JP6257256B2 - Steam reforming reactor and fuel cell power generator - Google Patents

Steam reforming reactor and fuel cell power generator Download PDF

Info

Publication number
JP6257256B2
JP6257256B2 JP2013212271A JP2013212271A JP6257256B2 JP 6257256 B2 JP6257256 B2 JP 6257256B2 JP 2013212271 A JP2013212271 A JP 2013212271A JP 2013212271 A JP2013212271 A JP 2013212271A JP 6257256 B2 JP6257256 B2 JP 6257256B2
Authority
JP
Japan
Prior art keywords
steam reforming
catalyst
ruthenium
catalyst layer
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013212271A
Other languages
Japanese (ja)
Other versions
JP2015074586A (en
Inventor
高見 晋
晋 高見
鈴木 稔
稔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2013212271A priority Critical patent/JP6257256B2/en
Publication of JP2015074586A publication Critical patent/JP2015074586A/en
Application granted granted Critical
Publication of JP6257256B2 publication Critical patent/JP6257256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水蒸気改質用触媒を主成分とする触媒層を備えた水蒸気改質反応器を備えるとともに、前記触媒層に炭化水素化合物類ガスを供給する炭化水素化合物類ガス供給部と酸素含有ガスを供給する酸素含有ガス供給部と水蒸気を供給する水蒸気供給部とを設けるとともに、前記水蒸気改質反応器から排出される可燃性ガスの少なくとも一部を燃焼させて、前記水蒸気改質反応器を加熱する燃焼部を備えた水蒸気改質反応装置およびその水蒸気改質反応装置を備えた燃料電池発電装置に関する。 The present invention is provided with a steam reforming reactor with a catalyst layer mainly composed of water vapor reforming catalyst, the catalyst layer on the hydrocarbon compounds gas supply and the oxygen supplying hydrocarbon compounds gas An oxygen-containing gas supply unit that supplies a gas containing gas and a water vapor supply unit that supplies water vapor are provided, and at least a part of the combustible gas discharged from the steam reforming reactor is combusted, whereby the steam reforming reaction is performed. The present invention relates to a steam reforming reaction apparatus provided with a combustion section for heating a vessel and a fuel cell power generation apparatus including the steam reforming reaction apparatus.

燃料電池発電装置などに組み込まれる水素製造プロセスにおいて最も重要な位置を占めているのが炭化水素化合物類と水蒸気を反応させ、水素、一酸化炭素、二酸化炭素、メタン等を得るいわゆる炭化水素化合物類の水蒸気改質技術である。水蒸気改質法が広く用いられているのは、部分酸化(POX)法等に比べ、設備が安価なためである。
従来の水蒸気改質用触媒はニッケル系が主である(特許文献1参照)。しかし、これらの触媒は炭素析出を起こしやすく、活性が短時間で低下するという欠点を有している。
So-called hydrocarbon compounds that obtain hydrogen, carbon monoxide, carbon dioxide, methane, etc. by reacting hydrocarbon compounds with water vapor occupy the most important position in the hydrogen production process incorporated in fuel cell power generators, etc. This is a steam reforming technology. The steam reforming method is widely used because the equipment is cheaper than the partial oxidation (POX) method.
Conventional steam reforming catalysts are mainly nickel-based (see Patent Document 1). However, these catalysts are liable to cause carbon deposition and have the disadvantage that the activity decreases in a short time.

そこで、炭素析出の起きにくい水蒸気改質用触媒としてルテニウム系触媒が開発されており、中でも、ルテニウムと、ルテニウムの含有量の0.1〜5質量倍であるイリジウムおよび/またはロジウムとを、アルミナを主成分とする担体に担持させてなる炭化水素化合物類の水蒸気改質用触媒が、活性金属の凝集が起きにくい耐久性の高いルテニウム系触媒として開発されている(特許文献2参照)。   Therefore, a ruthenium-based catalyst has been developed as a steam reforming catalyst in which carbon deposition is unlikely to occur. Among them, ruthenium and iridium and / or rhodium having a content of 0.1 to 5 times the content of ruthenium are treated with alumina. A catalyst for steam reforming of hydrocarbon compounds, which is supported on a carrier having a main component as a main component, has been developed as a highly durable ruthenium-based catalyst in which active metal aggregation is unlikely to occur (see Patent Document 2).

一方、燃料電池において、このような水蒸気改質反応を行う場合、前記水蒸気改質用触媒を主成分とする触媒層を備えた水蒸気改質反応器を、水蒸気改質法と、部分酸化(POX)法、およびオートサーマル(ATR)法の3つの改質方式で運転可能に設けておき、改質器の状態に応じた最適な改質法を選択し、高効率の改質を行うことが検討されている(特許文献3参照)。   On the other hand, when performing such a steam reforming reaction in a fuel cell, a steam reforming reactor having a catalyst layer mainly composed of the steam reforming catalyst is divided into a steam reforming method and a partial oxidation (POX). ) Method and autothermal (ATR) method are provided so that the system can be operated, and an optimum reforming method is selected according to the state of the reformer to perform highly efficient reforming. (See Patent Document 3).

特開平04−363140号公報Japanese Patent Laid-Open No. 04-363140 特開2008−055252号公報JP 2008-055552 A 特開2004−319420号公報JP 2004-319420 A

しかし、特許文献2の水蒸気改質用触媒は、反応系が酸素の存在する環境に晒されると、やはり、活性低下がみられるために、水蒸気改質反応器に酸素含有ガスの供給されない環境で、水蒸気改質反応を行わなければならないという事情があった。そのため、このような水蒸気改質反応器は、起動時における水蒸気改質反応を比較的低温で開始することになり、運転状態が安定するまでに時間を要したり、起動初期に水蒸気改質反応器を別途加熱する必要があって、起動までに時間を要するなどの問題があった。そのため、燃料電池などにこのような水蒸気改質反応器を搭載した場合に、起動応答性が低いものとなっていた。   However, in the steam reforming catalyst of Patent Document 2, when the reaction system is exposed to an environment in which oxygen is present, the activity is still reduced, so that the oxygen-containing gas is not supplied to the steam reforming reactor. There was a circumstance that a steam reforming reaction had to be performed. For this reason, such a steam reforming reactor starts the steam reforming reaction at the start-up at a relatively low temperature, and it takes time to stabilize the operation state, or the steam reforming reaction at the initial start-up time. There was a problem that it took time to start up because the vessel had to be heated separately. Therefore, when such a steam reforming reactor is mounted on a fuel cell or the like, the start-up response is low.

しかし、特許文献3に記載のように、起動応答性を高くすべく酸素含有ガスを用いて水蒸気改質反応器が、起動時にPOXを行うものとすると、水蒸気改質用触媒の劣化が早く、長期耐久性が期待できないものとなる。   However, as described in Patent Document 3, if the steam reforming reactor performs POX at startup using an oxygen-containing gas to increase startup response, the steam reforming catalyst deteriorates quickly, Long-term durability cannot be expected.

そこで、本発明は上記実状に鑑み、起動応答性が高く、かつ長期耐久性の高い水蒸気改質反応器を提供することにあり、これにより、有用性の高められた水蒸気改質反応装置および燃料電池発電装置を提供することにある。   Therefore, in view of the above circumstances, the present invention is to provide a steam reforming reactor having high start-up response and high long-term durability. The object is to provide a battery power generator.

本発明の水蒸気改質反応装置の特徴構成は、水蒸気改質用触媒を主成分とする触媒層を備えた水蒸気改質反応器を備えるとともに、前記触媒層に炭化水素化合物類ガスを供給する炭化水素化合物類ガス供給部と酸素含有ガスを供給する酸素含有ガス供給部と水蒸気を供給する水蒸気供給部とを設けるとともに、前記水蒸気改質反応器から排出される可燃性ガスの少なくとも一部を燃焼させて、前記水蒸気改質反応器を加熱する燃焼部を備えた水蒸気改質反応装置であって、
前記水蒸気改質用触媒が、ルテニウムと、ルテニウムの含有量の0.01質量倍以上0.1質量倍未満のロジウムとを、アルミナを主成分とする担体に担持させてなるものであり、
前記触媒層において、炭化水素化合物類ガスと酸素含有ガスとによる部分酸化反応を生起して、その反応熱により前記触媒層を昇温するPOX工程と、
前記触媒層において、炭化水素化合物類ガスと酸素含有ガスとに加えて、水蒸気を導入して、オートサーマル改質反応を生起して、その反応熱により前記触媒層を昇温するATR工程とを順に行った後、
前記触媒層において、炭化水素化合物類ガスと水蒸気とによる水蒸気改質反応を行う水蒸気改質工程を行うように炭化水素化合物類ガス供給部と酸素含有ガス供給部と水蒸気供給部とから供給される各ガス量を制御する制御装置を備えた点にある。
The characteristic configuration of the steam reforming reaction apparatus of the present invention includes a steam reforming reactor including a catalyst layer mainly composed of a steam reforming catalyst, and carbonization for supplying a hydrocarbon compound gas to the catalyst layer. A hydrogen compound gas supply unit, an oxygen-containing gas supply unit for supplying an oxygen-containing gas, and a steam supply unit for supplying water vapor are provided, and at least a part of the combustible gas discharged from the steam reforming reactor is combusted A steam reforming reaction apparatus comprising a combustion section for heating the steam reforming reactor,
The steam reforming catalyst is formed by supporting ruthenium and rhodium having a ruthenium content of 0.01 mass times or more and less than 0.1 mass times on a carrier mainly composed of alumina,
A POX step of causing a partial oxidation reaction between the hydrocarbon compound gas and the oxygen-containing gas in the catalyst layer and raising the temperature of the catalyst layer by the reaction heat;
In the catalyst layer, in addition to the hydrocarbon compound gas and the oxygen-containing gas, an ATR step of introducing water vapor to cause an autothermal reforming reaction and raising the temperature of the catalyst layer by the reaction heat; After going in order,
The catalyst layer is supplied from a hydrocarbon compound gas supply unit, an oxygen-containing gas supply unit, and a steam supply unit so as to perform a steam reforming process in which a steam reforming reaction is performed using a hydrocarbon compound gas and steam. It is in the point provided with the control device which controls each gas quantity .

発明者らは、水蒸気改質反応器に備える水蒸気改質用触媒として、ルテニウムとロジウムとを担体に担持させてなるものを用いると、水蒸気改質反応に対する活性が高い触媒層が形成される。さらにこの触媒層は、意外にも、POX工程およびATR工程を順に組み合わせて行った後、水蒸気改質工程を行った場合には、前記水蒸気改質用触媒は、あまり劣化せず、長期使用に耐えることが明らかになった。 When the present inventors use a catalyst for ruthenium and rhodium supported on a carrier as a steam reforming catalyst provided in the steam reforming reactor, a catalyst layer having high activity for the steam reforming reaction is formed. . Furthermore, the catalyst layer is surprisingly combined with the POX process and the ATR process in this order, and then when the steam reforming process is performed, the steam reforming catalyst does not deteriorate so much and can be used for a long time. It became clear to endure.

すなわち、本来、酸素の存在する雰囲気に弱い水蒸気改質用触媒であっても、特定の使用環境によっては、長期にわたって安定に活性を維持することが明らかになった。   That is, it has been clarified that even a steam reforming catalyst that is inherently weak in an atmosphere in which oxygen is present stably maintains its activity over a long period of time depending on the specific use environment.

したがって、水蒸気改質反応器に備える水蒸気改質用触媒として、ルテニウムとロジウムとを担体に担持させてなるものを用いて、水蒸気改質反応を行うのに先立って、POX工程およびATR工程を行うから、前記水蒸気改質反応器において酸化反応を利用して水蒸気改質反応器の昇温動作を効率よく行えることになる。したがって、前記水蒸気改質反応器は速やかに起動することができるものとなる。また、昇温された水蒸気改質用触媒は、ルテニウムを含む活性の高いものであるから、水蒸気改質反応はなお活性高く行われることになる。   Therefore, prior to the steam reforming reaction, the POX process and the ATR process are performed using a catalyst obtained by supporting ruthenium and rhodium on a support as the steam reforming catalyst provided in the steam reforming reactor. Thus, the steam reforming reactor can efficiently perform the temperature raising operation using the oxidation reaction. Therefore, the steam reforming reactor can be started quickly. Moreover, since the steam reforming catalyst whose temperature has been raised is a highly active catalyst containing ruthenium, the steam reforming reaction is still carried out with a high activity.

上記知見によると、水蒸気改質用触媒を主成分とする触媒層を備えた水蒸気改質反応器を備えるとともに、前記触媒層に炭化水素化合物類ガスを供給する炭化水素化合物類ガス供給部と酸素含有ガスを供給する酸素含有ガス供給部と水蒸気を供給する水蒸気供給部とを設けてあるから、前記触媒層に供給するガス成分を、炭化水素化合物類ガスとともに酸素含有ガスを導入する状態、炭化水素化合物類ガスと酸素含有ガスと水蒸気を導入する状態、炭化水素化合物類ガスと水蒸気とを導入する状態のいずれも設定することができる。すなわち、前記触媒層における反応形態を、POX工程、ATR工程、水蒸気改質工程のいずれにも設定することができる。 According to the above knowledge, a hydrocarbon compound gas supply unit for supplying a hydrocarbon compound gas to the catalyst layer and oxygen are provided, including a steam reforming reactor including a catalyst layer mainly composed of a steam reforming catalyst. Since the oxygen-containing gas supply unit for supplying the containing gas and the water vapor supply unit for supplying the water vapor are provided, the gas component supplied to the catalyst layer is introduced into the state in which the oxygen-containing gas is introduced together with the hydrocarbon compound gas, Either a state in which a hydrogen compound gas, an oxygen-containing gas and water vapor are introduced, or a state in which a hydrocarbon compound gas and water vapor are introduced can be set. That is, the reaction form in the catalyst layer can be set to any of the POX process, the ATR process, and the steam reforming process.

また、前記制御装置により上記反応形態を適切に切り替えることができるから、前記触媒層において生起する反応を適切に制御することによって、前記触媒層の温度、水素ガスの発生効率を最適に制御しつつ、前記触媒層に充てんされる触媒を、劣化しにくい運転環境において長期使用することができ、長期にわたって活性の高い水蒸気改質反応を安定的に行える。   In addition, since the reaction mode can be appropriately switched by the control device, the temperature of the catalyst layer and the generation efficiency of hydrogen gas are optimally controlled by appropriately controlling the reaction occurring in the catalyst layer. The catalyst filled in the catalyst layer can be used for a long period of time in an operating environment that is difficult to deteriorate, and a highly active steam reforming reaction can be performed stably over a long period of time.

ここで、前記水蒸気改質用触媒が、ルテニウムとロジウムとを担体に担持させてなる触媒を主成分とするものであるから、水蒸気改質反応に対する活性が高い触媒層が形成される。さらに上記知見により、POX工程、ATR工程、水蒸気改質工程を順に行う運転で、この触媒層はあまり劣化せず、長期使用に耐えることが明らかになっている。   Here, since the steam reforming catalyst is mainly composed of a catalyst in which ruthenium and rhodium are supported on a carrier, a catalyst layer having high activity for the steam reforming reaction is formed. Furthermore, it has been clarified from the above knowledge that the catalyst layer does not deteriorate so much and can withstand long-term use in an operation in which the POX step, the ATR step, and the steam reforming step are sequentially performed.

そのため、本発明の水蒸気改質反応装置によると、長期にわたって耐久性の高い水蒸気改質工程を行えるようになった。   Therefore, according to the steam reforming reaction apparatus of the present invention, a highly durable steam reforming process can be performed over a long period of time.

れらの水蒸気改質用触媒としては、アルミナを主成分とする担体にルテニウムと、ルテニウムの含有量の0.01質量倍以上0.1質量倍未満のロジウムとを担持した触媒として使用する。担体に各金属を担持する形態であれば、ルテニウムおよびロジウムを微粒子状の形態で担体上に分散することができ、ルテニウムおよびロジウムを表面積高く分散させることにより活性を向上することができる。 The steam reforming catalyst of these, be used as a ruthenium on a carrier mainly composed of alumina, carrying a rhodium less than 0.1 mass times 0.01 times the content of the ruthenium catalyst The As long as each metal is supported on the carrier, ruthenium and rhodium can be dispersed on the carrier in the form of fine particles, and the activity can be improved by dispersing ruthenium and rhodium with a high surface area.

ルテニウムと、ロジウムとをルテニウムの含有量の0.01〜0.1質量倍であるロジウムとを担持した触媒として使用するのは、ロジウムの含有量がルテニウムの含有量の0.1質量倍より多い場合、表面に出るルテニウムの割合が極度に減少するため好ましくなく、一方、0.01質量倍より少ない場合にはロジウムのルテニウム凝集抑制効果が不十分であり好ましくないと考えられるからである。また、これらの比率を維持して各金属を担体に担持した場合、貴金属の濃度が低くなり過ぎると部分酸化反応が進行し難くなり、高くなり過ぎると貴金属が担体の表面に均一に分散されず反応に寄与しない無駄な貴金属が多くなるので、ルテニウムの含有量の0.01〜0.1質量倍であるロジウムとを担持した場合にこれらのバランスが良好に保てる。   The use of ruthenium and rhodium as a catalyst carrying rhodium that is 0.01 to 0.1 mass times the ruthenium content is because the rhodium content is 0.1 mass times the ruthenium content. When the amount is large, the ratio of ruthenium appearing on the surface is extremely reduced, which is not preferable. On the other hand, when the amount is less than 0.01 times by mass, the effect of suppressing the ruthenium aggregation of rhodium is insufficient, which is not preferable. In addition, when each metal is supported on the support while maintaining these ratios, the partial oxidation reaction becomes difficult to proceed if the concentration of the noble metal is too low, and the noble metal is not uniformly dispersed on the surface of the support if the concentration is too high. Since a lot of useless precious metals that do not contribute to the reaction increase, it is possible to maintain a good balance when rhodium, which is 0.01 to 0.1 times the ruthenium content, is supported.

また、担体として、特にアルミナを用いた場合、耐熱性、機械的強度が高く、担持されるルテニウムおよびロジウムの活性を高くすることができる。このような水蒸気改質用触媒は、タブレット状、球状、リング状の成型品の形で使用するか、ハニカム状に成型して使用するのが好ましい。 Further, as the carrier, particularly when using alumina, heat resistance, high mechanical strength, Ru can be increased activity of ruthenium and rhodium are supported. Such a steam reforming catalyst is preferably used in the form of tablets, spheres, rings, or molded into a honeycomb.

記水蒸気改質用触媒が、担体にルテニウムとロジウムとを金属状態で担持させてあるものであってもよい。 Before SL steam reforming catalyst, the ruthenium and rhodium may be those which had been carried in a metallic state on a support.

体に各金属を担持させる方法は、種々公知の方法で担持させることができるが、製造工数、費用の点から含浸法が好ましく、汎用されている。また、含浸法における後処理により、無機酸化物担体上に担持された材料は、熱分解、ヒドラジン還元等により、金属状態のルテニウム、ロジウムとに変換される。本発明において、ルテニウム、ロジウムとは、担体上に担持させる必要があるため、後処理は還元雰囲気で行うべきであること、生成した微粒子が凝集、成長せず微細な状態のままで分散することが好ましい点から、ヒドラジン還元により、金属状態のルテニウム、ロジウムとに変換され担持されることが好ましい。 Method for supporting each metal in charge of body, can be supported by various known methods, manufacturing steps, it is preferred impregnation method in terms of cost, it is widely. In addition, the material supported on the inorganic oxide support is converted into metallic ruthenium and rhodium by thermal decomposition, hydrazine reduction, and the like by post-treatment in the impregnation method. In the present invention, ruthenium and rhodium need to be supported on a carrier, so that post-treatment should be performed in a reducing atmosphere, and the generated fine particles are dispersed in a fine state without agglomeration and growth. From the viewpoint of being preferable, it is preferably converted to a metal state of ruthenium or rhodium by hydrazine reduction and supported .

前記含浸法とは、基材に対して担持すべき材料の水溶液を含浸させ、乾燥、必要に応じて焼成することにより、その基材に担持すべき材料を担持するものである。この含浸法によると、基材として用いる無機酸化物は、含浸前後で変化しないが、担持すべき材料は、水溶液の状態と担持された状態で性状が異なることになる。本発明の場合ルテニウム、ロジウムは、塩の状態で含浸され、金属の状態で担持される必要がある。貴金属塩の場合、水溶液状態では安定に存在するものの、担体表面では、熱分解して金属微粒子となることが知られている。   The impregnation method is to impregnate a material to be supported on the substrate by impregnating the substrate with an aqueous solution of the material to be supported, drying, and firing as necessary. According to this impregnation method, the inorganic oxide used as the base material does not change before and after the impregnation, but the material to be supported has different properties depending on the state of the aqueous solution and the supported state. In the present invention, ruthenium and rhodium need to be impregnated in a salt state and supported in a metal state. In the case of a noble metal salt, although it exists stably in an aqueous solution state, it is known that the carrier surface is thermally decomposed into metal fine particles.

しかし、担体表面における反応は、温度、濃度等の担持条件によって異なり、上述の含浸法を行った場合、担持される貴金属が、一部、酸化物や、塩の形態で担持される場合がある。また、水溶液状態から、水分が揮発して微粒子状態に変移する際に、凝集して粒子が大きくなり、単位金属量あたりの表面積が小さくなることもある。すると、活性金属(ルテニウム、ロジウム)の触媒活性が低下するおそれが生じることになる。   However, the reaction on the surface of the carrier varies depending on the loading conditions such as temperature and concentration, and when the above impregnation method is performed, the supported noble metal may be partially supported in the form of oxide or salt. . In addition, when water is volatilized and changed to a fine particle state from an aqueous solution state, the particles aggregate to increase in size, and the surface area per unit metal amount may decrease. As a result, the catalytic activity of the active metal (ruthenium, rhodium) may be reduced.

この点、ルテニウム塩、ロジウム塩を無機酸化物担体に含浸させた後、ヒドラジンで液相還元処理すると、液相還元によりルテニウム塩、ロジウム塩が金属のルテニウム、ロジウムとに変換されるため、凝集するまでもなく素早く微粒子化して前記無機酸化物担体に分散担持される。そのため、より微細なルテニウム塩、ロジウム塩が前記無機酸化物担体に高分散で担持されることになり、きわめて活性の高い状態で、ルテニウム、ロジウムを担持することができ、活性の高い炭化水素化合物類の水蒸気改質用触媒とすることができる。   In this regard, after impregnating the ruthenium salt and rhodium salt into the inorganic oxide carrier, liquid phase reduction treatment with hydrazine converts the ruthenium salt and rhodium salt into metal ruthenium and rhodium by liquid phase reduction, so that the aggregation Needless to say, it is rapidly made into fine particles and dispersed and supported on the inorganic oxide carrier. Therefore, finer ruthenium salts and rhodium salts are supported on the inorganic oxide carrier in a highly dispersed state, and are capable of supporting ruthenium and rhodium in a highly active state, and are highly active hydrocarbon compounds. It can be used as a steam reforming catalyst.

た、本発明の燃料電池発電装置の特徴構成は、上記水蒸気改質反応装置を備えた点に
ある。
Also, characteristic feature of the fuel cell system of the present invention is that with the steam reforming reactor.

なわち、上記水蒸気改質反応装置を備えると、速やかに起動することができるので、運転状態の変さらに対して応答性が高く、利便性に優れた燃料電池とすることができる。また、前記水蒸気改質反応器は触媒層の活性が長期にわたって高く維持できるので、長期にわたって信頼性高く用いることができる。 Ie, when provided with the steam reforming reactor, it is possible to start quickly, high responsive to changes in operating conditions, it can be an excellent fuel cell convenience. In addition, since the activity of the catalyst layer can be maintained high over a long period of time, the steam reforming reactor can be used with high reliability over a long period of time.

したがって、起動応答性が高く、かつ長期耐久性の高い水蒸気改質反応器を提供することにあり、これにより、有用性の高められた水蒸気改質反応装置および燃料電池発電装置を提供することができた。   Accordingly, it is to provide a steam reforming reactor having high start-up responsiveness and high long-term durability, thereby providing a steam reforming reaction apparatus and a fuel cell power generation apparatus with enhanced usability. did it.

本発明の燃料電池の概略図Schematic diagram of the fuel cell of the present invention 起動停止試験パターンを示す概略図Schematic showing start / stop test pattern

以下に、本発明の水素製造装置を説明する。なお、以下に好適な実施例を記すが、これら実施例はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the hydrogen production apparatus of this invention is demonstrated. In addition, although suitable examples are described below, these examples are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

〔触媒の製造〕
水蒸気改質用触媒11aとして、ルテニウムとロジウムとを担体に担持させてなる炭化水素化合物類の水蒸気改質用触媒11aを製造した。
水蒸気改質用触媒11aは、ルテニウムと、ルテニウムの含有量の0.01質量倍以上0.1質量倍未満のロジウムとを、アルミナを主成分とする担体に担持させることにより得ることができる。
ここで、ルテニウムおよびロジウムは、アルミナ担体にルテニウム塩およびロジウム塩を含浸した後、ヒドラジン還元することにより、担体にルテニウムおよびロジウムを担持させることができる。
[Production of catalyst]
As the steam reforming catalyst 11a, a steam reforming catalyst 11a of a hydrocarbon compound in which ruthenium and rhodium are supported on a carrier was produced.
The steam reforming catalyst 11a can be obtained by supporting ruthenium and rhodium having a ruthenium content of 0.01 mass times or more and less than 0.1 mass times on a carrier mainly composed of alumina.
Here, ruthenium and rhodium can be supported on ruthenium and rhodium by impregnating an alumina carrier with a ruthenium salt and rhodium salt and then reducing the hydrazine.

(含浸担持)
具体的な製造例を以下に示す。
直径3mmの球状のαアルミナ(担体)に対して所定濃度の塩化ルテニウム水溶液と塩化ロジウム水溶液を含浸させて乾燥する。ここで、含浸させた塩化ロジウムおよび塩化ルテニウムの量は、担持されるロジウム量が、担持されるルテニウムの含有量の0.01質量倍以上0.1質量倍未満(0.1質量倍未満を含む)となるように水溶液濃度と含浸量との関係より求めて設定することができる。これにより、ルテニウム−ロジウム担持アルミナ(以下、水蒸気改質用触媒11aの組成をX質量%ルテニウム−Y質量%ロジウム/アルミナ触媒のように略称する)を得ることができる。
(Impregnation support)
Specific production examples are shown below.
A spherical α-alumina (carrier) having a diameter of 3 mm is impregnated with a predetermined concentration of ruthenium chloride aqueous solution and rhodium chloride aqueous solution and dried. Here, the amount of rhodium chloride and ruthenium chloride impregnated is such that the amount of rhodium supported is 0.01 mass times or more and less than 0.1 mass times ( less than 0.1 mass times the content of the supported ruthenium content. It can be determined and determined from the relationship between the aqueous solution concentration and the amount of impregnation. Thereby, ruthenium-rhodium supported alumina (hereinafter, the composition of the steam reforming catalyst 11a is abbreviated as X mass% ruthenium-Y mass% rhodium / alumina catalyst) can be obtained.

(湿式還元)
得られたルテニウム−ロジウム担持アルミナを、水酸化ナトリウム水溶液に浸漬し、担体にルテニウムを固定させた後、常温で1時間ヒドラジン水溶液により還元(湿式還元法)、洗浄、乾燥して水蒸気改質用触媒11aとしてルテニウム−ロジウム/アルミナ触媒を得た。
(Wet reduction)
The obtained ruthenium-rhodium-supported alumina is immersed in an aqueous sodium hydroxide solution to fix the ruthenium on the carrier, and then reduced (wet reduction method) with an aqueous hydrazine solution at room temperature for 1 hour, washed and dried for steam reforming. A ruthenium-rhodium / alumina catalyst was obtained as the catalyst 11a.

〔水蒸気改質反応装置〕
水蒸気改質反応装置は、図1に示すように、上記水蒸気改質用触媒11aを主成分とする触媒層11を備えた水蒸気改質反応器1を備えるとともに、前記触媒層11に炭化水素化合物類ガスとしてのメタンを供給する炭化水素化合物類ガス供給部12と酸素含有ガスとしての空気を供給する酸素含有ガス供給部13と水蒸気を供給する水蒸気供給部14とを設けてある。ここで、メタンの供給源としては、メタンを主成分とする都市ガスを使用できる。また、水蒸気改質反応装置は、前記触媒層11から排出される可燃性ガスの少なくとも一部を燃焼させて、前記水蒸気改質反応器1を加熱する燃焼部15を備える。前記各供給部12、13から供給される空気およびメタンは、燃焼部15により予熱された状態で触媒層11に供給される。また、前記触媒層11に付帯して、前記燃焼部からの熱により水蒸気供給部14に供給される水を気化させる蒸発器17が設けられており、水蒸気を触媒層11に供給可能に構成している。前記触媒層11において、炭化水素化合物類ガス供給部12と酸素含有ガス供給部13と水蒸気供給部14とから供給される各ガス量を制御する制御装置16を備える。
[Steam reforming reactor]
As shown in FIG. 1, the steam reforming reaction apparatus includes a steam reforming reactor 1 including a catalyst layer 11 containing the steam reforming catalyst 11 a as a main component, and the catalyst layer 11 includes a hydrocarbon compound. A hydrocarbon compound gas supply unit 12 for supplying methane as a gas, an oxygen-containing gas supply unit 13 for supplying air as an oxygen-containing gas, and a water vapor supply unit 14 for supplying water vapor are provided. Here, city gas mainly composed of methane can be used as a supply source of methane. Further, the steam reforming reaction apparatus includes a combustion unit 15 that heats the steam reforming reactor 1 by combusting at least a part of the combustible gas discharged from the catalyst layer 11. Air and methane supplied from the supply parts 12 and 13 are supplied to the catalyst layer 11 in a state preheated by the combustion part 15. In addition, an evaporator 17 that is attached to the catalyst layer 11 and vaporizes water supplied to the water vapor supply unit 14 by heat from the combustion unit is provided so that water vapor can be supplied to the catalyst layer 11. ing. The catalyst layer 11 includes a control device 16 that controls the amount of each gas supplied from the hydrocarbon compound gas supply unit 12, the oxygen-containing gas supply unit 13, and the water vapor supply unit 14.

〔燃料電池発電装置〕
本発明に係る燃料電池発電装置は、図1に示すように、原燃料を改質して水素ガスを主成分とする燃料ガスを生成する水蒸気改質反応器1と、水蒸気改質反応器1で生成された燃料ガスが供給されるアノード31、および、酸素ガスが供給されるカソード32を有する燃料電池3と、発電反応で用いられた後にアノード31から排出される排出燃料ガス中の燃料成分と発電反応に用いられた後にカソード32から排出される排出酸素ガスとをそれらの混合状態で燃焼させ、その燃焼熱によって水蒸気改質反応器1を加熱する燃焼部15とを備える。本実施形態では、これら水蒸気改質反応装置と燃料電池3と燃焼部15とは装置筐体30の内部に収容されている。
[Fuel cell power generator]
As shown in FIG. 1, a fuel cell power generator according to the present invention includes a steam reforming reactor 1 that reforms raw fuel to generate a fuel gas mainly composed of hydrogen gas, and a steam reforming reactor 1. The fuel cell 3 having the anode 31 to which the fuel gas generated in step 1 is supplied, the cathode 32 to which the oxygen gas is supplied, and the fuel component in the exhaust fuel gas discharged from the anode 31 after being used in the power generation reaction And a combustion section 15 that burns exhaust gas discharged from the cathode 32 after being used in the power generation reaction in a mixed state and heats the steam reforming reactor 1 with the combustion heat. In the present embodiment, the steam reforming reaction device, the fuel cell 3, and the combustion unit 15 are accommodated inside the device housing 30.

〔水蒸気改質反応〕
前記触媒層11において、炭化水素化合物類ガスと酸素含有ガスとによる部分酸化反応を生起して、その反応熱により前記触媒層11を昇温するPOX工程と、前記触媒層11において、炭化水素化合物類ガスと酸素含有ガスとに加えて、水蒸気を導入して、オートサーマル改質反応を生起して、その反応熱により前記触媒層11を昇温するATR工程とを順に行った後、炭化水素化合物類ガスと水蒸気とによる水蒸気改質反応を行う水蒸気改質工程を行うように、制御装置16が、炭化水素化合物類ガス供給部12と酸素含有ガス供給部13と水蒸気供給部14とから供給される各ガス量を制御する。
この水蒸気改質工程により燃料電池3で消費される水素が生成されるとともに、この水蒸気改質工程に先んじて行われるPOX工程、ATR工程により、前記触媒層は速やかに昇温されるので起動から極めて短時間で水蒸気改質工程を始めることができるようになった。
[Steam reforming reaction]
In the catalyst layer 11, a POX process in which a partial oxidation reaction is caused by a hydrocarbon compound gas and an oxygen-containing gas and the catalyst layer 11 is heated by the reaction heat; In addition to the similar gas and the oxygen-containing gas, water vapor is introduced to cause an autothermal reforming reaction, and the ATR step of raising the temperature of the catalyst layer 11 by the reaction heat is sequentially performed, followed by hydrocarbons. The control device 16 supplies from the hydrocarbon compound gas supply unit 12, the oxygen-containing gas supply unit 13, and the water vapor supply unit 14 so as to perform a steam reforming process in which a steam reforming reaction is performed using a compound gas and steam. Control the amount of each gas.
Hydrogen consumed in the fuel cell 3 is generated by the steam reforming process, and the catalyst layer is quickly heated by the POX process and the ATR process performed prior to the steam reforming process. The steam reforming process can be started in a very short time.

〔触媒の耐久性試験〕
図1の水蒸気改質反応装置を模したマイクロリアクタを用い、触媒層11に種々のルテニウムロジウム比の水蒸気改質用触媒11aを充填した状態で、表1条件で高温での還元処理と酸化処理を繰り返す試験を行った。すなわち、700℃に予備加熱したマイクロリアクタの触媒層11に、窒素、水素、窒素、空気を順に供給し、前記水蒸気改質用触媒11aの活性の低下度合いを測定した。活性の低下度合いは、試験前後における触媒層11に対する一酸化炭素(CO)吸着量として求めた(活性が低下すると吸着量が低下することが知られている)。
[Catalyst durability test]
Using the microreactor simulating the steam reforming reaction apparatus of FIG. 1, with the catalyst layer 11 filled with steam reforming catalysts 11a having various ruthenium rhodium ratios, reduction treatment and oxidation treatment at high temperatures are performed under the conditions shown in Table 1. Repeated tests were conducted. That is, nitrogen, hydrogen, nitrogen, and air were sequentially supplied to the catalyst layer 11 of the microreactor preheated to 700 ° C., and the degree of decrease in the activity of the steam reforming catalyst 11a was measured. The degree of decrease in activity was determined as the amount of carbon monoxide (CO) adsorbed on the catalyst layer 11 before and after the test (it is known that the amount of adsorption decreases as the activity decreases).

以下に、本耐久性試験に用いた水蒸気改質用触媒11aの製造方法をさらに具体的に説明する。   Hereinafter, the method for producing the steam reforming catalyst 11a used in the durability test will be described more specifically.

(触媒A:2質量%ルテニウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ98gに塩化ルテニウム水溶液30ml(ルテニウム含有量2g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに2質量%のルテニウムを担持させてなる触媒を得た。
(Catalyst A: 2% by mass ruthenium / α alumina catalyst)
98 g of α-alumina as an inorganic oxide carrier having a diameter of 3 mm was impregnated with 30 ml of an aqueous ruthenium chloride solution (ruthenium content: 2 g), dried at 80 ° C. for 3 hours, and immersed in an aqueous 0.375 N-NaOH solution for 20 hours. A liquid phase reduction treatment with an aqueous solution of% hydrazine, a washing treatment with pure water, followed by drying at 80 ° C. for 3 hours to obtain a catalyst in which 2% by mass of ruthenium was supported on α-alumina.

(触媒B:1.99質量%ルテニウム−0.01質量%ロジウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ98gに塩化ルテニウムと塩化ロジウムの混合水溶液30ml(ルテニウム含有量1.99g、ロジウム含有量0.01g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに1.99質量%のルテニウムと0.01質量%のロジウムを担持させてなる触媒を得た。
(Catalyst B: 1.99 mass% ruthenium-0.01 mass% rhodium / α alumina catalyst)
A total of 30 ml of a mixed aqueous solution of ruthenium chloride and rhodium chloride (ruthenium content 1.99 g, rhodium content 0.01 g) was impregnated into 98 g of α-alumina as a 3 mm diameter inorganic oxide carrier, and dried at 80 ° C. for 3 hours. After immersion treatment with 0.375N-NaOH aqueous solution for 20 hours, liquid phase reduction treatment with 1% hydrazine aqueous solution, washing treatment with pure water, drying at 80 ° C. for 3 hours, and 1.99 mass% in α-alumina. A catalyst in which ruthenium and 0.01% by mass of rhodium were supported was obtained.

(触媒C:1.9質量%ルテニウム−0.1質量%ロジウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ98gに塩化ルテニウムと塩化ロジウムの混合水溶液30ml(ルテニウム含有量1.9g、ロジウム含有量0.1g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに1.9質量%のルテニウムと0.1質量%のロジウムを担持させてなる触媒を得た。
(Catalyst C: 1.9% by mass ruthenium-0.1% by mass rhodium / α alumina catalyst)
A total of 30 ml of a mixed aqueous solution of ruthenium chloride and rhodium chloride (ruthenium content 1.9 g, rhodium content 0.1 g) was impregnated into 98 g of α-alumina as a 3 mm diameter inorganic oxide carrier, dried at 80 ° C. for 3 hours, After immersion treatment with 0.375N-NaOH aqueous solution for 20 hours, liquid phase reduction treatment with 1% hydrazine aqueous solution, washing treatment with pure water, drying at 80 ° C. for 3 hours, 1.9% by mass in α-alumina A catalyst in which ruthenium and 0.1% by mass of rhodium were supported was obtained.

(触媒D:0.7質量%ルテニウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ99.3gに塩化ルテニウム水溶液30ml(ルテニウム含有量0.7g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに0.7質量%のルテニウムを担持させてなる触媒を得た。
(Catalyst D: 0.7 mass% ruthenium / α alumina catalyst)
99.3 g of α-alumina as a 3 mm diameter inorganic oxide carrier was impregnated with 30 ml of an aqueous ruthenium chloride solution (0.7 g ruthenium content), dried at 80 ° C. for 3 hours, and immersed in an aqueous 0.375 N-NaOH solution for 20 hours. Treatment, liquid phase reduction treatment with 1% hydrazine aqueous solution, washing treatment with pure water, and drying at 80 ° C. for 3 hours to obtain a catalyst in which 0.7 mass% of ruthenium is supported on α-alumina. .

(触媒E:0.69質量%ルテニウム−0.01質量%ロジウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ99.3gに塩化ルテニウムと塩化ロジウムの混合水溶液30ml(ルテニウム含有量0.69g、ロジウム含有量0.01g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに0.69質量%のルテニウムと0.01質量%のロジウムを担持させてなる触媒を得た。
(Catalyst E: 0.69 mass% ruthenium-0.01 mass% rhodium / α alumina catalyst)
99.3 g of α-alumina as a 3 mm diameter inorganic oxide carrier was impregnated with 30 ml of a mixed aqueous solution of ruthenium chloride and rhodium chloride (ruthenium content 0.69 g, rhodium content 0.01 g) and dried at 80 ° C. for 3 hours. And then immersed in a 0.375N-NaOH aqueous solution for 20 hours, subjected to a liquid phase reduction treatment with a 1% hydrazine aqueous solution, washed with pure water, dried at 80 ° C. for 3 hours, and 0.69 mass in α-alumina. % Of ruthenium and 0.01% by mass of rhodium were obtained.

(触媒F:0.6質量%ルテニウム−0.1質量%ロジウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ99.3gに塩化ルテニウムと塩化ロジウムの混合水溶液30ml(ルテニウム含有量0.6g、ロジウム含有量0.1g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに0.6質量%のルテニウムと0.1質量%のロジウムを担持させてなる触媒を得た。
(Catalyst F: 0.6 mass% ruthenium-0.1 mass% rhodium / α alumina catalyst)
99.3 g of α-alumina as a 3 mm diameter inorganic oxide carrier was impregnated with 30 ml of a mixed aqueous solution of ruthenium chloride and rhodium chloride (ruthenium content 0.6 g, rhodium content 0.1 g) and dried at 80 ° C. for 3 hours. And then immersed in a 0.375N-NaOH aqueous solution for 20 hours, subjected to a liquid phase reduction treatment with a 1% hydrazine aqueous solution, washed with pure water, dried at 80 ° C. for 3 hours, and 0.6 mass in α-alumina. % Of ruthenium and 0.1% by mass of rhodium were obtained.

Figure 0006257256
Figure 0006257256

その結果、表2のようになった。ルテニウムと、ルテニウムの含有量の0.01質量倍以上0.1質量倍未満(0.1質量倍未満を含む)ロジウムとを担持してなる触媒は、試験後も活性の低下が低いことが分かった。 As a result, it became as shown in Table 2. Ruthenium, rhodium and formed by loading a catalyst of 0.01 mass times less than 0.1 mass times the content of ruthenium (including less than 0.1 times by weight) is also decreased activity is low after test I understood.

Figure 0006257256
Figure 0006257256

〔水蒸気改質反応装置の運転試験〕
図1の水蒸気改質反応装置を模したマイクロリアクタを用い、触媒層11に種々のルテニウムロジウム比の水蒸気改質用触媒11aを充填した状態で、図2の起動停止試験パターン、表3の運転条件で、起動停止試験を実施した。すなわち、起動開始時には空気のみ流通させ、触媒層11の昇温に備える予備加熱工程に続き、空気とメタンを供給するPOX工程を行い、触媒層11の一次昇温を図る。続いて水蒸気を供給することにより触媒層11においてATR工程を行いさらに触媒層11の二次昇温を図る。このとききわめて短い所要時間で触媒層11が水蒸気改質工程に適した温度にまで昇温されることが明らかになった。触媒層11の入り口温度が目標温度(500℃)に達したら、空気の供給を停止し、水蒸気供給量を増加して、入り口温度を維持しつつ水蒸気改質工程を行う。水蒸気改質工程では触媒出口温度が次第に上昇しており、触媒出口温度が800℃に達したら、供給する水蒸気量を減少して水蒸気改質工程を収束に向かわせる。そして触媒出口温度がある程度低下したらメタン供給量を減少してさらに触媒層11の温度低下を図る。触媒層11が300℃に達したら、水蒸気とメタンの供給を停止し、水蒸気改質工程を終了し、触媒層11に空気の供給のみを行うパージ工程を行う。そして触媒層11の温度が十分に低下した時点をもって起動停止繰り返し試験の1サイクル(4時間)とする。この起動停止繰り返しを200サイクル行った。
[Operation test of steam reforming reactor]
Using the microreactor simulating the steam reforming reaction apparatus of FIG. 1, the catalyst layer 11 is filled with steam reforming catalysts 11a having various ruthenium rhodium ratios, and the start / stop test pattern of FIG. Then, a start / stop test was conducted. That is, at the start of start-up, only air is circulated, followed by a POX process for supplying air and methane, followed by a preheating process for preparing a temperature increase of the catalyst layer 11 to achieve a primary temperature increase of the catalyst layer 11. Subsequently, the ATR process is performed in the catalyst layer 11 by supplying water vapor, and further the secondary temperature rise of the catalyst layer 11 is achieved. At this time, it became clear that the catalyst layer 11 was heated to a temperature suitable for the steam reforming process in a very short time. When the inlet temperature of the catalyst layer 11 reaches the target temperature (500 ° C.), the supply of air is stopped, the steam supply amount is increased, and the steam reforming process is performed while maintaining the inlet temperature. In the steam reforming step, the catalyst outlet temperature gradually increases, and when the catalyst outlet temperature reaches 800 ° C., the amount of steam supplied is decreased to bring the steam reforming step toward convergence. When the catalyst outlet temperature is lowered to some extent, the methane supply amount is reduced to further lower the temperature of the catalyst layer 11. When the catalyst layer 11 reaches 300 ° C., the supply of steam and methane is stopped, the steam reforming process is terminated, and a purge process for supplying only air to the catalyst layer 11 is performed. Then, when the temperature of the catalyst layer 11 is sufficiently lowered, one cycle (4 hours) of the start / stop repetition test is set. This start / stop repetition was repeated 200 cycles.

以下に、本運転試験に用いた水蒸気改質用触媒11aの製造方法をさらに具体的に説明する。   Hereinafter, the method for producing the steam reforming catalyst 11a used in the operation test will be described more specifically.

(触媒G:1.8質量%ルテニウム−0.2質量%ロジウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ98gに塩化ルテニウムと塩化ロジウムの混合水溶液30ml(ルテニウム含有量1.8g、ロジウム含有量0.2g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに1.8質量%のルテニウムと0.2質量%のロジウムを担持させてなる触媒を得た。
(Catalyst G: 1.8% by mass ruthenium-0.2% by mass rhodium / α alumina catalyst)
A total of 30 ml of a mixed aqueous solution of ruthenium chloride and rhodium chloride (ruthenium content 1.8 g, rhodium content 0.2 g) was impregnated into 98 g of α-alumina as a 3 mm diameter inorganic oxide carrier, and dried at 80 ° C. for 3 hours. After immersion treatment with 0.375N-NaOH aqueous solution for 20 hours, liquid phase reduction treatment with 1% hydrazine aqueous solution, washing treatment with pure water, drying at 80 ° C. for 3 hours, and 1.8% by mass in α-alumina. A catalyst in which ruthenium and 0.2% by mass of rhodium were supported was obtained.

(触媒H:1.5質量%ルテニウム−0.5質量%ロジウム/αアルミナ触媒)
3mm径の無機酸化物担体としてのαアルミナ98gに塩化ルテニウムと塩化ロジウムの混合水溶液30ml(ルテニウム含有量1.5g、ロジウム含有量0.5g)を全量含浸し、80℃で3時間乾燥し、0.375N−NaOH水溶液で20時間浸漬処理し、1%ヒドラジン水溶液で液相還元処理し、純水で洗浄処理した後、80℃で3時間乾燥して、αアルミナに1.5質量%のルテニウムと0.5質量%のロジウムを担持させてなる触媒を得た。
(Catalyst H: 1.5 mass% ruthenium-0.5 mass% rhodium / α alumina catalyst)
A total of 30 ml of a mixed aqueous solution of ruthenium chloride and rhodium chloride (ruthenium content 1.5 g, rhodium content 0.5 g) was impregnated into 98 g of α-alumina as a 3 mm diameter inorganic oxide carrier, and dried at 80 ° C. for 3 hours. After immersion treatment with 0.375 N-NaOH aqueous solution for 20 hours, liquid phase reduction treatment with 1% hydrazine aqueous solution, washing treatment with pure water, drying at 80 ° C. for 3 hours, and 1.5 mass% in α-alumina. A catalyst in which ruthenium and 0.5% by mass of rhodium were supported was obtained.

Figure 0006257256
Figure 0006257256

その結果、表4のようになった。ルテニウムと、ルテニウムの含有量の0.01質量倍以上0.1質量倍未満(0.1質量倍未満を含む)ロジウムとを担持してなる触媒は、添加しない触媒に比べて、起動停止繰り返しによるメタン転化率の低下が小さいことがわかり長期耐久性に優れることが分かった。 As a result, it became as shown in Table 4. Ruthenium, rhodium and formed by loading a catalyst of 0.1 times the mass of less than 0.01 mass times or more of the content of ruthenium (including less than 0.1 times by weight), as compared to not adding the catalyst, deactivation It was found that the decrease in methane conversion due to repetition was small, and that the long-term durability was excellent.

Figure 0006257256
Figure 0006257256

本発明の水蒸気改質反応装置は、本発明の水蒸気改質反応器の運転方法を行うことにより優れた起動応答性を有するとともに長期耐久性を有するから、きわめて高性能な燃料電池として利用することができる。   The steam reforming reaction apparatus of the present invention has excellent start-up response and long-term durability by performing the operation method of the steam reforming reactor of the present invention, so that it can be used as an extremely high-performance fuel cell. Can do.

1 :水蒸気改質反応器
11 :触媒層
11a :水蒸気改質用触媒
12 :炭化水素化合物類ガス供給部
13 :酸素含有ガス供給部
14 :水蒸気供給部
15 :燃焼部
16 :制御装置
17 :蒸発器
3 :燃料電池
30 :装置筐体
31 :アノード
32 :カソード
1: Steam reforming reactor 11: Catalyst layer 11a: Steam reforming catalyst 12: Hydrocarbon compound gas supply unit 13: Oxygen-containing gas supply unit 14: Steam supply unit 15: Combustion unit 16: Controller 17: Evaporation Device 3: Fuel cell 30: Device casing 31: Anode 32: Cathode

Claims (3)

水蒸気改質用触媒を主成分とする触媒層を備えた水蒸気改質反応器を備えるとともに、前記触媒層に炭化水素化合物類ガスを供給する炭化水素化合物類ガス供給部と酸素含有ガスを供給する酸素含有ガス供給部と水蒸気を供給する水蒸気供給部とを設けるとともに、前記水蒸気改質反応器から排出される可燃性ガスの少なくとも一部を燃焼させて、前記水蒸気改質反応器を加熱する燃焼部を備えた水蒸気改質反応装置であって、
前記水蒸気改質用触媒が、ルテニウムと、ルテニウムの含有量の0.01質量倍以上0.1質量倍未満のロジウムとを、アルミナを主成分とする担体に担持させてなるものであり、
前記触媒層において、炭化水素化合物類ガスと酸素含有ガスとによる部分酸化反応を生起して、その反応熱により前記触媒層を昇温するPOX工程と、
前記触媒層において、炭化水素化合物類ガスと酸素含有ガスとに加えて、水蒸気を導入して、オートサーマル改質反応を生起して、その反応熱により前記触媒層を昇温するATR工程とを順に行った後、
前記触媒層において、炭化水素化合物類ガスと水蒸気とによる水蒸気改質反応を行う水蒸気改質工程を行うように炭化水素化合物類ガス供給部と酸素含有ガス供給部と水蒸気供給部とから供給される各ガス量を制御する制御装置を備えた水蒸気改質反応装置。
A steam reforming reactor including a catalyst layer mainly composed of a steam reforming catalyst is provided, and a hydrocarbon compound gas supply unit for supplying a hydrocarbon compound gas to the catalyst layer and an oxygen-containing gas are supplied. Combustion that provides an oxygen-containing gas supply unit and a water vapor supply unit that supplies water vapor, and burns at least part of the combustible gas discharged from the steam reforming reactor to heat the steam reforming reactor A steam reforming reaction apparatus comprising a section,
The steam reforming catalyst is formed by supporting ruthenium and rhodium having a ruthenium content of 0.01 mass times or more and less than 0.1 mass times on a carrier mainly composed of alumina ,
A POX step of causing a partial oxidation reaction between the hydrocarbon compound gas and the oxygen-containing gas in the catalyst layer and raising the temperature of the catalyst layer by the reaction heat;
In the catalyst layer, in addition to the hydrocarbon compound gas and the oxygen-containing gas, an ATR step of introducing water vapor to cause an autothermal reforming reaction and raising the temperature of the catalyst layer by the reaction heat; After going in order,
The catalyst layer is supplied from a hydrocarbon compound gas supply unit, an oxygen-containing gas supply unit, and a steam supply unit so as to perform a steam reforming process in which a steam reforming reaction is performed using a hydrocarbon compound gas and steam. A steam reforming reaction apparatus provided with a control device for controlling the amount of each gas.
前記水蒸気改質用触媒が、担体にルテニウムとロジウムとを金属状態で担持させてあるものである請求項に記載の水蒸気改質反応装置。 The steam reforming reaction apparatus according to claim 1 , wherein the steam reforming catalyst is a catalyst in which ruthenium and rhodium are supported in a metal state . 請求項1または2に記載の水蒸気改質反応装置を備えた燃料電池発電装置。 A fuel cell power generator comprising the steam reforming reaction apparatus according to claim 1 .
JP2013212271A 2013-10-09 2013-10-09 Steam reforming reactor and fuel cell power generator Active JP6257256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212271A JP6257256B2 (en) 2013-10-09 2013-10-09 Steam reforming reactor and fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212271A JP6257256B2 (en) 2013-10-09 2013-10-09 Steam reforming reactor and fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2015074586A JP2015074586A (en) 2015-04-20
JP6257256B2 true JP6257256B2 (en) 2018-01-10

Family

ID=52999722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212271A Active JP6257256B2 (en) 2013-10-09 2013-10-09 Steam reforming reactor and fuel cell power generator

Country Status (1)

Country Link
JP (1) JP6257256B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707049B2 (en) * 2017-03-23 2020-06-10 大阪瓦斯株式会社 Method of operating fuel gas production system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227779B2 (en) * 2002-08-28 2009-02-18 新日本石油株式会社 Steam reforming catalyst, steam reforming method and fuel cell system
JP2004338975A (en) * 2003-05-13 2004-12-02 Mitsubishi Kakoki Kaisha Ltd Starting method of hydrogen production apparatus
JP4783240B2 (en) * 2006-08-29 2011-09-28 Jx日鉱日石エネルギー株式会社 Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5213865B2 (en) * 2007-08-29 2013-06-19 京セラ株式会社 Fuel cell device
JP2009254929A (en) * 2008-04-14 2009-11-05 Japan Energy Corp Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst
JP4761260B2 (en) * 2009-05-28 2011-08-31 Toto株式会社 Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2015074586A (en) 2015-04-20

Similar Documents

Publication Publication Date Title
JP6145921B2 (en) Ammonia oxidative decomposition catalyst, hydrogen production method and hydrogen production apparatus
JP4758888B2 (en) Hydrocarbon reforming catalyst, hydrogen production method using the reforming catalyst, and fuel cell system
KR101738610B1 (en) A method for preparation of metal oxide-loaded catalyst in porous substrate
JP5049947B2 (en) Ammonia engine system
WO2020246197A1 (en) Hydrogen generator, fuel cell system using same, and operation method thereof
JP2020033280A (en) Method for manufacturing methane and manufacturing system
KR100573757B1 (en) Catalyst for removing carbon monoxide in hydrogen rich gas according to the water gas shift reaction
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
JP6257256B2 (en) Steam reforming reactor and fuel cell power generator
JP6081445B2 (en) HYDROGEN GENERATION CATALYST, HYDROGEN GENERATION CATALYST MANUFACTURING METHOD, AND HYDROGEN-CONTAINING GAS MANUFACTURING METHOD, HYDROGEN GENERATOR, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CEZR BASED OXIDE
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP2003144925A (en) Method for manufacturing catalyst for shift reaction of carbon monoxide
JP2007210835A (en) Apparatus for producing hydrogen and fuel battery system
JP3589309B2 (en) Hydrogen production by methane reforming.
JP2013163624A (en) Device and method for producing hydrogen
JP2009062269A (en) Apparatus and method for producing hydrogen
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
JP5717993B2 (en) Reforming apparatus and manufacturing method thereof
JP4377699B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
JP5231825B2 (en) Fuel reformer
JP2005296938A (en) Catalyst for producing hydrogen from hydrocarbon, producing method for the catalyst and hydrogen producing method using the catalyst
JP2008200614A5 (en)
JP4377700B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
JP2004000949A (en) Catalyst for removing co in hydrogen rich gas based on water gas shift reaction, treatment apparatus using the catalyst and treatment method
JP2014184394A (en) Steam reforming catalyst, reformer, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6257256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150