JP6252347B2 - Fluid heater - Google Patents

Fluid heater Download PDF

Info

Publication number
JP6252347B2
JP6252347B2 JP2014097752A JP2014097752A JP6252347B2 JP 6252347 B2 JP6252347 B2 JP 6252347B2 JP 2014097752 A JP2014097752 A JP 2014097752A JP 2014097752 A JP2014097752 A JP 2014097752A JP 6252347 B2 JP6252347 B2 JP 6252347B2
Authority
JP
Japan
Prior art keywords
heating element
flow path
fluid
comb
fluid heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014097752A
Other languages
Japanese (ja)
Other versions
JP2015216004A (en
Inventor
桂児 北林
桂児 北林
晃 三雲
晃 三雲
成伸 先田
成伸 先田
悦弘 西本
悦弘 西本
浦 康彦
康彦 浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014097752A priority Critical patent/JP6252347B2/en
Publication of JP2015216004A publication Critical patent/JP2015216004A/en
Application granted granted Critical
Publication of JP6252347B2 publication Critical patent/JP6252347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

本発明は、抵抗発熱体を用いて流体を加熱する流体加熱器に関する。   The present invention relates to a fluid heater that heats a fluid using a resistance heating element.

プロセス流体や洗浄液などの流体を所定の温度まで加熱する技術は、化学プラントや食品工場等の工業用途に留まらず、商業施設等に設置されたハンドドライヤーや一般家庭に於ける温水洗浄便座に至る様々な分野で広く適用されている。かかる流体の加熱では、被加熱流体である低温側の流体を蒸気や熱媒体などの高温側の流体と熱交換する方式が用いられることが多いが、高温側の流体が経済性等の理由で利用できない場合は、被加熱流体を所望の温度まで比較的すばやく加熱することが可能な抵抗発熱体による加熱方式を採用することがある。   Technology that heats fluids such as process fluids and cleaning liquids to a predetermined temperature is not limited to industrial applications such as chemical plants and food factories, but leads to hand dryers installed in commercial facilities and hot water cleaning toilet seats in general households. Widely applied in various fields. In the heating of such a fluid, a method of exchanging heat between a low-temperature side fluid that is a fluid to be heated and a high-temperature side fluid such as steam or a heat medium is often used. When it cannot be used, a heating method using a resistance heating element capable of heating the heated fluid to a desired temperature relatively quickly may be employed.

例えば特許文献1には、セラミック製のシートの片面に抵抗発熱体となる高融点金属を印刷法により塗布し、これをセラミック製のパイプ材の外周面に抵抗発熱体が内側となるように巻きつけた後、接着及び焼成により一体化させたセラミックヒータが開示されている。また、特許文献2には、片方の面が接液面となる平面状のセラミックス基板のもう片方の面に抵抗発熱体を設け、更にその上に絶縁層を覆うことで形成された流体加熱用のセラミックヒータが開示されている。   For example, in Patent Document 1, a high melting point metal that becomes a resistance heating element is applied to one side of a ceramic sheet by a printing method, and this is wound so that the resistance heating element is on the outer peripheral surface of a ceramic pipe material. A ceramic heater is disclosed that is integrated by bonding and firing after being applied. Patent Document 2 discloses a fluid heating element formed by providing a resistance heating element on the other surface of a flat ceramic substrate whose one surface is a liquid contact surface, and further covering an insulating layer thereon. A ceramic heater is disclosed.

特開2005−183371公報JP 2005-183371 A 特開2002−151236公報JP 2002-151236 A

昨今の環境保全や省電力に対する関心の高まりから、抵抗発熱体を用いた流体加熱器には消費電力が小さく効率よく流体を加熱できるものが求められている。しかしながら、上記した特許文献1に示す構造では、抵抗発熱体を覆うシートの材質が該シートが巻き付けられているパイプ状部材の材質と同じであるため、これらに挟まれている抵抗発熱体で発生した熱をパイプ状部材の内側を流れる流体に効率よく伝えることができなかった。また、特許文献2に示す構造では、温度変化が繰り返されるうちにセラミックス基板と絶縁層とのわずかな熱膨張係数差によりこれらの接着界面にクラックが生じやすく、信頼性を損なうことがあった。   Due to the recent increase in interest in environmental conservation and power saving, a fluid heater using a resistance heating element is required to have a low power consumption and can efficiently heat a fluid. However, in the structure shown in Patent Document 1 described above, since the material of the sheet covering the resistance heating element is the same as the material of the pipe member around which the sheet is wound, it is generated in the resistance heating element sandwiched between them. Heat could not be efficiently transferred to the fluid flowing inside the pipe-shaped member. Further, in the structure shown in Patent Document 2, cracks are likely to occur at the bonding interface due to a slight difference in thermal expansion coefficient between the ceramic substrate and the insulating layer while the temperature change is repeated, and the reliability may be impaired.

本発明はかかる従来の流体加熱器が有する問題点に鑑みてなされたものであり、熱効率及び再現性に優れた信頼性の高い流体加熱器を提供する事を目的としている。   The present invention has been made in view of the problems of the conventional fluid heater, and an object thereof is to provide a highly reliable fluid heater excellent in thermal efficiency and reproducibility.

上記目的を達成するため、本発明が提供する流体加熱器は、被加熱流体の流路を内部に備えた流路ユニットと、前記流路内に収容され且つ略同じ肉厚の電気絶縁材で被覆された線状発熱体とからなり、前記線状発熱体は前記絶縁被覆材同士が密着しないピッチで螺旋状に巻かれており、その螺旋軸の延在方向が前記流路の方向に略一致することを特徴としている。   In order to achieve the above object, a fluid heater provided by the present invention includes a flow path unit having a flow path of a fluid to be heated inside, and an electric insulating material accommodated in the flow path and having substantially the same thickness. The linear heating element is spirally wound at a pitch at which the insulating coating materials do not adhere to each other, and the extending direction of the spiral axis is substantially in the direction of the flow path. It is characterized by matching.

本発明によれば、従来の流体加熱器に比べて熱効率及び再現性に優れた信頼性の高い流体加熱器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the highly reliable fluid heater excellent in thermal efficiency and reproducibility compared with the conventional fluid heater can be provided.

本発明の流体加熱器の一具体例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one specific example of the fluid heater of this invention. 本発明の流体加熱器が有する線状発熱体の一具体例を示す平面図である。It is a top view which shows one specific example of the linear heating element which the fluid heater of this invention has. 本発明の流体加熱器が有する線状発熱体が巻き付けられる櫛歯状部材の一具体例を示す斜視図である。It is a perspective view which shows one specific example of the comb-tooth shaped member around which the linear heating element which the fluid heater of this invention has is wound. 図3の櫛歯状部材を構成する板状部材を示す斜視図である。It is a perspective view which shows the plate-shaped member which comprises the comb-tooth shaped member of FIG. 図3の櫛歯状部材に往側発熱体と復側発熱体とがスペーサーを介して巻き付けられている様子を示す正面図である。It is a front view which shows a mode that the outgoing side heat generating body and the back side heat generating body are wound around the comb-tooth shaped member of FIG. 3 via the spacer.

最初に本発明の実施形態を列記して説明する。本発明の実施形態の流体加熱器は、被加熱流体の流路を内部に備えた流路ユニットと、前記流路内に収容され且つ電気絶縁材で被覆された線状発熱体とからなり、前記線状発熱体は前記絶縁被覆材同士が密着しないピッチで螺旋状に巻かれており、その螺旋軸の延在方向が前記流路の方向に略一致することを特徴としている。かかる構成により従来の流体加熱器に比べて熱効率及び再現性に優れた信頼性の高い流体加熱器を提供することができる。   First, embodiments of the present invention will be listed and described. A fluid heater according to an embodiment of the present invention includes a flow path unit having a flow path of a fluid to be heated inside, and a linear heating element that is accommodated in the flow path and covered with an electrical insulating material, The linear heating element is spirally wound at a pitch at which the insulating coating materials are not in close contact with each other, and the extending direction of the spiral axis substantially coincides with the direction of the flow path. With this configuration, it is possible to provide a highly reliable fluid heater that is superior in thermal efficiency and reproducibility compared to conventional fluid heaters.

上記した本発明の実施形態の流体加熱器においては、前記線状発熱体は前記流路内を少なくとも一往復する往側発熱体と復側発熱体とからなり、これら往側発熱体と復側発熱体とは同軸状であって且つ螺旋の巻き方向が互いに逆であるのが好ましい。これにより螺旋状の線状発熱体によって生じる磁場を打ち消すことが可能になる。   In the fluid heater according to the embodiment of the present invention described above, the linear heating element includes an outward heating element and a return heating element that reciprocate at least once in the flow path. It is preferable that the heating element is coaxial and the spiral winding directions are opposite to each other. This makes it possible to cancel the magnetic field generated by the spiral linear heating element.

上記した本発明の実施形態の流体加熱器においては、前記線状発熱体を収容した流路が前記流路ユニット内に2本以上設けられており、それら流路は互いに平行に延在しているのが好ましい。これにより当該2本以上の流路に流す被加熱流体の流し方を並列及び直列の中から選択することが可能になり、流路ユニットの設計の自由度を増やすことが可能になる。   In the fluid heater according to the embodiment of the present invention described above, two or more flow paths containing the linear heating elements are provided in the flow path unit, and the flow paths extend in parallel to each other. It is preferable. As a result, it is possible to select a flow method of the heated fluid to be flown through the two or more flow paths from parallel and series, and to increase the degree of freedom in designing the flow path unit.

上記した本発明の実施形態の流体加熱器においては、前記流路の最下部に被加熱流体の供給口が設けられており、前記流路の最上部に被加熱流体の排出口が設けられているのが好ましい。これにより線状発熱体の全体を被加熱流体に浸漬させることができるので極めて高い熱効率が確保されるうえ、線状発熱体が局所的に過熱状態になるのを避けることができる。   In the fluid heater according to the above-described embodiment of the present invention, a heated fluid supply port is provided at the bottom of the flow path, and a heated fluid discharge port is provided at the top of the flow path. It is preferable. As a result, the entire linear heating element can be immersed in the fluid to be heated, so that extremely high thermal efficiency is ensured and the linear heating element can be prevented from being overheated locally.

上記した本発明の実施形態の流体加熱器においては、前記線状発熱体が櫛歯状部材に螺旋状に巻き付けられて前記流路内に収納されているのが好ましい。特に、線状発熱体を往側発熱体と復側発熱体とで構成する場合は、前記櫛歯状部材の隣接する歯部同士の間の隙間の奥側に前記往側発熱体が螺旋状に巻きつけられており、前記隙間の外側に前記復側発熱体が螺旋状に巻きつけられているのが好ましい。これにより流路内に極めて高い密度で線状発熱体を納めることが可能になる。   In the fluid heater according to the above-described embodiment of the present invention, it is preferable that the linear heating element is spirally wound around a comb-like member and accommodated in the flow path. In particular, when the linear heating element is composed of an outward heating element and a return heating element, the outward heating element is spirally formed at the back of the gap between adjacent tooth portions of the comb-like member. It is preferable that the return side heating element is spirally wound around the outside of the gap. As a result, the linear heating element can be accommodated in the flow path at a very high density.

上記した本発明の実施形態の流体加熱器においては、前記櫛歯状部材の各歯部に前記往側発熱体と前記復側発熱体とを離間させるスペーサーが嵌装されているのが好ましい。これにより流路内に極めて高い密度で線状発熱体を収納する場合においても、線状発熱体同士が接触して局所的に過熱状態になるのを避けることが可能になる。更に、前記復側発熱体の前記螺旋の最外周部よりも前記櫛歯状部材の各歯部の先端部が外側に突出しているのが好ましい。これにより流路内に極めて高い密度で線状発熱体を収容する場合においても、線状発熱体が流路ユニットの壁面と接触して局所的に過熱状態になるのを避けることが可能になる。   In the fluid heater according to the above-described embodiment of the present invention, it is preferable that a spacer for separating the forward heating element and the backward heating element is fitted to each tooth portion of the comb-like member. As a result, even when the linear heating elements are accommodated in the flow path at an extremely high density, it is possible to avoid the linear heating elements from coming into contact with each other and being locally overheated. Furthermore, it is preferable that the tip part of each tooth part of the comb-like member protrudes outward from the outermost peripheral part of the spiral of the return side heating element. As a result, even when the linear heating element is accommodated in the flow path at an extremely high density, it is possible to avoid the linear heating element from contacting the wall surface of the flow path unit and being overheated locally. .

次に、図1を参照しながら本発明の流体加熱器の一具体例について具体的に説明する。図1に示す本発明の一具体例の流体加熱器1は、被加熱流体が流れる流路を内部に備えた略直方体形状の流路ユニット10と、この流路を流れる被加熱流体を所定の温度まで加熱する電気絶縁材で被覆された線状発熱体20とからなる。具体的に説明すると、流路ユニット10は、その長手方向の両端部にそれぞれ被加熱流体の供給口11及び排出口12を備えており、これら供給口11及び排出口12に連通する流路13が内部に形成されている。   Next, a specific example of the fluid heater of the present invention will be specifically described with reference to FIG. A fluid heater 1 according to an embodiment of the present invention shown in FIG. 1 includes a substantially rectangular parallelepiped channel unit 10 having a channel through which a fluid to be heated flows, and a fluid to be heated flowing through the channel. It consists of a linear heating element 20 covered with an electrical insulating material that is heated to a temperature. More specifically, the flow path unit 10 includes a heated fluid supply port 11 and a discharge port 12 at both ends in the longitudinal direction, and a flow channel 13 communicating with the supply port 11 and the discharge port 12. Is formed inside.

流路13は2本の互いに平行に延在する上側流路13aと下側流路13bとで構成されており、流路ユニット10内に供給口11を経て導入された被加熱流体は、供給口11から入って直ぐに分岐してこれら2本の流路を並列に流れた後、排出口12の直前で合流して排出口12から排出される。なお、流路13の形状はこれに限定されるものではなく、平行な3本以上の流路群で構成してもよいし、供給口から排出口まで1本の流路のみで構成してもよい。1本のみの流路の場合は一直線状に延在させてもよいし、横方向に又は上下方向に蛇行させてもよい。複数本の流路の場合はそれらを図1のように並列に連通させてもよいし、直列に連通させてもよい。   The flow path 13 is composed of two upper flow paths 13a and a lower flow path 13b extending in parallel with each other, and the heated fluid introduced into the flow path unit 10 via the supply port 11 is supplied. After entering through the port 11 and branching immediately and flowing through these two flow paths in parallel, they merge together immediately before the discharge port 12 and are discharged from the discharge port 12. The shape of the flow path 13 is not limited to this, and may be configured by a group of three or more parallel flow paths, or may be configured by only one flow path from the supply port to the discharge port. Also good. In the case of only one flow path, it may extend in a straight line, or may meander in the horizontal direction or the vertical direction. In the case of a plurality of flow paths, they may be communicated in parallel as shown in FIG. 1 or may be communicated in series.

上記したような流路を備えた流路ユニットは、例えば直方体形状の中実ブロックに対してその一面に機械加工で流路となる所望のパターンの溝を掘った後、この機械加工を施した面を覆うように矩形板状の蓋をかぶせて溶接やろう付け等により接着し、流路の両端部にそれぞれ供給口及び排出口となる開口部を穿孔することにより作製することが出来る。   A flow path unit having a flow path as described above is formed by, for example, digging a groove having a desired pattern to be a flow path by machining on one surface of a solid block having a rectangular parallelepiped shape, and then performing this machining. It can be produced by covering a surface with a rectangular plate-shaped lid and adhering them by welding or brazing, etc., and perforating openings that respectively serve as supply ports and discharge ports at both ends of the flow path.

あるいは、中実の円柱部材にその軸方向に貫通する流路を設けた後、供給口用又は排出口用の開口部を備えた円板状の蓋を両端部に接着することで作製することも可能である。なお、この場合はパイプ材を用いることにより流路用の貫通孔を加工する手間が省けるのでより簡易に作製することが可能になる。被加熱流体の流路は、内壁面の加工粗度を粗くして内部を流れる流体が乱流になりやすくしたり、邪魔板を設けて流路を長くしたりしてもよい。これにより、被覆された線状発熱体20からの伝熱効率を向上させることが出来る。   Alternatively, a solid cylindrical member is provided with a flow passage penetrating in the axial direction thereof, and then a disc-shaped lid provided with openings for supply ports or discharge ports is adhered to both ends. Is also possible. In this case, the use of the pipe material saves the trouble of processing the through hole for the flow path, and therefore it can be more easily manufactured. The flow path of the fluid to be heated may be such that the processing roughness of the inner wall surface is roughened so that the fluid flowing inside tends to be turbulent, or a baffle plate is provided to lengthen the flow path. Thereby, the heat transfer efficiency from the covered linear heating element 20 can be improved.

流路ユニットを作製する時は、被加熱流体が下側から入って上側から抜けるように供給口及び排出口を設置するのが好ましい。具体的には図1に示すように供給口11を流路13の最下部に設けるとともに、排出口12を流路13の最上部に設けるのが好ましい。これにより、流路13内に被加熱流体を導入する時、流路13内に被加熱流体を最下部から最上部に向けて充満させることができ、被加熱流体が液体の場合は流路13内にエアポケットを生じさせることなく満液状態にすることができる。その結果、被覆された線状発熱体20をすべて被加熱流体に浸漬させることができるので、極めて高い熱効率を実現することが出来る。   When producing the flow path unit, it is preferable to install the supply port and the discharge port so that the fluid to be heated enters from the lower side and exits from the upper side. Specifically, as shown in FIG. 1, it is preferable to provide the supply port 11 at the bottom of the flow path 13 and provide the discharge port 12 at the top of the flow path 13. Thus, when the fluid to be heated is introduced into the flow path 13, the fluid to be heated can be filled in the flow path 13 from the bottom to the top, and when the fluid to be heated is a liquid, the flow path 13. The liquid can be filled without generating an air pocket. As a result, since all the coated linear heating elements 20 can be immersed in the fluid to be heated, extremely high thermal efficiency can be realized.

これに対して排出口12の位置が流路13の最上部になければ、被覆された線状発熱体20がすべて被加熱流体に浸漬する前に排出口12から被加熱流体が排出されるので、被加熱流体が液体の場合は被覆された線状発熱体20の上部が被加熱流体の液面上に露出し、効率よく伝熱させることができなくなる。しかも、この露出部分では被覆された線状発熱体20が異常過熱しやすくなり、被覆材が溶解する等の問題が生じるおそれがある。   On the other hand, if the position of the discharge port 12 is not at the top of the flow path 13, the heated fluid is discharged from the discharge port 12 before all of the coated linear heating elements 20 are immersed in the heated fluid. When the fluid to be heated is liquid, the upper part of the coated linear heating element 20 is exposed on the liquid surface of the fluid to be heated, and heat cannot be efficiently transferred. Moreover, in the exposed portion, the coated linear heating element 20 is likely to be abnormally overheated, which may cause problems such as dissolution of the coating material.

流路ユニット10の材質には、金属や樹脂など様々なものを用いることができ、被加熱流体の性質やその使用温度域、流路ユニット10の設置環境等により適宜選定することが出来る。金属の場合は、例えば銅、アルミニウム、ステンレス等を使用することができる。これらの金属は汎用的でコストパフォーマンスに長ける他、機械加工やろう付け、溶接等の加工技術により容易に作製できるため加熱器の設置場所や必要とする加熱器のサイズ、形状などに応じて比較的自由に設計することが可能になる。また、金属は樹脂に比較して耐熱温度が高く、機械強度に優れているという利点を有しており、ステンレスの場合は更に耐環境性にも優れている。   Various materials such as metal and resin can be used as the material of the flow path unit 10, and can be appropriately selected depending on the nature of the fluid to be heated, its operating temperature range, the installation environment of the flow path unit 10, and the like. In the case of a metal, for example, copper, aluminum, stainless steel or the like can be used. These metals are versatile and cost-effective, and can be easily manufactured by machining, brazing, welding, and other processing techniques, so depending on the location of the heater and the size and shape of the heater required It becomes possible to design relatively freely. In addition, metals have the advantage that they have a higher heat resistant temperature and superior mechanical strength compared to resins, and stainless steel is more excellent in environmental resistance.

一方、樹脂の場合は、例えばアクリル、フッ素樹脂等を使用することができる。これらの樹脂は汎用的でコストパフォーマンスに優れ、機械加工や溶着等の加工技術により容易に作製できる。特に、樹脂の場合は金属に比較して融点が低いため、比較的低温で溶接等の形状加工が容易に出来るという利点がある。加えて、樹脂は軽量で且つ耐環境性能に優れるという利点があり、特にテフロンに代表されるフッ素樹脂は極めて高い耐環境性を有している。そのため、重量制限がある場合や環境負荷が特に高い用途に好適に用いることができる。   On the other hand, in the case of resin, for example, acrylic, fluororesin or the like can be used. These resins are general-purpose and have excellent cost performance, and can be easily produced by machining techniques such as machining and welding. In particular, in the case of a resin, since the melting point is lower than that of a metal, there is an advantage that shape processing such as welding can be easily performed at a relatively low temperature. In addition, the resin has the advantage of being lightweight and excellent in environmental resistance, and in particular, a fluororesin represented by Teflon has extremely high environmental resistance. For this reason, it can be suitably used for applications where there is a weight limit or for which the environmental load is particularly high.

上記の流路13内に収容する電気絶縁材で被覆された線状発熱体20には、金属素線を用いることができる。金属素線の材質は、ステンレス、ニッケル−クロム、クロムを含む合金等を用いることが出来る。この金属素線の表面全体を略同じ肉厚で被覆する電気絶縁材には例えばビニル、ポリエチレン、ポリイミド、シリコーン、フッ素樹脂等を使用することができる。具体的な材質は被加熱流体の種類やその使用温度域などにより適宜選定することが出来る。耐熱、耐環境性が必要な場合はテフロン等のフッ素樹脂を用いるのが望ましく、それ以外の場合は汎用的なビニル、ポリエチレン、ポリイミド、シリコーンを用いることでコストメリットが得られる。   A metal heating wire can be used for the linear heating element 20 covered with the electrical insulating material housed in the flow path 13. As the material of the metal element wire, stainless steel, nickel-chromium, an alloy containing chromium, or the like can be used. For example, vinyl, polyethylene, polyimide, silicone, fluororesin, or the like can be used as an electrical insulating material that covers the entire surface of the metal strand with substantially the same thickness. Specific materials can be appropriately selected depending on the type of fluid to be heated and the operating temperature range thereof. When heat resistance and environment resistance are required, it is desirable to use a fluororesin such as Teflon. In other cases, cost advantage can be obtained by using general-purpose vinyl, polyethylene, polyimide, or silicone.

上記の電気絶縁材で被覆された線状発熱体20を螺旋状に巻いて流路13内に収容する。その際、図1に示すように、螺旋軸の延在方向と流路13の方向とが略平行となるようにする。また、線状発熱体20は、その絶縁被覆材同士が互いに接することがないピッチで螺旋状に巻くようにする。これにより、流路13内に線状発熱体20を高密度に収容することが出来、また線状発熱体20のすべての表面を被加熱流体に接触させることができるので、極めて高い熱効率を達成することができる。これに対して絶縁被覆材同士が接していると、被加熱流体に接触する面積が少なくなって熱効率が低下するうえ、その部分では発熱密度が高くなって局所的な異常過熱の要因となるので好ましくない。   The linear heating element 20 covered with the electrical insulating material is spirally wound and accommodated in the flow path 13. At that time, as shown in FIG. 1, the extending direction of the spiral axis and the direction of the flow path 13 are made substantially parallel. Further, the linear heating element 20 is wound spirally at a pitch at which the insulating coating materials do not contact each other. Thereby, the linear heating element 20 can be accommodated in the flow path 13 with high density, and all the surfaces of the linear heating element 20 can be brought into contact with the fluid to be heated, so that extremely high thermal efficiency is achieved. can do. On the other hand, if the insulating coatings are in contact with each other, the area in contact with the fluid to be heated is reduced and the thermal efficiency is lowered. In addition, the heat generation density is increased at that portion, causing local abnormal overheating. It is not preferable.

上記の線状発熱体20は、流路13内で少なくとも一往復させることが好ましい。これにより、より一層高い密度で流路13内に線状発熱体20を収容することが出来る。流路13内で一往復させる場合は、図2に示すように往側発熱体21と復側発熱体22とを同軸状であって且つ螺旋の巻き方向が互いに逆となるように螺旋状に巻くのが好ましい。例えば、往側発熱体21を右巻きにする場合は復側発熱体22を左巻きにするのが好ましい。この様に同軸状であって且つ螺旋の巻き方向を逆にすることで、各コイルにより発生する磁場を打ち消すことができ、加熱器が周辺に及ぼす磁気の影響を抑えることが出来る。なお、図2には復側発熱体22がその絶縁被覆材同士が互いに接することがないピッチPで螺旋状に巻かれた状態が示されている。   The linear heating element 20 is preferably reciprocated in the flow path 13 at least once. Thereby, the linear heating element 20 can be accommodated in the flow path 13 with a higher density. When reciprocating once in the flow path 13, as shown in FIG. 2, the forward heating element 21 and the backward heating element 22 are coaxial and spiral so that the spiral winding directions are opposite to each other. It is preferable to wind. For example, when the forward heating element 21 is clockwise, the backward heating element 22 is preferably left-handed. By reversing the spiral winding direction in this way, the magnetic field generated by each coil can be canceled out, and the influence of magnetism on the periphery by the heater can be suppressed. FIG. 2 shows a state where the return side heating element 22 is spirally wound at a pitch P at which the insulating coating materials do not contact each other.

上記したように線状発熱体20を螺旋状に巻いた状態で流路13内に収容する際、その絶縁被覆材同士が確実に密着しないようにするために櫛歯状部材を用いるのが好ましい。例えば図3に示す一具体例の櫛歯状部材30は、櫛歯を有する4枚の略同形状の矩形片が櫛歯側を外側に向けて断面十字の放射状となった立体構造を有しており、この櫛歯に沿って線状発熱体20を巻きつけることによって所望のピッチで螺旋状に巻き付けることができる。そして、線状発熱体20が巻き付けられたままの状態で櫛歯状部材30を流路13に挿入することで螺旋軸の延在方向を流路13の方向に一致させることができる。   As described above, when the linear heating element 20 is housed in the flow path 13 in a spirally wound state, it is preferable to use a comb-like member in order to ensure that the insulating coating materials do not adhere to each other. . For example, the comb-like member 30 of one specific example shown in FIG. 3 has a three-dimensional structure in which four rectangular pieces having substantially the same shape having comb teeth are radially formed in a cross-section with the comb-tooth side facing outward. By winding the linear heating element 20 along the comb teeth, it can be spirally wound at a desired pitch. Then, the extending direction of the spiral axis can be made to coincide with the direction of the flow path 13 by inserting the comb-like member 30 into the flow path 13 while the linear heating element 20 is still wound.

図3の櫛歯状部材30は、例えば図4に示すような櫛歯を両側面に備えた2枚の略同形状の矩形板状部材31を組み合わせることで作製することができる。すなわち、2枚の同形状の矩形板状部材を用意し、各々長手方向に延びる両側面に櫛歯を設けると共に、長手方向の一端部から長手方向の中央部まで切り欠き部を形成し、これら切り欠き部同士を嵌め込むことによって櫛歯状部材30を形成することができる。なお、櫛歯状部材30の材質は、流路ユニット10の材質と同等にするのが好ましい。   The comb-tooth shaped member 30 of FIG. 3 can be produced by combining two substantially identical rectangular plate-like members 31 having comb teeth as shown in FIG. 4 on both side surfaces, for example. That is, two rectangular plate-like members having the same shape are prepared, comb teeth are provided on both side surfaces extending in the longitudinal direction, and a notch is formed from one end portion in the longitudinal direction to the central portion in the longitudinal direction. The comb-like member 30 can be formed by fitting the notches into each other. The material of the comb-like member 30 is preferably the same as the material of the flow path unit 10.

線状発熱体20を一往復する往側発熱体21と復側発熱体22とで構成する場合は、図4に示す櫛歯状部材30の隣接する歯部32同士の間の隙間33の奥側に往側発熱体21を螺旋状に巻きつけ、隙間33の外側に復側発熱体22を螺旋状に巻きつけるのが好ましい。その際、往側発熱体21と復側発熱体22とが接触しないように、櫛歯状部材30の各歯部32に往側発熱体21と復側発熱体22とを離間させるスペーサー34を嵌装するのが好ましい。   When the forward heating element 21 and the return heating element 22 that reciprocate the linear heating element 20 once are formed, the depth of the gap 33 between adjacent tooth portions 32 of the comb-like member 30 shown in FIG. It is preferable that the forward heating element 21 is spirally wound on the side and the return heating element 22 is spirally wound on the outer side of the gap 33. At that time, a spacer 34 for separating the forward heating element 21 and the backward heating element 22 is provided at each tooth portion 32 of the comb-like member 30 so that the outward heating element 21 and the backward heating element 22 do not contact each other. It is preferable to fit.

更に、復側発熱体22の螺旋の最外周部よりも櫛歯状部材30の各歯部32の先端部が外側に突出しているのが好ましい。図5には櫛歯状部材30の各歯部32の先端部が、復側発熱体22の螺旋の最外周部よりも長さLだけ外側に突出している状態が示されている。これにより線状発熱体20が流路ユニット10の壁面と接触して局所的に過熱状態になるのを避けることが可能になる。   Furthermore, it is preferable that the front end portion of each tooth portion 32 of the comb-like member 30 protrudes outward from the outermost peripheral portion of the spiral of the return side heating element 22. FIG. 5 shows a state in which the distal end portion of each tooth portion 32 of the comb-like member 30 protrudes outward by a length L from the outermost peripheral portion of the spiral of the return side heating element 22. As a result, it is possible to avoid the linear heating element 20 from coming into contact with the wall surface of the flow path unit 10 and being locally overheated.

流路ユニット10には、線状発熱体20の温度を制御するための温度センサー14が設けられている。温度センサー14には測温抵抗体を用いることが好ましい。測温抵抗体は、例えば測温素子部として絶縁セラミック基体の平面部に白金抵抗体を蒸着等の手段により形成し、その抵抗値を所定の値となるように調整した後、その電極パッド部にリード線をボンディング等の手段で接合することで得られる。上記の白金抵抗体及び電極パッド部は絶縁膜で被覆されていることが好ましい。かかる構成により測温素子部を小型化することができ、温度応答性を高めることが出来る。   The flow path unit 10 is provided with a temperature sensor 14 for controlling the temperature of the linear heating element 20. It is preferable to use a resistance temperature detector for the temperature sensor 14. The resistance temperature detector is formed by, for example, forming a platinum resistance element on the flat surface portion of the insulating ceramic substrate as a temperature measuring element portion by means such as vapor deposition, and adjusting the resistance value to a predetermined value, and then the electrode pad portion. It can be obtained by bonding the lead wires to each other by means such as bonding. The platinum resistor and the electrode pad are preferably covered with an insulating film. With this configuration, the temperature measuring element unit can be reduced in size, and the temperature responsiveness can be improved.

測温抵抗体は流路ユニット10の外壁面や内壁面、または流路内(空間)や線状発熱体の絶縁被覆部の表面上に設置することが出来る。具体的な設置場所は、測定したい部位や制御機器とのマッチング等を考慮して適宜選定する。設置に際して、測温抵抗体のリード線に金属シースまたは樹脂パイプを被せ、流路ユニット10の壁面に設けた挿通孔に通してから該挿通孔を溶接することにより、外部とのシール性を保ったまま流路ユニット10内の温度を測定することができる。   The resistance temperature detector can be installed on the outer wall surface or the inner wall surface of the flow path unit 10, or in the flow path (space) or on the surface of the insulating coating portion of the linear heating element. The specific installation location is appropriately selected in consideration of the part to be measured and matching with the control device. During installation, the lead wire of the resistance temperature detector is covered with a metal sheath or a resin pipe, passed through the insertion hole provided in the wall surface of the flow path unit 10, and then welded to maintain the sealing performance with the outside. The temperature in the flow path unit 10 can be measured as it is.

流路ユニット10の内部で流体温度を測定する際は、被加熱流体からの圧力による機械的な損傷を避けるため、また被加熱流体の種種によっては耐環境性を考慮して樹脂パイプを測温素子部まで被せると共に、その先端部に当該樹脂パイプと略同一材質の樹脂を充填してシールすることが好ましい。また、線状発熱体の温度を測定する際は、線状発熱体を被覆している電気絶縁材の表面上に測温素子を当接させた後、上述したように樹脂パイプを被せて同様の手段でシールするのが好ましい。   When measuring the fluid temperature inside the flow path unit 10, in order to avoid mechanical damage due to pressure from the heated fluid, and depending on the type of heated fluid, the temperature of the resin pipe is measured in consideration of environmental resistance. It is preferable that the element portion is covered and the tip portion is filled with a resin substantially the same material as the resin pipe and sealed. Further, when measuring the temperature of the linear heating element, the temperature measuring element is brought into contact with the surface of the electrical insulating material covering the linear heating element and then covered with the resin pipe as described above. It is preferable to seal by the means.

流路ユニット10の内外壁面等に設置する際は、接着剤を用いて固定することができる。接着剤にはシリコーンやエポキシ等の有機系樹脂を主成分としたものや、セラミック粒等の無機材料とバインダ成分を組み合わせたものを利用することが出来る。特にシリコーン樹脂を主成分とした接着剤は、流体加熱に必要な温度帯に耐える耐熱性を有し、且つ弾力性を有することから、測温素子と周辺部材の僅かな熱膨張量差を吸収し得るため好適である。   When installing on the inner and outer wall surfaces of the flow path unit 10, it can be fixed using an adhesive. As the adhesive, an adhesive mainly composed of an organic resin such as silicone or epoxy, or a combination of an inorganic material such as ceramic particles and a binder component can be used. In particular, the adhesive mainly composed of silicone resin has heat resistance that can withstand the temperature range required for fluid heating and elasticity, so it absorbs a slight difference in thermal expansion between the temperature measuring element and peripheral members. This is preferable.

以上、本発明の流体加熱器について具体例を挙げて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。すなわち、本発明の技術的範囲は、特許請求の範囲およびその均等物に及ぶものである。   As mentioned above, although the specific example was given and demonstrated about the fluid heater of this invention, this invention is not limited to the specific example which concerns, It can implement in the various aspect of the range which does not deviate from the main point of this invention. That is, the technical scope of the present invention extends to the claims and their equivalents.

PTFE製の幅50mm×高さ50mm×長さ100mmの直方体形状の中実ブロックを準備し、そこに流路として長手方向に延在する内径20mmの貫通孔を4本設けた。これら4本の流路に並列して被加熱流体が流れるように、中実ブロックの長手方向両端部にこれら4本の流路に連通する空間部を設けた。このようにして作製した流路ユニットの4本の流路内に収容される被覆された線状発熱体として、外径0.45mm×長さ約10mのSUS304軟質線からなる金属素線に厚み0.5mmのPTFEを被覆したものを用意した。   A solid rectangular solid block having a width of 50 mm, a height of 50 mm, and a length of 100 mm made of PTFE was prepared, and four through-holes with an inner diameter of 20 mm extending in the longitudinal direction were provided therein as flow paths. Space portions communicating with these four flow paths were provided at both ends in the longitudinal direction of the solid block so that the fluid to be heated flows in parallel with these four flow paths. As a coated linear heating element housed in the four flow paths of the flow path unit thus produced, a thickness of a metal strand made of SUS304 soft wire having an outer diameter of 0.45 mm and a length of about 10 m is obtained. What coated 0.5 mm PTFE was prepared.

この被覆された線状発熱体を図3に示すようなPTFE製の櫛歯状部材4個に各々螺旋状に巻きつけた。その際、図5に示すように先ず櫛歯状部材の内側に右巻きで螺旋状に巻き付けた後、各歯部にPTFE製の環状スペーサーを嵌装し、櫛歯状部材の外側に左巻きで螺旋状に巻き付けた。これにより、往側発熱体と復側発熱体とを同軸状に巻き付けることができた。また、復側発熱体の最外周部の外側から櫛歯状部材の歯部の先端部分を突出させることができた。   Each of the coated linear heating elements was spirally wound around four PTFE comb-like members as shown in FIG. At that time, as shown in FIG. 5, first, a right-handed spiral is wound around the inner side of the comb-like member, and then a PTFE annular spacer is fitted to each tooth part, and the left-handed outside of the comb-like member. Wound in a spiral. As a result, the forward heating element and the return heating element could be wound coaxially. Moreover, the front-end | tip part of the tooth part of the comb-tooth shaped member was able to protrude from the outer side of the outermost periphery part of a return side heating element.

このようにして作製した、被覆された線状発熱体が各々端から端まで一往復巻き付けられた4個の櫛歯状部材を4本の流路にそれぞれ収容した。また、線状発熱体上の被覆部に測温抵抗体を当接させ、この状態で該測温抵抗体が当接している線状発熱体の一部を測温抵抗体と共にパイプで覆い、その内部に被加熱流体が侵入しない様にパイプの先端部を溶接シールした。更に流路ユニットの両端に矩形の蓋部材を溶接し、その一方には流路の最下部に連通する位置に、他方には流路の最上部に連通する位置にそれぞれ貫通孔を設けた。そしてこれら貫通孔にPTFE製のパイプを溶接で取り付けてそれぞれ供給口及び排出口とした。このようにして試料1の流体加熱器を作製した。   The four comb-like members, each of which the coated linear heating elements manufactured in this way were wound one reciprocally from end to end, were accommodated in the four flow paths, respectively. Further, the resistance thermometer is brought into contact with the covering portion on the linear heating element, and in this state, a part of the linear heating element in contact with the resistance thermometer is covered with the resistance thermometer with a pipe, The tip of the pipe was welded and sealed so that the heated fluid did not enter the inside. Further, rectangular lid members were welded to both ends of the flow path unit, and through holes were provided on one side at a position communicating with the lowermost part of the flow path and on the other side at a position communicating with the uppermost part of the flow path. And the pipe made from PTFE was attached to these through holes by welding, and it was set as the supply port and the discharge port, respectively. In this way, a fluid heater of Sample 1 was produced.

比較のため、被覆された線状発熱体を4本の櫛歯状部材に螺旋状に巻き付けた上記試料1の流体加熱器の構成に代えて、外径0.45mmのSUS304軟質線からなる発熱体をSUS304からなる外径2.4mm、内径2.0mmのシース管内に挿通し、このシース管の内壁面と発熱体との間にMgOを充填したシース型発熱線を螺旋状に巻いたものを4本用意した。これら4本のシース型発熱線を上記した試料1の流体加熱器と同様に作製した流路ユニットの4本の流路にそれぞれ収容し、以降は上記した試料1の流体加熱器と同様にして試料2の流体加熱器を作製した。   For comparison, instead of the configuration of the fluid heater of the sample 1 in which the coated linear heating element is spirally wound around four comb-like members, the heat generation is made of SUS304 soft wire having an outer diameter of 0.45 mm. The body is inserted into a sheath tube made of SUS304 having an outer diameter of 2.4 mm and an inner diameter of 2.0 mm, and a sheath type heating wire filled with MgO is spirally wound between the inner wall surface of the sheath tube and the heating element. 4 were prepared. These four sheath type heating wires are respectively accommodated in the four flow paths of the flow path unit produced in the same manner as the fluid heater of the sample 1 described above, and thereafter the same as the fluid heater of the sample 1 described above. A fluid heater of Sample 2 was produced.

このようにして作製した試料1及び2の流体加熱器の各々に対して、流体として約22℃に温度管理された水を1.0L/minの流量で通水した状態で、線状発熱体の金属素線に約2kWの電力を印加して水を昇温させた。約520秒経過後、線状発熱体の金属素線への給電を停止し、通水による熱交換で温度降下させた。このヒートサイクルを1000回繰り返し行った。更にその後、初期と同じ条件で水温上昇試験を行った。この際、昇温に伴う水の出入り口温度、ならびにヒートサイクル後の外観に致命的な欠陥がないか確認した。   With each of the fluid heaters of Samples 1 and 2 thus prepared, water heated at a temperature of about 22 ° C. as a fluid being passed at a flow rate of 1.0 L / min, the linear heating element The temperature of water was raised by applying about 2 kW of power to the metal wire. After about 520 seconds, the power supply to the metal element wire of the linear heating element was stopped, and the temperature was lowered by heat exchange by passing water. This heat cycle was repeated 1000 times. Thereafter, a water temperature increase test was performed under the same conditions as in the initial stage. At this time, it was confirmed that there were no fatal defects in the water entrance / exit temperature accompanying the temperature increase and the appearance after the heat cycle.

その結果、試料1の流体加熱器では、初期評価で水の出入り口温度差が25℃となり、また1000回のヒートサイクルを繰り返しても外観異常や局所的な過熱部分が認められず、性能も初期と同等の数値を示した。一方、試料2の流体加熱器では、初期評価での水の出入り口温度差が15℃であり、更に1000回のヒートサイクルを繰り返した後の性能評価では、水の出入り口温度差は9.7℃と悪化した。解体して内部を点検したところ、試料2の流体加熱器は、SUS304シース管に亀裂が入っていることが確認された。   As a result, in the fluid heater of sample 1, the water inlet / outlet temperature difference was 25 ° C. in the initial evaluation, and even when the heat cycle was repeated 1000 times, no appearance abnormality or local overheating was observed, and the performance was also initial. The numerical value equivalent to was shown. On the other hand, in the fluid heater of Sample 2, the water inlet / outlet temperature difference in the initial evaluation is 15 ° C., and in the performance evaluation after 1000 heat cycles, the water inlet / outlet temperature difference is 9.7 ° C. And worsened. After disassembling and inspecting the inside, it was confirmed that the fluid heater of Sample 2 was cracked in the SUS304 sheath tube.

試料1は試料2に比べて外径、材質が適していることから流路内に密に配置することができ、極めて高い熱効率が得られることが分かった。また、試料1は試料2に比べて発熱体と流体との間の接触界面が少なく、熱伝達に優れることが分かった。さらに螺旋状に巻いた状態でのストレスに起因する長期安定性においても試料1が試料2よりも優れていることが分かった。このように、本発明によれば熱効率が高く信頼性の高い流体加熱器が得られることが分かった。   Sample 1 was suitable for outer diameter and material as compared with sample 2, so it was found that sample 1 could be placed densely in the flow path, and extremely high thermal efficiency was obtained. Moreover, it was found that Sample 1 has fewer contact interfaces between the heating element and the fluid than Sample 2, and is excellent in heat transfer. Furthermore, it was found that Sample 1 is superior to Sample 2 in terms of long-term stability resulting from stress in a spirally wound state. Thus, it has been found that according to the present invention, a fluid heater having high thermal efficiency and high reliability can be obtained.

1 流体加熱器
10 流路ユニット
11 供給口
12 排出口
13 流路
13a 上側流路
13b 下側流路
14 温度センサー
20 線状発熱体
21 往側発熱体
22 復側発熱体
30 櫛歯状部材
31 板状部材
32 歯部
33 隙間
34 スペーサー
P ピッチ
L 突出長さ
DESCRIPTION OF SYMBOLS 1 Fluid heater 10 Flow path unit 11 Supply port 12 Discharge port 13 Flow path 13a Upper flow path 13b Lower flow path 14 Temperature sensor 20 Linear heating element 21 Outward heating element 22 Return heating element 30 Comb-like member 31 Plate member 32 Teeth 33 Gap 34 Spacer P Pitch L Projection length

Claims (5)

被加熱流体の流路を内部に備えた流路ユニットと、前記流路内に収容され且つ電気絶縁被覆材で被覆された線状発熱体とからなり、前記線状発熱体は前記電気絶縁被覆材同士が密着しないピッチで櫛歯状部材に螺旋状に巻かれており、その螺旋軸の延在方向が前記流路の方向に略一致しており、前記線状発熱体は前記流路内を少なくとも一往復する往側発熱体と復側発熱体とからなり、これら往側発熱体と復側発熱体とは同軸状であって且つ螺旋の巻き方向が互いに逆であり、前記櫛歯状部材の各歯部に前記往側発熱体と前記復側発熱体とを前記螺旋軸に交差する方向に離間させるスペーサーが嵌装されている流体加熱器。 A flow path unit having a flow path of a fluid to be heated inside, and a linear heating element housed in the flow path and covered with an electrical insulating coating material, the linear heating element being the electrical insulating coating The material is spirally wound around the comb-like member at a pitch at which the materials do not adhere to each other, and the extending direction of the spiral axis substantially coincides with the direction of the flow path, and the linear heating element is disposed in the flow path. The forward heating element and the return heating element that reciprocate at least once, and the outward heating element and the return heating element are coaxial, and the spiral winding directions are opposite to each other. A fluid heater in which a spacer for separating the forward heating element and the return heating element in a direction intersecting the spiral axis is fitted to each tooth portion of the member . 前記線状発熱体を収容した流路が前記流路ユニット内に2本以上設けられており、それら流路は互いに平行に延在する、請求項1に記載の流体加熱器。 The fluid heater according to claim 1, wherein two or more flow paths containing the linear heating elements are provided in the flow path unit, and the flow paths extend in parallel to each other. 前記流路の最下部に被加熱流体の供給口が設けられており、前記流路の最上部に被加熱流体の排出口が設けられている、請求項1又は請求項に記載の流体加熱器。 And the supply port of the heated fluid is provided at the bottom of the channel, the outlet of the heated fluid at the top of the channel is provided, the fluid heating according to claim 1 or claim 2 vessel. 前記櫛歯状部材の隣接する歯部同士の間の隙間の奥側に前記往側発熱体が螺旋状に巻きつけられており、前記隙間の外側に前記復側発熱体が螺旋状に巻きつけられている、請求項1〜請求項3のいずれか1項に記載の流体加熱器。 The forward heating element is spirally wound around the gap between adjacent teeth of the comb-like member, and the return heating element is spirally wound outside the gap. The fluid heater according to claim 1 , wherein the fluid heater is provided. 前記復側発熱体の前記螺旋の最外周部よりも前記櫛歯状部材の各歯部の先端部が外側に突出している、請求項に記載の流体加熱器。 5. The fluid heater according to claim 4 , wherein a tip end portion of each tooth portion of the comb-like member protrudes outward from an outermost peripheral portion of the spiral of the return side heating element.
JP2014097752A 2014-05-09 2014-05-09 Fluid heater Active JP6252347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014097752A JP6252347B2 (en) 2014-05-09 2014-05-09 Fluid heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097752A JP6252347B2 (en) 2014-05-09 2014-05-09 Fluid heater

Publications (2)

Publication Number Publication Date
JP2015216004A JP2015216004A (en) 2015-12-03
JP6252347B2 true JP6252347B2 (en) 2017-12-27

Family

ID=54752738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097752A Active JP6252347B2 (en) 2014-05-09 2014-05-09 Fluid heater

Country Status (1)

Country Link
JP (1) JP6252347B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494934U (en) * 1977-12-15 1979-07-05
JP4029092B2 (en) * 2004-10-26 2008-01-09 日本ピラー工業株式会社 Fluid heater and fluid heating device

Also Published As

Publication number Publication date
JP2015216004A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US20130302021A1 (en) Fluid heating-cooling cylinder device
JP4866419B2 (en) Method and apparatus for measuring and inspecting reactor fouling
RU2009137555A (en) DEVICE FOR HEATING LIQUID FLOW BY ELECTRIC HEATING OF A METAL TUBE
US20190189472A1 (en) Pfa tube heater with flexible heating elements
JP2007333735A (en) Flow sensor of thermal type
US20190145658A1 (en) In-line electric heater for plural component materials
JP2015152218A (en) fluid heating device
JP5215750B2 (en) Sensor, liquid film measuring device
US9074819B2 (en) High velocity fluid flow electric heater
JP6252347B2 (en) Fluid heater
Nagarajan et al. Heat transfer enhancement studies in a circular tube fitted with right-left helical inserts with spacer
JP6330518B2 (en) Fluid heater
JP6413394B2 (en) Fluid heater
JP2016011794A (en) Fluid heater
US20040256375A1 (en) Electrical water heating device with large contact surface
KR20220145760A (en) Flexible Heater and heating system using the same
JP2000121153A (en) Fluid heater and base processor using it
TWI524808B (en) Heater
JP6845063B2 (en) Control tube evaluation system
JP2012154855A (en) Physical quantity measuring device and physical quantity measuring method
KR102006828B1 (en) Erosion and high-temperature corrosion monitoring apparatus using the bimetal
US20240068708A1 (en) Flow-through heater
Patil et al. Experimental analysis of helical coil induction and electric immersion type water heater
JP2015152219A (en) fluid heating device
JP6362971B2 (en) Tube temperature measuring device and method for manufacturing tube temperature measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250