JP4377699B2 - Synthesis gas production catalyst and synthesis gas production method using the same - Google Patents

Synthesis gas production catalyst and synthesis gas production method using the same Download PDF

Info

Publication number
JP4377699B2
JP4377699B2 JP2004000425A JP2004000425A JP4377699B2 JP 4377699 B2 JP4377699 B2 JP 4377699B2 JP 2004000425 A JP2004000425 A JP 2004000425A JP 2004000425 A JP2004000425 A JP 2004000425A JP 4377699 B2 JP4377699 B2 JP 4377699B2
Authority
JP
Japan
Prior art keywords
catalyst
component
synthesis gas
carrier
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000425A
Other languages
Japanese (ja)
Other versions
JP2005193110A (en
Inventor
圭一 冨重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2004000425A priority Critical patent/JP4377699B2/en
Publication of JP2005193110A publication Critical patent/JP2005193110A/en
Application granted granted Critical
Publication of JP4377699B2 publication Critical patent/JP4377699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、例えば天然ガス等の炭素数1〜5の炭化水素ガスと、酸素を含むガスを触媒の存在下、接触改質して、合成ガスを製造する際に用いられる合成ガス製造用触媒およびこれを用いた合成ガスの製造方法に関する。   The present invention relates to a catalyst for producing a synthesis gas used for producing a synthesis gas by catalytically reforming a hydrocarbon gas having 1 to 5 carbon atoms such as natural gas and a gas containing oxygen in the presence of the catalyst. And a method for producing synthesis gas using the same.

将来の石油代替エネルギー源として、近年天然ガスが注目されている。天然ガスは他の化石燃料と比較して燃焼特性がクリーンであるため、1次エネルギー、2次エネルギー原料として利用が促進されれば、環境保護の面でも極めて有益であるといえる。   In recent years, natural gas has attracted attention as a future oil alternative energy source. Since natural gas has clean combustion characteristics compared to other fossil fuels, it can be said that it is extremely beneficial in terms of environmental protection if its use is promoted as a primary energy or secondary energy raw material.

このような観点から現在、天然ガスを化学的に転換し、メタノール、DME、合成石油などを製造する技術の開発が活発に行われている。これらの技術の主流は合成原料となる合成ガスを経由する間接転換法であり、当該合成ガスの製造技術はプロセス全体の経済性に大きなウエイトを占めている。   From this point of view, the development of technologies for chemically converting natural gas to produce methanol, DME, synthetic petroleum, and the like is currently underway. The mainstream of these technologies is an indirect conversion method via a synthesis gas as a synthesis raw material, and the synthesis gas production technology occupies a large weight in the economics of the entire process.

合成ガスの製造技術としては、例えば、水蒸気改質法、ATR(Auto Thermal Reforming)、接触部分酸化法(CPOX: Catalytic Partial Oxidation)などが知られている。   As a synthesis gas production technique, for example, a steam reforming method, ATR (Auto Thermal Reforming), a catalytic partial oxidation method (CPOX: Catalytic Partial Oxidation), and the like are known.

水蒸気改質法では、反応そのものが吸熱反応となるために、装置仕様として、加熱炉中に反応管を設置し、改質反応に必要な熱を外部から供給する必要がある。そのため、反応装置そのものが大きくなり、大規模な製造には適さないと言える。   In the steam reforming method, since the reaction itself becomes an endothermic reaction, it is necessary to install a reaction tube in a heating furnace and supply heat necessary for the reforming reaction from the outside as an apparatus specification. Therefore, it can be said that the reactor itself becomes large and is not suitable for large-scale production.

また、ATRは、原料中の炭化水素の一部をバーナー燃焼させ、引き続き、高温の燃焼ガスを触媒層で改質する方法である。この方法では、バーナーの寿命を維持するために、過剰のスチームを供給しなければならない等、経済的に最適な条件で運転することが困難である。   ATR is a method in which part of hydrocarbons in a raw material is burner-burned, and then a high-temperature combustion gas is reformed by a catalyst layer. In this method, it is difficult to operate under economically optimal conditions, such as having to supply excess steam to maintain the life of the burner.

接触部分酸化法は、触媒層中で、原料の炭化水素の一部を触媒燃焼させ、生成された高温の燃焼ガスを、さらに、触媒層中で改質する方法であり、研究開発段階の技術であると言える。機構がシンプルで高い熱効率と生産効率が期待できるが、触媒層入口付近に発熱が集中しやすく(いわゆるホットスポットの生成)、高熱による触媒劣化や、反応器の損失に十分対処する必要がある。   The catalytic partial oxidation method is a method in which part of the raw material hydrocarbon is catalytically combusted in the catalyst layer, and the generated high-temperature combustion gas is further reformed in the catalyst layer. It can be said that. Although the mechanism is simple and high heat efficiency and production efficiency can be expected, heat generation tends to concentrate near the catalyst layer entrance (so-called hot spot generation), and it is necessary to sufficiently deal with catalyst deterioration due to high heat and reactor loss.

従来技術として、特開平6−92603号公報、同7−10503号公報、同7−89701号公報、同196301号公報、特表平10−503462号公報(いずれも、シェル・インターナショナル・リサーチ・マーチャッピイ・ベイ・ウイ)には、Pt,Rh,Ru,Ir,Pdなどの金属元素をアルミナ等の耐火性担体に担持させた触媒を用いた接触部分酸化方法が開示されている。   As prior art, JP-A-6-92603, JP-A-7-10503, JP-A-7-89701, JP-A-196301, JP-T-10-503462 (all of which are Shell International Research Marchippi) Bay et al. Discloses a catalytic partial oxidation method using a catalyst in which a metal element such as Pt, Rh, Ru, Ir, or Pd is supported on a refractory support such as alumina.

しかしながら、このような開示の技術においても、反応ガス温度が1000〜1200℃に達しており、高熱による触媒の劣化が懸念される。   However, even in the disclosed technique, the reaction gas temperature reaches 1000 to 1200 ° C., and there is a concern that the catalyst is deteriorated due to high heat.

また、特開平10−245201号公報(ハルドール・トプサー・アクチエゼルアウカベット)には、接触部分酸化におけるホットスポットの温度を抑えるために触媒層を多段に分離し、触媒層間に酸素を分割導入する方法が開示されている。また、特開2000−84410号公報(出光興産)には、接触部分酸化におけるホットスポット生成を回避するために酸素を触媒層内に分割導入する方法が開示されている。   In addition, Japanese Patent Laid-Open No. 10-245201 (Haldor, Topser, Achzelaurekabet) separates catalyst layers in multiple stages to suppress the temperature of hot spots in contact partial oxidation, and introduces oxygen separately between the catalyst layers. A method is disclosed. Japanese Patent Laid-Open No. 2000-84410 (Idemitsu Kosan) discloses a method of introducing oxygen into the catalyst layer in a divided manner in order to avoid the generation of hot spots in contact partial oxidation.

しかしながら、これら2つの提案においても、局所的に見れば酸素放出部分での温度上昇は避けられないと考えられ、ホットスポット生成を回避する方策としては、十分でないと言える。   However, even in these two proposals, it is considered that the temperature rise in the oxygen release portion is unavoidable locally, and it can be said that it is not sufficient as a measure for avoiding hot spot generation.

触媒層入口付近でホットスポットが生成する要因は、通常の金属触媒は酸素との接触により酸化物となり、触媒そのものが吸熱反応であるリフォーミング反応の活性を失い、発熱反応である燃焼活性だけが発現するためであると考えられる。このような実状のもと、本件特許出願における発明者である冨重は、すでに、PtとNiをアルミナ担体に担持させた触媒の提案を行なっており、この触媒を用いることによって触媒層入口付近においても燃焼反応とリフォーミング反応の両方を発現させることに成功している(Catalyst Letters Vol. 84 No.1-2(2002))。   The reason for the generation of hot spots near the catalyst layer entrance is that ordinary metal catalysts become oxides when they come into contact with oxygen, and the catalyst itself loses the activity of the reforming reaction, which is an endothermic reaction, and only the combustion activity, which is an exothermic reaction. This is thought to be due to expression. Under such circumstances, Sugiju, the inventor in the present patent application, has already proposed a catalyst in which Pt and Ni are supported on an alumina carrier, and by using this catalyst, in the vicinity of the catalyst layer inlet. Has succeeded in developing both combustion and reforming reactions (Catalyst Letters Vol. 84 No.1-2 (2002)).

特開平6−92603号公報JP-A-6-92603 特開平7−10503号公報JP 7-10503 A 特開平7−89701号公報JP 7-89701 A 特開平7−196301号公報JP 7-196301 A 特表平10−503462号公報Japanese National Patent Publication No. 10-503462 特開平10−245201号公報JP-A-10-245201 特開2000−84410号公報JP 2000-84410 A Catalyst Letters Vol. 84 Nos.1-2(2002))Catalyst Letters Vol. 84 Nos.1-2 (2002))

しかしながら、合成ガス製造における触媒性能の改善要求には限りがなく、さらなる触媒性能の向上が求められている。すなわち、ホットスポットの生成をさらに抑制することができ、経時的な触媒性能の劣化を防止させることができ、原料である炭化水素の転化率に優れる新規の合成ガス製造用触媒の提案が望まれている。   However, there is no limit to the improvement in catalyst performance in syngas production, and further improvement in catalyst performance is required. That is, it is desired to propose a new catalyst for production of synthesis gas that can further suppress the generation of hot spots, prevent deterioration of catalyst performance over time, and is excellent in the conversion rate of hydrocarbon as a raw material. ing.

このような課題を解決するために、本発明は、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含むガスを、COとH2とを主成分とする合成ガスに転化する際に使用される合成ガス製造用触媒であって、該合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、前記担体は、耐熱性材料で成形された比表面積が10m2/g以下の成形体であり、前記第1の成分は、ニッケルあるいはニッケルを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、前記第2の成分は、白金、ロジウム、ルテニウム、およびイリジウムのグループから選ばれる少なくとも1種以上の金属あるいはその化合物からなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体となるように構成される。 In order to solve such problems, the present invention synthesizes a gas containing a hydrocarbon having 1 to 5 carbon atoms, oxygen, carbon dioxide, and / or steam mainly containing CO and H 2. A synthesis gas production catalyst used for conversion into a gas, the synthesis gas production catalyst comprising a carrier as a base material, a first component supported on the carrier, and a second component The carrier is a molded body having a specific surface area of 10 m 2 / g or less molded from a heat-resistant material, and the first component is made of nickel or a compound containing nickel as a main component, Is 5 × 10 −5 to 1.5 × 10 −3 mol / g-support, and the second component is at least one metal selected from the group consisting of platinum, rhodium, ruthenium, and iridium, or The amount of metal supported by the compound Of 1 × 10 −6 to 1 × 10 −4 mol / g-carrier.

また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、アルミナ、カルシウムアルミナ、マグネシウムアルミナ、マグネシアのグループから選ばれる少なくとも1つの耐熱性材料から構成される。   As a preferred embodiment of the catalyst for producing synthesis gas of the present invention, the carrier is composed of at least one heat resistant material selected from the group consisting of alumina, calcium alumina, magnesium alumina, and magnesia.

また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、α−アルミナから構成される。   Moreover, as a preferred embodiment of the catalyst for producing synthesis gas of the present invention, the carrier is composed of α-alumina.

また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、その球相当直径が0.5〜20mmであるように構成される。   In a preferred embodiment of the catalyst for producing synthesis gas according to the present invention, the carrier is configured such that the equivalent sphere diameter is 0.5 to 20 mm.

また、本発明の合成ガス製造用触媒の好ましい態様として、前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合が、0.005〜0.5となるように構成される。   As a preferred embodiment of the catalyst for producing synthesis gas according to the present invention, the ratio of the total number of moles of metal of the second component to the total number of moles of metal of the first component is 0.005 to 0.5. Configured.

また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、その比表面積が0.2〜10m2/gとなるように構成される。 As a preferred embodiment of the synthesis gas production catalyst of the present invention, the carrier is configured such that its specific surface area is 0.2 to 10 m 2 / g.

また、本発明は、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含む原料ガスを、合成ガス製造用触媒に接触させることにより、COとH2とを主成分とする合成ガスを製造する方法であって、該方法に使用される合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、前記担体は、耐熱性材料で成形された比表面積が10m2/g以下の成形体であり、前記第1の成分は、ニッケルあるいはニッケルを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、前記第2の成分は、白金、ロジウム、ルテニウム、およびイリジウムのグループから選ばれる少なくとも1種以上の金属あるいはその化合物からなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体となるように構成される。 In addition, the present invention mainly comprises CO and H 2 by bringing a raw material gas containing a hydrocarbon having 1 to 5 carbon atoms, oxygen, carbon dioxide and / or steam into contact with a synthesis gas production catalyst. A method for producing a synthesis gas as a component, wherein a catalyst for producing a synthesis gas used in the method comprises a carrier as a substrate, a first component supported on the carrier, and a second component. The carrier is a molded body having a specific surface area of 10 m 2 / g or less molded from a heat-resistant material, and the first component is made of nickel or a compound containing nickel as a main component, Is 5 × 10 −5 to 1.5 × 10 −3 mol / g-support, and the second component is at least one metal selected from the group consisting of platinum, rhodium, ruthenium, and iridium, or Composed of the compound, the gold The genus loading is configured to be 1 × 10 −6 to 1 × 10 −4 mol / g-carrier.

また、本発明の合成ガスを製造する方法の好ましい態様として、原料である炭化水素ガス中の炭素モル数をCで表わしたとき、原料ガス中のO2/C(モル比)が0.4〜1.0の範囲内にあり、CO2/C(モル比)が0〜1.0の範囲内にあり、H2O/C(モル比)が0〜0.5の範囲内にあるように設定され、反応温度が生成ガス温度として700〜1200℃の範囲内に設定され、反応圧力が0.1MPa〜10MPaの範囲内に設定され、触媒重量W(g)と導入ガス全流量F(mol/hr)との比であるW/Fが0.15〜6(g・hr/mol)の範囲内に設定されてなるように構成される。 Further, as a preferred embodiment of the method for producing the synthesis gas of the present invention, when the number of moles of carbon in the hydrocarbon gas as the raw material is represented by C, O 2 / C (molar ratio) in the raw material gas is 0.4. in the range of ~1.0, CO 2 / C (molar ratio) is in the range of 0~1.0, H 2 O / C (molar ratio) is within the range of 0 to 0.5 The reaction temperature is set in the range of 700 to 1200 ° C. as the product gas temperature, the reaction pressure is set in the range of 0.1 MPa to 10 MPa, the catalyst weight W (g) and the introduced gas total flow rate F are set. W / F, which is a ratio to (mol / hr), is set within a range of 0.15 to 6 (g · hr / mol).

また、本発明の合成ガスを製造する方法の好ましい態様として、前記担体は、その比表面積が0.2〜10m2/gとなるように構成される。 Further, as a preferred embodiment of the method for producing a synthesis gas of the present invention, the carrier is configured such that its specific surface area is 0.2 to 10 m 2 / g.

従来技術に比べてさらにホットスポットの生成を抑制することができ、経時的な触媒性能の劣化や反応器の高温による劣化、破損の問題を解決することができる。原料である炭化水素の転化率にも極めて優れる。   Compared with the prior art, the generation of hot spots can be further suppressed, and the problems of deterioration in catalyst performance over time, deterioration due to high temperature of the reactor, and damage can be solved. The conversion rate of hydrocarbons as raw materials is also extremely excellent.

以下、本発明の合成ガス製造用触媒およびこれを用いた合成ガスの製造方法を実施するための最良の形態について詳細に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the synthesis gas production catalyst of the present invention and the synthesis gas production method using the same will be described in detail.

まず、最初に合成ガス製造用触媒について説明する。
本発明の合成ガス製造用触媒は、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含むガス(反応容器に導入されるガス)を、COとH2とを主成分とする合成ガスに転化する際に使用される。
First, the synthesis gas production catalyst will be described.
The catalyst for producing synthesis gas according to the present invention comprises a gas containing 1 to 5 carbon atoms, oxygen, carbon dioxide and / or steam (gas introduced into the reaction vessel), CO and H 2 . Used when converted to synthesis gas containing the main component.

本発明における合成ガス製造用触媒は、基材となる担体(キャリヤー)と、この担体に担持された第1の成分と、第2の成分を含んで構成される。   The catalyst for producing synthesis gas in the present invention comprises a carrier (carrier) serving as a base material, a first component supported on the carrier, and a second component.

担体は、耐熱性材料から構成される成形体であり、その比表面積は10m2/g以下、特に、0.2〜10m2/g、好ましくは、0.5〜10m2/g、さらに好ましくは、2〜10m2/gとされる。この比表面積の値が10m2/gを超えると、触媒層の入口付近での温度が高くなってしまう(ホットスポットの生成)という不都合が生じるとともに、原料である炭化水素の転化率の向上が図れないという不都合が生じる傾向にある。なお、比表面積は「BET」法により測定されたものである。 The carrier is a molded body composed of a heat-resistant material, and the specific surface area is 10 m 2 / g or less, particularly 0.2 to 10 m 2 / g, preferably 0.5 to 10 m 2 / g, more preferably. Is set to 2 to 10 m 2 / g. When the value of the specific surface area exceeds 10 m 2 / g, the temperature near the inlet of the catalyst layer becomes high (generation of hot spots), and the conversion rate of the hydrocarbon as a raw material is improved. There is a tendency for inconvenience that it cannot be achieved. The specific surface area is measured by the “BET” method.

ここで、担体が「成形体である」とは、造粒工程を経て成形された粒状物であることを意味し、より具体的には、例えば、原料粉末をモールドにより略球形に圧力成形した後に、焼成して形成された粒状物であることをいう。あるいは、リング、サドル、マルチホール等のいわゆる工業触媒形状であっても良く、破砕物のような不定形形状であっても良い。   Here, the carrier is “a molded body” means a granular material formed through a granulation step, and more specifically, for example, raw material powder is pressure-formed into a substantially spherical shape by a mold. Later, it means a granular material formed by firing. Alternatively, it may be a so-called industrial catalyst shape such as a ring, saddle, or multihole, or an irregular shape such as a crushed material.

本発明における担体は、上記の比表面積の値を満たし、かつ耐熱性材料から構成された成形体である必要がある。好適には、アルミナ、カルシウムアルミナ(スピネル構造を備える)、マグネシウムアルミナ(スピネル構造を備える)、マグネシアのグループから選ばれる少なくとも1つの耐熱性材料が挙げられる。中でも特に、α−アルミナを用いるのが好ましい。α−アルミナが、担持される第1の成分と、第2の成分との関係で最も優れた効果を発現するからである。   The carrier in the present invention needs to be a molded body that satisfies the value of the specific surface area and is composed of a heat-resistant material. Preferable examples include at least one heat resistant material selected from the group consisting of alumina, calcium alumina (having a spinel structure), magnesium alumina (having a spinel structure), and magnesia. Of these, α-alumina is particularly preferred. This is because α-alumina exhibits the most excellent effect in the relationship between the supported first component and the second component.

α−アルミナは、例えば、ビーズ状のアルミナ成形体を、例えば、1100〜1300℃で焼成処理することにより得ることができる。すなわち、このような熱処理により、最初、γ−アルミナの状態にあるビーズは、α−アルミナへと結晶変化し、1次粒子径が大きくなり、比表面積は格段と小さくなる。   α-alumina can be obtained, for example, by firing a bead-shaped alumina molded body at, for example, 1100 to 1300 ° C. That is, by such heat treatment, the beads initially in the state of γ-alumina are crystallized to α-alumina, the primary particle diameter is increased, and the specific surface area is remarkably reduced.

本発明における担体は、その球相当直径が0.5〜20mm、好ましくは、5〜20mmとされる。この値が、20mmを超えると、原料転化率が低下するという不都合が生じる傾向にある。また、この値が0.5mm未満であると、反応器の圧力損失が大きくなるという不都合が生じる傾向にある。球相当直径(平均値)は、担体の体積を求め、それを球の体積と見なして、球の直径に換算すればよい。   The carrier in the present invention has a sphere equivalent diameter of 0.5 to 20 mm, preferably 5 to 20 mm. If this value exceeds 20 mm, there is a tendency for the disadvantage that the raw material conversion rate decreases. Moreover, when this value is less than 0.5 mm, there is a tendency that the pressure loss of the reactor increases. The equivalent diameter (average value) of the spheres may be converted to the diameter of the sphere by determining the volume of the carrier and regarding it as the volume of the sphere.

このような本発明における担体には、第1の成分と、第2の成分とが担持される。
第1の成分は、ニッケル(Ni)金属あるいはその化合物からなり、その金属担持量は、5×10-5〜1.5×10-3モル/g−担体、好ましくは、1×10-4〜5×10-4モル/g−担体とされる。担体1g当たりの第1成分の担持量が、5×10-5モル未満となると、所望の転化率、選択率が得られず、また、担体1g当たりの第1成分の担持量が1.5×10-3モルを超えるとと、触媒コストの上昇にもかかわらず転化率が頭打ちになるという不都合が生じる。
Such a carrier in the present invention carries the first component and the second component.
The first component is made of nickel (Ni) metal or a compound thereof, and the metal loading is 5 × 10 −5 to 1.5 × 10 −3 mol / g-support, preferably 1 × 10 −4. ˜5 × 10 −4 mol / g-carrier. When the loading amount of the first component per 1 g of the carrier is less than 5 × 10 −5 mol, desired conversion and selectivity cannot be obtained, and the loading amount of the first component per 1 g of the carrier is 1.5. If it exceeds × 10 −3 mol, there is a disadvantage that the conversion rate reaches a peak despite the increase in catalyst cost.

第2の成分は、白金、ロジウム、ルテニウム、およびイリジウムのグループから選ばれる少なくとも1種以上の金属あるいはその化合物からなり、その金属担持量は、1×10-6〜1×10-4モル/g−担体、好ましくは、5×10-6〜5×10-5モル/g−担体とされる。第2の成分の中で特に好ましいのは、白金またはロジウムである。担体1g当たりの第2成分の担持量が、1×10-6未満となると、触媒層入口付近の温度が上昇するいわゆるホットスポット生成が起こり易い上、所望の転化率が得られず、また、担体1g当たりの第2成分の担持量が1.5×10-3モルを超えるとと、触媒コストの上昇に反して転化率が頭打ちになってしまい経済性に欠けるという不都合が生じる。 The second component is composed of at least one metal selected from the group consisting of platinum, rhodium, ruthenium and iridium or a compound thereof, and the amount of the metal supported is 1 × 10 −6 to 1 × 10 −4 mol / The g-carrier is preferably 5 × 10 −6 to 5 × 10 −5 mol / g-carrier. Particularly preferred among the second components is platinum or rhodium. When the loading amount of the second component per 1 g of the support is less than 1 × 10 −6, so-called hot spot generation in which the temperature in the vicinity of the catalyst layer inlet is likely to occur, and a desired conversion rate cannot be obtained. When the loading amount of the second component per 1 g of the support exceeds 1.5 × 10 −3 mol, the conversion rate reaches a peak against the increase in the catalyst cost, resulting in a disadvantage that it is not economical.

また、前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合は、0.005〜0.5、好ましくは0.1〜0.4とされる。この割合が、0.5を超えると、触媒コストの上昇に反して転化率が頭打ちになってしまい経済性に欠けるという不都合が生じる。また、この割合が0.005未満となると触媒層入口付近の温度が上昇するいわゆるホットスポット生成が起こり易い上、所望の転化率が得られなくなるという不都合が生じる傾向にある。   The ratio of the total number of moles of the metal of the second component to the total number of moles of the metal of the first component is 0.005 to 0.5, preferably 0.1 to 0.4. If this ratio exceeds 0.5, the conversion rate reaches a peak against the increase in catalyst cost, resulting in inconvenience that it is not economical. On the other hand, when this ratio is less than 0.005, so-called hot spot generation in which the temperature in the vicinity of the inlet of the catalyst layer rises easily occurs, and there is a tendency that a desired conversion rate cannot be obtained.

上述してきた第1の成分および第2の成分の担体への担持は、担体上への担持を同時に行なう、いわゆる共含浸法による担持であってもよいし、また、第1の成分を担持した後に続いて第2の成分を担持させるいわゆる逐次含浸法による担持であってもよい。共含浸法や逐次含浸法の具体的手法については後述する実施例を参照されたい。   The loading of the first component and the second component on the carrier described above may be a loading by the so-called co-impregnation method in which loading on the carrier is performed simultaneously, or the first component is loaded. It may be supported by a so-called sequential impregnation method in which the second component is subsequently supported. For specific methods of the co-impregnation method and the sequential impregnation method, refer to the examples described later.

次いで、本発明の合成ガス製造用触媒を用いた合成ガスの製造方法について説明する。   Next, a synthesis gas production method using the synthesis gas production catalyst of the present invention will be described.

本発明の合成ガスの製造方法は、上述してきた合成ガス製造用触媒を用いることを前提とし、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含む原料ガスを、合成ガス製造用触媒に接触させながら、COとH2とを主成分とする合成ガスを製造する方法である。 The synthesis gas production method of the present invention is based on the premise that the above-described synthesis gas production catalyst is used, and a raw material gas containing a hydrocarbon having 1 to 5 carbon atoms, oxygen, carbon dioxide and / or steam. This is a method for producing a synthesis gas mainly composed of CO and H 2 while being brought into contact with a synthesis gas production catalyst.

原料ガス中の炭素数1〜5の炭化水素としては、メタン、エタン、プロパン、ブタン等が一例として挙げられる。さらにメタンを主成分とし、他にエタン、プロパン、ブタン等を含む天然ガスも用いることができる。この天然ガスには、二酸化炭素や窒素等が含有されていてもよい。   Examples of the hydrocarbon having 1 to 5 carbon atoms in the raw material gas include methane, ethane, propane, and butane. Furthermore, natural gas containing methane as a main component and containing ethane, propane, butane, or the like can also be used. This natural gas may contain carbon dioxide, nitrogen and the like.

炭化水素をメタンとした場合、COとH2とを主成分とする合成ガスの製造は下記反応式(1)〜(3)で示される。これらの反応はすべて触媒上で行われる。 When the hydrocarbon is methane, the production of synthesis gas mainly composed of CO and H 2 is represented by the following reaction formulas (1) to (3). All of these reactions take place on the catalyst.

CH4+2O2 → CO2+2H2O 式(1)
CH4+H2O → CO+3H2O 式(2)
CH4+CO2 → 2CO+2H2 式(3)
CH 4 + 2O 2 → CO 2 + 2H 2 O Formula (1)
CH 4 + H 2 O → CO + 3H 2 O Formula (2)
CH 4 + CO 2 → 2CO + 2H 2 formula (3)

反応器としては、通常、反応管の内部に触媒が充填された固定床反応器が用いられるが、これに限定されることなく、例えば流動床反応器としてもよい。   As the reactor, a fixed bed reactor in which a catalyst is packed in the inside of the reaction tube is usually used. However, the reactor is not limited thereto, and may be a fluidized bed reactor, for example.

本発明において、原料である炭化水素ガス中の炭素モル数をCで表わしたとき、原料ガス中のO2/C(モル比)は0.4〜1.0(好ましくは、0.4〜0.7)の範囲内とされ、CO2/C(モル比)は0〜1.0(好ましくは、0.05〜0.7)の範囲内とされ、H2O/C(モル比)は0〜0.5(好ましくは、0.1〜0.4)の範囲内とされる。 In the present invention, when the number of moles of carbon in the hydrocarbon gas as the raw material is represented by C, O 2 / C (molar ratio) in the raw material gas is 0.4 to 1.0 (preferably 0.4 to 0.7), and CO 2 / C (molar ratio) is in the range of 0 to 1.0 (preferably 0.05 to 0.7), and H 2 O / C (molar ratio). ) Is in the range of 0 to 0.5 (preferably 0.1 to 0.4).

また、反応温度は、生成ガス温度として700〜1200℃(好ましくは、800〜1100℃)の範囲内に設定される。   Moreover, reaction temperature is set as the product gas temperature in the range of 700-1200 degreeC (preferably 800-1100 degreeC).

反応圧力は0.1MPa〜10MPa(好ましくは、0.5〜5MPa)の範囲内に設定される。また、触媒重量W(g)と導入ガス全流量F(mol/hr)との比であるW/Fは、0.15〜6(g・hr/mol)の範囲内に設定される。   The reaction pressure is set within the range of 0.1 MPa to 10 MPa (preferably 0.5 to 5 MPa). In addition, W / F, which is a ratio between the catalyst weight W (g) and the total introduced gas flow rate F (mol / hr), is set within a range of 0.15 to 6 (g · hr / mol).

以下、具体的実施例を示し、本発明をさらに詳細に説明する。
以下の要領で合成ガス製造用触媒を製造した。
Hereinafter, the present invention will be described in more detail with reference to specific examples.
A catalyst for syngas production was produced as follows.

(担体の製造)
まず、最初に下記の要領で、担体表面積の調製およびその確認を行なった。
すなわち、アルミナビーズ(触媒学会参照触媒 JRC-ALO-1 直径2〜3mm)を500℃、700℃、900℃、1200℃、および1300℃でそれぞれ焼成処理した。得られた担体のBET比表面積の測定結果は、以下のとおりであった。
(Manufacture of carrier)
First, the carrier surface area was prepared and confirmed in the following manner.
That is, alumina beads (catalyst society reference catalyst JRC-ALO-1 diameter 2 to 3 mm) were fired at 500 ° C., 700 ° C., 900 ° C., 1200 ° C., and 1300 ° C., respectively. The measurement result of the BET specific surface area of the obtained carrier was as follows.

担体1:焼成せず未処理のアルミナビーズ…BET比表面積=143m2/g
担体2:500℃で焼成処理したアルミナビーズ…BET比表面積=117m2/g
担体3:700℃で焼成処理したアルミナビーズ…BET比表面積=102m2/g
担体4:900℃で焼成処理したアルミナビーズ…BET比表面積=105m2/g
担体5:1200℃で焼成処理したアルミナビーズ…BET比表面積=6m2/g
Carrier 1: untreated alumina beads not fired: BET specific surface area = 143 m 2 / g
Carrier 2: Alumina beads fired at 500 ° C. BET specific surface area = 117 m 2 / g
Carrier 3: Alumina beads calcined at 700 ° C. BET specific surface area = 102 m 2 / g
Carrier 4: Alumina beads calcined at 900 ° C. BET specific surface area = 105 m 2 / g
Carrier 5: Alumina beads calcined at 1200 ° C. BET specific surface area = 6 m 2 / g

1200℃以上で焼成処理することにより、担体の比表面積を大幅に低減させることができる。   By baking at 1200 ° C. or higher, the specific surface area of the carrier can be greatly reduced.

上記担体の中から実施例および比較例となる担体を選定し、下記の要領で種々の触媒を作製した後、下記の反応性評価試験方法に従って合成ガスの製造実験を行なった。   The support | carrier used as an Example and a comparative example was selected from the said support | carrier, and various catalysts were produced in the following way, Then, the synthetic gas manufacture experiment was done according to the following reactivity evaluation test method.

(反応性評価試験方法)
内径6mm、外径8mm、長さ300mmのクオーツ製反応管に、後述の要領で調整した触媒約0.14gを充填し、のぞき窓付きの環状電気炉内に、のぞき窓から触媒層が観察できるように設置した。
(Reactivity evaluation test method)
A quartz reaction tube having an inner diameter of 6 mm, an outer diameter of 8 mm, and a length of 300 mm is filled with about 0.14 g of the catalyst adjusted as described below, and the catalyst layer can be observed from the observation window in the annular electric furnace with the observation window. Was installed.

触媒層の出口側にサーモカップルを設置し、触媒層出口ガス温度が850℃になるように電気炉の出力を制御した。触媒充填後、前処理として水素を流通させて850℃、30分間、触媒の還元処理を行なった。次いで行う合成ガス製造における原料ガス組成は、CH4:CO2:H2O:O2=100:12:29:48(Vol比)とし、W/F(W:触媒重量(g)、F:導入ガス流量(mol/hr))は、0.6g・hr/mol、および0.25g・hr/molの2種類とした。 A thermocouple was installed on the outlet side of the catalyst layer, and the output of the electric furnace was controlled so that the catalyst layer outlet gas temperature was 850 ° C. After filling the catalyst, hydrogen was circulated as a pretreatment, and the catalyst was reduced at 850 ° C. for 30 minutes. Then, the raw material gas composition in the synthesis gas production to be performed is CH 4 : CO 2 : H 2 O: O 2 = 100: 12: 29: 48 (Vol ratio), W / F (W: catalyst weight (g), F : Introduction gas flow rate (mol / hr)) was two types of 0.6 g · hr / mol and 0.25 g · hr / mol.

触媒層の温度はIRサーモグラフィーを用いてのぞき窓から測定した。また、すべての試験において圧力は0.1MPaであった。   The temperature of the catalyst layer was measured from the observation window using IR thermography. In all tests, the pressure was 0.1 MPa.

(実施例1)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、Ni(NO32およびH2PtCl6をそれぞれ含有する水溶液5ml(Ni濃度=0.09モル/l;Pt濃度=0.018モル/l)を含浸させ、120℃の温度で12時間乾燥させた。しかる後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。このようにして3.0×10-5モル/g−担体のPt、および1.5×10-4モル/g−担体のNiが担持された実施例1の触媒サンプルを調製した。
Example 1
3 ml of the above support 5 (BET specific surface area = 6 m 2 / g) was added to 5 ml of an aqueous solution containing Ni (NO 3 ) 2 and H 2 PtCl 6 (Ni concentration = 0.09 mol / l; Pt concentration = 0.018 mol / l) and dried at a temperature of 120 ° C. for 12 hours. Thereafter, the dried product was fired in an air atmosphere at a temperature of 500 ° C. for 3 hours. In this way, a catalyst sample of Example 1 on which 3.0 × 10 −5 mol / g-supported Pt and 1.5 × 10 −4 mol / g-supported Ni was supported was prepared.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was 0.6 g · hr / mol.

(実施例2)
上記実施例1において用いたH2PtCl6をRhCl3に代えた。それ以外は、上記実施例1と同様の要領で、3.0×10-5モル/g−担体のRh、および1.5×10-4モル/g−担体のNiが担持された実施例2の触媒サンプルを調製した。
(Example 2)
H 2 PtCl 6 used in Example 1 was replaced with RhCl 3 . Other than that, in the same manner as in Example 1 above, Example in which Rh of 3.0 × 10 −5 mol / g-support and Ni of 1.5 × 10 −4 mol / g-support were supported Two catalyst samples were prepared.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、実施例1と同様の0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was set to 0.6 g · hr / mol as in Example 1.

(比較例1)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、Ni(NO32を含有する水溶液5ml(Ni濃度=0.09モル/l)を含浸させ、120℃の温度で12時間乾燥させた。しかる後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。このようにして1.5×10-4モル/g−担体のNiが担持された比較例1の触媒サンプルを調製した。
(Comparative Example 1)
3 g of the above support 5 (BET specific surface area = 6 m 2 / g) was impregnated with 5 ml of an aqueous solution containing Ni (NO 3 ) 2 (Ni concentration = 0.09 mol / l) at a temperature of 120 ° C. Dry for 12 hours. Thereafter, the dried product was fired in an air atmosphere at a temperature of 500 ° C. for 3 hours. Thus, a catalyst sample of Comparative Example 1 on which 1.5 × 10 −4 mol / g-support of Ni was supported was prepared.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was 0.6 g · hr / mol.

(比較例2)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、H2PtCl6を含有する水溶液5ml(Pt濃度=0.018モル/l)を含浸させ、120℃の温度で12時間乾燥させた。しかる後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。このようにして3.0×10-5モル/g−担体のPtが担持された比較例2の触媒サンプルを調製した。
(Comparative Example 2)
3 g of the above support 5 (BET specific surface area = 6 m 2 / g) was impregnated with 5 ml of an aqueous solution containing H 2 PtCl 6 (Pt concentration = 0.018 mol / l) and heated at 120 ° C. for 12 hours. Dried. Thereafter, the dried product was fired in an air atmosphere at a temperature of 500 ° C. for 3 hours. Thus, a catalyst sample of Comparative Example 2 on which 3.0 × 10 −5 mol / g-support of Pt was supported was prepared.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was 0.6 g · hr / mol.

(比較例3)
上記実施例1において用いた担体5(BET比表面積=6m2/g)を担体4(BET比表面積=105m2/g)に代えた。それ以外は、上記実施例1と略同様の要領で、3.0×10-5モル/g−担体のPt、および1.5×10-4モル/g−担体のNiが担持された比較例3の触媒サンプルを調製した。
(Comparative Example 3)
The support 5 (BET specific surface area = 6 m 2 / g) used in Example 1 was replaced with the support 4 (BET specific surface area = 105 m 2 / g). Other than that, in the same manner as in Example 1, a comparison was made in which Pt of 3.0 × 10 −5 mol / g-carrier and Ni of 1.5 × 10 −4 mol / g-carrier were supported. The catalyst sample of Example 3 was prepared.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、実施例1と同様の0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was set to 0.6 g · hr / mol as in Example 1.

(実施例3)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、Ni(NO32水溶液5ml(Ni濃度=0.09モル/l)を含浸させ、120℃の温度で12時間乾燥させた後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。続いてPt(C572)2アセトン溶液5ml(Pt濃度=0.018モル/l)を含浸させ、120℃の温度で12時間乾燥させ後、この乾燥物を空気雰囲気中300℃温度で3時間焼成した。このような逐次含浸法にて3.0×10-5モル/g−担体のPt、および1.5×10-4モル/g−担体のNiが担持された実施例3の触媒サンプルを調製した。
(Example 3)
3 g of the above support 5 (BET specific surface area = 6 m 2 / g) was impregnated with 5 ml of Ni (NO 3 ) 2 aqueous solution (Ni concentration = 0.09 mol / l) and dried at a temperature of 120 ° C. for 12 hours. Then, the dried product was fired at 500 ° C. for 3 hours in an air atmosphere. Subsequently, 5 ml of Pt (C 5 H 7 O 2 ) 2 acetone solution (Pt concentration = 0.018 mol / l) was impregnated and dried at a temperature of 120 ° C. for 12 hours. Baked at temperature for 3 hours. The catalyst sample of Example 3 on which 3.0 × 10 −5 mol / g-support of Pt and 1.5 × 10 −4 mol / g-support of Ni were supported by the sequential impregnation method was prepared. did.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was 0.6 g · hr / mol.

(実施例4)
上記実施例1において、Pt担持量を4.5×10-6モル/g−担体に減らした。それ以外は、上記実施例1と同様の要領で、実施例4の触媒サンプルを調製した。
(Example 4)
In Example 1 above, the Pt loading was reduced to 4.5 × 10 −6 mol / g-carrier. Otherwise, the catalyst sample of Example 4 was prepared in the same manner as in Example 1.

この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、実施例1と同様の0.6g・hr/molとした。   Using this catalyst, a synthesis gas production test was conducted according to the above-described reactivity evaluation test method. W / F was set to 0.6 g · hr / mol as in Example 1.

(実施例5)
上記実施例1における触媒を用い、W/Fの条件のみを代えた。すなわちW/F=0.25g・hr/molとした以外は、上記実施例1と同じ条件で、合成ガス製造試験を行なった。
(Example 5)
Using the catalyst in Example 1 above, only the W / F condition was changed. That is, a synthesis gas production test was performed under the same conditions as in Example 1 except that W / F = 0.25 g · hr / mol.

(比較例4)
上記比較例3における触媒を用い、W/Fの条件のみを代えた。すなわちW/F=0.25g・hr/molとした以外は、上記比較例3と同じ条件で、合成ガス製造試験を行なった。
(Comparative Example 4)
The catalyst in Comparative Example 3 was used, and only the W / F condition was changed. That is, a synthesis gas production test was performed under the same conditions as in Comparative Example 3 except that W / F = 0.25 g · hr / mol.

反応性評価試験の結果である、メタン転化率、H2/CO(モル比)、および触媒層最高温度(℃)を、それぞれ求め、下記表1に示した。 The methane conversion rate, H 2 / CO (molar ratio), and maximum catalyst layer temperature (° C.), which are the results of the reactivity evaluation test, were determined and shown in Table 1 below.

Figure 0004377699
Figure 0004377699

実施例1、実施例2および比較例1の実験結果より、NiにPtあるいはRhを加えることで転化率は同等で、触媒層の最高温度を低く抑えることができる。   From the experimental results of Example 1, Example 2, and Comparative Example 1, by adding Pt or Rh to Ni, the conversion rate is equivalent and the maximum temperature of the catalyst layer can be kept low.

実施例3より、いわゆる逐次含浸で調製した触媒も共含浸で調製したそれと同等の性能を有することがわかる。   From Example 3, it can be seen that the catalyst prepared by so-called sequential impregnation also has the same performance as that prepared by co-impregnation.

実施例1および実施例5、ならびに比較例3および比較例4の結果より、担体の比表面積が10m2/gより大きくなると反応性が低下することがわかる。 From the results of Examples 1 and 5, and Comparative Examples 3 and 4, it can be seen that the reactivity decreases when the specific surface area of the support exceeds 10 m 2 / g.

実施例4の結果より、触媒金属のうち貴金属成分の担持量が少なくても依然高い活性を示すことがわかる。なお、実施例5の触媒層の最高温度が他の実施例と比べて高いのは、触媒当たりの原料ガス通気量が多いためである。   From the results of Example 4, it can be seen that the catalyst metal still shows high activity even when the amount of the noble metal component supported is small. The reason why the maximum temperature of the catalyst layer of Example 5 is higher than that of the other examples is that the amount of raw material gas per catalyst is large.

天然ガスのような炭素数1〜5の炭化水素ガスを原料とし、COとH2とを主成分とする合成ガスを製造する合成ガス製造プロセスに利用できる。 It can be used in a synthesis gas production process for producing a synthesis gas mainly composed of CO and H 2 using a hydrocarbon gas having 1 to 5 carbon atoms such as natural gas as a raw material.

Claims (4)

炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含むガスを、COとH2とを主成分とする合成ガスに転化する際に使用される合成ガス製造用触媒であって、
該合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、
前記担体は、α−アルミナから構成された比表面積が0.2〜10m 2 /gの成形体であり、
前記第1の成分は、ニッケルあるいはニッケルを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、
前記第2の成分は、白金またはロジウムからなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体であり、
前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合が、0.005〜0.5であることを特徴とする合成ガス製造用触媒。
Catalyst for producing synthesis gas used when converting a gas containing hydrocarbons having 1 to 5 carbon atoms, oxygen, carbon dioxide and / or steam into synthesis gas mainly composed of CO and H 2 Because
The catalyst for syngas production includes a carrier serving as a base material, a first component supported on the carrier, and a second component,
The carrier is a molded body having a specific surface area of 0.2 to 10 m 2 / g composed of α-alumina ,
The first component is composed of nickel or a compound containing nickel as a main component, and the metal loading is 5 × 10 −5 to 1.5 × 10 −3 mol / g-support,
Said second component consists of platinum or rhodium, the amount of metal supported is, Ri 1 × 10 -6 ~1 × 10 -4 mol / g- carrier der,
A synthesis gas production catalyst, wherein the ratio of the total number of moles of metal of the second component to the total number of moles of metal of the first component is 0.005 to 0.5 .
前記担体は、その球相当直径が0.5〜20mmである請求項1に記載の合成ガス製造用触媒。   The catalyst for syngas production according to claim 1, wherein the support has a sphere equivalent diameter of 0.5 to 20 mm. 炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含む原料ガスを、合成ガス製造用触媒に接触させることにより、COとH2とを主成分とする合成ガスを製造する方法であって、
該方法に使用される合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、
前記担体は、α−アルミナから構成された比表面積が0.2〜10m 2 /gの成形体であり、
前記第1の成分は、ニッケルあるいはニッケルを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、
前記第2の成分は、白金またはロジウムからなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体であり、
前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合が、0.005〜0.5であり、
原料である炭化水素ガス中の炭素モル数をCで表わしたとき、原料ガス中のO 2 /C(モル比)が0.4〜1.0の範囲内にあり、CO 2 /C(モル比)が0〜1.0の範囲内にあり、H 2 O/C(モル比)が0〜0.5の範囲内にあるように設定され、
反応温度が生成ガス温度として700〜1200℃の範囲内に設定され、
反応圧力が0.1MPa〜10MPaの範囲内に設定され、
触媒重量W(g)と導入ガス全流量F(mol/hr)との比であるW/Fが0.15〜6(g・hr/mol)の範囲内に設定されてなることを特徴とする合成ガスの製造方法。
By bringing a raw material gas containing a hydrocarbon having 1 to 5 carbon atoms, oxygen, carbon dioxide and / or steam into contact with a catalyst for production of synthesis gas, a synthesis gas mainly composed of CO and H 2 is produced. A method of manufacturing comprising:
The synthesis gas production catalyst used in the method includes a carrier serving as a base material, a first component supported on the carrier, and a second component,
The carrier is a molded body having a specific surface area of 0.2 to 10 m 2 / g composed of α-alumina ,
The first component is composed of nickel or a compound containing nickel as a main component, and the metal loading is 5 × 10 −5 to 1.5 × 10 −3 mol / g-support,
Said second component consists of platinum or rhodium, the amount of metal supported is, Ri 1 × 10 -6 ~1 × 10 -4 mol / g- carrier der,
The ratio of the total number of moles of metal of the second component to the total number of moles of metal of the first component is 0.005 to 0.5,
When the number of moles of carbon in the hydrocarbon gas as the raw material is represented by C, O 2 / C (molar ratio) in the raw material gas is in the range of 0.4 to 1.0, and CO 2 / C (mol Ratio) is in the range of 0 to 1.0 and H 2 O / C (molar ratio) is in the range of 0 to 0.5,
The reaction temperature is set in the range of 700-1200 ° C. as the product gas temperature,
The reaction pressure is set within the range of 0.1 MPa to 10 MPa,
W / F, which is a ratio of catalyst weight W (g) to total introduced gas flow rate F (mol / hr), is set within a range of 0.15 to 6 (g · hr / mol). A method for producing synthesis gas.
前記担体は、その球相当直径が0.5〜20mmである請求項3に記載の合成ガスの製造方法。   The method for producing a synthesis gas according to claim 3, wherein the carrier has a sphere equivalent diameter of 0.5 to 20 mm.
JP2004000425A 2004-01-05 2004-01-05 Synthesis gas production catalyst and synthesis gas production method using the same Expired - Fee Related JP4377699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000425A JP4377699B2 (en) 2004-01-05 2004-01-05 Synthesis gas production catalyst and synthesis gas production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000425A JP4377699B2 (en) 2004-01-05 2004-01-05 Synthesis gas production catalyst and synthesis gas production method using the same

Publications (2)

Publication Number Publication Date
JP2005193110A JP2005193110A (en) 2005-07-21
JP4377699B2 true JP4377699B2 (en) 2009-12-02

Family

ID=34816261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000425A Expired - Fee Related JP4377699B2 (en) 2004-01-05 2004-01-05 Synthesis gas production catalyst and synthesis gas production method using the same

Country Status (1)

Country Link
JP (1) JP4377699B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5174411B2 (en) 2007-09-28 2013-04-03 独立行政法人石油天然ガス・金属鉱物資源機構 Effective heat utilization method of tube reformer
CN101940954B (en) * 2009-07-09 2012-10-17 中国石油化工股份有限公司 Method for preparing alumina supporters
JP5562049B2 (en) * 2010-01-26 2014-07-30 日揮株式会社 Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
JP5462685B2 (en) * 2010-03-30 2014-04-02 Jx日鉱日石エネルギー株式会社 Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5603120B2 (en) * 2010-03-30 2014-10-08 Jx日鉱日石エネルギー株式会社 Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP5831934B2 (en) * 2011-11-11 2015-12-09 田中貴金属工業株式会社 Steam reforming catalyst

Also Published As

Publication number Publication date
JP2005193110A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
US7056488B2 (en) Controlled-pore catalyst structures and process for producing synthesis gas
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
US11772979B2 (en) Metal-decorated barium calcium aluminum oxide catalyst for NH3 synthesis and cracking and methods of forming the same
JP4414951B2 (en) Catalyst for catalytic partial oxidation of hydrocarbons and process for producing synthesis gas
Seshan et al. Carbon dioxide reforming of methane in the presence of nickel and platinum catalysts supported on ZrO2
KR100905638B1 (en) Syngas generation reactor and syngas generation method
TWI294413B (en) Method for converting co and hydrogen into methane and water
WO2003039740A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
US7105107B2 (en) Use of nonmicroporous support for syngas catalyst
JP4377699B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
JP2001080907A (en) Method for preliminarily reforming oxygen-containing gas
JP2006517176A (en) Silicon carbide supported catalyst for partial oxidation of natural gas to syngas
RU2208475C2 (en) Catalytic reactor for synthesis gas production
JP4377700B2 (en) Synthesis gas production catalyst and synthesis gas production method using the same
WO2012138218A1 (en) Multi-tubular steam reformer and process for catalytic steam reforming of a hydrocarbonaceous feedstock
US7101494B2 (en) Method for obtaining synthesis gas by partial catalytic oxidation
WO2018158883A1 (en) Encapsulated catalyst for carbon dioxide modification of methane, and method for producing synthesis gas using same
JP5135605B2 (en) Stationary hydrogen production reformer
US20040147619A1 (en) Chlorine-containing synthesis gas catalyst
JP4799312B2 (en) Synthesis gas production catalyst
JP4681265B2 (en) Syngas production method and synthesis gas production reactor.
KR101796071B1 (en) Multistage catalyst reactor for the selective oxidation using precious metal catalyst and mixed metal oxide catalyst
JP2006045049A (en) Method for producing synthesis gas
AU2002367767B2 (en) Controlled-pore catalyst structures and process for producing synthesis gas
JP2007117798A (en) Reforming catalyst, reforming method, operation method and structure of reforming catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees