JP6256093B2 - 竪鋳込型ダイカストマシンの射出スリーブ温度制御方法 - Google Patents

竪鋳込型ダイカストマシンの射出スリーブ温度制御方法 Download PDF

Info

Publication number
JP6256093B2
JP6256093B2 JP2014033014A JP2014033014A JP6256093B2 JP 6256093 B2 JP6256093 B2 JP 6256093B2 JP 2014033014 A JP2014033014 A JP 2014033014A JP 2014033014 A JP2014033014 A JP 2014033014A JP 6256093 B2 JP6256093 B2 JP 6256093B2
Authority
JP
Japan
Prior art keywords
temperature
injection sleeve
injection
sleeve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014033014A
Other languages
English (en)
Other versions
JP2015157300A (ja
Inventor
覚也 有田
覚也 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2014033014A priority Critical patent/JP6256093B2/ja
Publication of JP2015157300A publication Critical patent/JP2015157300A/ja
Application granted granted Critical
Publication of JP6256093B2 publication Critical patent/JP6256093B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、竪鋳込型ダイカストマシンの射出スリーブ温度制御方法に関する。
ダイカストマシンは、金型内の金型キャビティに溶融状態の金属(溶湯)を射出充填させ、冷却凝固させることにより、所望の形状の金属製品を鋳造する装置である。一般的に二分割構造の金型を、所定の型締力で型締めする型締装置の型締め方向(横型締め/竪型締め)や、金型キャビティに溶湯を射出充填させる射出装置の射出充填(鋳込み)方向(水平鋳込型/竪鋳込型)の組み合わせにより、様々な形態のダイカストマシンがある。
この中で、竪鋳込型の射出装置を有するダイカストマシンは、主に、アルミニウムや同合金を材料とするスクイズキャスティング法(溶湯鍛造法)に使用される。スクイズキャスティング法は、金型キャビティ内へ高速・中圧で溶湯を射出充填する通常のダイカスト法と異なり、金型キャビティ内へ低速・高圧で溶湯を射出充填するものである。溶湯を低速で金型キャビティ内へ射出充填するため、空気等のガスの溶湯内への巻き込みが少なく、また、長時間の加圧が可能であるため、内部欠陥が少なく機械的性質に優れた鋳造品が得られる。そのため、スクイズキャスティング法は、自動車等のアルミホイール、ブレーキキャリパー、アンチロックブレーキシステムのケーシングの耐圧部品や、サスペンションのアーム類の足回り部品等、保安部品の製造に採用される。
図1を参照しながら、竪型締め/竪鋳込型のダイカストマシンの射出装置及びスクイズキャスティング法の概略を説明する。図1は、一般的な、竪型締め/竪鋳込型のダイカストマシンの、射出装置上端部分及び金型の概略断面図である。
固定型(下型)20は、図示しない固定盤の上面に取り付けられており、固定型20と、図示しない可動盤の下面に取り付けられる可動型(上型)21とが組み合わされて、金型キャビティ22が成形される。そして、図示しない型締装置により、可動盤を昇降させることにより、固定型20に対して、可動型21を上下方向に型開閉・型締めできるように構成されている。
固定盤の所定距離下方には、竪鋳込型の射出装置1が配置されている。その上端部分には、射出スリーブ10が取り付けられており、射出スリーブ10にはプランジャチップ11aが挿入されている。プランジャチップ11aは、図示しないチップジョイントを介してプランジャロッド11bに取り付けられており、これらプランジャチップ11a及びプランジャロッド11bからなるプランジャ11は、図示しない射出シリンダのシリンダロッドに同軸上に取り付けられている。これら射出スリーブ10及びプランジャ11は、鋳込重量に応じて交換するため、それぞれ、射出装置1の上端部分及び射出シリンダに対して着脱可能に取り付けられている。
射出待機状態において、プランジャチップ11aは、円筒形状の射出スリーブ10の下端の開口を閉塞するように、射出スリーブ10の全高に対して下方側に降下した位置にあり、固定盤と射出スリーブ10との間の空間から、図示しない給湯手段の溶湯保持容器30により供給(給湯)される溶湯が、射出スリーブ10内に貯留される(給湯工程)。竪鋳込型ダイカストマシンの中には、給湯手段による射出スリーブ10への給湯工程を容易にするため、射出装置1全体を給湯手段側に傾転させたり、射出装置1全体を給湯手段側に横スライドさせたりして、射出スリーブ10の上端部分の開口を、固定盤の下方領域外に移動させる構成を有するものもある。
射出スリーブ10は、射出シリンダと独立した、図示しない昇降手段を介して射出装置1の上端部分に取り付けられており、給湯工程後、この昇降手段及び射出シリンダを連動させ、射出スリーブ10及びプランジャチップ11a(プランジャ11)を一体的に上昇させる。そして、固定盤下面から上面へと貫通する貫通穴を介して、射出スリーブ10の上端部分を固定型20下面に形成される射出孔20aに当接(ドッキング)させる。その後、プランジャチップ11aを100〜150MPa以上の高圧力で、且つ、所定の速度(80mm/sec.〜500mm/sec.)でゆっくりと上昇させ、射出スリーブ10内に貯留された溶湯を、固定型20の射出孔20a及び金型キャビティ22間を連通するゲート部20bを介して、金型キャビティ22に射出充填させる(射出工程)。射出工程の後半、金型キャビティ内が溶湯で満たされた後(射出完了)も、溶湯の凝固収縮に応じてプランジャチップ11aを適宜上昇させながら、溶湯への高い圧力付与を継続させる(増圧工程)。図1中の2点鎖線は、固定型20へのドッキング時の射出スリーブ10他を示す。
金型キャビティ内の溶湯(鋳造品)の冷却凝固が完了した後、図示しない型締装置により可動型21が上方に型開きされ、図示しない押出装置により固定型20の金型キャビティ面から離型された鋳造品が、図示しない製品取出手段により金型外へ搬送される(製品取出工程)。その後、型開き状態の金型間に、図示しない離型剤塗布手段を挿入させ、固定型20及び可動型21の金型キャビティ面に離型剤が塗布される(離型剤塗布工程)。
一方、製品取出工程及び離型剤塗布工程の間、射出装置1においては、射出スリーブ10を降下させ、固定型20から離間させるとともに、プランジャ11を降下させる。射出スリーブ10及びプランジャチップ11aを射出待機位置に降下させた後、図示しない潤滑剤塗布手段により、射出スリーブ10内に潤滑剤(プランジャチップ11aの摺動潤滑用)を塗布させる(スリーブ潤滑剤塗布工程)。この潤滑剤の乾燥を待って、次の鋳造サイクルの給湯工程が開始される。
このような、竪鋳込型ダイカストマシンを使用するスクイズキャスティング法においては、以下の問題が指摘されている。まず、給湯工程開始から射出工程開始までの間における射出スリーブ10内面における凝固層(チル層)の形成である。これは、給湯されるアルミニウムや同合金の溶湯温度(600℃前後)と、これよりも低い、射出スリーブ10の温度との差異により、射出スリーブ10の内面に接触した溶湯が冷却され、同内面に層状に凝固層が形成されるものである。特に、射出装置1の射出スリーブ10及びプランジャチップ11a、更に、これらと接触している射出系部材の温度が低い(予熱されていない)運転開始時及び運転初期や、射出スリーブ10を積極的に冷却させる場合に、この凝固層の形成が問題となる。尚、射出スリーブ10を積極的に冷却させる場合とは、射出スリーブ10内の潤滑剤の塗布状況を向上させるために、スリーブ潤滑剤塗布工程において、潤滑剤を大量に塗布したり、射出スリーブ10の外周部へ冷却ジャケットを配置したりする場合である。
この凝固層の形成の問題とは、まず、射出工程時、プランジャチップ11aがこれら凝固層をこそぎ取りながら上昇するため、こそぎ取った凝固層が溶湯に混入し、製品不良の要因となる点である。次に、これら凝固層をこそぎ取るために、プランジャチップ11aの摺動抵抗が増加・変動する点である。前者は、微量の混入であっても、耐圧部品や保安部品を鋳造する場合には品質上の問題となる。後者は、プランジャチップ11aの上昇時における、射出速度や射出圧力の不安定化を招き、鋳造品の品質低下だけでなく、竪鋳込型の射出装置1の射出スリーブ10に生じるとされている太鼓状変形と相まって、チップかじり等のサイクル停止要因にも成り得る問題である。この太鼓状変形も、竪鋳込型ダイカストマシンを使用するスクイズキャスティング法における問題の1つである。
ここで、太鼓状変形について簡単に説明する。竪鋳込型の射出装置1においては、通常、射出スリーブ10を固定型20へドッキングさせるための昇降ストローク及び、射出充填のためにプランジャ11を昇降させるための射出シリンダの射出ストロークが一定である。そのため、射出待機状態におけるプランジャチップ11aの下降位置は一定である。一方、給湯量(鋳込み重量)に応じて、給湯完了後の射出スリーブ10内の湯面高さが、射出スリーブの上端面に対して極端に近づいたり、離間したりしないように、射出スリーブ10の内径(プランジャチップ11aの外径)を変更する必要がある。しかしながら、様々な給湯量に対して、常に、給湯完了後の湯面高さを一定にできる訳ではない。また、給湯時や、射出スリーブ10の固定型20へのドッキング動作時の、射出スリーブ10からの湯こぼれの防止のために、射出スリーブ10には、最高許容湯面高さがその上端面から所定距離だけ下方に設定されている。
このような状況から、竪鋳込型の射出装置1の射出スリーブ10においては、給湯工程開始から射出工程開始までの間、内部の溶湯の湯面高さより所定距離上方に離間し、熱膨張量の少ない上端側、及び、フランジ部を有し、射出装置1に同フランジ部が固定され。熱膨張量が制約される下端側に対して、給湯時に溶湯が給湯される略中央部の領域(高さ)は、溶湯の熱量が直接享受され、且つ、熱膨張量の制約が少ない。その結果、給湯時に射出スリーブ10の略中央部の直径が、上下端部より増大する変形が発生する。このような変形を太鼓状変形と呼称するものである。
特許文献1には、2条の熱媒体通路でかつ一端部では入口と出口を有し他端部では2条の熱媒体通路が互いに連通している熱媒体通路を設けた竪型鋳込スリーブ(射出スリーブ)を用い、この熱媒体通路内に200℃〜350℃の冷却用熱媒体を上昇方向と下降方向の両方向に同時往復で流し、鋳込スリーブの温度を200〜350℃の高温に維持している状態で、給湯を行う竪型ダイカスト法が開示されている。
特許文献1の竪型ダイカスト法においては、鋳込スリーブの冷却のために水ではなく、適切に温度管理される熱媒体を使用するため、鋳込スリーブへの給湯時における鋳込スリーブを吸熱して、離型剤(潤滑剤)の塗布・乾燥に適した温度まで冷却し、且つ、その温度を維持することができるとしている(特許文献1の段落[0002]、[0009]〜[0011]参照)。また、熱媒体通路の出入口が、ともに鋳込スリーブの下端にあり、2条の溝でスリーブ上方までの間を往復しているため、鋳込スリーブの軸方向の温度は平均化され、スリーブの熱膨張(太鼓状変形)による変化量も軸方向について差が少なく、プランジャチップと鋳込スリーブ内面との隙間の差もなく、プランジャチップの焼付、溶湯の吹き出しなどのトラブルの発生が防止できるとしている。更に、ダイカストマシンの起動以前に熱媒体を流しておけば、鋳込スリーブが予熱され運転開始時の捨打が不要となるとしている。
一方、特許文献2には、外周に軸線方向に向かって電磁コイルを螺旋状に巻付けた竪型鋳込スリーブ装置(射出スリーブ)を用いて、給湯時、鋳込スリーブ壁面部付近で、凝固または半凝固になりかけている溶湯を再加熱して、溶解または凝固比率の小さい状態にできるような周波数の交流電流を電磁コイルに流すことにより、鋳込抵抗を小さくする竪型ダイカスト法が開示されている。
特許文献2の竪型ダイカスト法においては、鋳込スリーブ自体ではなく、鋳込スリーブ内の溶湯を直接発熱させることができ、鋳込スリーブ自体の温度及び溶湯温度を上昇させるヒータによる鋳込スリーブの加熱のように、溶湯温度を上昇させすぎることがなく、また、電磁コイルに流す交流電流の周波数の選択により、溶湯の発熱範囲も選択することができるとしている(特許文献2の段落[0008]及び[0009]参照)。
特開平08−197219号公報 特開平09−164465号公報
ここで、射出待機状態において、プランジャチップ11aにより閉塞され、且つ、射出装置1と接触している射出スリーブ10の下方部の熱容量に対して、上端に開口を有し、他の部材と接触していない射出スリーブ10の上方部の熱容量は小さい。そのため、射出スリーブ10及びプランジャチップ11a、更に、これらと接触している射出系部材が常温の状態(予熱されていない状態)においては、射出スリーブ10の上方部が加熱され易く、下方部が加熱され難いという加熱特性となる。また、射出スリーブ10への加熱手段の装着や、連続鋳造により、射出スリーブ10が十分に昇温された状態(予熱された状態)においては、熱容量の小さい射出スリーブ10の上方部が冷却され易く、熱容量の大きい下方部が冷却され難いという冷却特性となる。
更に、射出スリーブ10の上方部の軸方向の一部には、固定型20の射出孔20aとのドッキング代確保のため、特許文献1の熱媒体通路や特許文献2の電磁コイルのような加熱手段の配置が困難である。そのため、射出スリーブ10の上方部の上端面近傍の温度制御を直接行わせることが困難であり、この部位の加熱特性は、射出スリーブ10の上方部においても、加熱手段が配置される領域とは異なるものとならざるを得ない。
このような、射出スリーブ10の軸方向における加熱・冷却特性の差異や、先に、射出スリーブの太鼓状変形で説明したように、射出スリーブ10の略中央部のみが、溶湯により局部的に加熱される加熱領域の差異を鑑みた場合、特許文献1の熱媒体通路や特許文献2の電磁コイル、すなわち、軸方向に配置される単一の加熱手段による、軸方向に略均一な加熱制御では、射出スリーブ10やその内部の溶湯の、軸方向の温度を略均一に温度制御することは困難であるという問題がある。
具体的には、特許文献1の竪型ダイカスト法において、射出スリーブ10の内面に、離型剤(潤滑剤)を適切に塗布・乾燥させるために、給湯時に、最も温度が高い射出スリーブ10の略中央部を、適温(200〜350℃)まで加熱、あるいは、冷却する場合、熱媒体通路の仕様(断面積等)や熱媒体の流量が、十分な加熱・冷却能力を有していれば、射出スリーブ10の略中央部における適切な温度制御が可能である。しかしながら、加熱・冷却能力が、射出スリーブ10の軸方向において略均一なため、先に説明した理由により、射出スリーブ10の上方部や下方部においては、射出系部材の予熱状態により、適温までの加熱・冷却の過不足が生じる。そのため、射出スリーブの温度を、軸方向に平均化するという効果を奏することは困難である。当然ながら、射出スリーブ10の太鼓状変形を抑制することも困難である。
同様に、特許文献2の竪型ダイカスト法においても、給湯時に溶湯と直接接触する、射出スリーブ10の略中央部の内面に形成される凝固層を溶解または溶湯を凝固比率の小さい状態にするのに適した周波数の交流電流を流せば、射出スリーブ10の略中央部を加熱させずに、その中央部内面の凝固層の溶解や溶湯の凝固比率を低下させることは可能である。しかしながら、溶湯が満たされてない、すなわち、加熱対象となる溶湯のない射出スリーブ10の上方部や下方部は、電磁コイルを流れる交流電流により射出スリーブ10自体や射出系部材が誘導加熱され、意図しない加熱状態となる。この加熱状態も、先に説明した理由により、射出スリーブ10の上方部や下方部において、あるいは、射出系部材の予熱状態により異なることは言うまでもない。そのため、射出スリーブ10の太鼓状変形を十分に抑制することは困難であり、鋳込用のプランジャ11の力が射出スリーブ内で減ずることがなく、鋳造品内への凝固層混入がないという効果を十分に奏することができない。
本発明は、上記したような問題点に鑑みてなされたもので、具体的には、射出スリーブの予熱状態に依らず、射出スリーブの軸方向で異なる温度制御を行わせて、射出スリーブの軸方向の温度差を所定範囲に制御することができる、竪鋳込型ダイカストマシンの射出スリーブ温度制御方法を提供することを目的としている。
本発明の上記目的は、射出スリーブの外周の、軸方向に配置される複数の加熱手段と、
前記各加熱手段により加熱される前記射出スリーブの実温度を測定可能に配置される複数の温度検出手段と、
前記各温度検出手段により検出される前記射出スリーブの実温度に基づき、前記各加熱手段の加熱温度を独立して制御する制御手段と、
を備え、
前記射出スリーブへ溶湯が供給されるまでに、前記各温度検出手段により検出される前記射出スリーブの実温度を、予め設定される射出スリーブ管理温度Tに到達させるとともに、前記各温度検出手段により検出される前記射出スリーブの実温度の差異が、所定範囲内になるように、前記各加熱手段の加熱温度が制御される、竪鋳込型ダイカストマシンの射出スリーブ温度制御方法であって、
前記射出スリーブ管理温度Tsが、初期予熱射出スリーブ管理温度T1sであって、前記射出スリーブへ溶湯が供給されるまでに、前記温度検出手段により検出される前記射出スリーブの実温度のすべてが、前記初期予熱射出スリーブ管理温度T1s以上の場合、前記射出スリーブ管理温度Tsを、連続運転射出スリーブ管理温度T2sに昇温させて、前記各加熱手段の加熱温度が制御される、竪鋳込型ダイカストマシンの射出スリーブ温度制御方法によって達成される。
また、本発明に係る射出スリーブ温度制御方法においては、前記初期予熱射出スリーブ管理温度T1から前記連続運転射出スリーブ管理温度T2への前記射出スリーブ管理温度T昇温を、複数回の鋳造サイクルにおいて分割して行っても良い。
本発明に係る、竪鋳込型ダイカストマシンの射出スリーブ温度制御方法においては、射出スリーブの外周の、軸方向に配置される複数の加熱手段と、
前記各加熱手段により加熱される前記射出スリーブの実温度を測定可能に配置される複数の温度検出手段と、
前記各温度検出手段により検出される前記射出スリーブの実温度に基づき、前記各加熱手段の加熱温度を独立して制御する制御手段と、
を備え、
前記射出スリーブへ溶湯が供給されるまでに、前記各温度検出手段により検出される前記射出スリーブの実温度を、予め設定される射出スリーブ管理温度Tに到達させるとともに、前記各温度検出手段により検出される前記射出スリーブの実温度の差異が、所定範囲内になるように、前記各加熱手段の加熱温度が制御される竪鋳込型ダイカストマシンの射出スリーブ温度制御方法であって、
前記射出スリーブ管理温度Tsが、初期予熱射出スリーブ管理温度T1sであって、前記射出スリーブへ溶湯が供給されるまでに、前記温度検出手段により検出される前記射出スリーブの実温度のすべてが、前記初期予熱射出スリーブ管理温度T1s以上の場合、前記射出スリーブ管理温度Tsを、連続運転射出スリーブ管理温度T2sに昇温させて、前記各加熱手段の加熱温度が制御されるため、射出スリーブの予熱状態に依らず、射出スリーブの軸方向で異なる温度制御を行わせて、射出スリーブの軸方向の温度差を所定範囲に制御することができる。
一般的な、竪型締め/竪鋳込型のダイカストマシンの、射出装置上端部分及び金型の概略断面図である。 本発明に係る、竪型締め/竪鋳込型のダイカストマシンの射出スリーブの概略断面図である。 本発明の実施例1に係る射出スリーブ温度制御方法を、射出スリーブの予熱に採用する場合の、射出スリーブの実温度及び加熱手段の加熱温度の時間変化のグラフを示す図である。 実施例1に係る射出スリーブ温度制御方法における、自動捨て打ちの1鋳造サイクルにおける射出スリーブ10の実温度の時間変化のグラフを示す図である。
以下、本発明を実施するための形態について、添付図面を参照しながら詳細に説明する。 尚、以下の実施例は、本発明を、記載された実施の形態に限定するものではなく、特許請求の範囲内の色々な形で実施できることは言うまでもない。
図2及び図3を参照しながら本発明の実施例1を説明する。最初に、図2を参照しながら、本発明の実施例1に係る、竪鋳込型ダイカストマシンの射出スリーブの基本構成について説明する。図2(a)は、射出スリーブの概略断面図、図2(b)は、図2(a)のA部詳細図である。尚、本発明の実施例1に係る、竪鋳込型ダイカストマシンの射出スリーブは、先に、図1を参照しながら説明した、一般的な、竪型締め/竪鋳込型のダイカストマシンの射出スリーブ10に、軸方向に上下2箇所に配置される加熱手段及びそれぞれの加熱手段により加熱される射出スリーブ10の温度(実温度)を測定可能に配置される温度検出手段が追加されたものである。よって、追加されたこれらの構成要件について説明し、他の構成要件については、図2中にて図1と同じ符号を付すとともに、これら構成要件の説明は割愛する。
図2(a)に示すように、射出スリーブ10の外周の軸方向に、上下2つの加熱手段40が配置されている。下方を加熱手段41、上方を加熱手段42とする。先に説明したように、上方の加熱手段42は、射出スリーブ10を固定型20の射出孔20aにドッキングさせた際、固定型20他に干渉しないように、射出スリーブ10の上端面より所定距離下方に配置されている。尚、加熱手段40は、電熱線や発熱体を電気で加熱させる電気ヒータであっても、熱媒体を射出スリーブ10内部(特許文献1)やその外周部に装着した加熱ジャケットの熱媒体通路に流動させる形態でも、電磁コイルによる誘導加熱を行う形態(特許文献2)であっても良い。本実施例1においては、加熱手段40は、一般的なバンドヒータ(電気ヒータ)であるものとする。バンドヒータは、射出スリーブ10への着脱及び位置決めが容易であり、ユーティリティーの接続も電気配線のみで完了するため、本発明の実施に好適な加熱手段である。
上方の加熱手段42の配置部分の詳細を図2(b)に示す。加熱手段42により加熱される射出スリーブ10の上方の温度(実温度)を測定可能に、温度検出手段52(温度検出手段50)が配置されている。温度検出手段52はシース型熱電対である。シース型熱電対は、熱電対素線を内包するシース(金属製極細管)とアダプタ(リード線引出部)とからなる温度検出センサである。熱電対素線がシースで保護されているため、絶縁性と耐圧性を有し、腐食性雰囲気、金属部材の加工孔先端部、振動の激しい箇所等の過酷な環境の温度検出に使用される。よって、射出スリーブ10の温度検出に好適な温度検出手段の1つである。
図2(b)に示すように、温度検出手段52のシース部52aを埋設するため、射出スリーブ10の側面厚みの略中央部まで、射出スリーブ10の側面に挿入穴が加工されている。また、この挿入穴の外周面側には、温度検出手段52のコンプレッションフィッティング52bを固定するためのテーパー雌ねじ加工等がなされる。コンプレッションフィッティング52bは、温度検出手段52のシース部52aを温度検出対象に対して押圧・固定させるためのものである。また、図示はしていないが、シース型熱電対には、温度検出対象に、シース先端を、所定の押し付け力を付与させた状態で押し付ける、スプリング等の弾性体付の取付部材もラインナップされるため、必要に応じて採用されれば良い。
このように、温度検出手段52の検出部(シース部52a)が射出スリーブ10の外周面に埋設されることにより、加熱手段42の加熱制御に対する射出スリーブ10の実温度を正確に測定させることができる。加熱手段42の加熱温度及び射出スリーブ10内の溶湯温度のそれぞれの影響を最小とするために、シース部52aの先端が、射出スリーブ10の側面厚みの略中央部に当接・押圧されるように埋設されることが好ましい。
本実施例1においては、図や説明を簡単にするために、温度検出手段52を加熱手段42の加熱領域(高さ)の略中央に1箇所配配置させる形態としたが、加熱手段42の加熱制御に対する射出スリーブ10の実温度をより正確に測定させるために、温度検出手段52を加熱手段42の加熱領域の高さ方向に複数個配置させたり、加熱領域の同一高さの外周に均等角度で複数個配置させたりしても良い。
温度検出手段52のコンプレッションフィッティング52b、及び、シース部52aの射出スリーブ10の外周面側は、加熱手段42に適宜形成させた開口部に挿入させる。また、同開口部から突出させたシース部52aに連続するアダプタ部52c(リード線引出部)に電気配線が施工される。このような構成により、アダプタ部52cの温度検出手段52用の電気配線を取り外せば、温度検出手段52を取り外すことなく、加熱手段42の脱着が可能である。
尚、図2(b)は、図2(a)のA部詳細図であって、下方の加熱手段41の配置部分の詳細は図示していないが、下方の加熱手段41においても、加熱手段41により加熱される射出スリーブ10の下方の温度(実温度)を測定可能に、温度検出手段52と同様のシース型熱電対である温度検出手段51(温度検出手段50)が配置されている。これら構成要件の基本的な配置は図2(b)と同じため、加熱手段42及び温度検出手段52他の説明及び図示は割愛する。
また、加熱手段40及び温度検出手段50はそれぞれ、図示しない制御手段に電気的に接続されている。この制御手段により、各温度検出手段40により検出される射出スリーブ10の実温度が監視され、この射出スリーブ10の実温度と、後述する射出スリーブ温度制御方法とに基づき、各加熱手段40の加熱温度が独立して制御される。この制御手段は、竪鋳込型ダイカストマシンの制御手段(制御装置)と別体であっても良いし、意図する制御機能を、竪鋳込型ダイカストマシンの制御手段(制御装置)に組み込んだものであっても良い。
引き続き、図3を参照しながら、本実施例1に係る、竪鋳込型ダイカストマシンの射出スリーブ10における射出スリーブ温度制御方法を説明する。図3は、本発明の実施例1に係る射出スリーブ温度制御方法を、射出スリーブ10の初期予熱に採用する場合の、射出スリーブ10の実温度及び加熱手段40の加熱温度の時間変化のグラフを示す図である。横軸が時間t(sec.)を、縦軸が温度T(℃)を示す。各グラフについては、グラフHが下方の加熱手段41の加熱温度の変化を、グラフHが上方の加熱手段42の加熱温度の変化を示す。また、グラフSが下方の温度検出手段51により検出される射出スリーブ10の実温度の変化を、グラフSが上方の温度検出手段52により検出される射出スリーブ10の実温度の変化を示す。
ここで、スクイズキャスティング法に限らず、ダイカスト法においては、鋳造運転の開始前に、鋳造を目的とせず、射出スリーブ10等を含む射出系部材や金型の予熱を目的として、実際に溶湯を射出スリーブ10等に給湯してそのまま凝固させたり、金型キャビティ内に射出充填させたりする。これを捨て打ち等と呼称する。
射出スリーブ10を含む射出系部材や金型が、所定温度以上に予熱されていなければ、射出スリーブ10内に給湯した溶湯の温度低下が著しく、溶湯の流動性が低下し凝固速度が増加するため、金型キャビティ内に溶湯をきちんと流動させることができない。捨て打ちは、このような状態を回避するために行われるものである。竪鋳込型ダイカストマシンにおいては、まず、捨て打ちの初期数ショットは、射出スリーブ10を含む射出系部材を予熱するために、給湯後、射出スリーブ10を固定型20にドッキングさせず、射出スリーブ10内で溶湯を凝固させてから、ゆっくりとプランジャ11を上昇させて、射出スリーブ10内で円柱状に凝固した溶湯(ナマコ)を人手で取り除く。
次に、射出スリーブ10を含む射出系部材が所定温度以上に予熱され、給湯後の射出スリーブ10内の溶湯の温度低下が抑制されて、射出スリーブ10内に給湯された溶湯の最低限の流動性が確保できる状態になった後、実際に金型キャビティ内に溶湯を充填させて、金型を予熱させる自動捨て打ちに移行させる。自動捨て打ちの間は、最低限の流動性しか確保されていない溶湯と、十分に予熱されていない金型キャビティ内へ充填される溶湯の凝固速度が、連続鋳造時に対して増加していることを鑑み、正式な鋳造条件とは異なる捨て打ち用の鋳造条件が適用される。
当然ながら、このような捨て打ちの間に鋳造される、ナマコや鋳造品は不良品にならざるを得ず、人手を必要とするナマコ鋳造や自動捨て打ちのショット数が多ければ多い程、鋳造効率や良品率を低下させる。本実施例1は、本発明に係る射出スリーブ温度制御方法を、射出スリーブ10の初期予熱に採用することによって、捨て打ちのショット数を減少させ、正式な鋳造条件での連続鋳造にスムーズに移行させるものである。
図3の説明に戻る。竪鋳込型ダイカストマシンによる鋳造が開始されておらず、射出スリーブ10の初期予熱が行われていない状態がグラフ原点(t=0)であり、時間t1から、下方の加熱手段41及び上方の加熱手段42の加熱温度の制御が開始される。まず、射出スリーブ10の実温度(S及びS)が、入力設定される所定時間tまでに、予め設定される初期予熱射出スリーブ管理温度T1に到達するように昇温され、且つ、その間、射出スリーブ10の軸方向の実温度(S及びS)の差異Δ(デルタ)Tが所定範囲ΔTMAX内になるように、下方の加熱手段41及び上方の加熱手段42の加熱温度(H及びH)が独立して制御される。
尚、図3のグラフ原点及び時間t1において、加熱手段40の加熱温度(H及びH)と、射出スリーブ10の実温度(S及びS)とが異なるように記載している。射出スリーブ10の初期予熱が行われていない状態において、これら4部位の温度は略同じであるが、これら4部位の温度をすべて同一に記載すると、各温度変化が分かり難くなるため、あえて、このように記載したものである。
本温度制御は、加熱手段41の加熱温度(H)の制御結果としての、射出スリーブ10の下方の実温度(S)を基準として、射出スリーブ10の上方の実温度(S)を、この下方の実温度(S)に追従させるように、加熱手段42の加熱温度(H)が制御されることが好ましい。何故なら、このように、熱容量が小さく、加熱温度の変化率に対する、実温度の変化率の応答速度が速い、射出スリーブ10の上方の実温度(S)を、同応答速度が遅い射出スリーブ10の下方の実温度(S)に追従させる方が、射出スリーブ10の実温度のハンチングを防止しながら、これら実温度の差異ΔTが所定範囲ΔTMAX内になるように制御する上で有利だからである。
まず、射出スリーブ10の実温度(S/温度検出手段52)が、所定時間tまでに射出スリーブ管理温度Tに昇温されるよう、加熱手段41の加熱温度(H)が制御される。具体的には、微少時間における加熱手段41の加熱温度(H)の変化率(この場合は増加率)に対する、同微少時間における射出スリーブ10の実温度(S/温度検出手段52)の変化率から、次の微少時間における射出スリーブ10の目標実温度(S)及び加熱温度(H)が決定される。制御開始時の加熱時間の変化率は、予め制御手段に固定値が設定されていても良いし、都度入力されても良い。また、初期予熱開始前の射出スリーブ10の実温度と射出スリーブ管理温度Tとの差異や所定時間tに基づいて、予め制御手段に入力設定されている初期加熱時間変化率設定から、逐次、自動選択されても良い。
次に、上記のような、加熱手段41の加熱温度(H)の制御結果としての、射出スリーブ10の下方の実温度(S)に追従させて、射出スリーブ10の上方の実温度(S)が、それぞれの実温度の差異ΔTが所定範囲ΔTMAX内になるように、加熱手段42の加熱温度(H)が制御される。射出スリーブ10の上方の実温度(S)に対する加熱手段42の加熱温度(H)の制御は、下方の実温度(S)との差異を考慮する以外は、射出スリーブ10の下方の実温度(S)に対する加熱手段41の加熱温度(H)の制御と同様で良い。また、上記のような制御は一例であって、射出スリーブ10の実温度(S及びS)が射出スリーブ管理温度Tに達する間、これら実温度の差異ΔTが所定範囲ΔTMAX内になるように制御されれば、この制御に限定される必要はない。
図3を参照しながら、上記の制御を説明する。図3の時間t2以降、下方の加熱手段41及び上方の加熱手段42の加熱温度(H及びH)の変化率(増加率)が異なり始める。これは、先に説明したように、射出スリーブ10の下方が加熱され難く、射出スリーブ10の上方の実温度(S)が上がり勝手になるため、これを防止するために、上方の加熱手段42の加熱温度(H)を下方の加熱手段41の加熱温度(H)より低い変化率(増加率)に押さえるためである。これにより、射出スリーブ10の上方の実温度(S)が、射出スリーブ10の下方の実温度(S)に対してΔTMAX以上高くならないように制御されている。また、射出スリーブ10の上方の実温度(S)が、射出スリーブ10の下方の実温度(S)に対してΔTMAX以上低くならないように、すなわち、時間t2及びt4間で、射出スリーブ10の上方の実温度(S)及び下方の実温度(S)の上下関係が逆になるように制御させることも可能である。
次に、加熱され易い射出スリーブ10の上方の実温度(S)が、射出スリーブ10の下方の実温度(S)よりも先に、時間t3近傍で射出スリーブ管理温度Tに到達する。制御手段は、時間t3直前のSの変化率(増加率)から、時間t3近傍でのSの射出スリーブ管理温度Tの到達を予測し、SがTを超えないように、時間t3近傍での加熱手段42の加熱温度(H)の変化率を抑制する。また、この時、射出スリーブ10の下方の実温度(S)は、まだ射出スリーブ管理温度Tに到達しておらず、加熱手段41による加熱温度(H)は上昇中である。そのため、下方の加熱手段41の熱エネルギーは、一部、射出スリーブ管理温度Tに到達した射出スリーブ10の上方にも伝播するため、時間t3以降、上方の加熱手段42の加熱温度(H)が、射出スリーブ10の上方の実温度(S)を射出スリーブ管理温度Tに維持するのに必要な温度まで、漸次降温される。
引き続き、加熱され難い射出スリーブ10の下方の実温度(S)が、時間t3から遅れて、時間t4近傍で射出スリーブ管理温度Tに到達する。この時間t4が、先に入力設定される所定時間tと略同じになるように、下方の加熱手段41の加熱温度(H)が制御されることは先に説明したとおりである。射出スリーブ10の上方の実温度(S)と同様に、制御手段は、時間t4直前のSの変化率(増加率)から、時間t4近傍でのSの射出スリーブ管理温度Tの到達を予測し、SがTを超えないように、時間t4近傍での加熱手段41の加熱温度(H)の変化率を抑制する。この時、降温中とは言え、上方の加熱手段42の加熱は継続中である。そのため、時間t4以降、下方の加熱手段41の加熱温度(H)が、射出スリーブ10の下方の実温度(S)を射出スリーブ管理温度Tに維持するのに必要な温度まで、漸次降温される。その後、時間t5近傍で、加熱手段40の加熱温度(H及びH)がサチュレートする。
ここで、図3の時間t2及びt4間においては、S<Sのように記載され、時間t5近傍においては、H<T<Hのように記載されている。これら温度の関係は、竪鋳込型ダイカストマシンの射出装置1において、様々な装置サイズや装置構成に起因する射出スリーブ10の軸方向の熱容量の差異、あるいは、射出スリーブ管理温度Tや所定時間T等の諸入力設定値に依るものであり、また、各グラフの形状(変化率等)についても、射出スリーブ10の軸方向の加熱・冷却特性に依るものである。そのため、これらS、S、H、H及びTの上下関係や、各グラフの形状は、必ずしも図3のようにならないことは言うまでもない。
実施例1に係る射出スリーブ温度制御方法においては、初期予熱射出スリーブ管理温度T1を、先に説明した、射出スリーブ10内の溶湯が最低限の流動性を確保できる状態となる温度と略同じ温度に設定することにより、捨て打ち初期の、人手を必要とするナマコ鋳造をほぼ省略して、金型を予熱するための自動捨て打ちに移行させることができる。この温度は、鋳込み重量や鋳造品の形状にも依るが、100℃〜150℃と言われている。このように、人手を必要とするナマコ鋳造作業を省略し、溶湯を使用せずに、自動捨て打ちが可能な状態まで、射出スリーブ10を予め、初期予熱させておくことができれば、鋳造現場における休憩時間等にこの予熱を自動でおこなわせ、作業開始時に、すぐに溶湯を使用する自動捨て打ちを開始させることが可能である。また、射出スリーブ10の軸方向の実温度の差異を所定範囲内に抑制することができるため、太鼓状変形を抑制することができ、自動捨て打ちにおけるプランジャチップ11aのチップかじり等の発生を防止することができる。その結果、鋳造効率を向上させることができる。
また、実施例1に係る射出スリーブ温度制御方法は、自動捨て打ちを開始した後、正式な鋳造条件での連続鋳造、すなわち、製品としての鋳造品を鋳造する連続鋳造にスムーズに移行させることができる。具体的には、射出スリーブ10へ溶湯が供給されるまでに、温度検出手段50(温度検出手段51及び温度検出手段52)により検出される射出スリーブ10の実温度(S及びS)のすべてが、初期予熱射出スリーブ管理温度T1以上に到達した場合、初期予熱射出スリーブ管理温度T1を、連続運転射出スリーブ管理温度T2に変更して、各加熱手段40(加熱手段41及び加熱手段42)の加熱温度(H及びH)が制御される。
図4は、実施例1に係る射出スリーブ温度制御方法における、自動捨て打ちの1鋳造サイクルにおける射出スリーブ10の実温度の時間変化のグラフを示す図である。横軸が時間t(sec.)を、縦軸が温度T(℃)を示す。図3と同様に、グラフSが下方の温度検出手段51により検出される射出スリーブ10の実温度の変化を、グラフSが上方の温度検出手段52により検出される射出スリーブ10の実温度の変化を示す。
図4のグラフ原点(t=0)から時間t6が自動捨て打ちの1鋳造サイクルであり、原点から時間t1が給湯工程である。前回の鋳造サイクルにおいて、初期予熱射出スリーブ管理温度T1まで予熱され、射出待機位置にある射出スリーブ10に溶湯が給湯される。射出スリーブ10は溶湯によりその実温度が急上昇するものの、溶湯と接触する下方の実温度(S)の温度上昇率の方が、上方の実温度(S)の温度上昇率よりも大きい。
次に、時間t1からt2が射出スリーブ10の上昇・固定型20へのドッキングである。この間、冷却特性の差異から若干異なるものの、基本的には、給湯直後の実温度の差異を略維持した状態で、射出スリーブ10の上方及び下方は略同様の温度降下を示す。また、時間t2からt3が射出工程及びキュアリングタイム(冷却凝固時間)である。この間、射出スリーブ10内の溶湯は、すべてプランジャ11の上昇により、金型キャビティ22に射出充填され、射出スリーブ10内にはなくなる。また、射出スリーブ10の上端部分が固定型20下面の射出孔20aにドッキングされた状態のため、射出スリーブ10の上端部分の熱容量の少なさも一時的に解消されるため、射出スリーブ10の実温度の温度降下に大きな差異はない。これは、時間t3からt4間の射出スリーブ10及びプランジャ11の射出待機位置への降下時においても同様である。
次に、時間t4からt5がスリーブ潤滑剤塗布工程である。自動捨て打ちであっても、プランジャ11を昇降させる以上、射出スリーブ10内に潤滑剤が塗布される。これにより、射出スリーブ10の実温度は更に温度降下する。冷却特性の差異から若干異なるものの、給湯直後の実温度の差異を略維持した状態で、射出スリーブ10の上方及び下方は略同様の温度降下を示す。
ここで、スリーブ潤滑剤塗布工程完了後における、射出スリーブ10の実温度(S及びS)のすべてが、初期予熱射出スリーブ管理温度T1以上の場合、初期予熱射出スリーブ管理温度T1を、連続運転射出スリーブ管理温度T2に変更する。図4中に加熱手段40の加熱温度(H及びH)は図示していないが、時間t5からt6のスリーブ再予熱工程において、すなわち、時間t6において、射出スリーブ10へ溶湯が供給されるまでに、射出スリーブ10の実温度(S及びS)を、連続運転射出スリーブ管理温度T2に到達させるとともに、各温度検出手段50により検出される射出スリーブ10の実温度の差異が、所定範囲ΔTMAX内になるように、各加熱手段40の加熱温度(H及びH)が制御される。当然ながら、この初期予熱射出スリーブ管理温度T1から連続運転射出スリーブ管理温度T2へ切り換え時には、初期予熱射出スリーブ管理温度T1に到達させる所定時間tも、自由設定から、スリーブ潤滑剤塗布工程完了時から給湯工程開始までの短い時間に切り換えられることは言うまでもない。
この連続鋳造射出スリーブ管理温度T2及び所定時間tの切り換えは、本実施例1において、当初設定される初期予熱射出スリーブ管理温度T1が射出スリーブ10の予熱のための管理温度であって、先に説明したように、射出スリーブ10内の溶湯が最低限の流動性を確保できる状態となる温度と略同じ温度、すなわち、製品としての鋳造品を鋳造する連続鋳造時に好適な温度より低い温度に設定されているからである。この当初設定される初期予熱射出スリーブ管理温度T1が低く設定されるのは、自動捨て打ちをできるだけ早く開始するためでもある。しかしながら、自動捨て打ちに移行した後は、射出スリーブ10には、初期予熱射出スリーブ管理温度T1より高温の600℃前後の溶湯が繰り返し給湯されるため、少なくとも射出スリーブ10の略中央部は、連続鋳造時に好適な温度まで十分に予熱される。そのため、初めから初期予熱射出スリーブ管理温度T1を高く設定して、時間をかけて射出スリーブ10を高い温度まで予熱する必要はない。この連続鋳造用の射出スリーブ予熱設定として好適な射出スリーブ10の連続鋳造射出スリーブ管理温度T2は、鋳込み重量や鋳造品の形状にも依るが、200℃〜300℃と言われている。
また、この連続鋳造射出スリーブ管理温度T2への切り換えを、射出スリーブ10の実温度(S及びS)のすべてが、初期予熱射出スリーブ管理温度T1以上に到達した時点としているのは、この時点が、自動捨て打ちにおいて、熱容量が大きく、加熱され難い射出スリーブ10の下方及びそれに接触する射出系部材の全体が、当初目的としていた、初期予熱射出スリーブ管理温度T1に到達したタイミングであり、射出スリーブ10の実温度を、更に高い、連続鋳造時に好適な連続鋳造射出スリーブ管理温度T2へ昇温する温度制御がスムーズに行えるからである。もしも、一部に、初期予熱射出スリーブ管理温度T1に到達していない部位があれば、その部位を加熱する加熱手段に多大な負担が生じ、その他の部位の実温度との差異をΔTMAX内になるような加熱手段の加熱温度の制御が困難になる。
一方、この初期予熱射出スリーブ管理温度T1から連続鋳造射出スリーブ管理温度T2への切り換えは、それぞれに到達させる所定時間tの制約が大きくなる。そのため、この切り換えを、条件を満足した次の鋳造サイクルにおいていきなり行うのではなく、複数回の鋳造サイクルにおいて、初期予熱射出スリーブ管理温度T1及び連続鋳造射出スリーブ管理温度T2の差異をその鋳造サイクル回数で分割した差異ずつ、初期予熱射出スリーブ管理温度T1を鋳造サイクル毎に段階的に昇温させても良い。
この切り換えを、条件を満足した次の鋳造サイクルにおいて行うか、複数回の鋳造サイクルで分割して行うかについては、予め、これを選択する温度差異及び温度差異に準じた分割回数を、射出スリーブ10のサイズや加熱手段40の加熱能力に基づき設定しておくことが好ましい。
このように、所定の条件を満足した後に、初期予熱射出スリーブ管理温度T1を連続鋳造射出スリーブ管理温度T2へ切り換えることにより、自動捨て打ちの1鋳造サイクル毎に射出スリーブ10の実温度を上昇させることができる。この給湯工程前の射出スリーブの実温度の昇温により、溶湯が給湯された後の温度降下率が減少し、給湯後の射出スリーブ10内の溶湯温度を更に上昇させることができる。その結果、自動捨て打ちによる金型の予熱効率も向上させることができ、自動捨て打ちのショット数を減少させることができる。この切り換え後も、射出スリーブ10の軸方向の実温度の差異を所定範囲内に抑制することができることは言うまでもない。
図4においては、この初期予熱射出スリーブ管理温度T1から連続鋳造射出スリーブ管理温度T2への切り換えにより、前の自動捨て打ちにおいて、射出スリーブ10の下方の実温度(S)が温度T1MAXまで昇温され、次の自動捨て打ち(時間t6以降)においては、温度T2MAXまでの昇温が期待できる。このようにして、予め設定した、連続鋳造に好適な所定温度まで金型が予熱され、熱媒等による金型の温度調整手段により、金型温度が安定した状態において、既に射出スリーブ10の実温度も、連続鋳造に好適な連続鋳造射出スリーブ管理温度T2まで予熱されているため、自動捨て打ちから、製品としての鋳造品を鋳造する連続鋳造にスムーズに移行させることができる。実際の連続鋳造への移行条件は、スリーブ潤滑剤塗布工程後の射出スリーブ10の実温度及び金型温度を含む諸条件から適宜選択されれば良い。また、この移行条件を満たした後、自動捨て打ち用の鋳造条件から正式な鋳造条件へと自動的に切り換えられることが好ましい。
次に、本実施例2に係る射出スリーブ温度制御方法を説明する。本実施例2に係る射出スリーブ温度制御方法は、実施例1に係る射出スリーブ温度制御方法の後半で説明した、初期予熱射出スリーブ管理温度T1から連続鋳造射出スリーブ管理温度T2への切り換え後の射出スリーブ10の温度制御である。具体的には、射出スリーブ10へ溶湯が供給されるまでに、すなわち、スリーブ潤滑剤塗布工程完了時から給湯工程開始までに、射出スリーブ10の実温度(S及びS)を、連続運転射出スリーブ管理温度T2に到達させるとともに、各温度検出手段50により検出される射出スリーブ10の実温度の差異が、所定範囲ΔTMAX内になるように、各加熱手段40の加熱温度(H及びH)が制御されるものである。この制御自体は、実施例1で説明したものと何ら相違はないが、スリーブ潤滑剤塗布工程において冷却された射出スリーブ10の再予熱に有効である。これを実施例2として説明する。
一般的に、射出スリーブ10内面への潤滑剤の塗布及び乾燥に好適な温度は、諸条件にも依るが、200℃前後だと言われている。また、塗布及び乾燥が可能な上限温度は約250℃だと言われている。射出スリーブ10内面の温度が300℃を超えると、内面に吹き付けられた潤滑剤に含まれる水分が瞬時に蒸発し、その蒸発した水分が水蒸気として、内面に対する保温層や保護層となり、潤滑剤による射出スリーブ10の冷却を阻害するとともに、潤滑剤中の潤滑成分の射出スリーブ10内面への付着を阻害する。
一方、スリーブ潤滑剤塗布工程における潤滑剤の大量塗布や、射出スリーブ10の外周部への冷却ジャケットの配置等により、射出スリーブ10を積極的に冷却させ、上記温度まで射出スリーブ10の温度を降温させる場合、射出スリーブ10内面へ適切な潤滑層を形成させることができるものの、この温度のまま給湯を行えば、先に説明したような、射出スリーブ10内面への凝固層の形成が問題となる。ここで、特許文献1及び特許文献2のような、軸方向に配置される単一の加熱手段で再予熱を行っても、射出スリーブ10やその内部の溶湯の、軸方向の温度を略均一に温度制御することは困難である。
しかしながら、本発明の実施例2に係る射出スリーブ温度制御方法においては、スリーブ潤滑剤塗布工程での射出スリーブ10の冷却によって、射出スリーブ10の下方及び上方の少なくとも一方の実温度が、連続鋳造に好適とされる連続鋳造射出スリーブ管理温度T2(例えば200℃〜300℃)を下回った場合、図4の時間t5からt6のスリーブ再予熱工程において、射出スリーブ10の実温度(S及びS)を、連続運転射出スリーブ管理温度T2に到達させる。この間、当然ながら、各温度検出手段50により検出される射出スリーブ10の実温度の差異が、所定範囲ΔTMAX内になるように、各加熱手段40の加熱温度(H及びH)が制御される。
また、スリーブ潤滑剤塗布工程において、射出スリーブ10を200℃前後まで冷却しなくても、射出スリーブ10内面に潤滑剤が塗布・乾燥可能な場合でも、連続鋳造射出スリーブ管理温度T2(例えば200℃〜300℃)を下回った場合、上記のような温度制御が行われるため、スリーブ潤滑剤塗布工程での射出スリーブ10の冷却程度に依らず、冷却された射出スリーブ10の実温度を、給湯に好適な上記温度まで、軸方向の実温度の差異を所定範囲ΔTMAX内にした状態で再予熱させることができる。
この時、熱容量が大きく、冷却され難い射出スリーブ10の下方を加熱する加熱手段41は、連続鋳造により十分に予熱されている。そのため、射出スリーブ10の下方の実温度は、上方の実温度より高く維持され、スリーブ再予熱固定における昇温幅が小さく、加熱に大きな出力は不要である。一方、熱容量が小さく、射出スリーブ10の下方より冷却され易い上方を加熱する加熱手段42のみが、積極的に射出スリーブ10を加熱するため、軸方向に配置される単一の加熱手段で再予熱を行う場合に対して、省エネルギーを達成できる。
10 射出スリーブ
40 加熱手段
41 加熱手段(下方)
42 加熱手段(上方)
50 温度検出手段
51 温度検出手段(下方)
52 温度検出手段(上方)

Claims (2)

  1. 射出スリーブの外周の、軸方向に配置される複数の加熱手段と、
    前記各加熱手段により加熱される前記射出スリーブの実温度を測定可能に配置される複数の温度検出手段と、
    前記各温度検出手段により検出される前記射出スリーブの実温度に基づき、前記各加熱手段の加熱温度を独立して制御する制御手段と、
    を備え、
    前記射出スリーブへ溶湯が供給されるまでに、前記各温度検出手段により検出される前記射出スリーブの実温度を、予め設定される射出スリーブ管理温度Tsに到達させるとともに、前記各温度検出手段により検出される前記射出スリーブの実温度の差異が、所定範囲内になるように、前記各加熱手段の加熱温度が制御される、
    竪鋳込型ダイカストマシンの射出スリーブ温度制御方法であって、
    前記射出スリーブ管理温度Tsが、初期予熱射出スリーブ管理温度T1sであって、前記射出スリーブへ溶湯が供給されるまでに、前記温度検出手段により検出される前記射出スリーブの実温度のすべてが、前記初期予熱射出スリーブ管理温度T1s以上の場合、前記射出スリーブ管理温度Tsを、連続運転射出スリーブ管理温度T2sに昇温させて、前記各加熱手段の加熱温度が制御される、竪鋳込型ダイカストマシンの射出スリーブ温度制御方法。
  2. 前記初期予熱射出スリーブ管理温度T1sから前記連続運転射出スリーブ管理温度T2sへの前記射出スリーブ管理温度Tsの昇温を、複数回の鋳造サイクルにおいて分割して行う、請求項1に記載の射出スリーブ温度制御方法。
JP2014033014A 2014-02-24 2014-02-24 竪鋳込型ダイカストマシンの射出スリーブ温度制御方法 Active JP6256093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014033014A JP6256093B2 (ja) 2014-02-24 2014-02-24 竪鋳込型ダイカストマシンの射出スリーブ温度制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014033014A JP6256093B2 (ja) 2014-02-24 2014-02-24 竪鋳込型ダイカストマシンの射出スリーブ温度制御方法

Publications (2)

Publication Number Publication Date
JP2015157300A JP2015157300A (ja) 2015-09-03
JP6256093B2 true JP6256093B2 (ja) 2018-01-10

Family

ID=54181772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033014A Active JP6256093B2 (ja) 2014-02-24 2014-02-24 竪鋳込型ダイカストマシンの射出スリーブ温度制御方法

Country Status (1)

Country Link
JP (1) JP6256093B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277169A (ja) * 1985-09-30 1987-04-09 Ube Ind Ltd 竪型ダイカストマシンの溶湯鋳込装置
JPH0318463A (ja) * 1989-02-14 1991-01-28 Ube Ind Ltd ダイカストスリーブの温度制御方法およびダイカストスリーブ
JPH06304732A (ja) * 1993-04-20 1994-11-01 Ube Ind Ltd 射出スリーブの温度制御方法
JP2574195Y2 (ja) * 1993-04-20 1998-06-11 宇部興産株式会社 垂直状鋳込スリーブの温度制御装置

Also Published As

Publication number Publication date
JP2015157300A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
CA2855799C (en) Die cast nozzle and method for operating a die cast nozzle
JP2011131265A (ja) 真空ダイカスト装置および真空ダイカスト方法
US8342230B2 (en) Casting method
JP5035086B2 (ja) 粗材冷却装置および方法
US20100032455A1 (en) Control pin and spout system for heating metal casting distribution spout configurations
KR102352445B1 (ko) 금속 합금의 다이 캐스팅 방법 및 장치
JP6256093B2 (ja) 竪鋳込型ダイカストマシンの射出スリーブ温度制御方法
RU2697294C1 (ru) Система сопла для литья под давлением
CN104959549A (zh) 一种制芯机的射砂头装置
JP5936543B2 (ja) 溶融金属供給スパウト構造物を加熱するコントロールピン及びスパウトシステム
JP4139868B2 (ja) 高融点金属の高圧鋳造方法およびダイカスト装置
US6557617B1 (en) Method for process monitoring during die casting or thixoforming of metals
JP5292352B2 (ja) 射出装置及びダイカストマシン
JP3188815B2 (ja) 高圧鋳造装置およびその給湯方法
JP2011143467A (ja) ダイカスト鋳造方法
JPH09164465A (ja) 竪型ダイカスト法および装置
JPH06190528A (ja) ダイカスト鋳造方法
JPH06304732A (ja) 射出スリーブの温度制御方法
KR101675315B1 (ko) 용탕 분사용 노즐 보온 장치
JPH1157972A (ja) 圧力鋳造装置
JP2010012487A (ja) 成形型および成型方法
JP2023025999A (ja) 金属鋳造方法
JP2013169554A (ja) 鋳造方法
JPH0318463A (ja) ダイカストスリーブの温度制御方法およびダイカストスリーブ
KR20080102550A (ko) 알루미늄 다이캐스팅용 플런져 팁 냉각 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6256093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250