JP2015152219A - fluid heating device - Google Patents

fluid heating device Download PDF

Info

Publication number
JP2015152219A
JP2015152219A JP2014025968A JP2014025968A JP2015152219A JP 2015152219 A JP2015152219 A JP 2015152219A JP 2014025968 A JP2014025968 A JP 2014025968A JP 2014025968 A JP2014025968 A JP 2014025968A JP 2015152219 A JP2015152219 A JP 2015152219A
Authority
JP
Japan
Prior art keywords
flow path
fluid
heater unit
forming body
cover material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014025968A
Other languages
Japanese (ja)
Inventor
晃 三雲
Akira Mikumo
晃 三雲
浦 康彦
Yasuhiko Ura
康彦 浦
桂児 北林
Keiji Kitabayashi
桂児 北林
成伸 先田
Shigenobu Sakita
成伸 先田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014025968A priority Critical patent/JP2015152219A/en
Publication of JP2015152219A publication Critical patent/JP2015152219A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid heating device with enhanced heat efficiency.SOLUTION: A fluid heating device heats fluid, and includes: a tabular flow channel formation body 1 provided with one or a plurality of flow channels C for fluid to be heated inside; a heater unit 2 contacting at least one surface of the flow channel formation body; and a cover material 3 covering the heater unit 2. Here, the flow channels C extend parallel to the contact surface with the heater unit 2, and when a distance from the contact surface to the flow channel C located at the shortest distance is denoted by t1, a thickness of the cover material 3 is denoted by t2, a heat conductivity of the flow channel formation body 1 is denoted by c1, and a heat conductivity of the cover material 3 is denoted by c2, a relation of c1/t1>c2/t2 is satisfied.

Description

本発明は、発熱体を用いて流体を加熱する流体加熱装置に関する。   The present invention relates to a fluid heating apparatus that heats a fluid using a heating element.

プロセス流体や洗浄液などの流体を所定の温度まで加熱する工程は、化学プラントや食品工場等の工業用途に留まらず、商業施設等に設置されたハンドドライヤーや一般家庭に於ける温水洗浄便座に至る様々な分野で広く行われている。かかる流体の加熱工程では、熱交換のための高温の流体が利用できない場合は被加熱流体を所望の温度まで比較的すばやく加熱することが可能な抵抗発熱体による加熱方式を採用することがある。   The process of heating fluids such as process fluids and cleaning liquids to a predetermined temperature is not limited to industrial applications such as chemical plants and food factories, but leads to hand dryers installed in commercial facilities, etc., and hot water cleaning toilet seats in general households. Widely used in various fields. In such a fluid heating process, when a high-temperature fluid for heat exchange cannot be used, a heating method using a resistance heating element capable of heating the heated fluid to a desired temperature relatively quickly may be employed.

例えば特許文献1には、セラミック製のシートの片面に抵抗発熱体となる高融点金属を印刷法により塗布し、これをセラミック製のパイプ材の外周面に抵抗発熱体が内側となるように巻きつけた後、接着及び焼成により一体化させたセラミックヒータが開示されている。   For example, in Patent Document 1, a high melting point metal that becomes a resistance heating element is applied to one side of a ceramic sheet by a printing method, and this is wound so that the resistance heating element is on the outer peripheral surface of a ceramic pipe material. A ceramic heater is disclosed that is integrated by bonding and firing after being applied.

特開2005‐183371公報JP 2005-183371 A

昨今の環境保全や省電力に対する関心の高まりから、上記したような発熱体を用いた流体加熱装置には消費電力が小さく効率よく流体を加熱できるものが求められている。しかしながら、上記した特許文献1に示す構造では、抵抗発熱体を覆うシートの材質が該シートが巻き付けられているパイプ状部材の材質と同じであるため、これらに挟まれている抵抗発熱体で発生した熱量がパイプ状部材の内側を流れる流体に効率よく伝えることができなかった。   Due to the recent increase in interest in environmental conservation and power saving, fluid heating devices using heating elements as described above are required to be capable of heating fluid efficiently with low power consumption. However, in the structure shown in Patent Document 1 described above, since the material of the sheet covering the resistance heating element is the same as the material of the pipe member around which the sheet is wound, it is generated in the resistance heating element sandwiched between them. The amount of heat generated could not be transferred efficiently to the fluid flowing inside the pipe-shaped member.

本発明はかかる従来の問題に鑑みてなされたものであり、抵抗発熱体で発生した熱量の損失を抑えることにより熱効率が高められた流体加熱装置を提供する事を目的としている。   The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a fluid heating apparatus with improved thermal efficiency by suppressing the loss of heat generated in the resistance heating element.

上記目的を達成するため、本発明が提供する流体加熱装置は、液体を加熱する流体加熱装置であって、内部に被加熱流体の流路を1又は複数本備えた板状の流路形成体と、前記流路形成体の少なくとも片面に当接するヒータユニットと、前記ヒータユニットを覆うカバー材とを有し、前記流路は前記ヒータユニットとの当接面に平行に延在しており、前記当接面から最短距離に位置する流路までの距離をt1、前記カバー材の厚みをt2とし、前記流路形成体の熱伝導率をc1、前記カバー材の熱伝導率をc2としたとき、c1/t1>c2/t2であることを特徴としている。   In order to achieve the above object, a fluid heating device provided by the present invention is a fluid heating device for heating a liquid, and is a plate-like channel forming body provided with one or a plurality of channels for a fluid to be heated inside. And a heater unit that contacts at least one surface of the flow path forming body, and a cover material that covers the heater unit, and the flow path extends in parallel with the contact surface with the heater unit, The distance from the contact surface to the channel located at the shortest distance is t1, the thickness of the cover material is t2, the thermal conductivity of the channel forming body is c1, and the thermal conductivity of the cover material is c2. In this case, c1 / t1> c2 / t2.

本発明によれば、抵抗発熱体で発生した熱量の損失を抑えることができるので、極めて熱効率のよい流体加熱装置を提供することができる。   According to the present invention, since the loss of heat generated in the resistance heating element can be suppressed, a fluid heating device with extremely high thermal efficiency can be provided.

本発明の流体加熱装置の一具体例を示す分解斜視図である。It is a disassembled perspective view which shows one specific example of the fluid heating apparatus of this invention. 本発明の流体加熱装置の他の具体例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other specific example of the fluid heating apparatus of this invention. 図1の流体加熱装置の流路の出入口に短管を取り付けた状態を示す平面図である。It is a top view which shows the state which attached the short tube to the entrance / exit of the flow path of the fluid heating apparatus of FIG. 本発明の流体加熱装置の流体形成体に設けられた流路の他の具体例を示す平面図である。It is a top view which shows the other specific example of the flow path provided in the fluid formation body of the fluid heating apparatus of this invention. 本発明の流体加熱装置の更に他の具体例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other specific example of the fluid heating apparatus of this invention. 本発明の流体加熱装置におけるヒータユニットと流路形成体との当接面から最短距離に位置する流路までの距離、及びカバー材の厚みを示す断面図である。It is sectional drawing which shows the distance to the flow path located in the shortest distance from the contact surface of the heater unit and flow path formation body in the fluid heating apparatus of this invention, and the thickness of a cover material. 本発明の流体加熱装置のヒータユニットが有する発熱体の回路パターンの具体例を示す平面図である。It is a top view which shows the specific example of the circuit pattern of the heat generating body which the heater unit of the fluid heating apparatus of this invention has.

最初に本発明の実施形態を列記して説明する。本発明の実施形態の流体加熱装置は、液体を加熱する流体加熱装置であって、内部に被加熱流体の流路を1又は複数本備えた板状の流路形成体と、前記流路形成体の少なくとも片面に当接するヒータユニットと、前記ヒータユニットを覆うカバー材とを有し、前記流路は前記ヒータユニットとの当接面に平行に延在しており、前記当接面から最短距離に位置する流路までの距離をt1、前記カバー材の厚みをt2とし、前記流路形成体の熱伝導率をc1、前記カバー材の熱伝導率をc2としたとき、c1/t1>c2/t2であることを特徴としている。かかる構成により抵抗発熱体で発生した熱量の損失を抑えることができるので、極めて熱効率のよい流体加熱装置を提供することができる。   First, embodiments of the present invention will be listed and described. A fluid heating apparatus according to an embodiment of the present invention is a fluid heating apparatus that heats a liquid, and includes a plate-shaped flow path forming body including one or a plurality of flow paths of a fluid to be heated therein, and the flow path formation. A heater unit that contacts at least one surface of the body and a cover material that covers the heater unit, and the flow path extends in parallel with the contact surface with the heater unit, and is shortest from the contact surface. When the distance to the channel located at the distance is t1, the thickness of the cover material is t2, the thermal conductivity of the channel forming body is c1, and the thermal conductivity of the cover material is c2, c1 / t1> It is characterized by c2 / t2. With this configuration, it is possible to suppress the loss of heat generated in the resistance heating element, and thus it is possible to provide a fluid heating device with extremely high thermal efficiency.

上記本発明の実施形態の流体加熱装置においては、前記c1が100W/(m・K)以上であるのが好ましい。これにより、より熱効率の高い流体加熱装置を提供することが可能になる。   In the fluid heating apparatus according to the embodiment of the present invention, it is preferable that the c1 is 100 W / (m · K) or more. This makes it possible to provide a fluid heating device with higher thermal efficiency.

次に、図1を参照しながら本発明の流体加熱装置の一具体例について具体的に説明する。この図1に示す流体加熱装置は、内部に被加熱流体の流路Cを備えた矩形板状の流路形成体1と、該流路形成体1と略同じ平面視形状を有し、該流路形成体1の被加熱面となる両面1a、1bにそれぞれほぼ全面に亘って当接する矩形板状の2枚のヒータユニット2と、これら流路形成体1及びヒータユニット2と略同じ平面視形状を有し、ヒータユニット2を流路形成体1に向けて押さえつけると共に、ヒータユニット2において上記流路形成体1に当接する面とは反対側の面をほぼ全面に亘って覆う矩形板状のカバー材3とを有している。   Next, a specific example of the fluid heating apparatus of the present invention will be specifically described with reference to FIG. The fluid heating apparatus shown in FIG. 1 has a rectangular plate-like flow path forming body 1 provided with a flow path C of a fluid to be heated inside, and has substantially the same plan view shape as the flow path forming body 1, Two heater units 2 each having a rectangular plate shape, which are substantially in contact with both surfaces 1a and 1b, which are heated surfaces of the flow path forming body 1, and substantially the same plane as the flow path forming body 1 and the heater unit 2 A rectangular plate that has a visual shape and presses the heater unit 2 toward the flow path forming body 1 and covers substantially the entire surface of the heater unit 2 opposite to the surface that contacts the flow path forming body 1. The cover material 3 is shaped.

上記したように、流路形成体1の両面に各々ヒータユニット2を当接させることにより流体加熱装置への単位時間当たりの伝熱量を多くすることができるが、伝熱量が少なくてもよい場合や設置場所に余裕がない場合は、図2に示すように流路形成体1の片面にのみヒータユニット2及びカバー材3を設けてもよい。   As described above, the amount of heat transfer per unit time to the fluid heating device can be increased by bringing the heater units 2 into contact with both surfaces of the flow path forming body 1, but the amount of heat transfer may be small. If there is no room for installation, the heater unit 2 and the cover material 3 may be provided only on one side of the flow path forming body 1 as shown in FIG.

ヒータユニット2は、例えば所定の回路パターンに形成された層状の抵抗発熱体と、該抵抗発熱体を両面から挟み込んで電気的な絶縁を確保する第1絶縁層及び第2絶縁層とで構成される。これら流路形成体1、ヒータユニット2、及び押さえ板3からなる加熱装置は、後述するボルトなどの結合手段で結合された状態のまま使用することができるが、高温部との接触を避けることが必要な場合には、空気断熱を含む断熱手段または容器等の保護手段内に収納した状態で使用するのが好ましい。なお、流路形成体1やカバー材3が非導電性材料で形成される場合は、第1絶縁層及び第2絶縁層のうち非導電性材料側に当接する方をなくすことができる。   The heater unit 2 includes, for example, a layered resistance heating element formed in a predetermined circuit pattern, and a first insulating layer and a second insulating layer that sandwich the resistance heating element from both sides to ensure electrical insulation. The The heating device including the flow path forming body 1, the heater unit 2, and the pressing plate 3 can be used in a state of being coupled by a coupling means such as a bolt, which will be described later, but avoiding contact with a high temperature portion. Is necessary, it is preferably used in a state of being housed in a heat insulation means including air insulation or a protection means such as a container. In addition, when the flow-path formation body 1 and the cover material 3 are formed with a nonelectroconductive material, the direction which contact | abuts the nonelectroconductive material side among a 1st insulating layer and a 2nd insulating layer can be eliminated.

以下、上記した加熱装置の各構成要素について具体的に説明する。流路形成体1の材質は、流路内で主に流れる流体の種類や温度・圧力などの運転条件、流体加熱装置の設置環境等を考慮して適宜選定される。例えば耐食性が必要な場合、比較的耐食性に優れた材料である、銅、黄銅、リン青銅、アルミ材(A3003材)が好ましく、強度が必要な場合は、SiC、AlN、SiSiC等のセラミックスを選定することが好ましい。また、伝熱性能が高いことを重視する場合は、熱伝導率の高い材料である、銅、アルミニウム、SiC、AlN、SiSiCが好ましい。特に熱伝導率が100W/(m・K)以上であるのがより好ましい。   Hereinafter, each component of the heating device described above will be specifically described. The material of the flow path forming body 1 is appropriately selected in consideration of the type of fluid that mainly flows in the flow path, operating conditions such as temperature and pressure, the installation environment of the fluid heating device, and the like. For example, when corrosion resistance is required, copper, brass, phosphor bronze, and aluminum (A3003 material), which are relatively excellent in corrosion resistance, are preferable. When strength is required, ceramics such as SiC, AlN, and SiSiC are selected. It is preferable to do. Moreover, when importance is attached to high heat transfer performance, copper, aluminum, SiC, AlN, and SiSiC, which are materials having high thermal conductivity, are preferable. In particular, the thermal conductivity is more preferably 100 W / (m · K) or more.

これらのうち、金属は汎用的で作製が容易である上、セラミックスに比べて高い熱伝導率を有しているのでコストパフォーマンスに長けている。しかし、金属はセラミックスに比べてヤング率が低いので、使用温度によってはヒータユニットが配される側の面の平坦性を維持するため分厚くするか、あるいは金属製の流路形成体1が熱により反りを生じてもヒータユニット2との良好な密着性を維持すべく後述するように流路形成体1とヒータユニット2との間に柔軟性を有する電気的絶縁シートを介在させるのが好ましい。   Among these, metals are general-purpose and easy to produce, and have a high thermal conductivity compared to ceramics, so they are excellent in cost performance. However, since the Young's modulus of metal is lower than that of ceramics, depending on the operating temperature, the metal flow path forming body 1 may be heated by heat or thickened to maintain the flatness of the surface on which the heater unit is disposed. In order to maintain good adhesion to the heater unit 2 even when warping occurs, it is preferable to interpose a flexible electrical insulating sheet between the flow path forming body 1 and the heater unit 2 as will be described later.

一方、セラミックスは機械加工精度に優れる上、剛性(ヤング率)に優れるので、ヒータユニット2が当接する側の面の平坦性を良好に保つことが出来る。また、板厚を薄くしても変形しないので流路形成体1を小型化でき、これにより装置自体の熱容量を小さくできるので運転停止状態にある流体加熱装置を立ち上げる時や、設定温度を変更する時にすばやく定常状態に移行させることができる。   On the other hand, ceramics are excellent in machining accuracy and excellent in rigidity (Young's modulus), so that the flatness of the surface on which the heater unit 2 abuts can be kept good. In addition, since it does not deform even if the plate thickness is reduced, the flow path forming body 1 can be reduced in size, thereby reducing the heat capacity of the device itself, so that the set temperature can be changed when starting up the fluid heating device in the shutdown state. Can quickly transition to steady state.

特に、熱伝導率の高いセラミックス材を選定することで、上記したようにヒータユニット2が当接する側の面の平坦性や小さな熱容量を維持しながら、被加熱流体への伝熱性能を向上させることができ、急激な温度変化による熱衝撃が生じても割れ、クラック、変形などの問題が生じにくくなる。なお、セラミックスの場合は、熱衝撃に対する耐性を考慮して熱膨張係数の低い材料を選定することがより好ましい。   In particular, by selecting a ceramic material having a high thermal conductivity, the heat transfer performance to the fluid to be heated is improved while maintaining the flatness and small heat capacity of the surface on which the heater unit 2 abuts as described above. Even if a thermal shock occurs due to a rapid temperature change, problems such as cracks, cracks, and deformation are less likely to occur. In the case of ceramics, it is more preferable to select a material having a low thermal expansion coefficient in consideration of resistance to thermal shock.

流路形成体1のサイズ及びその内部に設けられる流路Cの本数や形状は、該流路C内を流れる被加熱流体の物性、流量、入口及び出口温度等の運転条件に応じて適宜定められる。図1には矩形板状の流路形成体1の厚み方向の中央部に、長手方向に延在する2本の同じ内径の流路Cが2本貫通している例が示されている。図3に示すように、各流路Cの両開口部には例えばテフロン製の短管4などの継手類を溶着等により接続することにより出入口(タップとも称する)を形成するのが好ましく、これにより被加熱流体の供給源からの配管や、被加熱流体のユースポイントまでの配管を簡易に流路Cに接続することができる。   The size of the flow path forming body 1 and the number and shape of the flow paths C provided therein are appropriately determined according to the operating conditions such as the physical properties, flow rate, inlet and outlet temperatures of the heated fluid flowing in the flow path C. It is done. FIG. 1 shows an example in which two channels C having the same inner diameter extending in the longitudinal direction pass through the central portion in the thickness direction of the rectangular plate-shaped channel forming body 1. As shown in FIG. 3, it is preferable to form an inlet / outlet (also referred to as a tap) at both openings of each flow path C by connecting joints such as a short tube 4 made of Teflon by welding or the like. Therefore, the pipe from the supply source of the heated fluid and the pipe up to the use point of the heated fluid can be easily connected to the flow path C.

流路内の壁面は加工粗度を粗くして流路内を被加熱流体が乱流状態で流れるようにしてもよい。これにより熱効率をより一層高めることが可能になる。また、図4に示すように、流路形成体11の被加熱面に平行な面上で流路Cを蛇行させてもよい。これにより流路を長くすることができるので、より高い温度まで被加熱流体を昇温することができる。このような蛇行する流路Cは、例えば2枚の略同形状で且つ同材質の板状部材を用意し、それらの一方の片面に蛇行する断面矩形の溝を形成し、この溝形成面を覆うようにもう一方の板状部材を重ね合わせて接合すればよい。   The wall surface in the flow path may be roughened so that the fluid to be heated flows in a turbulent state in the flow path. This makes it possible to further increase the thermal efficiency. Further, as shown in FIG. 4, the flow path C may meander on a surface parallel to the heated surface of the flow path forming body 11. Thereby, since a flow path can be lengthened, the to-be-heated fluid can be heated up to higher temperature. For example, two meandering flow paths C having substantially the same shape and the same material are prepared, and a groove having a rectangular cross section is formed on one of the surfaces, and this groove forming surface is formed. What is necessary is just to overlap and join another plate-shaped member so that it may cover.

流路Cの本数は図1や2に示すように1〜2本に限定されるものではなく、図5(a)に示すように3本でもよいしそれより多くてもよい。このように複数本の流路Cが設けられる場合は、図5(a)に示すように、流路形成体21の厚み方向中央部に流路Cの中心軸がすべて並ぶように配してもよいし、図5(b)に示すように、流路形成体31の厚み方向において異なる位置に数本ずつ配するようにしてもよい。なお、図2に示すように、流路形成体1の片面にのみヒータユニット2を設ける場合は、流路形成体1の厚み方向中央部よりも当該ヒータユニット2側の位置に流路Cを配するのが好ましい。   The number of flow paths C is not limited to one or two as shown in FIGS. 1 and 2, but may be three or more as shown in FIG. 5 (a). When a plurality of flow paths C are provided in this way, as shown in FIG. 5A, the flow path forming body 21 is arranged so that all the central axes of the flow paths C are aligned in the central portion in the thickness direction. Alternatively, as shown in FIG. 5B, several pieces may be arranged at different positions in the thickness direction of the flow path forming body 31. As shown in FIG. 2, when the heater unit 2 is provided only on one surface of the flow path forming body 1, the flow path C is disposed at a position closer to the heater unit 2 than the central portion in the thickness direction of the flow path forming body 1. It is preferable to arrange them.

ここで上記した本発明の一具体例の流体加熱装置では、図6に示すように、上記した流路形成体1におけるヒータユニット2の当接面から最短距離に位置する流路Cまでの距離をt1、カバー材3の厚みをt2とし、流路形成体1の熱伝導率をc1、カバー材3の熱伝導率をc2としたとき、下記の式1が満たされることを特徴としている。
[式1]
c1/t1>c2/t2
In the above-described fluid heating apparatus according to a specific example of the present invention, as shown in FIG. 6, the distance from the contact surface of the heater unit 2 to the flow path C located at the shortest distance in the flow path forming body 1 described above. Is t1, the thickness of the cover material 3 is t2, the thermal conductivity of the flow path forming body 1 is c1, and the thermal conductivity of the cover material 3 is c2, the following equation 1 is satisfied.
[Formula 1]
c1 / t1> c2 / t2

上記したようにc1/t1>c2/t2の関係を満足させることで、流体加熱装置の流路C内を流れる被加熱流体を効率よく加熱することができる。すなわち、流体加熱装置の熱効率を評価するには、流体加熱装置において発熱体で発生した熱が、流路形成体1の流路Cを流れる被加熱流体の加熱にどの程度寄与しているか、また、該発熱体を固定するためのカバー材を介して熱ロスとなってどの程度系外に放熱しているかを把握することが必要になるが、発明者らは流路形成体1の両側若しくは片側に設けたヒータユニット2で発生する熱の移動について鋭意研究した結果、上記した式1のパラメータを用いることにより簡便に評価できることを実験により見出した。   By satisfying the relationship of c1 / t1> c2 / t2 as described above, the fluid to be heated that flows in the flow path C of the fluid heating device can be efficiently heated. That is, in order to evaluate the thermal efficiency of the fluid heating device, to what extent the heat generated by the heating element in the fluid heating device contributes to the heating of the heated fluid flowing in the flow path C of the flow path forming body 1, and However, it is necessary to know how much heat is dissipated outside the system through a cover material for fixing the heating element. As a result of intensive studies on the movement of heat generated in the heater unit 2 provided on one side, it was found through experiments that it can be easily evaluated by using the parameters of the above-described formula 1.

すなわち、流体の加熱に寄与する抵抗発熱体から流路形成体1の流路Cまでの熱移動は、流路形成体1の熱伝導率が大きければ増大し、抵抗発熱体から流路形成体1の流路Cまでの最短距離が大きければ伝熱抵抗となって熱移動に時間を要する。一方、カバー材の熱伝導率が大きければカバー材を介して系外に放熱される熱量が増大し、カバー材の厚みが厚ければ伝熱抵抗となって放熱を抑えることができる。   That is, the heat transfer from the resistance heating element contributing to the heating of the fluid to the flow path C of the flow path forming body 1 increases if the thermal conductivity of the flow path forming body 1 is large. If the shortest distance to one channel C is large, it becomes a heat transfer resistance and it takes time for heat transfer. On the other hand, if the thermal conductivity of the cover material is large, the amount of heat dissipated outside the system through the cover material increases, and if the cover material is thick, it becomes a heat transfer resistance and heat dissipation can be suppressed.

なお、カバー材3は1枚に限定されるものではなく、2枚又はそれより多くの異なる材質のカバー材でヒータユニット2を覆ってもよい。例えば、ヒータユニット2を流路形成体1に向けて押さえつける役割と、断熱の役割とをそれぞれ異なる部材に担わせるようにしてもよい。   The cover material 3 is not limited to one sheet, and the heater unit 2 may be covered with two or more different cover materials. For example, you may make it make the role which presses the heater unit 2 toward the flow-path formation body 1, and the role of heat insulation to each bear a different member.

たとえば、断熱性を担わせる部材としては、フッ素樹脂、ポリイミド樹脂、及びマイカを挙げることができる。これらは、200℃を超える温度域であっても特に問題なく用いることができる点においても好ましい。押さえ板の役割を担わせる部材としては、汎用的で安価な金属が好ましい。この場合、流路形成体1と同じ材質であれば熱膨張係数が合致するので好適である。ただし、この場合は抵抗発熱体を電気的に絶縁するために上記した第1絶縁層及び第2絶縁層で抵抗発熱体の両面を挟み込む必要がある。   For example, examples of the member that imparts heat insulation include fluororesin, polyimide resin, and mica. These are also preferable in that they can be used without any problem even in a temperature range exceeding 200 ° C. As a member that plays the role of a pressing plate, a general-purpose and inexpensive metal is preferable. In this case, the same material as that of the flow path forming body 1 is preferable because the thermal expansion coefficient matches. However, in this case, in order to electrically insulate the resistance heating element, it is necessary to sandwich both sides of the resistance heating element between the first insulating layer and the second insulating layer.

上記したように、2枚又はそれより多くの異なる材質のカバー材でヒータユニット2を覆う場合は、上記式1のc2、t2はそれぞれ下記式2及び式3のcn及びtnに置き換えればよい。
[式2]
cn=Σ(ci×ti)/Σti、i=1〜n
[式3]
tn=Σti、i=1〜n
As described above, when the heater unit 2 is covered with two or more different cover materials, c2 and t2 in the above equation 1 may be replaced with cn and tn in the following equations 2 and 3, respectively.
[Formula 2]
cn = Σ (ci × ti) / Σti, i = 1 to n
[Formula 3]
tn = Σti, i = 1 to n

抵抗発熱体は両端の電極部を介して供給される電気を導電線に流すことによりジュール熱を発生させるものであり、ステンレスやニッケル−クロム箔をエッチング加工等によりパターニングすることで作製することができる。この抵抗発熱体の回路パターンは、一対の電極の間で一様に蛇行するパターンでもよいし、図7(a)に示すような不規則に蛇行する回路パターンでもよい。あるいは、図7(b)に示すように、左右非対称な回路パターンにして面内での発熱密度を被加熱流体の出口側よりも入口側が高くなるようにしてもよい。これにより、出口側よりも低温の被加熱流体が流れる入口側において抵抗発熱体からの発熱量をより多くすることができるので、効率よく加熱することができる。   A resistance heating element generates Joule heat by flowing electricity supplied through electrode portions at both ends to a conductive wire, and can be manufactured by patterning stainless steel or nickel-chrome foil by etching or the like. it can. The circuit pattern of the resistance heating element may be a meandering pattern uniformly between a pair of electrodes, or may be a circuit pattern meandering irregularly as shown in FIG. Alternatively, as shown in FIG. 7B, the heat generation density in the plane may be made higher on the inlet side than on the outlet side of the fluid to be heated, by making the circuit pattern asymmetrical. As a result, the amount of heat generated from the resistance heating element can be increased on the inlet side where the fluid to be heated, which is lower in temperature than the outlet side, can be heated efficiently.

このような局所的に異なる発熱密度の設計は、上記したように1つの発熱体回路内で導電線のピッチを変えたり導電線の断面積を変えたりすることで行ってもよいし、例えば入口側領域と出口側領域のように、面内を複数の領域に分けて各領域ごとに発熱量の異なる発熱体回路を設けてもよい。このように複数の領域に分ける場合は、分割した領域毎に後述する温度センサーを設けて個別に温度制御を行うのが好ましい。なお、図7(a)、(b)には、一点鎖線で示す温度センサーの設置場所を避けるように形成された回路パターンが示されている。   Such a design of locally different heat generation densities may be performed by changing the pitch of the conductive wires or changing the cross-sectional area of the conductive wires in one heating element circuit as described above. As in the side region and the outlet side region, a heating element circuit having a different calorific value may be provided for each region by dividing the surface into a plurality of regions. When dividing into a plurality of areas as described above, it is preferable to perform temperature control individually by providing a temperature sensor to be described later for each divided area. 7A and 7B show circuit patterns formed so as to avoid the installation location of the temperature sensor indicated by the alternate long and short dash line.

抵抗発熱体は単層ではなく複数層設けてもよい。例えば制御機器の電気仕様の制約や装置のサイズが小さい等のスペース上の制約がある場合は、2つの層状の抵抗発熱体を電気的絶縁シートを挟んで重ね合わせ、それらの一端部同士を接続すると共に他端部を電力供給端子にすることで1つの直列回路を形成することができる。この様にすれば、例えば1mm未満の厚みの中に複数の発熱体層を配置でき、制御機器の電気仕様とのマッチングも可能となる。   A plurality of resistance heating elements may be provided instead of a single layer. For example, when there are restrictions on the electrical specifications of the control equipment or space restrictions such as the size of the device being small, two layered resistance heating elements are stacked with an electrical insulation sheet sandwiched between them, and their one ends are connected to each other In addition, one series circuit can be formed by using the other end as a power supply terminal. In this way, for example, a plurality of heating element layers can be disposed within a thickness of less than 1 mm, and matching with the electrical specifications of the control device is also possible.

上記した2枚の発熱体層の間に介在させる電気的絶縁シートは、前述した第1絶縁層と同様に加熱時や冷却時に速やかに熱が伝わるように、互いに当接する層同士の間に空隙が生じないように配置することが重要である。上記した層間に空隙が存在していると、発熱体層の加熱時にこの空隙内の空気が膨張し、発熱体層の剥離や絶縁破壊の原因になったり、被加熱流体が流れていない状態と同様の状態となり異常発熱の原因になったりする。   The electrical insulating sheet interposed between the two heating element layers described above has a gap between the layers in contact with each other so that heat can be transferred quickly during heating and cooling, as in the case of the first insulating layer described above. It is important to arrange so that no occurs. If there is a gap between the above-mentioned layers, the air in the gap expands when the heating element layer is heated, which may cause peeling of the heating element layer or dielectric breakdown, and the fluid to be heated is not flowing. The same condition may occur and cause abnormal heat generation.

上記した抵抗発熱体の発熱量は、流路形成体1に設けた温度センサー(図示せず)に基づいて温度制御するのが好ましい。温度センサーには測温抵抗体を用いることが好ましい。測温抵抗体は、例えば絶縁セラミック基体の平面上に白金抵抗体を蒸着等により形成し、得られた白金抵抗体を所定の抵抗値に調整した後、その電極パッド部にボンディング等の手段でリード線を接続し、白金抵抗体及びパッド部を絶縁膜で覆うことにより作製することができる。かかる構造により測温素子を小型化できるので素子の熱容量を小さくでき、温度応答性を高めることができる。   The amount of heat generated by the resistance heating element is preferably temperature-controlled based on a temperature sensor (not shown) provided in the flow path forming body 1. It is preferable to use a resistance temperature detector for the temperature sensor. The resistance temperature detector is formed by, for example, depositing a platinum resistor on the plane of an insulating ceramic substrate by vapor deposition, etc., adjusting the obtained platinum resistor to a predetermined resistance value, and then bonding the electrode pad portion by means such as bonding. It can be produced by connecting lead wires and covering the platinum resistor and the pad portion with an insulating film. With this structure, the temperature measuring element can be reduced in size, so that the heat capacity of the element can be reduced and the temperature responsiveness can be improved.

温度センサーは接着剤を用いて接着してもよい。このような接着剤には、シリコーンやエポキシ等の有機系樹脂を主成分としたものや、セラミック粒等の無機材料とバインダ成分とを組み合わせたものを利用することが出来る。特にシリコーン樹脂を主成分とした接着剤は、流体加熱に必要な温度帯に耐える耐熱性を有し且つ弾力性を有することから、測温素子と周辺部材の僅かな熱膨張量差を吸収し得るため好適である。   The temperature sensor may be bonded using an adhesive. As such an adhesive, a material mainly composed of an organic resin such as silicone or epoxy, or a combination of an inorganic material such as ceramic particles and a binder component can be used. In particular, the adhesive mainly composed of silicone resin has heat resistance and elasticity to withstand the temperature range required for fluid heating, and thus absorbs a slight difference in thermal expansion between the temperature measuring element and peripheral members. It is suitable for obtaining.

温度センサーを設置する際、その測温素子の平面部分が全面に亘って流路形成体の平面部に当接するように設置することが望ましく、これにより、より広い接触面積が確保できるので良好な温度応答性が得られる。なお、コスト上の観点から流路形成体には加工を施さず、その被加熱面に配置するヒータユニットや押さえ板側に測温素子に合わせた形状、サイズでくり抜きを設けるのが好ましい。   When installing the temperature sensor, it is desirable to install the temperature sensor so that the flat surface portion of the temperature measuring element is in contact with the flat surface portion of the flow path forming body over the entire surface. Temperature response is obtained. From the viewpoint of cost, it is preferable not to process the flow path forming body, but to provide a cutout with a shape and a size suitable for the temperature measuring element on the heater unit and the holding plate side arranged on the heated surface.

測温抵抗体に接続したリード線を伝って僅かに逃げる熱量が問題になる場合は、リード線の一部を流路形成体または押さえ板の表面に接着剤等を用いて接触または近接させるのが好ましい。これによりリード線からの熱逃げの量を減らすことができるので、検知温度と実際温度との乖離が熱容量の小さな測温素子部の測定値に悪影響を及ぼすのを抑えることができる。なお、上記接触または近接に際しては、可能な限りその接触または近接させる距離を長くとることが好ましい。   If the amount of heat that escapes slightly through the lead wire connected to the resistance temperature detector becomes a problem, a part of the lead wire is brought into contact with or close to the surface of the flow path forming body or holding plate using an adhesive or the like. Is preferred. As a result, the amount of heat escape from the lead wire can be reduced, so that the difference between the detected temperature and the actual temperature can be prevented from adversely affecting the measured value of the temperature measuring element unit having a small heat capacity. In the above contact or proximity, it is preferable to make the contact or proximity distance as long as possible.

上記した流路形成体1、ヒータユニット2は、及びカバー材3は、ボルトナットやネジ留めなどの結合手段で結合することで一体化させる。具体的には、流路形成体1及びカバー材3の両方に厚み方向に貫通する貫通孔を設け、各貫通孔にボルト5を挿通してその先端部をナット6で締め付けることにより締結することができる。なお、ヒータユニット2の平面視形状が流路形成体1及びカバー材3と略同等の場合は、ヒータユニット2にも対応する位置に貫通孔を設けることが必要になる。   The flow path forming body 1, the heater unit 2, and the cover material 3 are integrated by being coupled by a coupling means such as a bolt nut and screw fastening. Specifically, a through hole penetrating in the thickness direction is provided in both the flow path forming body 1 and the cover material 3, and a bolt 5 is inserted into each through hole and tightened with a nut 6 at the tip thereof. Can do. If the shape of the heater unit 2 in plan view is substantially the same as that of the flow path forming body 1 and the cover member 3, it is necessary to provide a through hole at a position corresponding to the heater unit 2.

あるいは、カバー材3及び流路形成体1のうちの何れか一方に厚み方向に貫通する貫通孔を設けると共に、もう一方に該貫通孔に対応する雌ネジを設け、各貫通孔に雄ネジを挿通して雌ネジに螺合することで締結してもよい。このように、ネジやボルトナットなどの結合手段で結合する場合は、流路形成体1とカバー材3の熱膨張係数差や立ち上げ時での厚み方向での温度勾配等により当接面方向に相対的に移動することがあるので、上記した貫通孔の内径は、この相対的な移動分を考慮して余裕を持った大きさにするのが好ましい。これにより、変形や割れ等の問題を防ぐことができる。   Alternatively, a through hole penetrating in the thickness direction is provided in one of the cover material 3 and the flow path forming body 1, and a female screw corresponding to the through hole is provided in the other, and a male screw is provided in each through hole. You may fasten by inserting and screwing in a female screw. As described above, in the case of coupling by a coupling means such as a screw or a bolt and nut, the contact surface direction is determined by the difference in thermal expansion coefficient between the flow path forming body 1 and the cover material 3, the temperature gradient in the thickness direction at the time of start-up, or the like. Therefore, it is preferable that the above-mentioned inner diameter of the through-hole is set to have a sufficient size in consideration of this relative movement. Thereby, problems, such as a deformation | transformation and a crack, can be prevented.

以上、本発明の流体加熱装置について具体例を挙げて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。   As mentioned above, although the specific example was given and demonstrated about the fluid heating apparatus of this invention, this invention is not limited to the specific example which concerns, It can implement in the various aspect of the range which does not deviate from the main point of this invention.

[実施例1]
流路形成体として、それぞれCu、SiC、AlN、SiSiC、Al(A3003)、黄銅、りん青銅、炭素鋼、Al、SUS304、及びSUS316からなる縦20mm×横100mm×厚み9mmの11種類の板状部材を準備し、それらの内部に流路として内径3mmの長手方向に延在する2本の貫通孔を該板状部材の厚み方向の中央部分に設けた。これにより、板状部材の表裏面のいずれにおいても流路までの最短距離t1は3mmとなる。
[Example 1]
Eleven types of 20 mm long x 100 mm wide x 9 mm thick made of Cu, SiC, AlN, SiSiC, Al (A3003), brass, phosphor bronze, carbon steel, Al 2 O 3 , SUS304, and SUS316, respectively. These plate-shaped members were prepared, and two through-holes extending in the longitudinal direction with an inner diameter of 3 mm as flow paths were provided in the center of the plate-shaped member in the thickness direction. Thereby, the shortest distance t1 to a flow path will be 3 mm in any of the front and back of a plate-shaped member.

そして、各流路の両開口部に短管を取り付けて被加熱流体の出入口とした。このようにして得た流路形成体の表裏面に1枚ずつヒータユニットを当接させ、更に各ヒータユニットを板状のカバー材で覆った。ヒータユニットには、厚さ20μmのステンレス箔にエッチングで回路パターンを形成して得た発熱体を、流路形成体と縦及び横のサイズが同じで熱伝導率5W/(m・K)のシリコン製絶縁シートに挟み込んで電気的に絶縁したものを用いた。   And the short pipe was attached to both opening parts of each flow path, and it was set as the inlet / outlet of the to-be-heated fluid. One heater unit was brought into contact with the front and back surfaces of the flow path forming body thus obtained, and each heater unit was covered with a plate-shaped cover material. In the heater unit, a heating element obtained by forming a circuit pattern by etching on a stainless steel foil having a thickness of 20 μm has the same vertical and horizontal sizes as the flow path forming body and has a thermal conductivity of 5 W / (m · K). A silicon insulating sheet sandwiched between and electrically insulated was used.

このステンレス製の発熱体の両端部に給電ケーブルを取り付け、また、流路形成体の表面には温度センサを接着により固定した。カバー材にはSUS304からなる厚みt2が1.5mm、縦20mm及び横100mmの板状部材を用いた。そして、ステンレス製の6本のM3ボルト、ナットを用いて締結することで、カバー材、ヒータユニット、流路形成体、ヒータユニット、カバー材の順に重ね合わされた試料1〜11の流体加熱装置を作製した。   A feeding cable was attached to both ends of the stainless steel heating element, and a temperature sensor was fixed to the surface of the flow path forming body by bonding. As the cover material, a plate-like member made of SUS304 having a thickness t2 of 1.5 mm, a length of 20 mm, and a width of 100 mm was used. And the fluid heating apparatus of the samples 1-11 piled up in order of a cover material, a heater unit, a flow path formation body, a heater unit, and a cover material by fastening using six stainless steel M3 bolts and nuts. Produced.

各試料の流体加熱装置に被加熱流体として15℃の水道水を流量0.5L/minで導入し、流路形成体の表面に設置した温度センサーの温度が100℃となるように発熱体を加熱させ、被加熱液体の温度上昇ΔTを測定した。その結果を流路形成体及びカバー材に用いた材質及びその熱伝導率c1、c2、並びにこれらをそれぞれt1、t2で除した値であるc1/t1、c2/t2と共に下記表1に示す。   15 ° C. tap water as a fluid to be heated is introduced into the fluid heating device of each sample at a flow rate of 0.5 L / min, and the heating element is set so that the temperature of the temperature sensor installed on the surface of the flow path forming body becomes 100 ° C. After heating, the temperature rise ΔT of the liquid to be heated was measured. The results are shown in Table 1 below together with the materials used for the flow path forming body and the cover material, their thermal conductivities c1 and c2, and c1 / t1 and c2 / t2 which are values obtained by dividing these by t1 and t2, respectively.

Figure 2015152219
Figure 2015152219

上記表1からわかるように、試料1〜8では被加熱液体の温度上昇ΔTがいずれも10℃を超えており、温度上昇ΔTがいずれも5℃未満の試料9〜11と比べて効率よく水道水を加熱することができた。   As can be seen from Table 1 above, in samples 1 to 8, the temperature rise ΔT of the liquid to be heated exceeds 10 ° C., and the water supply is more efficient than samples 9 to 11 in which the temperature rise ΔT is less than 5 ° C. The water could be heated.

[実施例2]
流路形成体として黄銅からなる厚み5mm、9mm、22mmの3種類の板状部材(縦20mm×横100mm)を用意し、各々実施例1と同様に厚み方向の中央部分に内径3mmの貫通孔を2本設けた。これにより、板状部材の表裏面から流路までの最短距離t1はそれぞれ1mm、3mm、10mmとなる。カバー材には、厚みt2が1mmのSUS304板を用いた。以降は実施例1と同様にして試料12〜14の流体加熱装置を作製した。これら試料12〜14の流体加熱装置に対して実施例1と同様にして温度上昇ΔTを測定した。その結果を下記表2に示す。
[Example 2]
Three types of plate members (20 mm long × 100 mm wide) made of brass having a thickness of 5 mm, 9 mm, and 22 mm are prepared as flow path forming bodies, each having a through-hole with an inner diameter of 3 mm in the central portion in the thickness direction as in Example 1. Two were provided. Thereby, the shortest distance t1 from the front and back surfaces of the plate member to the flow path is 1 mm, 3 mm, and 10 mm, respectively. As the cover material, a SUS304 plate having a thickness t2 of 1 mm was used. Thereafter, the fluid heating devices of Samples 12 to 14 were produced in the same manner as in Example 1. The temperature rise ΔT was measured in the same manner as in Example 1 for the fluid heating devices of Samples 12-14. The results are shown in Table 2 below.

Figure 2015152219
Figure 2015152219

上記表2からわかるように、試料12〜13では被加熱液体の温度上昇ΔTが10℃を超えており、試料14と比べて効率よく水道水を加熱することができた。   As can be seen from Table 2 above, in Samples 12 to 13, the temperature rise ΔT of the liquid to be heated exceeded 10 ° C., and tap water could be heated more efficiently than Sample 14.

[実施例3]
流路形成体としてSiCからなる厚み5mm、9mm、27mmの3種類の板状部材(縦20mm×横100mm)を用意し、各々実施例1と同様に厚み方向の中央部分に内径3mmの貫通孔を2本設けた。これにより、板状部材の表裏面から流路までの最短距離t1はそれぞれ1mm、3mm、12mmとなる。カバー材は実施例2と同様にした。以降は実施例1と同様にして試料15〜17の流体加熱装置を作製した。これら試料15〜17の流体加熱装置に対して実施例1と同様にして温度上昇ΔTを測定した。その結果を下記表3に示す。
[Example 3]
Three types of plate members (length 20 mm × width 100 mm) made of SiC having a thickness of 5 mm, 9 mm, and 27 mm were prepared as flow path forming bodies. Two were provided. As a result, the shortest distances t1 from the front and back surfaces of the plate-like member to the flow path are 1 mm, 3 mm, and 12 mm, respectively. The cover material was the same as in Example 2. Thereafter, in the same manner as in Example 1, fluid heating devices of Samples 15 to 17 were produced. The temperature rise ΔT was measured in the same manner as in Example 1 for the fluid heating devices of Samples 15 to 17. The results are shown in Table 3 below.

Figure 2015152219
Figure 2015152219

上記表3からわかるように、試料15〜16では被加熱液体の温度上昇ΔTが10℃を超えており、試料17と比べて効率よく水道水を加熱することができた。   As can be seen from Table 3 above, in Samples 15 to 16, the temperature rise ΔT of the liquid to be heated exceeded 10 ° C., and the tap water could be heated more efficiently than Sample 17.

[実施例4]
流路形成体としてAl(A3003)からなる厚み7mmの板状部材(縦20mm×横100mm)を3毎用意し、各々実施例1と同様に厚み方向の中央部分に内径3mmの貫通孔を2本設けた。これにより、板状部材の表裏面から流路までの最短距離t1は2mmとなる。カバー材にはそれぞれSUS304、黄銅、及びAl003からなる厚みt2が2mmの3種類の板を用いた。以降は実施例1と同様にして試料18〜20の流体加熱装置を作製した。これら試料18〜20の流体加熱装置に対して実施例1と同様にして温度上昇ΔTを測定した。その結果を下記表4に示す。
[Example 4]
As the flow path forming body, three plate members (20 mm long × 100 mm wide) made of Al (A3003) are prepared every three, and each of the through holes having an inner diameter of 3 mm is formed in the central portion in the thickness direction in the same manner as in Example 1. Book provided. Thereby, the shortest distance t1 from the front and back surfaces of the plate member to the flow path is 2 mm. Each of the cover material SUS304, brass, and the thickness t2 consisting Al 3 003 were used three kinds of plates 2 mm. Thereafter, in the same manner as in Example 1, fluid heating devices for Samples 18 to 20 were produced. The temperature rise ΔT was measured in the same manner as in Example 1 for the fluid heating devices of Samples 18 to 20. The results are shown in Table 4 below.

Figure 2015152219
Figure 2015152219

上記表4からわかるように、試料18は試料19〜20に比べて効率よく水道水を加熱することができた。   As can be seen from Table 4 above, Sample 18 was able to heat tap water more efficiently than Samples 19-20.

1、11、21、31 流路形成体
1a、1b 被加熱面
2 ヒータユニット
3 カバー材
4 短管
5 ボルト
6 ナット
C 流路
1, 11, 21, 31 Channel formation body 1a, 1b Heated surface 2 Heater unit 3 Cover material 4 Short tube 5 Bolt 6 Nut C Channel

Claims (2)

液体を加熱する流体加熱装置であって、内部に被加熱流体の流路を1又は複数本備えた板状の流路形成体と、前記流路形成体の少なくとも片面に当接するヒータユニットと、前記ヒータユニットを覆うカバー材とを有し、
前記流路は前記ヒータユニットとの当接面に平行に延在しており、前記当接面から最短距離に位置する流路までの距離をt1、前記カバー材の厚みをt2とし、前記流路形成体の熱伝導率をc1、前記カバー材の熱伝導率をc2としたとき、c1/t1>c2/t2である流体加熱装置。
A fluid heating apparatus for heating a liquid, a plate-shaped flow path forming body provided with one or more flow paths of a fluid to be heated inside, a heater unit that contacts at least one surface of the flow path forming body, A cover material covering the heater unit;
The flow path extends parallel to the contact surface with the heater unit, and the distance from the contact surface to the flow path located at the shortest distance is t1, and the thickness of the cover material is t2. A fluid heating device in which c1 / t1> c2 / t2 where c1 is a thermal conductivity of the path formation body and c2 is a thermal conductivity of the cover member.
前記c1が100W/(m・K)以上である、請求項1に記載の流体加熱装置。   The fluid heating device according to claim 1, wherein c1 is 100 W / (m · K) or more.
JP2014025968A 2014-02-13 2014-02-13 fluid heating device Pending JP2015152219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014025968A JP2015152219A (en) 2014-02-13 2014-02-13 fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025968A JP2015152219A (en) 2014-02-13 2014-02-13 fluid heating device

Publications (1)

Publication Number Publication Date
JP2015152219A true JP2015152219A (en) 2015-08-24

Family

ID=53894681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025968A Pending JP2015152219A (en) 2014-02-13 2014-02-13 fluid heating device

Country Status (1)

Country Link
JP (1) JP2015152219A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247429B1 (en) * 2016-06-27 2017-12-13 日新ネオ株式会社 Heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162757A (en) * 1982-03-13 1983-09-27 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Heater
JP2003068430A (en) * 1995-07-10 2003-03-07 Mks Instruments Inc Hps Division Flexible heat-insulation heater

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58162757A (en) * 1982-03-13 1983-09-27 ル−カス・インダストリ−ズ・パブリツク・リミテツド・カンパニ− Heater
JP2003068430A (en) * 1995-07-10 2003-03-07 Mks Instruments Inc Hps Division Flexible heat-insulation heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247429B1 (en) * 2016-06-27 2017-12-13 日新ネオ株式会社 Heat exchanger
WO2018002963A1 (en) * 2016-06-27 2018-01-04 日新ネオ株式会社 Heat exchanger
US10859325B2 (en) 2016-06-27 2020-12-08 Neo Corporation Heat exchanger

Similar Documents

Publication Publication Date Title
JP2015152218A (en) fluid heating device
KR20150020578A (en) High-efficiency heat exchanger and high-efficiency heat exchange method
US20180226557A1 (en) Thermoelectric heat exchanger
KR20030010676A (en) Electric water heater, liquid heater, steam generator
US8927910B2 (en) High power-density plane-surface heating element
JP6060889B2 (en) Heater unit for wafer heating
KR200492882Y1 (en) Flexible heater for heating device
JP2009043752A (en) Thermoelectric conversion module
CN110907492A (en) Temperature-uniforming high-temperature heating assembly and heating device for testing thermal conductivity
KR101619094B1 (en) Plate heater for high temperature baking apparatus
JP2008002896A5 (en)
JP2015152219A (en) fluid heating device
JP2015039507A (en) Heating cooker
JP2010135643A (en) Thermoelectric conversion device, thermoelectric power generation system, and thermoelectric power generation method
JP2009264804A (en) Planar temperature detection sensor
JP5461244B2 (en) Piping heating equipment
CN110720147A (en) Heat conversion device
JP2018152195A5 (en)
JP2007157488A (en) Planar heating element
TW201442550A (en) Heater
CN210899660U (en) MCH ceramic electric heater
JP2007003276A5 (en)
JP6330518B2 (en) Fluid heater
EP4383940A1 (en) Flow through heater and method of manufacture thereof
KR20190038101A (en) Heat conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180313