JP2015152218A - fluid heating device - Google Patents

fluid heating device Download PDF

Info

Publication number
JP2015152218A
JP2015152218A JP2014025956A JP2014025956A JP2015152218A JP 2015152218 A JP2015152218 A JP 2015152218A JP 2014025956 A JP2014025956 A JP 2014025956A JP 2014025956 A JP2014025956 A JP 2014025956A JP 2015152218 A JP2015152218 A JP 2015152218A
Authority
JP
Japan
Prior art keywords
flow path
fluid
forming body
path forming
heater unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014025956A
Other languages
Japanese (ja)
Inventor
桂児 北林
Keiji Kitabayashi
桂児 北林
浦 康彦
Yasuhiko Ura
康彦 浦
成伸 先田
Shigenobu Sakita
成伸 先田
晃 三雲
Akira Mikumo
晃 三雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014025956A priority Critical patent/JP2015152218A/en
Publication of JP2015152218A publication Critical patent/JP2015152218A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid heating device which makes damage such as cracks less likely to occur when used under conditions where a temperature is repetitively increased and decreased and achieves excellent reproducibility and high reliability.SOLUTION: A fluid heating device includes: a passage formation body 1 including a passage C for a heated fluid therein and having a substantially rectangular parallelepiped shape; and a heater unit 2 contacting with at least one surface of the passage formation body 1. The heater unit 2 and the at least one surface of the passage formation body 1 are not bonded to each other. It is preferable that the heater unit 2 is composed of a heating element 21 and two electric insulation layers 22a, 22b sandwiching the heating element 21 from both sides. It is preferable that the fluid heating device further includes a pressing plate 3 which presses the heater unit 2 to the passage formation body 1.

Description

本発明は、発熱体を用いて流体を加熱する流体加熱装置に関する。   The present invention relates to a fluid heating apparatus that heats a fluid using a heating element.

プロセス流体や洗浄液などの流体を所定の温度まで加熱する工程は、化学プラントや食品工場等の工業用途に留まらず、商業施設等に設置されたハンドドライヤーや一般家庭に於ける温水洗浄便座に至る様々な分野で広く行われている。かかる流体の加熱工程では、熱交換のための高温の流体が利用できない場合は被加熱流体を所望の温度まで比較的すばやく加熱することが可能な抵抗発熱体による加熱方式を採用することがある。   The process of heating fluids such as process fluids and cleaning liquids to a predetermined temperature is not limited to industrial applications such as chemical plants and food factories, but leads to hand dryers installed in commercial facilities, etc., and hot water cleaning toilet seats in general households. Widely used in various fields. In such a fluid heating process, when a high-temperature fluid for heat exchange cannot be used, a heating method using a resistance heating element capable of heating the heated fluid to a desired temperature relatively quickly may be employed.

例えば特許文献1には、層状の発熱体とこれを覆う絶縁層とをセラミックス基板の一方の面上に焼成した後、もう一方の面にジグザグ状の流路を形成することで、この流路を流れる液体を効率よく加熱することを可能にしたセラミックヒータが開示されている。また、特許文献2には、パイプ状のセラミック製部材の外周面に発熱体を有するセラミック製のシートを接着層を介して巻きつけた後、焼成により一体化させたセラミックヒータが開示されている。   For example, in Patent Document 1, a layered heating element and an insulating layer covering the layered heating element are fired on one surface of a ceramic substrate, and then a zigzag channel is formed on the other surface. A ceramic heater that can efficiently heat the liquid flowing through the pipe is disclosed. Patent Document 2 discloses a ceramic heater in which a ceramic sheet having a heating element is wound around an outer peripheral surface of a pipe-shaped ceramic member via an adhesive layer and then integrated by firing. .

特開2002-151236公報JP 2002-151236 A 特開2005-183371公報JP 2005-183371 A

昨今の環境保全や省電力に対する関心の高まりから、上記したような発熱体を用いた流体加熱装置には消費電力が小さく効率よく流体を加熱できるものが求められており、加えて高い安全性や信頼性が求められていることはいうまでもない。しかしながら、上記した特許文献1や2に示すようにセラミックス基体の表面に発熱体や絶縁層を焼成したり接着したりする構造では、これらセラミックス基体と発熱体や絶縁層との僅かな熱膨張係数差により熱応力が生じ、昇降温を繰り返しているうちに界面にクラックが生じて信頼性を損なうことがあった。   Due to the recent increase in interest in environmental conservation and power saving, fluid heating devices using heating elements such as those described above are required to be able to heat fluid efficiently with low power consumption. Needless to say, reliability is required. However, in the structure in which a heating element or an insulating layer is baked or bonded to the surface of the ceramic substrate as shown in Patent Documents 1 and 2 described above, a slight thermal expansion coefficient between the ceramic substrate and the heating element or the insulating layer is obtained. Thermal stress was generated due to the difference, and cracks occurred at the interface during repeated heating and cooling, thereby impairing reliability.

本発明はかかる従来の問題に鑑みてなされたものであり、昇降温が繰り返されるような条件下で使用してもクラック等の破損が生じにくく、再現性に優れた信頼性の高い流体加熱装置を提供する事を目的としている。   The present invention has been made in view of such conventional problems, and is a highly reliable fluid heating device that is less likely to be damaged, such as cracks, even when used under conditions where the temperature rise and fall is repeated, and has excellent reproducibility. The purpose is to provide.

上記目的を達成するため、本発明が提供する流体加熱装置は、内部に被加熱流体の流路を備えた略直方体形状の流路形成体と、前記流路形成体の少なくとも一面に当接するヒータユニットとを有する流体加熱装置であって、前記ヒータユニットと前記流路形成体とが接着されていないことを特徴としている。   In order to achieve the above object, a fluid heating apparatus provided by the present invention includes a substantially rectangular parallelepiped-shaped flow path forming body having a flow path of a fluid to be heated inside, and a heater that contacts at least one surface of the flow path forming body. A fluid heating apparatus having a unit, wherein the heater unit and the flow path forming body are not bonded to each other.

本発明によれば、昇降温が繰り返される条件下で使用しても破損しにくく、再現性に優れた信頼性の高い流体加熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses on the conditions where temperature raising / lowering is repeated, it is hard to damage and can provide the highly reliable fluid heating apparatus excellent in reproducibility.

本発明の流体加熱装置の一具体例を示す分解斜視図である。It is a disassembled perspective view which shows one specific example of the fluid heating apparatus of this invention. 図1の流体加熱装置の流路の出入口に短管を取り付けた状態を示す平面図である。It is a top view which shows the state which attached the short tube to the entrance / exit of the flow path of the fluid heating apparatus of FIG. 本発明の流体加熱装置の流体形成体に設けられた流路の他の具体例を示す平面図である。It is a top view which shows the other specific example of the flow path provided in the fluid formation body of the fluid heating apparatus of this invention. 本発明の流体加熱装置のヒータユニットが有する発熱体の回路パターンの具体例を示す平面図である。It is a top view which shows the specific example of the circuit pattern of the heat generating body which the heater unit of the fluid heating apparatus of this invention has. 本発明の流体加熱装置の結合方法の具体例を示す正面図である。It is a front view which shows the specific example of the coupling | bonding method of the fluid heating apparatus of this invention. 本発明の流体加熱装置の他の具体例を示す正面図である。It is a front view which shows the other specific example of the fluid heating apparatus of this invention.

最初に本発明の実施形態を列記して説明する。本発明の実施形態の流体加熱装置は、内部に被加熱流体の流路を備えた略直方体形状の流路形成体と、前記流路形成体の少なくとも一面に当接するヒータユニットとを有する流体加熱装置であって、前記ヒータユニットと前記流路形成体が互いに接着されていないことを特徴としている。かかる構成により昇降温が繰り返される条件下で使用しても破損しにくく、再現性に優れた信頼性の高い加熱装置を提供することができる。   First, embodiments of the present invention will be listed and described. A fluid heating apparatus according to an embodiment of the present invention includes a substantially rectangular parallelepiped-shaped flow path forming body provided with a flow path of a fluid to be heated inside, and a heater unit that contacts at least one surface of the flow path forming body. The apparatus is characterized in that the heater unit and the flow path forming body are not bonded to each other. With such a configuration, it is possible to provide a highly reliable heating apparatus that is not easily damaged even when used under conditions where the temperature rise and fall is repeated, and that is excellent in reproducibility.

上記本発明の実施形態の流体加熱装置においては、ヒータユニットが発熱体とこれを両側から挟み込む2層の電気絶縁層とを有するのが好ましい。これにより、流路形成体や後述する押さえ板に導電性材料を使用することが可能になる。また、上記本発明の実施形態の流体加熱装置においては、前記ヒータユニットを前記流路形成体に向けて押さえ付ける押さえ板が更に設けられており、前記押さえ板と前記流路形成体とが締結されているのが好ましい。これにより、より一層高い伝熱効率を達成することができる。   In the fluid heating apparatus of the embodiment of the present invention, it is preferable that the heater unit has a heating element and two electric insulating layers sandwiching the heating element from both sides. Thereby, it becomes possible to use an electroconductive material for a flow-path formation body and the pressing plate mentioned later. In the fluid heating apparatus according to the embodiment of the present invention, a pressing plate that presses the heater unit toward the flow path forming body is further provided, and the pressing plate and the flow path forming body are fastened. It is preferable. Thereby, much higher heat transfer efficiency can be achieved.

また、上記本発明の実施形態の流体加熱装置においては、前記2層の電気絶縁層のうち、前記流路形成体に当接する側の電気絶縁層の熱伝導率がもう一方の電気絶縁層の熱伝導率に比べて大きいのが好ましい。これにより、発熱体で発生させた熱量の損失を抑えることが可能になる。また、上記本発明の実施形態の流体加熱装置においては、前記ヒータユニットが前記流路形成体において互いに反対側に位置する2つの面に1つずつ配置されており、これらヒータユニットは各々が有する発熱体から前記流路までの最短距離が略同等であるのが好ましい。これにより、極めてすばやく被加熱流体を加熱することが可能になる。   In the fluid heating device according to the embodiment of the present invention, the thermal conductivity of the electrical insulating layer on the side in contact with the flow path forming body out of the two electrical insulating layers is that of the other electrical insulating layer. It is preferably larger than the thermal conductivity. Thereby, it is possible to suppress a loss of heat generated by the heating element. Moreover, in the fluid heating apparatus of the embodiment of the present invention, the heater units are arranged one by one on two surfaces located on opposite sides of the flow path forming body, and each of these heater units has. It is preferable that the shortest distance from the heating element to the flow path is substantially the same. This makes it possible to heat the heated fluid very quickly.

次に、図1を参照しながら本発明の流体加熱装置の一具体例について具体的に説明する。この図1に示す流体加熱装置は、内部に被加熱流体の流路Cを備えた矩形板状の流路形成体1と、該流路形成体1と略同じ平面視形状を有し、該流路形成体1の被加熱面1aにほぼ全面に亘って当接する矩形板状のヒータユニット2と、これら流路形成体1及びヒータユニット2と略同じ平面視形状を有し、ヒータユニット2を流路形成体1に向けて押さえつける矩形板状の押さえ板3とを有している。   Next, a specific example of the fluid heating apparatus of the present invention will be specifically described with reference to FIG. The fluid heating apparatus shown in FIG. 1 has a rectangular plate-like flow path forming body 1 provided with a flow path C of a fluid to be heated inside, and has substantially the same plan view shape as the flow path forming body 1, The heater unit 2 has a rectangular plate shape that substantially contacts the heated surface 1 a of the flow path forming body 1, and has substantially the same planar view shape as the flow path forming body 1 and the heater unit 2. And a rectangular plate-like pressing plate 3 that presses the channel toward the flow path forming body 1.

ヒータユニット2は、所定の回路パターンに形成された層状の抵抗発熱体21と、該抵抗発熱体21を両面から挟み込んで電気的な絶縁を確保する第1絶縁層22a及び第2絶縁層22bとで構成される。これら流路形成体1、ヒータユニット2、及び押さえ板3からなる流体加熱装置は、後述するボルトなどの結合手段で結合された状態のまま使用することができるが、設置環境に応じ、容器等の保護手段内に収納した状態で使用することが出来る。   The heater unit 2 includes a layered resistance heating element 21 formed in a predetermined circuit pattern, and a first insulating layer 22a and a second insulating layer 22b that sandwich the resistance heating element 21 from both sides to ensure electrical insulation. Consists of. The fluid heating device including the flow path forming body 1, the heater unit 2, and the pressing plate 3 can be used in a state of being coupled by a coupling means such as a bolt, which will be described later. It can be used in a state of being stored in the protective means.

以下、上記した加熱装置の各構成要素について具体的に説明する。流路形成体1の材質は、流路内で主に流れる流体の種類や温度・圧力などの運転条件、流体加熱装置の設置環境等を考慮して適宜選定されるが、一般的には伝熱効率の観点から熱伝導率が高い材料を使用するのが好ましい。このような、熱伝導率が高い材料としては、例えば銅やアルミニウムなどの金属、炭化珪素や窒化アルミニウムなどのセラミックス、又はこれらの少なくとも1種類を含む例えばSi−SiC、Al−SiCなどのセラミックス複合体を挙げることができる。   Hereinafter, each component of the heating device described above will be specifically described. The material of the flow path forming body 1 is appropriately selected in consideration of the type of fluid that mainly flows in the flow path, the operating conditions such as temperature and pressure, the installation environment of the fluid heating device, etc. From the viewpoint of thermal efficiency, it is preferable to use a material having high thermal conductivity. Examples of such a material having high thermal conductivity include metals such as copper and aluminum, ceramics such as silicon carbide and aluminum nitride, or ceramic composites such as Si-SiC and Al-SiC containing at least one of these. The body can be mentioned.

これらのうち、金属は汎用的で作製が容易である上、セラミックスに比べて高い熱伝導率を有しているのでコストパフォーマンスに長けている。しかし、金属はセラミックスに比べてヤング率が低いので、使用温度によってはヒータユニットが配される側の面の平坦性を維持するため分厚くするか、あるいは金属製の流路形成体1が熱により反りを生じてもヒータユニット2との良好な密着性を維持すべく後述するように流路形成体1とヒータユニット2との間に柔軟性を有する電気的絶縁シートを介在させるのが好ましい。   Among these, metals are general-purpose and easy to produce, and have a high thermal conductivity compared to ceramics, so they are excellent in cost performance. However, since the Young's modulus of metal is lower than that of ceramics, depending on the operating temperature, the metal flow path forming body 1 may be heated by heat or thickened to maintain the flatness of the surface on which the heater unit is disposed. In order to maintain good adhesion to the heater unit 2 even when warping occurs, it is preferable to interpose a flexible electrical insulating sheet between the flow path forming body 1 and the heater unit 2 as will be described later.

一方、セラミックスは機械加工精度に優れる上、剛性(ヤング率)に優れるので、ヒータユニット2が当接する側の面の平坦性を良好に保つことが出来る。また、板厚を薄くしても変形しないので流路形成体1を小型化でき、これにより装置自体の熱容量を小さくできるので運転停止状態にある流体加熱装置を立ち上げる時や、設定温度を変更する時にすばやく定常状態に移行させることができる。   On the other hand, ceramics are excellent in machining accuracy and excellent in rigidity (Young's modulus), so that the flatness of the surface on which the heater unit 2 abuts can be kept good. In addition, since it does not deform even if the plate thickness is reduced, the flow path forming body 1 can be reduced in size, thereby reducing the heat capacity of the device itself, so that the set temperature can be changed when starting up the fluid heating device in the shutdown state. Can quickly transition to steady state.

特に、熱伝導率の高いセラミックス材を選定することで、上記したようにヒータユニット2が当接する側の面の平坦性や小さな熱容量を維持しながら、被加熱流体への伝熱性能を向上させることができ、急激な温度変化による熱衝撃が生じても割れ、クラック、変形などの問題が生じにくくなる。なお、セラミックスの場合は、熱衝撃に対する耐性を考慮して熱膨張係数の低い材料を選定することがより好ましい。   In particular, by selecting a ceramic material having a high thermal conductivity, the heat transfer performance to the fluid to be heated is improved while maintaining the flatness and small heat capacity of the surface on which the heater unit 2 abuts as described above. Even if a thermal shock occurs due to a rapid temperature change, problems such as cracks, cracks, and deformation are less likely to occur. In the case of ceramics, it is more preferable to select a material having a low thermal expansion coefficient in consideration of resistance to thermal shock.

流路形成体1のサイズ及びその内部に設けられる流路Cの本数や形状は、該流路C内を流れる被加熱流体の物性、流量、入口及び出口温度等の運転条件に応じて適宜定められる。図1には矩形板状の流路形成体1の厚み方向の中央部に、長手方向に延在する2本の同じ内径の流路Cが2本貫通している例が示されている。図2に示すように、各流路Cの両開口部には例えばテフロン製の短管4などの継手類を溶着等により接続することにより出入口(タップとも称する)を形成するのが好ましく、これにより被加熱流体の供給源からの配管や、被加熱流体のユースポイントまでの配管を簡易に流路Cに接続することができる。   The size of the flow path forming body 1 and the number and shape of the flow paths C provided therein are appropriately determined according to the operating conditions such as the physical properties, flow rate, inlet and outlet temperatures of the heated fluid flowing in the flow path C. It is done. FIG. 1 shows an example in which two channels C having the same inner diameter extending in the longitudinal direction pass through the central portion in the thickness direction of the rectangular plate-shaped channel forming body 1. As shown in FIG. 2, it is preferable to form an inlet / outlet (also referred to as a tap) by connecting joints such as a Teflon short pipe 4 by welding or the like at both openings of each flow path C. Therefore, the pipe from the supply source of the heated fluid and the pipe up to the use point of the heated fluid can be easily connected to the flow path C.

流路形成体1の流路は図1に示す直線状に限定されるものではなく、例えば図3に示すように、流路形成体11の内部にその被加熱面に平行な面上で蛇行する1本の流路Cを形成してもよい。このような蛇行する流路Cは、例えば2枚の略同形状で且つ同材質の板状部材を用意し、それらの一方の片面に蛇行する断面矩形の溝を形成し、この溝形成面を覆うようにもう一方の板状部材を重ね合わせて接合すればよい。その後、上記した流路形成体1と同様に流路の両開口部に各々短管や継手類を取り付けることで流路Cの出入口を形成することができる。このように、蛇行する流路Cを設けることにより、図1に比べて流路の長さを長くできるので、より高い温度まで被加熱流体を昇温することができる。なお、流路の壁面の加工粗度を粗くすることで流路内を被加熱流体が乱流状態で流れるようにすることが可能になり、熱効率をより一層高めることが可能になる。   The flow path of the flow path forming body 1 is not limited to the linear shape shown in FIG. 1, but, for example, as shown in FIG. 3, the flow path forming body 11 snakes on a surface parallel to the surface to be heated. A single channel C may be formed. For example, two meandering flow paths C having substantially the same shape and the same material are prepared, and a groove having a rectangular cross section is formed on one of the surfaces, and this groove forming surface is formed. What is necessary is just to overlap and join another plate-shaped member so that it may cover. Thereafter, the inlet / outlet of the channel C can be formed by attaching short pipes and joints to both openings of the channel in the same manner as the channel forming body 1 described above. Thus, by providing the meandering flow path C, the length of the flow path can be made longer than that in FIG. 1, so that the fluid to be heated can be heated to a higher temperature. In addition, it becomes possible to make the to-be-heated fluid flow in a turbulent state in a flow path by roughening the processing roughness of the wall surface of a flow path, and it becomes possible to further improve thermal efficiency.

再度図1に戻ると、抵抗発熱体21で発生した熱は速やかに流路形成体1の流路Cに伝熱するのが望ましいので、流路形成体1の被加熱面1aに当接する第1絶縁層22aには、高い熱伝導率を有する材料を用いるのが好ましい。具体的には、第1絶縁層22aの熱伝導率は1W/(m・K)以上であるのが好ましく、3W/(m・K)以上であるのがより好ましい。なお、熱伝導率の高い窒化硼素、窒化アルミニウム、アルミナ、シリカなどのフィラーを含有させることにより熱伝導率をより一層高めることが可能になる。第1絶縁層22aに使用する材料は、更に柔軟性を有しているのが好ましい。熱膨張や熱収縮により流路形成体1に反りが生じても、柔軟性を有する第1絶縁層22aが自在に変形することで流路形成体1とヒータユニット2との間の空隙の形成を防止することができるからである。   Returning again to FIG. 1, it is desirable that the heat generated in the resistance heating element 21 be quickly transferred to the flow path C of the flow path forming body 1, so that the first contact with the heated surface 1 a of the flow path forming body 1 is performed. It is preferable to use a material having high thermal conductivity for the one insulating layer 22a. Specifically, the thermal conductivity of the first insulating layer 22a is preferably 1 W / (m · K) or more, and more preferably 3 W / (m · K) or more. It should be noted that the thermal conductivity can be further increased by adding a filler such as boron nitride, aluminum nitride, alumina, or silica having a high thermal conductivity. It is preferable that the material used for the first insulating layer 22a has further flexibility. Even if the flow path forming body 1 is warped due to thermal expansion or contraction, the flexible first insulating layer 22a is freely deformed to form a gap between the flow path forming body 1 and the heater unit 2. It is because it can prevent.

抵抗発熱体21は両端の電極部を介して供給される電気を導電線に流すことによりジュール熱を発生させるものであり、ステンレスやニッケル−クロム箔をエッチング加工等によりパターニングすることで作製することができる。図1には一対の電極の間で一様に蛇行する回路パターンを有する抵抗発熱体21が示されているが、抵抗発熱体は図1に示すような回路パターンに限定されるものではなく、図4(a)に示すような不規則に蛇行する回路パターンでもよい。   The resistance heating element 21 generates Joule heat by flowing electricity supplied through the electrode portions at both ends to the conductive wire, and is manufactured by patterning stainless steel or nickel-chrome foil by etching or the like. Can do. FIG. 1 shows a resistance heating element 21 having a circuit pattern that meanders uniformly between a pair of electrodes, but the resistance heating element is not limited to the circuit pattern shown in FIG. The circuit pattern may meander irregularly as shown in FIG.

また、図4(b)に示すように、左右非対称な回路パターンにして面内での発熱密度を被加熱流体の出口側よりも入口側が高くなるようにしてもよい。これにより、出口側よりも低温の被加熱流体が流れる入口側において抵抗発熱体21からの発熱量をより多くすることができるので、効率よく加熱することができる。このような局所的に異なる発熱密度の設計は、上記したように1つの発熱体回路内で導電線のピッチを変えたり導電線の断面積を変えたりすることで行ってもよいし、例えば入口側領域と出口側領域のように、面内を複数の領域に分けて各領域ごとに発熱量の異なる発熱体回路を設けてもよい。このように複数の領域に分ける場合は、分割した領域毎に後述する温度センサーを設けて個別に温度制御を行うのが好ましい。なお、図4(a)、(b)には、一点鎖線で示す温度センサーの設置場所を避けるように形成された回路パターンが示されている。   Further, as shown in FIG. 4B, the heat generation density in the plane may be made higher on the inlet side than on the outlet side of the fluid to be heated by making the circuit pattern asymmetrical. As a result, the amount of heat generated from the resistance heating element 21 can be increased on the inlet side where the fluid to be heated flows at a temperature lower than that on the outlet side, so that heating can be performed efficiently. Such a design of locally different heat generation densities may be performed by changing the pitch of the conductive wires or changing the cross-sectional area of the conductive wires in one heating element circuit as described above. As in the side region and the outlet side region, a heating element circuit having a different calorific value may be provided for each region by dividing the surface into a plurality of regions. When dividing into a plurality of areas as described above, it is preferable to perform temperature control individually by providing a temperature sensor to be described later for each divided area. 4A and 4B show circuit patterns formed so as to avoid the installation location of the temperature sensor indicated by the alternate long and short dash line.

抵抗発熱体は単層ではなく複数層設けてもよい。例えば制御機器の電気仕様の制約や装置のサイズが小さい等のスペース上の制約がある場合は、2つの層状の抵抗発熱体を電気的絶縁シートを挟んで重ね合わせ、それらの一端部同士を接続すると共に他端部を電力供給端子にすることで1つの直列回路を形成することができる。この様にすれば、例えば1mm未満の厚みの中に複数の発熱体層を配置でき、制御機器の電気仕様とのマッチングも可能となる。   A plurality of resistance heating elements may be provided instead of a single layer. For example, when there are restrictions on the electrical specifications of the control equipment or space restrictions such as the size of the device being small, two layered resistance heating elements are stacked with an electrical insulation sheet sandwiched between them, and their one ends are connected to each other In addition, one series circuit can be formed by using the other end as a power supply terminal. In this way, for example, a plurality of heating element layers can be disposed within a thickness of less than 1 mm, and matching with the electrical specifications of the control device is also possible.

上記した2枚の発熱体層の間に介在させる電気的絶縁シートは、前述した第1絶縁層22aと同様に加熱時や冷却時に速やかに熱が伝わるように、互いに当接する層同士の間に空隙が生じないように配置することが重要である。上記した層間に空隙が存在していると、発熱体層の加熱時にこの空隙内の空気が膨張し、発熱体層の剥離や絶縁破壊の原因になったり、被加熱流体が流れていない状態と同様の状態となり異常発熱の原因になったりする。   The electrical insulating sheet interposed between the two heating element layers described above is provided between the layers in contact with each other so that heat can be transferred quickly during heating and cooling, similar to the first insulating layer 22a described above. It is important to arrange so that no voids are generated. If there is a gap between the above-mentioned layers, the air in the gap expands when the heating element layer is heated, which may cause peeling of the heating element layer or dielectric breakdown, and the fluid to be heated is not flowing. The same condition may occur and cause abnormal heat generation.

上記した抵抗発熱体21の発熱量は、流路形成体1に設けた温度センサー(図示せず)に基づいて温度制御するのが好ましい。温度センサーには測温抵抗体を用いることが好ましい。測温抵抗体は、例えば絶縁セラミック基体の平面上に白金抵抗体を蒸着等により形成し、得られた白金抵抗体を所定の抵抗値に調整した後、その電極パッド部にボンディング等の手段でリード線を接続し、白金抵抗体及びパッド部を絶縁膜で覆うことにより作製することができる。かかる構造により測温素子を小型化できるので素子の熱容量を小さくでき、温度応答性を高めることができる。   The amount of heat generated by the resistance heating element 21 is preferably temperature-controlled based on a temperature sensor (not shown) provided in the flow path forming body 1. It is preferable to use a resistance temperature detector for the temperature sensor. The resistance temperature detector is formed by, for example, depositing a platinum resistor on the plane of an insulating ceramic substrate by vapor deposition, etc., adjusting the obtained platinum resistor to a predetermined resistance value, and then bonding the electrode pad portion by means such as bonding. It can be produced by connecting lead wires and covering the platinum resistor and the pad portion with an insulating film. With this structure, the temperature measuring element can be reduced in size, so that the heat capacity of the element can be reduced and the temperature responsiveness can be improved.

温度センサーは接着剤を用いて接着してもよい。このような接着剤には、シリコーンやエポキシ等の有機系樹脂を主成分としたものや、セラミック粒等の無機材料とバインダ成分とを組み合わせたものを利用することが出来る。特にシリコーン樹脂を主成分とした接着剤は、流体加熱に必要な温度帯に耐える耐熱性を有し且つ弾力性を有することから、測温素子と周辺部材の僅かな熱膨張量差を吸収し得るため好適である。   The temperature sensor may be bonded using an adhesive. As such an adhesive, a material mainly composed of an organic resin such as silicone or epoxy, or a combination of an inorganic material such as ceramic particles and a binder component can be used. In particular, the adhesive mainly composed of silicone resin has heat resistance and elasticity to withstand the temperature range required for fluid heating, and thus absorbs a slight difference in thermal expansion between the temperature measuring element and peripheral members. It is suitable for obtaining.

温度センサーを設置する際、その測温素子の平面部分が全面に亘って流路形成体の平面部に当接するように設置することが望ましく、これにより、より広い接触面積が確保できるので良好な温度応答性が得られる。なお、コスト上の観点から流路形成体には加工を施さず、その被加熱面に配置するヒータユニットや押さえ板側に測温素子に合わせた形状、サイズでくり抜きを設けるのが好ましい。   When installing the temperature sensor, it is desirable to install the temperature sensor so that the flat surface portion of the temperature measuring element is in contact with the flat surface portion of the flow path forming body over the entire surface. Temperature response is obtained. From the viewpoint of cost, it is preferable not to process the flow path forming body, but to provide a cutout with a shape and a size suitable for the temperature measuring element on the heater unit and the holding plate side arranged on the heated surface.

測温抵抗体に接続したリード線を伝って僅かに逃げる熱量が問題になる場合は、リード線の一部を流路形成体または押さえ板の表面に接着剤等を用いて接触または近接させるのが好ましい。これによりリード線からの熱逃げの量を減らすことができるので、検知温度と実際温度との乖離が熱容量の小さな測温素子部の測定値に悪影響を及ぼすのを抑えることができる。なお、上記接触または近接に際しては、可能な限りその接触または近接させる距離を長くとることが好ましい。   If the amount of heat that escapes slightly through the lead wire connected to the resistance temperature detector becomes a problem, a part of the lead wire is brought into contact with or close to the surface of the flow path forming body or holding plate using an adhesive or the like. Is preferred. As a result, the amount of heat escape from the lead wire can be reduced, so that the difference between the detected temperature and the actual temperature can be prevented from adversely affecting the measured value of the temperature measuring element unit having a small heat capacity. In the above contact or proximity, it is preferable to make the contact or proximity distance as long as possible.

抵抗発熱体21で発生した熱量はできるだけ損失を少なくして被加熱流体に供給するのが望ましいため、第2絶縁層22bは第1絶縁層22aよりも熱伝導率が低い材質、すなわち熱抵抗となる材質を選定することが好ましい。具体的には、第1絶縁層22aに前述したように1W/(m・K)又はそれより高い熱伝導率を有する伝熱性に優れた電気的絶縁シートを選定する場合は、第2絶縁層22bには熱伝導率1W/(m・K)未満の断熱性を有する電気的絶縁シートを選定する。   Since it is desirable that the amount of heat generated in the resistance heating element 21 be supplied to the heated fluid with as little loss as possible, the second insulating layer 22b is made of a material having a lower thermal conductivity than the first insulating layer 22a, that is, thermal resistance. It is preferable to select a material. Specifically, as described above, when selecting an electrically insulating sheet having a thermal conductivity of 1 W / (m · K) or higher as the first insulating layer 22a, the second insulating layer 22a is selected. For 22b, an electrical insulating sheet having a heat insulating property with a thermal conductivity of less than 1 W / (m · K) is selected.

その様な断熱性を有する電気的絶縁シートとしては、例えばシリコーン樹脂、フッ素樹脂、ポリイミド樹脂、マイカ等を挙げることができる。シリコーン樹脂は柔軟性があるので前述したように空隙による異常発熱を回避することができる。また、フッ素樹脂、ポリイミド樹脂、及びマイカは上記した流路側とは反対側の押さえ板側への伝熱に対して断熱材として作用しながら、200℃を超える温度域であっても特に問題なく用いることができる。更にフッ素樹脂、ポリイミド樹脂、又はマイカで形成したシートの場合は熱伝導率が低いことに加えて、表面が離型性に優れた特性を備えるので、後述する熱膨張係数差による面方向の相対的な移動の際に摺動させることが可能になる。   Examples of such an electrically insulating sheet having heat insulation include silicone resin, fluorine resin, polyimide resin, mica, and the like. Since the silicone resin is flexible, abnormal heat generation due to voids can be avoided as described above. In addition, fluororesin, polyimide resin, and mica function as a heat insulating material against heat transfer to the holding plate side opposite to the flow path side, and there is no particular problem even in a temperature range exceeding 200 ° C. Can be used. Furthermore, in the case of a sheet made of fluororesin, polyimide resin, or mica, in addition to low thermal conductivity, the surface has excellent releasability, so that relative to the surface direction due to the difference in thermal expansion coefficient described later Can be slid during a typical movement.

押さえ板3の材質は、汎用的で安価な金属が好ましい。この場合、流路形成体1と同じ材質であれば熱膨張係数が合致するので好適である。上記した第1絶縁層22a、抵抗発熱体21、及び第2絶縁層22bを有するヒータユニット2は、流路形成体1と押さえ板3とをボルトナットやネジ留めなどの結合手段で結合することで一体化させる。具体的には、流路形成体1及び押さえ板3の両方に厚み方向に貫通する貫通孔を設け、各貫通孔にボルト5を挿通してその先端部をナット6で締め付けることにより締結することができる。なお、ヒータユニット2の平面視形状が流路形成体1及び押さえ板3と略同等の場合は、ヒータユニット2にも対応する位置に貫通孔を設けることが必要になる。   The material of the pressing plate 3 is preferably a general-purpose and inexpensive metal. In this case, the same material as that of the flow path forming body 1 is preferable because the thermal expansion coefficient matches. In the heater unit 2 having the first insulating layer 22a, the resistance heating element 21, and the second insulating layer 22b, the flow path forming body 1 and the pressing plate 3 are coupled by a coupling means such as a bolt and a nut. Integrate with. Specifically, a through hole penetrating in the thickness direction is provided in both the flow path forming body 1 and the pressing plate 3, and a bolt 5 is inserted into each through hole and tightened by tightening the tip end with a nut 6. Can do. When the shape of the heater unit 2 in plan view is substantially the same as that of the flow path forming body 1 and the pressing plate 3, it is necessary to provide a through hole at a position corresponding to the heater unit 2.

あるいは、図5に示すように、押さえ板3及び流路形成体1のうちの何れか一方に厚み方向に貫通する貫通孔を設けると共に、もう一方に該貫通孔に対応する雌ネジを設け、各貫通孔に雄ネジ7を挿通して雌ネジに螺合することで締結してもよい。このように、ネジやボルトナットなどの結合手段で結合する場合は、流路形成体1と押さえ板3の熱膨張係数差や立ち上げ時での厚み方向での温度勾配等により当接面方向に相対的に移動することがあるので、上記した貫通孔の内径は、この相対的な移動分を考慮して余裕を持った大きさにするのが好ましい。これにより、変形や割れ等の問題を防ぐことができる。   Alternatively, as shown in FIG. 5, a through hole that penetrates in the thickness direction is provided in one of the pressing plate 3 and the flow path forming body 1, and a female screw corresponding to the through hole is provided in the other, You may fasten by inserting the male screw 7 in each through-hole, and screwing it in a female screw. As described above, in the case of coupling by a coupling means such as a screw or a bolt and nut, the contact surface direction depends on the difference in thermal expansion coefficient between the flow path forming body 1 and the holding plate 3 or the temperature gradient in the thickness direction at the time of start-up. Therefore, it is preferable that the above-mentioned inner diameter of the through-hole is set to have a sufficient size in consideration of this relative movement. Thereby, problems, such as a deformation | transformation and a crack, can be prevented.

本発明の一具体例の流体加熱装置では、上記した流路を備えた流路形成体1と、その表面に当接するヒータユニット2と、ヒータユニット2に当接する押さえ板3とは、互いの当接面において接着されていないことを特徴としている。ここで接着されていないとは、接着剤などの接着層を介して接合させる場合のみならず、溶着、融着、焼成による固着などの化学的に接合させる手段が含まれる。すなわち、接着によりヒータユニット2及び流路形成体1や、ヒータユニット2及び押さえ板3を一体化させると、互いの熱膨張係数差や厚み方向の温度勾配により昇降温を繰り返しているうちに界面で剥離や割れ等の不具合を生じ、流体を加熱する能力が低下するおそれがある。   In the fluid heating apparatus of one specific example of the present invention, the flow path forming body 1 having the flow path described above, the heater unit 2 that comes into contact with the surface thereof, and the pressing plate 3 that comes into contact with the heater unit 2 are mutually connected. The contact surface is not bonded. Here, not being bonded includes not only the case of bonding via an adhesive layer such as an adhesive, but also means of chemical bonding such as welding, fusion, and fixation by firing. That is, when the heater unit 2 and the flow path forming body 1 or the heater unit 2 and the pressing plate 3 are integrated by bonding, the interface is gradually increased and lowered due to the difference in thermal expansion coefficient and the temperature gradient in the thickness direction. This may cause problems such as peeling and cracking, and may reduce the ability to heat the fluid.

これに対して、流路形成体1とヒータユニット2との間や、押さえ板3とヒータユニット2との間を互いに接着することなく単に重ね合わせる構造であれば、互いの熱膨張差により当接面方向に相対的に移動する力が働いても当接する部材によって当該移動が拘束されることなく、自在に摺動させることが可能になる。その結果、昇降温が繰り返されても熱応力によりクラック等の破損が生ずることなくなり、再現性に優れた信頼性の高い流体加熱装置を提供することが可能となる。   On the other hand, if the structure is such that the flow path forming body 1 and the heater unit 2 or the holding plate 3 and the heater unit 2 are simply overlapped without being bonded to each other, the difference in thermal expansion between the flow path forming body 1 and the heater unit 2 Even if a force that moves relatively in the direction of the contact surface is applied, the member can be slid freely without being restricted by the abutting member. As a result, even if the temperature rise and fall is repeated, breakage such as cracks does not occur due to thermal stress, and it is possible to provide a highly reliable fluid heating apparatus with excellent reproducibility.

以上、本発明の流体加熱装置について具体例を挙げて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。例えば図6に示すように、第1絶縁層22a、抵抗発熱体21、及び第2絶縁層22bからなるヒータユニット2を流路形成体1の両面に配置してもよい。   As mentioned above, although the specific example was given and demonstrated about the fluid heating apparatus of this invention, this invention is not limited to the specific example which concerns, It can implement in the various aspect of the range which does not deviate from the main point of this invention. For example, as illustrated in FIG. 6, the heater unit 2 including the first insulating layer 22 a, the resistance heating element 21, and the second insulating layer 22 b may be disposed on both surfaces of the flow path forming body 1.

図1に示すようにヒータユニット2を片面だけに配置した場合は、流体加熱装置の設置環境等によっては外気や周辺部材への熱放散による熱効率の悪化が懸念されるが、両面にヒータユニット2を配置した場合は、流路形成体1の両側から加熱するため極めて効率よく被加熱流体を加熱することができる。この場合は、流路形成体1の表裏面に同じ構成のヒータユニット2をシンメトリに配置することで、構成部品の種類を増やすことなく安価に熱効率の高い加熱装置を製造することが出来る。   When the heater unit 2 is disposed only on one side as shown in FIG. 1, there is a concern that the heat efficiency may be deteriorated due to heat dissipation to the outside air or peripheral members depending on the installation environment of the fluid heating device, but the heater unit 2 on both sides. Is heated from both sides of the flow path forming body 1, the heated fluid can be heated extremely efficiently. In this case, by arranging the heater units 2 having the same configuration on the front and back surfaces of the flow path forming body 1 in symmetry, a heating device with high thermal efficiency can be manufactured at low cost without increasing the types of components.

また、回路パターンの隣接する導電線間には空隙が生じやすく、この空隙が熱抵抗の原因になり得るため、この空隙及び必要に応じて絶縁シートと抵抗発熱体との間を接着成分で充填してもよい。この空隙は上述した柔軟な絶縁シートで充填することが出来れば良いが、パターンのライン&スペースが密になればなるほど、その実現は困難となるからである。   In addition, gaps are likely to occur between adjacent conductive lines in the circuit pattern, and these gaps can cause thermal resistance. Therefore, the gap and between the insulating sheet and the resistance heating element are filled with an adhesive component if necessary. May be. This gap is only required to be filled with the above-described flexible insulating sheet. However, the denser the line and space of the pattern, the more difficult it becomes.

上記接着成分には、熱可塑あるいは熱硬化性ポリイミド樹脂を含有したフィルム、ワニスなどが有効である。これらを絶縁シートとパターン間に配置して最適な温度、圧力条件で熱圧着することで、良好な熱接触を維持したヒータ層を製造することが出来る。この場合、同材質の絶縁フィルムに覆われたヒータ層となり、僅かに表面に発熱パターン経路に沿った凹凸が生じるため、流路形成体との間には柔軟な熱伝導性シートを、押さえ板との間には断熱となる様なシートを配置することが好ましい。   As the adhesive component, a film or varnish containing a thermoplastic or thermosetting polyimide resin is effective. By arranging these between the insulating sheet and the pattern and thermocompression bonding under optimum temperature and pressure conditions, a heater layer maintaining good thermal contact can be manufactured. In this case, the heater layer is covered with an insulating film of the same material, and unevenness along the heat generation pattern path is slightly formed on the surface. Therefore, a flexible heat conductive sheet is placed between the flow path forming body and the pressing plate. It is preferable to arrange a sheet for heat insulation.

また、面状の抵抗発熱体を例えば金属箔をエッチング加工することで作製する場合、隣接する導電線間の金属箔を完全に除去するのではなく、当該発熱体の回路とは電気的に絶縁した状態で残しておいてもよい。これにより、抵抗発熱体の回路と同素材及び同厚みの材質を用いて上記空隙を充填することができるので好ましい。また、流路形成体と押さえ板とをネジ留め等で機械的に結合する際、当該ネジ留め用の貫通孔の周辺に上記したような回路とは電気的に絶縁した金属箔層を設けておくことで、抵抗発熱体層の厚みをほぼ全面に亘って均一にできるので、ネジ留めの際の軸方向の締め付け力による流路形成体や押さえ板の変形を防止することができる。   Further, when a planar resistance heating element is manufactured by, for example, etching a metal foil, the metal foil between adjacent conductive wires is not completely removed, but is electrically insulated from the circuit of the heating element. You may leave it in the state. This is preferable because the gap can be filled with the same material and the same thickness as the circuit of the resistance heating element. In addition, when the flow path forming body and the pressing plate are mechanically coupled by screwing or the like, a metal foil layer that is electrically insulated from the circuit as described above is provided around the screwing through hole. Since the thickness of the resistance heating element layer can be made uniform over almost the entire surface, deformation of the flow path forming body and the pressing plate due to the axial tightening force at the time of screwing can be prevented.

[実施例1]
図1に示すような流体加熱装置を作製して被加熱流体としての水を加熱する試験を行った。具体的には、先ず流路形成体用の材料として、銅(Cu)、窒化アルミニウム(AlN)、及び炭化珪素(SiC)でそれぞれ形成された縦30mm×横90mm×厚み8mmの板状部材を3枚用意し、各々の厚み方向中央部に長手方向に延在する内径3mmの流路を2本貫通して流路を形成した。各流路の両開口部にそれぞれ短管を取り付けて流体の出入口を設けた。
[Example 1]
A fluid heating apparatus as shown in FIG. 1 was produced and a test for heating water as a fluid to be heated was performed. Specifically, first, as a material for the flow path forming body, a plate-like member having a length of 30 mm × width of 90 mm × thickness of 8 mm formed of copper (Cu), aluminum nitride (AlN), and silicon carbide (SiC), respectively. Three sheets were prepared, and a flow path was formed by penetrating two flow paths with an inner diameter of 3 mm extending in the longitudinal direction at the center of each thickness direction. Short pipes were attached to both openings of each channel to provide fluid inlets and outlets.

このようにして得た3種類の流路形成体の各々の片面に当接させるヒータユニットとして、第1絶縁層には流路形成体と縦及び横の長さが同じで厚み0.5mmのフィラー入りシリコーンシートを使用し、抵抗発熱体には厚さ20μmのステンレス箔に面内で粗密差のない回路パターンとなるようにエッチング加工した均一な発熱密度有する発熱体層を使用し、第2絶縁層には厚み50μmのポリイミドを使用した。また、押さえ板として、流路形成体と縦及び横の長さが同じで厚み1mmのステンレス板を使用した。そして、これらを図1に示す順序で重ね合わせてボルトナットで締結した。   As a heater unit to be brought into contact with one side of each of the three types of flow path forming bodies thus obtained, the first insulating layer has the same vertical and horizontal length as the flow path forming body and a thickness of 0.5 mm. Using a silicone sheet with a filler, a resistance heating element using a heating element layer having a uniform heating density etched into a 20 μm-thick stainless steel foil so as to form a circuit pattern with no roughness difference in the surface, For the insulating layer, polyimide having a thickness of 50 μm was used. In addition, a stainless steel plate having the same vertical and horizontal length as the flow path forming body and a thickness of 1 mm was used as the pressing plate. These were superposed in the order shown in FIG. 1 and fastened with bolts and nuts.

次に、流路形成体の表面に温度センサーを接着剤を用いて固定し、抵抗発熱体の両端部に給電ケーブルを取り付けた。このようにして、試料1〜3の流体加熱装置を作製した。また、比較のため、第1絶縁層にフィラーを含まないシリコーンシートを使用し、第2絶縁層にシリコーンシートを使用し、流路形成体とヒータユニットとの間を接着した以外は試料1と同じように作製した試料4の流体加熱装置と、第1絶縁層を使用せず、第2絶縁層にガラスを使用し、流路形成体とヒータユニットとの間を接着した以外は試料2と同じように作製した試料5の流体加熱装置とを作製した。これら試料1〜5の流体加熱装置の主な機器仕様を下記表1に示す。   Next, a temperature sensor was fixed to the surface of the flow path forming body using an adhesive, and power feeding cables were attached to both ends of the resistance heating element. In this manner, fluid heating devices of Samples 1 to 3 were produced. For comparison, Sample 1 was used except that a silicone sheet containing no filler was used for the first insulating layer, a silicone sheet was used for the second insulating layer, and the flow path forming body and the heater unit were adhered to each other. Sample 2 was prepared in the same manner as Sample 2, except that the first insulating layer was not used, glass was used for the second insulating layer, and the flow path forming body and the heater unit were bonded together. A fluid heating apparatus of Sample 5 produced in the same manner was produced. Table 1 below shows main equipment specifications of the fluid heating devices of Samples 1 to 5.

Figure 2015152218
Figure 2015152218

これら試料1〜5の流体加熱装置の流路形成体の流路に被加熱流体として20℃に温度管理された水を0.5L/minの流量で導入しながら、温度センサーでの温度が室温から100℃まで昇温するように抵抗発熱体に給電した後、給電を停止してそのまま20℃の水による熱交換で温度降下させた。このヒートサイクルを1サイクルとして1000サイクル繰り返した。そして、1000サイクル繰り返した後、1サイクル目と同じ条件で水を加熱した。このヒートサイクル試験の際、流体加熱装置の出入口の水温、及び1000サイクル後の装置の外観を致命的な欠陥の有無の観点から確認した。その結果を下記表2に示す。   While introducing water at a temperature of 20 L as a fluid to be heated into the flow path forming body of the fluid heating apparatus of Samples 1 to 5 at a flow rate of 0.5 L / min, the temperature at the temperature sensor is room temperature. After the power was supplied to the resistance heating element so that the temperature was raised from 100 to 100 ° C., the power supply was stopped and the temperature was lowered by heat exchange with 20 ° C. water as it was. This heat cycle was set as 1 cycle, and 1000 cycles were repeated. And after repeating 1000 cycles, water was heated on the same conditions as the 1st cycle. During this heat cycle test, the water temperature at the entrance and exit of the fluid heating device and the appearance of the device after 1000 cycles were confirmed from the viewpoint of the presence or absence of fatal defects. The results are shown in Table 2 below.

Figure 2015152218
Figure 2015152218

上記表2からわかるように、比較例である試料4及び5では、板状の流路形成体の熱伝導率は試料4の方が高いものの、熱容量が試料5の方が小さく、温度上昇は試料5の方が早い結果となった。また、出口側の水温も試料5の方が高い結果となった。また、ヒートサイクル経過後の外観を詳細に確認すると、何れも板状の流路形成体の変形や、流路形成体と絶縁シート(コート)の接着界面の剥離、クラックが確認された。その状態で再度同様の昇温試験を行った結果、何れもヒートサイクル前に確認した昇温時の性能結果に劣る結果となった。   As can be seen from Table 2 above, in Samples 4 and 5, which are comparative examples, the thermal conductivity of the plate-like channel forming body is higher in Sample 4, but the heat capacity is smaller in Sample 5, and the temperature rise is Sample 5 gave faster results. In addition, the water temperature on the outlet side was higher in the sample 5. Further, when the appearance after the heat cycle elapsed was confirmed in detail, deformation of the plate-like flow path forming body, peeling of the adhesion interface between the flow path forming body and the insulating sheet (coat), and cracks were confirmed. As a result of performing the same temperature increase test again in this state, the results were inferior to the performance results at the time of temperature increase confirmed before the heat cycle.

これは、当接する部材同士が接着されているため、例え同材質であっても設置環境による温度差から生じる僅かな熱膨張量差の影響により、接着界面が剥離したりクラックが生じたりし、その結果、抵抗発熱体が発した熱量を流路形成体の被加熱流体に良好に伝えることができなかったためと考えられる。   This is because the abutting members are bonded to each other, so even if the same material is used, the adhesive interface peels off or cracks occur due to the slight difference in thermal expansion caused by the temperature difference depending on the installation environment. As a result, it is considered that the amount of heat generated by the resistance heating element could not be transferred well to the heated fluid of the flow path forming body.

一方、試料1〜3では何れも1000回のヒートサイクルを経過しても外観異状は認められず、性能も初期と同等の数値を示し、信頼性の高い流体加熱装置であることが実証された。また、第1絶縁層と第2絶縁層の熱伝導率の関係から、発熱体が発した熱量が押さえ板側でなく、流路形成体側に熱伝達されたことにより、例えば試料1と試料4の初期性能差に認められる様に、熱ロスの少ない省エネ流体加熱装置であることも実証された。   On the other hand, in Samples 1 to 3, no abnormality in the appearance was observed even after 1000 heat cycles, and the performance was the same as the initial value, which proved to be a highly reliable fluid heating device. . In addition, from the relationship between the thermal conductivity of the first insulating layer and the second insulating layer, for example, Sample 1 and Sample 4 are generated when the amount of heat generated by the heating element is transferred to the flow path forming body side instead of the holding plate side. As can be seen from the initial performance difference, the energy-saving fluid heating device with less heat loss was also demonstrated.

[実施例2]
上記した実施例1の試料1〜3の流体加熱装置に対して、各々ヒータユニットを流路形成体の片面に代えて両面に当接させてボルトナットで締結した以外は実施例1と同様にして試料1a〜3aの流体加熱装置をそれぞれ作製した。そして、これら試料1a〜3aの流体加熱装置に対して実施例1と同様のヒートサイクル試験を行った。この結果を下記表3に示す。
[Example 2]
For the fluid heating devices of Samples 1 to 3 of Example 1 described above, each heater unit was replaced with one side of the flow path forming body and contacted on both sides and tightened with bolts and nuts, and was the same as Example 1. Thus, fluid heating devices for Samples 1a to 3a were respectively prepared. And the heat cycle test similar to Example 1 was done with respect to the fluid heating apparatus of these samples 1a-3a. The results are shown in Table 3 below.

Figure 2015152218
Figure 2015152218

上記表3からわかるように、実施例1に比べて実施例2では初期性能が向上し、また1000回のヒートサイクルが経過しても初期と同等の性能が得られることが分かった。先述の通り、片側からだけの加熱では抵抗発熱体で発生させた熱量が一部外気に熱放散する熱ロスがあることが予測されるが、両面からの加熱にし、またその構成をシンメトリにすることで発生した熱量を効率的に流路側に熱伝達出来たためであると考えられる。   As can be seen from Table 3 above, it was found that the initial performance was improved in Example 2 as compared to Example 1, and that the same performance as in the initial stage was obtained even after 1000 heat cycles. As mentioned above, it is predicted that there will be a heat loss in which the amount of heat generated by the resistance heating element is partially dissipated to the outside air by heating from only one side, but the heating is performed from both sides and the configuration is made symmetrical. This is probably because the amount of heat generated can be efficiently transferred to the channel side.

[実施例3]
上記した実施例2の試料1a〜3aの流体加熱装置に対して、抵抗発熱体の回路パターンを中心から流体入口側の発熱密度分布を、中心から流体出口側の発熱密度分布に比較して凡そ1.5倍となるように回路パターンを作製して組み込んだ以外は実施例2と同様にして試料1b〜3bの流体加熱装置をそれぞれ作製した。そして、これら試料1b〜3bの流体加熱装置に対して実施例1と同様のヒートサイクル試験を行った。この結果を下記表4に示す。
[Example 3]
Compared with the fluid heating device of the samples 1a to 3a of Example 2 described above, the heat generation density distribution from the center to the fluid inlet side of the circuit pattern of the resistance heating element is compared with the heat generation density distribution from the center to the fluid outlet side. The fluid heating devices of Samples 1b to 3b were respectively produced in the same manner as in Example 2 except that the circuit pattern was produced and incorporated so as to be 1.5 times. And the heat cycle test similar to Example 1 was done with respect to the fluid heating apparatus of these samples 1b-3b. The results are shown in Table 4 below.

Figure 2015152218
Figure 2015152218

実施例2に比べて実施例3では更に初期性能が向上し、また1000回のヒートサイクル経過後も初期と同等の性能が得られることが分かった。温度の低い流体入口側の発熱密度を、受熱により温度が高くなる流体出口側の発熱密度に比較して高く設計することで、流体入口側の流体温度とヒータ温度の差を大きくしたことにより熱効率が向上したものと考えられる。   It was found that the initial performance was further improved in Example 3 as compared to Example 2, and that the same performance as in the initial stage was obtained after 1000 heat cycles. By designing the heat generation density at the low fluid inlet side higher than the heat generation density at the fluid outlet side where the temperature increases due to heat reception, the difference between the fluid temperature on the fluid inlet side and the heater temperature is increased, resulting in higher thermal efficiency. Is considered to have improved.

1、11 流路形成体
1a 被加熱面
2 ヒータユニット
3 押さえ板
4 短管
5 ボルト
6 ナット
7 雄ネジ
21 抵抗発熱体
22a 第1絶縁層
22b 第2絶縁層
C 流路
DESCRIPTION OF SYMBOLS 1, 11 Flow path formation body 1a Heated surface 2 Heater unit 3 Holding plate 4 Short pipe 5 Bolt 6 Nut 7 Male screw 21 Resistance heating element 22a 1st insulating layer 22b 2nd insulating layer C Flow path

Claims (5)

内部に被加熱流体の流路を備えた略直方体形状の流路形成体と、前記流路形成体の少なくとも一面に当接するヒータユニットとを有する流体加熱装置であって、前記ヒータユニットと前記流路形成体の少なくとも一面とが互いに接着されていない流体加熱装置。   A fluid heating apparatus having a substantially rectangular parallelepiped-shaped flow path forming body provided with a flow path of a fluid to be heated, and a heater unit that contacts at least one surface of the flow path forming body. A fluid heating apparatus in which at least one surface of a path forming body is not bonded to each other. 前記ヒータユニットが、発熱体とこれを両側から挟み込む2層の電気絶縁層とを有する、請求項1に記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein the heater unit includes a heating element and two electric insulating layers sandwiching the heating element from both sides. 前記ヒータユニットを前記流路形成体に向けて押さえ付ける押さえ板が更に設けられており、前記押さえ板と前記流路形成体とが締結されている、請求項1又は請求項2に記載の流体加熱装置。   The fluid according to claim 1, further comprising a pressing plate that presses the heater unit toward the flow path forming body, wherein the pressing plate and the flow path forming body are fastened. Heating device. 前記2層の電気絶縁層のうち、前記流路形成体に当接する側の電気絶縁層の熱伝導率がもう一方の電気絶縁層の熱伝導率に比べて大きい、請求項2に記載の流体加熱装置。   The fluid according to claim 2, wherein, of the two electric insulating layers, the heat conductivity of the electric insulating layer on the side in contact with the flow path forming body is larger than the heat conductivity of the other electric insulating layer. Heating device. 前記ヒータユニットが前記流路形成体において互いに反対側に位置する2つの面に1つずつ配置されており、これらヒータユニットは各々が有する発熱体から前記流路までの最短距離が略同等である、請求項1〜請求項4のいずれか1項に記載の流体加熱装置。   The heater units are arranged one by one on two surfaces located on opposite sides of the flow path forming body, and these heater units have substantially the same shortest distance from the heating element to the flow path. The fluid heating apparatus according to any one of claims 1 to 4.
JP2014025956A 2014-02-13 2014-02-13 fluid heating device Pending JP2015152218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025956A JP2015152218A (en) 2014-02-13 2014-02-13 fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025956A JP2015152218A (en) 2014-02-13 2014-02-13 fluid heating device

Publications (1)

Publication Number Publication Date
JP2015152218A true JP2015152218A (en) 2015-08-24

Family

ID=53894680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025956A Pending JP2015152218A (en) 2014-02-13 2014-02-13 fluid heating device

Country Status (1)

Country Link
JP (1) JP2015152218A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078250A1 (en) * 2015-11-05 2017-05-11 엘지전자 주식회사 Evaporator and refrigerator having same
WO2017168847A1 (en) * 2016-03-29 2017-10-05 日立化成株式会社 Member with aerogel layer
CN107318180A (en) * 2017-08-23 2017-11-03 湖南智热技术股份有限公司 A kind of use heat-conducting plate heats the electric heater of fluid
JP6247429B1 (en) * 2016-06-27 2017-12-13 日新ネオ株式会社 Heat exchanger
WO2018021857A1 (en) * 2016-07-29 2018-02-01 엘지전자 주식회사 Evaporator and refrigerator comprising same
KR101963706B1 (en) * 2018-10-12 2019-03-29 (주)대현하이텍 Heating device for hot water mat
WO2023214677A1 (en) * 2022-05-04 2023-11-09 주식회사 경동나비엔 Heat exchanger and water-heater including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162757A (en) * 1982-03-13 1983-09-27 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Heater
JPS614194A (en) * 1984-06-15 1986-01-10 三菱電機株式会社 Method of producing hollow sheathed heater
JPH01102242A (en) * 1987-10-15 1989-04-19 Kubota Ltd Water heater
JPH04125156U (en) * 1991-04-23 1992-11-16 東亜医用電子株式会社 Liquid temperature adjustment device
JP2003068430A (en) * 1995-07-10 2003-03-07 Mks Instruments Inc Hps Division Flexible heat-insulation heater
WO2009008320A1 (en) * 2007-07-11 2009-01-15 Komatsu Electronics Inc. Fluid temperature control device
JP2011152907A (en) * 2010-01-28 2011-08-11 Mitsubishi Heavy Ind Ltd Electric heating system and vehicular air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162757A (en) * 1982-03-13 1983-09-27 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Heater
JPS614194A (en) * 1984-06-15 1986-01-10 三菱電機株式会社 Method of producing hollow sheathed heater
JPH01102242A (en) * 1987-10-15 1989-04-19 Kubota Ltd Water heater
JPH04125156U (en) * 1991-04-23 1992-11-16 東亜医用電子株式会社 Liquid temperature adjustment device
JP2003068430A (en) * 1995-07-10 2003-03-07 Mks Instruments Inc Hps Division Flexible heat-insulation heater
WO2009008320A1 (en) * 2007-07-11 2009-01-15 Komatsu Electronics Inc. Fluid temperature control device
JP2011152907A (en) * 2010-01-28 2011-08-11 Mitsubishi Heavy Ind Ltd Electric heating system and vehicular air conditioner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078250A1 (en) * 2015-11-05 2017-05-11 엘지전자 주식회사 Evaporator and refrigerator having same
KR101742587B1 (en) * 2015-11-05 2017-06-01 엘지전자 주식회사 Evaporator and refrigerator having the same
CN107003045A (en) * 2015-11-05 2017-08-01 Lg 电子株式会社 Evaporator and the refrigerator with the evaporator
US11149995B2 (en) 2015-11-05 2021-10-19 Lg Electronics Inc. Evaporator and refrigerator having the same
CN107003045B (en) * 2015-11-05 2020-05-22 Lg 电子株式会社 Evaporator and refrigerator with same
US20180245826A1 (en) * 2015-11-05 2018-08-30 Lg Electronics Inc. Evaporator and refrigerator having the same
WO2017168847A1 (en) * 2016-03-29 2017-10-05 日立化成株式会社 Member with aerogel layer
CN108139181A (en) * 2016-06-27 2018-06-08 日新类望股份有限公司 Heat exchanger
WO2018002963A1 (en) * 2016-06-27 2018-01-04 日新ネオ株式会社 Heat exchanger
CN108139181B (en) * 2016-06-27 2019-10-01 日新类望股份有限公司 Heat exchanger
JP6247429B1 (en) * 2016-06-27 2017-12-13 日新ネオ株式会社 Heat exchanger
US10859325B2 (en) 2016-06-27 2020-12-08 Neo Corporation Heat exchanger
WO2018021857A1 (en) * 2016-07-29 2018-02-01 엘지전자 주식회사 Evaporator and refrigerator comprising same
US11073323B2 (en) 2016-07-29 2021-07-27 Lg Electronics Inc. Evaporator and refrigerator comprising same
CN107318180A (en) * 2017-08-23 2017-11-03 湖南智热技术股份有限公司 A kind of use heat-conducting plate heats the electric heater of fluid
KR101963706B1 (en) * 2018-10-12 2019-03-29 (주)대현하이텍 Heating device for hot water mat
WO2023214677A1 (en) * 2022-05-04 2023-11-09 주식회사 경동나비엔 Heat exchanger and water-heater including same

Similar Documents

Publication Publication Date Title
JP2015152218A (en) fluid heating device
CA2847342C (en) Method of manufacturing a high definition heater system
US10281521B2 (en) System for thermal management of device under test (DUT)
US20160014848A1 (en) High power-density plane-surface heating element
JP6060889B2 (en) Heater unit for wafer heating
CN110907492A (en) Temperature-uniforming high-temperature heating assembly and heating device for testing thermal conductivity
JP2009043752A (en) Thermoelectric conversion module
JP2010062080A (en) Planar heating element
KR101619094B1 (en) Plate heater for high temperature baking apparatus
JP2015152219A (en) fluid heating device
JP6999362B2 (en) Heater and heater system
JP2015039507A (en) Heating cooker
US11828490B2 (en) Ceramic heater for heating water in an appliance
TWI524808B (en) Heater
KR101327573B1 (en) In line heater assembly
JP6760242B2 (en) Heater module
KR100883302B1 (en) Manufacture Method of Surface Heater Using for Ceramic Glass
KR101639588B1 (en) Evaluating substrate, environmental test device, and evaluating method of test specimen
CN107530703B (en) Heating device and biochemical reactor with same
WO2014203543A1 (en) Cooking device
JP2017212154A (en) Heater unit
JP2016100180A (en) Heating unit and wafer heating heater equipped with the same
KR101940396B1 (en) A film heater and manufactu ring method thereof for preventing winter damage of water pipe
KR102581435B1 (en) Apparatus for thermal control of tubing assembly and associated methods
JP2015036044A (en) Cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017