水排水ポンプ制御装置100には、例えば、地上雨量計30から降雨量の情報が、降雨レーダ40からネットワークNWおよびコンピュータ50を介して降雨強度の情報が、それぞれ入力される。降雨レーダ40は、空中に電波を発信し、雨滴により反射された電波を受信することにより、ある観測範囲(例えば250[m]×250[m])の降雨の状況を観測する。降雨レーダ40の出力する信号は、図示しない信号処理サーバによって、メッシュ毎の降雨強度[mm/h]に換算されて出力される。降雨量や降雨強度として、一地点の情報だけでなく、複数地点の情報が入力されてもよい。なお、上記説明した雨水排水ポンプ制御装置100に入力される情報は、あくまで一例であり、これらの一部が省略されてもよいし、後述するように他の情報が雨水排水ポンプ制御装置100に入力されてもよい。
雨水排水施設1は、流入幹線10と雨水ポンプ井20との間を遮断可能なゲート部22と、雨水ポンプ井20の水位Xを検出して出力する雨水ポンプ井水位計24とを備える。ゲート部22は、雨水の流入量が極端に多い場合には、遮断されて雨水ポンプ井20への流入量を遮断する場合があるが、通常時には所定の高さに保たれている。なお、図1において、水位Xは雨水ポンプ井20の底面を基準とした水位であるように記載したが、実際には、東京湾中等潮位(Tokyo Peil)等を基準とした水位であってもよい。雨水ポンプ井水位計24の検出値は、雨水排水ポンプ制御装置100に入力される。雨水排水ポンプ制御装置100は、上記入力される各種情報、雨水ポンプ井水位計24の検出値、および下流側の情報(後述)に基づいて、雨水排水ポンプP1〜PNやゲート部22を制御する。
また、雨水排水ポンプ制御装置100には、雨水排水施設1の上流側の情報と、下流側の情報とが入力される。上流側の情報としては、上記した幹線流量、降雨量、降雨強度の他、ダム水位情報、上流ポンプ施設のポンプ吐出量情報等が挙げられる。また、下流側の情報としては、河川水位情報、潮位情報等が挙げられる。流域におけるこれらの情報は、雨水排水施設1における運用に密接に関係しており、雨水排水ポンプ制御装置100は、これらの情報を有効に活用しながら、雨水排水施設1における雨水排水ポンプP1〜PNの制御を、適切かつ効率的に行っていく必要がある。
図2は、雨水排水ポンプ制御装置100の機能構成の一例を示す図である。雨水排水ポンプ制御装置100は、例えば、流入量予測部110と、流域監視データ記憶部112と、流入量予測モデル構築部114と、予測モデルパラメータ記憶部116と、起動・停止水位設定部120と、起動・停止順序設定部122と、ポンプ容量・ポンプ井情報記憶部124と、ポンプ制御部130とを備える。
これらのうち、流入量予測部110、流入量予測モデル構築部114、起動・停止水位設定部120、起動・停止順序設定部122、ポンプ制御部130は、例えば、CPU(Central Processing Unit)等のプロセッサがプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、PLC(Programmable Logic Controller)により実現される機能部であってもよいし、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。また、流域監視データ記憶部112、予測モデルパラメータ記憶部116、ポンプ容量・ポンプ井情報記憶部124は、例えば、HDD(Hard Disk Drive)やフラッシュメモリ、RAM(Random Access Memory)、ROM(Read Only Memory)などの記憶装置によって実現される。
流入量予測部110は、前述した幹線水位、幹線流速、幹線流量、降雨量、降雨強度等の情報(以下、流域監視データと称する)に基づいて、将来の雨水ポンプ井20へ雨水の流入量を予測する。流域監視データは、流域監視データ記憶部112に格納される。流入量予測モデル構築部114は、流域監視データ記憶部112に格納された流域監視データに基づいて、流入量予測部110が予測に用いる予測モデルのパラメータを決定し、予測モデルパラメータ記憶部116に格納する。流入量の予測処理の詳細については後述する。
起動・停止水位設定部120は、流入量予測部110の予測結果、雨水排水ポンプP1〜PNの起動順序や停止順序、ポンプ容量(単位時間あたりの吐出量)、雨水ポンプ井20の構造情報などに基づいて、雨水排水ポンプP1〜PNの起動水位と停止水位を設定する。雨水排水ポンプP1〜PNの起動順序や停止順序は、例えば、起動・停止順序設定部122により設定される。起動・停止順序設定部122は、例えば、過去における各雨水排水ポンプP1〜PNの起動時間の履歴を参照し、累積の起動時間が短い雨水排水ポンプの起動順序が上位に、且つ停止順序が下位になるように(すなわち、より早く起動され、より遅く停止されるように)、定期的に起動順序や停止順序の再設定を行う。なお、これに代えて、雨水排水ポンプP1〜PNの起動順序や停止順序は、固定であってもよく、この場合、起動・停止順序設定部122は、単に順序を保持する記憶部であってよい。ポンプ容量・ポンプ井情報記憶部124には、雨水排水ポンプ井20や流入渠21の断面積や容積などの土木情報(構造情報)、雨水ポンプP1〜PNの吐出容量、警戒水位(溢水水位)やインターロック水位などの情報が格納されている。起動・停止水位の設定処理の詳細については後述する。
ポンプ制御部130は、雨水ポンプ井20の水位が、雨水排水ポンプP1〜PNのそれぞれについて設定される起動水位以上となったときに、対応する雨水排水ポンプを起動し、雨水排水ポンプP1〜PNのそれぞれについて設定される停止水位未満となったときに、対応する雨水排水ポンプを停止させる。図3は、各ポンプについて設定される起動水位および停止水位の一例を示す図である。ここでは、ポンプの数nが4つであるものとする。図中、H(1)はポンプP1の起動水位であり、L(1)はポンプP1の停止水位である。また、H(2)はポンプP2の起動水位であり、L(2)はポンプP2の停止水位である。また、H(3)はポンプP3の起動水位であり、L(3)はポンプP3の停止水位である。また、H(4)はポンプP4の起動水位であり、L(4)はポンプP4の停止水位である。例えば、ポンプ制御部130は、水位Xが上昇して起動水位H(1)以上になると、ポンプP1を起動させて雨水の排出を開始する。その後、水位Xが低下して停止水位L(1)を下回ると、ポンプ制御部130は、ポンプP1を停止させる。また、ポンプ制御部130は、水位Xが上昇して起動水位H(4)以上となると、その過程でポンプP1、P2、P3、P4を順に起動させ、ポンプP1のみ起動している状態よりも大量の雨水を排出させる。また、ポンプ制御部130は、水位Xが起動水位H(4)以上となった後、水位Xが低下して停止水位L(1)未満となると、その過程でポンプP4、P3、P2、P1を順に停止させ、少量の雨水のみ排出させる。このように、ポンプ制御部130は、水位Xが高くなるとより多くのポンプを起動させ、水位Xが低くなると少ないポンプのみ起動させるように、ポンプP1〜P4を制御する。なお、図中、HHは警戒水位であり、LLはインターロック水位(ポンプが機械的に停止する水位)である。
[流入量の予測処理]
以下、流入量予測部110による流入量の予測処理について説明する。式(1)、(2)は、流入量予測部110が流入量を予測する際の基本となる予測モデルを表している。式中、「i」は、例えば、流域監視データに含まれる幹線水位、幹線流速、幹線流量、降雨量、降雨強度等(以下、「要因」と称する)の中から、流入量予測モデル構築部114により選択されたキーパラメータの識別子である。そして、mvYmax(k)は、キーパラメータiに基づく雨水の流入量の予測最大値であり、mvYmin(k)は、キーパラメータiに基づく雨水の流入量の予測最小値である。後述するように、流入量予測部110は、これらキーパラメータ毎の予測値を統合し、雨水の流入量を予測する。式中、「k」は時系列データにおける時間に相当するサンプル番号である。また、「mv」は移動平均等の処理によって平滑化された値であることを示す。なお、以下に説明する各式中の値が平滑化されていることは必須の構成でなく、流域監視データの値そのものが用いられても構わない。また、「K」はキーパラメータiのゲイン、すなわちキーパラメータiが雨水の流入量に及ぼす程度を示す。また、「U」はキーパラメータiの値であり、「L」は遅れ時間、すなわち、キーパラメータiの時間変化が雨水の流入量の変化として現れるまでの時間を示す。また、「B」はキーパラメータiについてのバイアス、すなわち、キーパラメータiの変動に拘わらず発生する雨水の流入量を示す。
mvYmax(k)=Kmax×mvU(k−L)+Bmax (i=1,2,‥,M) ‥(1)
mvYmin(k)=Kmin×mvU(k−L)+Bmin (i=1,2,‥,M) ‥(2)
流入量予測モデル構築部114は、式(1)、(2)で表される予測モデルを構成するためのパラメータ(「Ki」、「Li」、「Bi」)を、以下に例示する処理によって決定する。図4は、流入量予測モデル構築部114により実行される処理の流れの一例を示す図である。まず、流入量予測モデル構築部114は、流域監視データ記憶部112から、ゼロでない、或いは所定の閾値以上の降雨が認められる3個以上の降雨イベントに対応する、複数の期間を抽出する(ステップS200)。降雨イベントは、幹線水位、幹線流速、幹線流量、降雨量、降雨強度等の「要因」を含んでいる。
次に、流入量予測モデル構築部114は、「要因」から雨水ポンプ井20への流入量に及ぼす影響が大きいキーパラメータを抽出する(ステップS202)。流入量予測モデル構築部114は、例えば、雨水ポンプ井20への雨水の流入量と、各「要因」とに、それぞれ移動平均処理などの適切な平滑化処理を施した上で、時間をずらして相関係数を求め、相関係数の最大値が所定値を超える「要因」を、キーパラメータとして抽出する。
次に、流入量予測モデル構築部114は、降雨イベント毎に、以下の処理(ステップS204〜S210)を行う。
まず、流入量予測モデル構築部114は、遅れ時間「L」をキーパラメータ毎に同定する(ステップS204)。流入量予測モデル構築部114は、式(3)で表されるキーパラメータのデータ行列Uij(jは降雨イベントの識別情報)中の各キーパラメータの時系列データと、式(4)で表される「降雨イベント毎の雨水ポンプ井流入量データ(ベクトル)Yとの相関係数を、遅れ時間Lijをサンプル周期dT刻みで前後にずらしながら相関係数R(k)を計算する。式中、「E」は平均値を、Tは転置を示す。相関係数は、式(5)で表される。流入量予測モデル構築部114は、式(5)で表される相関係数R(k)が最大値となる遅れ時間Lijを抽出し、同定値とする。
=[{mvY(1)―E(mvY)},{mvY(2)―E(mvY)},‥,{mvY(n)―E(mvY)}] ‥(3)
ij=[{mvUij(1―Lij)―E(mvUij)},{mvUij(2−Lij)―E(mvUij)},‥,{mvUij(n−Lij)―E(mvUij)}] ‥(4)
Figure 0006261960
次に、流入量予測モデル構築部114は、ゲインKijとバイアスBijの同定を行う(ステップS206〜S210)。
まず、流入量予測モデル構築部114は、mvYとmvUijから平均値除去処理(バイアス除去処理)を行う(ステップS206)。平均値除去処理は、式(6)が変形された式(7)によって表される。式(6)は、前述した式(1)、(2)から最大値と最小値の概念を除去した基本式である。そして、流入量予測モデル構築部114は、式(7)に最小二乗法を適用して得られる式(8)に基づいて、ゲインKijを同定する(ステップS208)。
mvY(k)=K×mvU(k−L)+B (i=1,2,‥,M) ‥(6)
mvY(k)―E(mvY)=Kij×{mvUij(k―Iij)―E(mvUij)} ‥(7)
ij=Yij/Uij ij (i=1,2,‥,M、j=1,2,‥,P)‥(8)
ここで、式(7)においてバイアスが除去されているため、式(8)では1つのパラメータKijのみ同定すればよく、最小二乗法で通常必要となる逆行列演算を行う必要がなく、除算のみでパラメータKijの推定が可能となっている。ゲインKijとバイアスBijを同時に推定しようとすると、二変数の最小二乗法を行う必要があり、逆行列演算が必要となる。これに対し、本実施形態の流入量予測モデル構築部114では、上記の手順を採用することによって逆行列演算を回避し、処理負荷を低減することができる。
次に、流入量予測モデル構築部114は、同定したゲインKijを用いてバイアスBijを同定する(ステップS210)。流入量予測モデル構築部114は、式(6)と式(7)を比較することによって得られる式(9)に基づいて、バイアスBijを同定する。
ij=E(mvY)―Kij×E(mvUij) ‥(9)
このようにして、降雨イベントj毎に遅れ時間Lij、ゲインKij、バイアスBijを同定すると、流入量予測モデル構築部114は、降雨イベントjに依存しない、キーパラメータi毎の遅れ時間、ゲイン、バイアスの代表値を求める。流入量予測モデル構築部114は、例えば、ロバスト統計を用いた位置母数抽出処理、および尺度母数抽出処理によって、式(10)〜(12)で表される代表値を導出する(ステップS212)。式中、L、K、Bは、各キーパラメータについての、降雨イベントに依存しない遅れ時間、ゲイン、バイアスの代表値である。また、MEDはjに関する中央値(Median)、MADはjに関する中央値絶対偏差(Median Absolute Deviation)、α、α、αは係数、Mはキーパラメータの数、Pは降雨イベントの数を示す。中央値は、ロバスト統計を用いた位置母数の一例である。また、中央値絶対偏差は、ロバスト統計を用いた尺度母数の一例であり、各データと中央値との差分を求め、その差分の中央値を求めたものである。係数α、α、αは、例えば―1〜+1程度の範囲内でユーザにより、或いは自動的に設定される。式(10)〜(12)によれば、全降雨イベントについての同定値の中央値から、係数αに応じた偏りをもった推定値が導出される。
=MED(Lij)+α×MAD(Lij) i=1,2,‥,M、j=1,2,‥,P ‥(10)
=MED(Kij)+α×MAD(Kij) i=1,2,‥,M、j=1,2,‥,P ‥(11)
=MED(Bij)+α×MAD(Bij) i=1,2,‥,M、j=1,2,‥,P ‥(12)
このように、本実施形態の流入量予測モデル構築部114は、平均値ではなく中央値を用いて代表値を求めるため、ロバストな値を求めることができる。複数の降雨イベントを用いてパラメータの同定を行うと、降雨イベントによっては,現実的でないパラメータの推定値が得られるケースがしばしば現れる。そのため、平均化処理を行う場合、代表値が現実的でないパラメータ値に左右されて安定した代表値を算出することができないことがある。これに対し、中央値を用いる場合、中央値はロバスト統計の分野でロバストな代表値(位置母数)推定量として知られているので、現実的で無いパラメータ値に左右される可能性を低下させることができる。なお、流入量予測モデル構築部114は、中央値処理に代わる他のロバストな位置母数推定方法を用いてもよい。例えば、流入量予測モデル構築部114は、HL推定量(ホッジス・レーマン推定量)などを用いてもよいし、適切なパーセントで刈り込んだ刈込平均(トリム平均)を用いても良い。また、流入量予測モデル構築部114は、ブートストラップやサブサンプリングと呼ばれる方法でロバストに平均値を推定しても良い。更に、流入量予測モデル構築部114は、MADに代えて、標準偏差に相当するロバストな尺度母数の推定量、例えば、刈込の標準偏差やブートストラップやサブサンプリングを用いた尺度推定量を用いてもよい。
ここで、係数α、α、αの意義について説明する。パラメータL、K、Bは、α、α、αを全てゼロとして偏りのない推定値としてもよいが、本実施形態におけるパラメータは、雨水ポンプ井20への流入量を予測するためのものである。そして、予測された流入量は、雨水排水ポンプP1〜PNの起動水位と停止水位を設定するために用いられる。ここで、起動水位の設定に関しては、溢水を防止するために、起動までに要する時間の間に流入する流入量をなるべく大きく見積もる必要があり、この逆に、停止時には、インターロック水位まで低下するのを防止するために、流入量をなるべく小さく見積もる必要がある。従って、流入量の予測最大値と予測最小値を、妥当な範囲内で導出することができると好適である。この観点から、本実施形態の流入量予測モデル構築部114は、ゲインKとバイアスBについては、αとαを適切な正の値(例えば0〜1程度)とすることで予測最大値を導出するための値を設定し、αとαを適切な負の値(例えば―1〜0程度)とすることで予測最小値を導出するための値を設定する。
なお、遅れ時間Lに関しては、流入量の最大値と最小値が、パラメータ符号に対していずれの方向に出るかが一般的にはわからないため、αを例えばゼロとして、流入量の最大値を予測する場合と、最小値を予測する場合とで共通した値を用いてよい。
係る手法によって、流入量の最大値と最小値を、妥当な範囲内で適切に導出することができる。図5は、雨水の流入量に対する予測最大値と予測最小値の推移を模式的に示すイメージ図である。
流入量予測モデル構築部114は、上記説明した手法によって、キーパラメータi毎の遅れ時間L、およびゲインKの最大値および最小値、バイアスBの最大値および最小値を決定すると、これらを予測モデルパラメータ記憶部116に格納する。流入量予測モデル構築部114による処理は、例えば、所望のタイミングで実行され、その後、必要に応じて定期的または不定期に実行される。
流入量予測部110は、前述したキーパラメータ毎の予測式(1)、(2)に対してロバスト統計を用いた代表値抽出処理を行った結果の式(13)、(14)に基づいて、予測最大値と予測最小値を導出し、起動・停止水位設定部120に提供する。式中、MEDはiに関する中央値、MADはiに関する中央値絶対偏差である。βは、任意に設定可能な係数であり、例えば初期値としてゼロが設定され、降雨状況に応じて正または負に設定されてよい。なお、MEDやMADに関しては、式(10)〜(12)と同様に、任意のロバストな推定量に置換することができる。図6は、流入量予測部110による処理を模式的に示す図である。
mvYmax(k)=MED{mvYmax(k)}+β×MAD{mvYmax(k)} i=1,2,‥,M ‥(13)
mvYmin(k)=MED{mvYmin(k)}+β×MAD{mvYmin(k)} i=1,2,‥,M ‥(14)
ここで、(1)、(2)はキーパラメータ毎の予測式であるが、これらはキーパラメータによって一様でないバラつきを示す場合がある。例えば、降雨量を用いて雨水の流入量予測を行う場合、あまり大きな降雨量を記録していないにも関わらず、雨水の流入量が増加するというようなケースが考えられる。このような現象が生じるケースとしては、計測地点での降雨量はあまり無いが、流域内の別の地域から雨水流入があるケースなどが考えられる。このような状況が生じることを考慮すると、単純にキーパラメータ毎の予測値に対して例えば平均化処理を行うよりも、式(13)、(14)で表されるような、ロバスト統計を用いた代表値抽出処理によって代表的な値を抽出する方が、予測精度が向上すると考えられる。
[起動・停止水位設定]
起動・停止水位設定部120は、流入量予測部110から提供される雨水の流入量の予測値、起動・停止順序設定部122により設定される起動順序および停止順序、および、ポンプ容量・ポンプ井情報記憶部124に格納されたポンプ容量や雨水ポンプ井20の構造情報に基づいて、雨水排水ポンプP1〜PNの起動水位および停止水位を設定する。なお、ポンプ容量・ポンプ井情報記憶部124には、雨水ポンプ井20の警戒水位HHやインターロック水位LLなどの情報も格納されていてよい。以下の説明では、雨水排水ポンプの起動順序がP1→P2→‥→PN―1→PNであり、その逆に、停止順序がPN→PN―1→‥P2→P1と設定されているものとする。なお、起動・停止水位設定部120は、雨水排水ポンプP1〜PNのうち一部についてのみ起動水位および停止水位を設定し、それ以外の雨水排水ポンプについては、起動水位および停止水位が固定値であっても構わない。
なお、起動・停止水位設定部120は、起動水位のみ動的に設定し、停止水位は固定値のまま変更しないものとしてもよい。この場合、ポンプ制御部130は、起動・停止水位設定部120から提供される起動水位と、任意の記憶部に格納された固定値としての停止水位とに基づいて、雨水排水ポンプP1〜PNの制御を行う。
(第1の設定手法)
起動・停止水位設定部120は、例えば、以下に説明する手法で、起動水位および停止水位を設定する。起動・停止水位設定部120は、雨水排水ポンプPn(n=1〜N)の起動水位H(n)を、式(15)に基づいて決定する。式中、HHは前述したように警戒水位である。ここで、警戒水位HHに代えて、制御に余裕を持たせるために、警戒水位HHよりも低い水位に設定された上限水位を用いてもよい。また、S1(n−1)(t)は、雨水排水ポンプPnを起動するまでに必要な想定時間Tpred1の間における、予測最大値の雨水が流入したと仮定した場合の流入量と、雨水排水ポンプP1〜Pn−1の吐出量との差分の積算値である。S1(n−1)(t)は、例えば式(16)で表される。式中、Qmax(t)は、その時点における雨水の流入量の予測最大値であり、Qn−1(t)は、雨水排水ポンプP1〜Pn−1の吐出容量の合計である。ここで、流入量予測部110が予測最大値と予測最小値を区別せずに出力する場合は、予測最大値Qmax(t)を単に予測値Q(t)と読み替える。
H(n)=HH―S1(n−1)(t)/A ‥(15)
Figure 0006261960
また、式(15)におけるAは、雨水ポンプ井20の断面積である。従って、式(15)におけるS1(n−1)(t)/Aとは、「想定時間Tpred1の間に上昇する雨水ポンプ井20の水位」に相当する。起動・停止水位設定部120は、このS1(n−1)(t)/Aを警戒水位HHから差し引くことにより、雨水排水ポンプPnの起動水位を設定する。なお、S1(1)については、式(15)においてQn−1(t)=0として求めてよい。図7は、式(15)に基づいて雨水排水ポンプP1〜PNの起動水位H(1)〜H(N)が求められる様子を模式的に示す図である。
ここで、雨水ポンプ井20の断面積が一定であれば、起動・停止水位設定部120はAを一定値として演算を行ってよいが、実際はそうでないことがあり、また、流入渠21や流入幹線10の部分も含めた演算が必要となる場合がある。従って、起動・停止水位設定部120は、ポンプ容量・ポンプ井情報記憶部124に格納された構造情報を参照し、雨水ポンプ井20の水位Xに応じて変化する値A(X)を適用して、式(4)に相当する演算を行ってよい。
起動水位を設定する際の想定時間Tpred1は、例えば、「雨水排水ポンプの起動時間+制御周期」といった時間に設定される。また、流入量予測段階において移動平均等の平滑化処理が行われる場合には、移動平均処理に伴う遅れが移動平均時間の1/2生じるので、「雨水排水ポンプの起動時間+制御周期+移動平均時間÷2」といった時間に設定されてよい。ここで、遅れ時間Liが想定時間Tpred1よりも長い場合には、実測データのみから予測を行うことができるが、遅れ時間Liが想定時間Tpred1よりも短い場合には、その差分Tpred1―Liの時間分の外挿処理を行っておく。外挿処理は、要因変数を外挿する方法と雨水の流入量予測値を外挿する方法があるが、いずれの方法を用いても良い。また、この処理には、自己回帰モデルを用いたり、もっとも単純な0次外挿(0次ホールド)や線形外挿(1次ホールド)などを施しても良い。なお、想定時間Tpred1は、「第1の想定時間」の一例である。
このような手法により、「ある制御タイミングT1で雨水排水ポンプPnを起動しなかった場合、次に雨水排水ポンプPnを起動可能なタイミングT2において、雨水ポンプ井20の水位が上昇して警戒水位HHに到達することが予測される状況であれば、制御タイミングT1で雨水排水ポンプPnを起動する」という制御が実現されることになる。雨水排水ポンプPnの起動水位H(n)は、警戒水位HHから、制御タイミングT1からT2までの間に上昇すると見込まれる水位S1(n−1)(t)/Aを差し引いた水位に設定されるからである。この結果、ちょうど良いタイミングで起動するように、雨水排水ポンプP1〜PNの起動水位が設定される。
また、起動・停止水位設定部120は、雨水排水ポンプPn(n=1〜N)の停止水位L(n)を、式(17)に基づいて決定する。式中、LLは前述したようにインターロック水位である。ここで、インターロック水位LLに代えて、制御に余裕を持たせるために、インターロック水位LLよりも高い水位に設定された下限水位を用いてもよい。また、S2(n)(t)は、雨水排水ポンプPnを停止するまでに必要な想定時間Tpred2の間における、雨水排水ポンプP1〜Pnの吐出量の合計値と、予測最小値の雨水が流入したと仮定した場合の流入量との差分の積算値である。なお、想定時間Tpred2は、「第2の想定時間」の一例である。S2(n)(t)は、例えば式(18)で表される。式中、Qmin(t)は、その時点における雨水の流入量の予測最小値であり、Q(t)は、雨水排水ポンプP1〜Pnの吐出容量の合計である。ここで、流入量予測部110が予測最大値と予測最小値を区別せずに出力する場合は、予測最小値Qmin(t)を単に予測値Q(t)と読み替える。また、式(17)におけるS2(n)(t)/Aとは、「想定時間Tpred2の間に低下する雨水ポンプ井20の水位」に相当する。起動・停止水位設定部120は、このS2(n)(t)/Aをインターロック水位LLに加算することにより、雨水排水ポンプPnの起動水位を設定する。図8は、式(17)に基づいて雨水排水ポンプP1〜PNの停止水位L(1)〜L(N)が求められる様子を模式的に示す図である。なお、外挿処理等に関しては、想定時間Tpred1と同様である。
L(n)=LL+S2(n)(t)/A ‥(17)
Figure 0006261960
このような手法により、「ある制御タイミングT1で雨水排水ポンプPnを停止しなかった場合、次に雨水排水ポンプPnを停止可能なタイミングT2において、雨水ポンプ井20の水位が低下してインターロック水位LLに到達することが予測される状況であれば、制御タイミングT1で雨水排水ポンプPnを停止する」という制御が実現されることになる。雨水排水ポンプPnの停止水位L(n)は、インターロック水位LLに、制御タイミングT1からT2までの間に低下すると見込まれる水位S2(n)(t)/Aを加算した水位に設定されるからである。この結果、ちょうど良いタイミングで停止するように、雨水排水ポンプP1〜PNの停止水位が設定される。
(第2の設定手法)
また、起動・停止水位設定部120は、以下に説明する手法で、起動水位および停止水位を設定してよい。起動・停止水位設定部120は、雨水排水ポンプPn(n=1〜N)の起動水位H(n)を、式(19)に基づいて決定する。式中、H(n+1)は起動順序が1つ下位の雨水排水ポンプの起動水位である。n=Nの場合、警戒水位HHがH(n+1)として用いられる。第1の設定手法と同様、警戒水位HHに代えて、制御に余裕を持たせるために、警戒水位HHよりも低い水位に設定された上限水位を用いてもよい。また、S1(n−1)(t)は、雨水排水ポンプPnを起動するまでに必要な想定時間Tpred1の間における、予測最大値の雨水が流入したと仮定した場合の流入量と、雨水排水ポンプP1〜Pn−1の吐出量の合計値との差分の積算値である。S1(n−1)(t)は、上式(16)で表される。起動・停止水位設定部120は、「想定時間Tpred1の間に上昇する雨水ポンプ井20の水位」であるS1(n−1)(t)/Aを、起動順序が1つ下位の雨水排水ポンプPn+1の起動水位から差し引くことにより、雨水排水ポンプPnの起動水位を設定する。図9は、式(19)に基づいて雨水排水ポンプP1〜PNの起動水位H(1)〜H(N)が求められる様子を模式的に示す図である。
H(n)=H(n+1)―S1(n−1)(t)/A ‥(19)
このような手法により、「ある制御タイミングT1で雨水排水ポンプPnを起動しなかった場合、次に雨水排水ポンプPnを起動可能なタイミングT2において、雨水ポンプ井20の水位が上昇して起動順序が下位の雨水排水ポンプPn+1の起動水位H(n+1)に到達することが予測される状況であれば(n=Nの場合、警戒水位HHに到達することが予測される状況であれば)、制御タイミングT1で雨水排水ポンプPnを起動する」という制御が実現されることになる。雨水排水ポンプPnの起動水位H(n)は、起動水位H(n+1)から、制御タイミングT1からT2までの間に上昇すると見込まれる水位S1(n−1)(t)/Aを差し引いた水位に設定されるからである。この結果、同じタイミングで2台以上の雨水排水ポンプが起動する事態が生じるのを抑制することができる。従って、ちょうど良いタイミングで起動するように、雨水排水ポンプP1〜PNの起動水位が設定される。
ここで、第1の設定手法と比較すると、第2の設定手法を採用した場合、図7と図9の比較からも分かるように、より早いタイミングで雨水排水ポンプが順次起動されることになるため、浸水が生じるのを、より強力に予防することができる。第1の設定手法は、雨水排水ポンプPnを起動するタイミングで、雨水排水ポンプPn−1が起動されていることを前提としている。しかしながら、雨水ポンプ井20の水位上昇が急激である場合、雨水排水ポンプPnを起動するタイミングで、雨水排水ポンプPn−1が起動されていないといった場面も考え得るので、第2の手法の方が浸水回避の観点では優位性がある。反面、第2の設定手法は、雨水ポンプ井20の容量が十分でなければ、安全側に設定され過ぎる場合がある。すなわち、第2の設定手法は、雨水ポンプ井20の容量が十分でなければ、起動順序の高い雨水排水ポンプの起動水位がインターロック水位LLを下回る可能性がある。従って、第1の設定手法の方が、雨水ポンプ井20の構造に対する制約が小さい。このように、第1の設定手法と第2の設定手法のいずれを採用するかは、雨水排水施設1の構造や地域の降雨傾向等に応じて適宜選択されてよく、これらの双方に基づいて起動水位を設定してもよい。例えば、第1の設定手法により設定された起動水位と、第2の設定手法により設定された起動水位との双方を加重平均して起動水位を決定してもよい。
また、起動・停止水位設定部120は、雨水排水ポンプPn(n=1〜N)の停止水位L(n)を、式(20)に基づいて決定する。式中、L(n−1)は、停止順序が1つ下位の雨水排水ポンプPn―1の停止水位である。n=1の場合、インターロック水位LLがL(n−1)として用いられる。また、第1の設定手法と同様、インターロック水位LLに代えて、制御に余裕を持たせるために、インターロック水位LLよりも高い水位に設定された下限水位を用いてもよい。S2(n)(t)は、雨水排水ポンプPnを停止するまでに必要な想定時間Tpred2の間における、雨水排水ポンプP1〜Pnの吐出量の合計値と、予測最小値の雨水が流入したと仮定した場合の流入量との差分の積算値である。S2(n)(t)は、上式(18)で表される。また、式(20)におけるS2(n)(t)/Aとは、「想定時間Tpred2の間に低下する雨水ポンプ井20の水位」に相当する。起動・停止水位設定部120は、このS2(n)(t)/Aを、停止順序が1つ下位の雨水排水ポンプPn−1の停止水位L(n−1)に加算することにより、雨水排水ポンプPnの起動水位を設定する。図10は、式(20)に基づいて雨水排水ポンプP1〜PNの停止水位L(1)〜L(N)が求められる様子を模式的に示す図である。
L(n)=L(n−1)+S2(n)(t)/A ‥(20)
このような手法により、「ある制御タイミングT1で雨水排水ポンプPnを停止しなかった場合、次に雨水排水ポンプPnを停止可能なタイミングT2において、雨水ポンプ井20の水位が低下して、停止順序が1つ下位の雨水排水ポンプPn−1の停止水位L(n−1)に到達することが予測される状況であれば(n=1の場合、インターロック水位LLに到達することが予測される状況であれば)、制御タイミングT1で雨水排水ポンプPnを停止する」という制御が実現されることになる。雨水排水ポンプPnの停止水位L(n)は、停止順序が1つ下位の雨水排水ポンプPn−1の停止水位L(n−1)に、制御タイミングT1からT2までの間に低下すると見込まれる水位S2(n)(t)/Aを加算した水位に設定されるからである。この結果、同じタイミングで2台以上の雨水排水ポンプが停止する事態が生じるのを抑制することができる。従って、ちょうど良いタイミングで停止するように、雨水排水ポンプP1〜PNの停止水位が設定される。
なお、第1の設定手法と第2の設定手法で起動水位を設定するいずれの場合においても、まず、式(14)または(18)で起動水位を設定した後、インターロック水位LLを下回る起動水位がある場合には、それらがインターロック水位LLを上回るように、起動水位間の比率を保ったまま、起動水位全体を上昇させてもよい。図11は、起動水位を設定した後に、全体を上昇させる様子を模式的に示す図である。この場合、起動・停止水位設定部120は、インターロック水位LLを上回る所望の水位に起動水位H(1)を設定し、起動水位間の比率H(N)―H(N−1):H(N−1)―H(N−2):‥:H(3)―H(2):H(2)―H(1)が維持されるように各起動水位を修正する。図中、Cは起動水位H(1)の修正程度に応じて定まる定数である。
なお、起動・停止水位設定部120により設定される起動水位および停止水位は、雨水排水施設1が起動水位と停止水位の初期値を有している場合には、これらの「補正値」として出力されてもよい。
[実施形態の効果について]
雨水排水ポンプを制御する主な目的は、浸水を回避することである。従って、できる限り浸水を回避するためには、単純に考えれば、全ての雨水ポンプの起動水位をできる限り低下させ、できる限り早く雨水排水ポンプを起動させれば良いと考えられる。こうすることで、雨水の流入量が増加した場合には、速やかに多くの雨水排水ポンプを起動させて施設外に排出することができる。
ここで、停止水位は起動水位よりも低い水位に設定される必要があるため、起動水位を下げると、必然的に起動水位と停止水位の差が小さくなることになる。起動水位と停止水位の差が小さくなると、雨水排水ポンプの起動・停止頻度が非常に多くなり、いわゆるチャタリングという現象が生じる。チャタリングは、雨水排水ポンプに対してダメージを与えるだけでなく、雨水排水ポンプが熱を持ち、再起動時に非常に時間がかかるという弊害を生じさせる場合がある。
図12〜14は、4台の雨水排水ポンプの起動水位をできる限り下げ、低い起動水位で制御を実施した例を示している。これらの図は、制御周期を1分で固定、雨水排水ポンプの停止時間を30秒で固定し、ポンプの起動時間を1分(図12)、5分(図13)、10分(図14)と変化させた場合の水位レベル制御のシミュレーション結果の例である。図12の上図が、雨水ポンプ井への流入量を表しており、中央図はポンプ吐出量(4台ポンプに対応する4段階の離散量)、下図は雨水ポンプ井の水位を表している。図13、14の上図はポンプ吐出量を、下図は雨水ポンプ井の水位を表している。図12から分かるように、雨水排水ポンプの起動時間が短いと、雨水ポンプ井の水位は十分低い値に制御できるが、ポンプの起動・停止頻度が非常に多くなり、前述したチャタリング現象が生じ得る。一方、雨水排水ポンプの起動時間が長くなると、チャタリング現象は抑えられるものの、水位の変動(の振幅)が大きくなり、起動時間が10分の場合、警戒水位HHを超えるまで水位が上昇してしまっている。
仮に、図12の様な制御が初期に可能であったとしても、チャタリング現象によって雨水排水ポンプが熱を持つことで、やがては、図13、14に示す制御状態に移行してしまうことで、結果的に浸水が発生してしまう場合がある。つまり、ポンプの起動・停止頻度を抑制しておくことは、単にポンプへのダメージの問題だけでなく、浸水回避の観点からも重要な要素となってくる。
ポンプの起動・停止頻度を抑制するためには、各雨水排水ポンプについての起動水位と停止水位の差をできる限り大きくすることが望ましい。また、複数の雨水排水ポンプを同時に起動または停止させる場合、水位変動が増加するため、複数のポンプの起動水位もできるだけ離して設定することが望ましい。従って、(1)各雨水排水ポンプについての起動水位と停止水位をできるだけ離し、(2)雨水排水ポンプ間で起動水位をできるだけ離すという条件下で、(3)各雨水排水ポンプの起動水位をできるだけ低く設定することが望ましい。
本実施形態の雨水排水ポンプ制御装置100は、想定時間Tpred1の間に最大限積算しうる水量を警戒水位HHから差し引くことによって起動水位を設定し、想定時間Tpred2の間にどうしても減少してしまう最小の水量をインターロック水位LLに加算することによってポンプの停止水位を設定するため、上記(1)〜(3)の条件を満たすことができる。これによって、雨水排水ポンプ制御装置100は、雨水ポンプ井20の水位が警戒水位HHに達する可能性を低下させると共に、雨水排水ポンプの起動・停止回数を抑制することができる。
なお、前述したように、雨水排水ポンプ制御装置100は、雨水排水ポンプの起動水位のみ動的に設定し、停止水位については固定値としてもよい。降雨状況に応じて動的に変更する必要があるのは、どちらかと言えば起動水位の方であり、停止水位については多少の遅れ等があっても、最も回避すべき浸水に対する影響が小さいからである。勿論、雨水排水ポンプ制御装置100が起動水位と停止水位の双方を動的に設定することで、上記効果を最大限に発揮することができるのは、いうまでもない。
雨水排水ポンプ制御装置100は、流入量の予測値の推移と、起動水位や停止水位の推移とを、時間軸を合わせてユーザに表示してもよい。図15は、流入量の予測値の推移と、起動水位や停止水位の推移とを、時間軸を合わせて表示する表示画面IMの一例を示す図である。
以上説明した少なくとも1つの実施形態によれば、雨水ポンプ井20に流入する雨水の量の予測値と、起動水位の設定対象である雨水排水ポンプPnよりも起動順序が上位の雨水排水ポンプP1〜Pn−1の吐出量の合計値との差分、想定時間Tpred1、および第1の所定水位(警戒水位HH、または起動順序が1つ上位のポンプの起動水位)に基づいて、雨水排水ポンプPnの起動水位を設定するため、雨水排水ポンプを好適に制御することができる。
より具体的には、実施形態によれば、上記差分と想定時間Tpred1とに基づいて、想定時間Tpred1の間に上昇する雨水ポンプ井20の水位を導出し、導出した水位を第1の所定水位から差し引いた水位に基づいて雨水排水ポンプPnの起動水位を設定するため、雨水排水ポンプを好適に制御することができる。
また、実施形態によれば、更に、停止水位の設定対象である雨水排水ポンプPnおよび停止水位の設定対象である雨水排水ポンプPnよりも停止順序が下位の雨水排水ポンプP1〜Pn―1の吐出量の合計値と、雨水ポンプ井20に流入する雨水の量の予測値との差分、想定時間Tpred2、および第2の所定水位(インターロック水位または停止順序が1つ下位のポンプの停止水位)に基づいて、雨水排水ポンプPnの停止水位を設定するため、雨水排水ポンプの頻繁な起動・停止(チャタリング)が生じるのを抑制することができる。この結果、雨水排水ポンプの発熱により起動時間が延長されることによる施設の性能低下を予防することができる。
また、実施形態によれば、雨水の流入量の予測最大値に基づいて起動水位を設定し、雨水の流入量の予測最小値に基づいて停止水位を設定するため、より安全側で制御を行うことができる。
また、実施形態によれば、第1の設定手法を採用することにより、雨水ポンプ井20の構造に対する制約を小さくすることができる。一方、第2の設定手法を採用することにより、浸水が生じるのを、より強力に予防することができる。
また、実施形態によれば、インターロック水位LLを下回る起動水位がある場合には、それらがインターロック水位LLを上回るように、起動水位間の比率を保ったまま、起動水位全体を上昇させるため、より現実的な起動水位を設定することができる。
また、実施形態によれば、代表値抽出処理や尺度母数を用いた処理によって雨水の流入量を予測するため、現実に即した予測値を算出することができる。この結果、雨水排水ポンプを更に好適に制御することができる。
なお、本実施形態は、以下のような態様で実現することができる。
複数個の要因に基づいてそれぞれ導出される予測値から、ロバスト統計を用いた代表値抽出処理によって所定の箇所への雨水の流入量を予測する予測部と、前記予測部が予測に用いる予測モデルであって、遅れ時間、ゲイン、バイアスを含むパラメータで表現される予測モデルを構築する構築部と、を備える雨水流入量予測装置。
上記構成において、予測部は、尺度母数抽出処理によって得られた値を用いて、前記雨水の流入量の予測最大値と予測最小値をそれぞれ導出する。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 雨水排水施設(雨水排水システム)
20 雨水ポンプ井
100 雨水排水ポンプ制御装置
110 流入量予測部
112 流域監視データ記憶部
114 流入量予測モデル構築部
116 予測モデルパラメータ記憶部
120 起動・停止水位設定部
122 起動・停止順序設定部
124 ポンプ容量・ポンプ井情報記憶部
130 ポンプ制御部
P1〜PN 雨水排水ポンプ

Claims (13)

  1. 複数の雨水排水ポンプを制御するポンプ制御装置であって、
    雨水が流入する貯留部の水位が、前記複数の雨水排水ポンプのそれぞれに設定される起動水位以上となったときに、水位が起動水位以上となった雨水排水ポンプを起動するポンプ制御部と、
    流域監視データ、および起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量に基づいて、前記起動対象の雨水排水ポンプの起動水位を変更する水位設定部と、
    を備え、
    前記水位設定部は、前記流域監視データと、起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量の合計値と、前記起動対象の雨水排水ポンプ起動に要する想定時間とに基づいて、前記想定時間内に上昇する前記貯留部の水位を導出し、前記貯留部の水位が導出した前記水位より低い所定の水位まで上昇した時点で前記起動対象の雨水排水ポンプの起動が完了するように前記雨水排水ポンプの起動水位を変更する、
    雨水排水ポンプ制御装置。
  2. 前記水位設定部は、前記流域監視データに基づいた前記貯留部への雨水流入量の予測値と、起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量の合計値との差分である第1の差分、および、前記起動対象の雨水排水ポンプの前記想定時間とに基づいて、前記想定時間内に上昇する前記貯留部の水位を導出し、前記導出した前記想定時間内に上昇する前記貯留部の水位に基づいて、前記起動対象の雨水排水ポンプの起動水位を変更する、
    請求項記載の雨水排水ポンプ制御装置。
  3. 前記水位設定部は、前記第1の差分と前記想定時間とに基づいて、前記想定時間の間に上昇する前記貯留部の水位を導出し、前記導出した水位を、前記複数の雨水排水ポンプについて共通の値である警戒水位又は起動対象の雨水排水ポンプよりも起動順序が1つ下位の雨水排水ポンプの起動水位から差し引いた水位に基づいて、前記起動水位を設定する、
    請求項記載の雨水排水ポンプ制御装置。
  4. 前記ポンプ制御部は、前記貯留部の水位が、前記複数の雨水排水ポンプのそれぞれに設定される停止水位未満となったときに、水位が停止水位未満となった雨水排水ポンプを停止させ、
    前記水位設定部は、流域監視データ、および停止対象の雨水排水ポンプよりも停止順序が下位の雨水排水ポンプの吐出量に基づいて、前記停止対象の雨水排水ポンプの停止水位を変更する、
    請求項1からのうちいずれか1項記載の雨水排水ポンプ制御装置。
  5. 前記水位設定部は、前記流域監視データと、停止対象の雨水排水ポンプよりも停止順序が下位の雨水排水ポンプの吐出量の合計値と、前記停止対象の雨水排水ポンプの停止に要する第2の想定時間とに基づいて、前記第2の想定時間内に低下する前記貯留部の水位を導出し、前記貯留部の水位が導出した前記水位より高い所定の水位まで低下した時点で前記停止対象の雨水排水ポンプの停止が完了するように前記停止対象の雨水排水ポンプの停止水位を変更する、
    請求項記載の雨水排水ポンプ制御装置。
  6. 前記水位設定部は、前記流域監視データに基づいた前記貯留部への雨水流入量の予測値と、停止対象の雨水排水ポンプよりも停止順序が下位の雨水排水ポンプの吐出量の合計値との差分である第2の差分、および、前記第2の想定時間とに基づいて、前記第2の想定時間内に低下する前記貯留部の水位を導出し、前記導出した前記第2の想定時間内に低下する前記貯留部の水位に基づいて、前記停止対象の雨水排水ポンプの停止水位を変更する、
    請求項4又は5に記載の雨水排水ポンプ制御装置。
  7. 前記水位設定部は、前記第2の差分と前記第2の想定時間とに基づいて、前記第2の想定時間の間に低下する前記貯留部の水位を導出し、前記導出した水位を、前記複数の雨水排水ポンプについて共通の値であるインターロック水位又は停止対象の雨水排水ポンプよりも停止順序が1つ下位の雨水排水ポンプの停止水位に加算した水位に基づいて、前記停止水位を設定する、
    請求項記載の雨水排水ポンプ制御装置。
  8. 前記流域監視データに基づいた前記貯留部への雨水流入量の予測値には、予測最大値と予測最小値が含まれ、
    前記水位設定部は、前記予測最大値に基づいて各雨水排水ポンプの起動水位を設定し、前記予測最小値に基づいて各雨水排水ポンプの停止水位を設定する、
    請求項4から7のうちいずれか1項記載の雨水排水ポンプ制御装置。
  9. 前記水位設定部は、前記複数の雨水排水ポンプのそれぞれにについて設定した起動水位のうち最も低い起動水位が、所定の下限水位を下回る場合、各雨水排水ポンプ間の起動水位差の比率を保ったまま、前記最も低い起動水位が前記所定の下限水位を上回るように、各雨水排水ポンプについての起動水位を修正する、
    請求項1からのうちいずれか1項記載の雨水排水ポンプ制御装置。
  10. 前記流域監視データに基づいて前記貯留部への雨水流入量の予測値を導出する予測部であって、複数個の要因に基づいてそれぞれ導出される予測値から、ロバスト統計を用いた代表値抽出処理によって前記貯留部への雨水の流入量を予測する予測部を備える、
    請求項1からのうちいずれか1項記載の雨水排水ポンプ制御装置。
  11. 前記予測部は、尺度母数抽出処理によって得られた値を用いて、前記貯留部への雨水の流入量の予測最大値と予測最小値をそれぞれ導出する、
    請求項10記載の雨水排水ポンプ制御装置。
  12. 起動順序が設定されている複数の雨水排水ポンプと、
    雨水が流入する貯留部と、
    前記貯留部の水位が、前記複数の雨水排水ポンプのそれぞれについて設定される起動水位となったときに、水位が起動水位以上となった雨水排水ポンプを起動するポンプ制御部と、
    流域監視データ、および起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量に基づいて、前記起動対象の雨水排水ポンプの起動水位を変更する水位設定部と、
    を備え、
    前記水位設定部は、前記流域監視データと、起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量の合計値と、前記起動対象の雨水排水ポンプ起動に要する想定時間とに基づいて、前記想定時間内に上昇する前記貯留部の水位を導出し、前記貯留部の水位が導出した前記水位より低い所定の水位まで上昇した時点で前記起動対象の雨水排水ポンプの起動が完了するように前記雨水排水ポンプの起動水位を変更する、
    雨水排水システム。
  13. 複数の雨水排水ポンプを制御する雨水排水ポンプ制御装置であって、
    雨水が流入する貯留部の水位が、前記複数の雨水排水ポンプのそれぞれに設定される起動水位以上となったときに、水位が起動水位以上となった雨水排水ポンプを起動するポンプ制御部と、
    流域監視データ、および起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量に基づいて、前記起動対象の雨水排水ポンプの起動水位を変更する水位設定部と、
    を備え、
    前記水位設定部は、前記流域監視データと、起動対象の雨水排水ポンプよりも起動順序が上位の雨水排水ポンプの吐出量の合計値と、前記起動対象の雨水排水ポンプ起動に要する想定時間とに基づいて、前記想定時間内に上昇する前記貯留部の水位を導出し、前記貯留部の水位が導出した前記水位より低い所定の水位まで上昇した時点で前記起動対象の雨水排水ポンプの起動が完了するように前記雨水排水ポンプの起動水位を変更する、
    雨水排水ポンプ制御装置としてコンピュータを機能させるための雨水排水ポンプ制御プログラム。
JP2013235336A 2013-11-13 2013-11-13 雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム Active JP6261960B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235336A JP6261960B2 (ja) 2013-11-13 2013-11-13 雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235336A JP6261960B2 (ja) 2013-11-13 2013-11-13 雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム

Publications (2)

Publication Number Publication Date
JP2015094322A JP2015094322A (ja) 2015-05-18
JP6261960B2 true JP6261960B2 (ja) 2018-01-17

Family

ID=53196891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235336A Active JP6261960B2 (ja) 2013-11-13 2013-11-13 雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム

Country Status (1)

Country Link
JP (1) JP6261960B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239609A1 (ja) * 2021-05-10 2022-11-17 株式会社 東芝 モジュラー型時系列データ予測装置、モジュラー型時系列データ予測方法、および、プログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221398A (zh) * 2015-11-13 2016-01-06 重庆贻科科技有限公司 一种水泵提升节能系统
CN105386515A (zh) * 2015-12-09 2016-03-09 成都翰道科技有限公司 基于短路保护电路的地下停车场辅助排水系统
CN106337802B (zh) * 2016-09-23 2018-09-11 国网四川省电力公司达州供电公司 积水井自动抽水方法及基于该方法的抽水系统
JP7128620B2 (ja) * 2016-12-27 2022-08-31 株式会社クボタ ポンプ制御装置及びポンプ運転方法
JP2019007261A (ja) * 2017-06-27 2019-01-17 鉄建建設株式会社 場所打ち杭の孔内水位安定化制御システム
JP7297656B2 (ja) * 2019-12-16 2023-06-26 株式会社東芝 雨水流入量予測装置、雨水流入量予測方法、コンピュータプログラム、雨水ポンプ制御システム及び雨水ポンプ所システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414001A (en) * 1977-07-04 1979-02-01 Hitachi Ltd Pump controller
JPH04353282A (ja) * 1991-05-31 1992-12-08 Kubota Corp ポンプの制御装置
JPH06193584A (ja) * 1992-12-25 1994-07-12 Hitachi Ltd 排水ポンプの運転方法
JP3221213B2 (ja) * 1994-03-25 2001-10-22 株式会社明電舎 雨水ポンプの運転台数制御装置
JP3625570B2 (ja) * 1996-04-26 2005-03-02 株式会社東芝 雨水ポンプ制御装置
JP2002322727A (ja) * 2001-04-26 2002-11-08 Yaskawa Electric Corp 運転支援システム
JP4398821B2 (ja) * 2004-09-01 2010-01-13 株式会社東芝 雨水排水制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239609A1 (ja) * 2021-05-10 2022-11-17 株式会社 東芝 モジュラー型時系列データ予測装置、モジュラー型時系列データ予測方法、および、プログラム

Also Published As

Publication number Publication date
JP2015094322A (ja) 2015-05-18

Similar Documents

Publication Publication Date Title
JP6261960B2 (ja) 雨水排水ポンプ制御装置、雨水排水システム、および雨水排水ポンプ制御プログラム
JP6189254B2 (ja) 雨水排水ポンプ制御装置、雨水排水ポンプ制御方法、雨水排水ポンプ制御プログラム、およびパラメータ提供装置
JP2023009541A (ja) 雨水流入量予測装置、雨水流入量予測方法、および、コンピュータプログラム
JP4030372B2 (ja) 河川の水位予測装置
JP6103083B1 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
JP2015105649A (ja) 雨水ポンプ制御装置
CN115861012B (zh) 一种多源数据融合预警发布方法、装置、电子设备及介质
JP5949979B1 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
GB2618171A (en) Anomaly detection in wastewater networks
KR100923402B1 (ko) 가뭄관리를 위한 최적의 운영률 시스템 및 이를 적용하는방법
JP7206916B2 (ja) 越流量調整装置および越流量調整方法
Lindenschmidt Extension and refinement of a stochastic modelling approach to assess ice-jam flood hazard
JP3839361B2 (ja) 雨水流出係数予測方法、雨水流入量予測方法、雨水流出係数予測プログラムおよび雨水流入量予測プログラム
JP4427509B2 (ja) 雨水貯留施設運用システム
JP4488970B2 (ja) 合流式下水設備の運転管理システム
JP4439831B2 (ja) 合流式下水道処理設備の水質改善制御装置
JP7297656B2 (ja) 雨水流入量予測装置、雨水流入量予測方法、コンピュータプログラム、雨水ポンプ制御システム及び雨水ポンプ所システム
JP2004234422A (ja) 雨水流入量予測装置
JP2789320B2 (ja) 排水システム
JP2018080509A (ja) 水位推定プログラム、水位推定方法、および水位推定装置
NAM et al. Inflow forecast using downscaled rainfall from global NWP for real-time flood control
JPH0861244A (ja) 雨水排水ポンプ所制御システム
JP6429119B2 (ja) 貯水池流入量予測システム及び貯水池流入量予測方法
JP2020070637A (ja) 情報処理装置、放流支援方法及び放流支援プログラム
JPWO2020090104A1 (ja) 水位予測装置および水位予測方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170911

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6261960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150