JP6413394B2 - Fluid heater - Google Patents

Fluid heater Download PDF

Info

Publication number
JP6413394B2
JP6413394B2 JP2014133814A JP2014133814A JP6413394B2 JP 6413394 B2 JP6413394 B2 JP 6413394B2 JP 2014133814 A JP2014133814 A JP 2014133814A JP 2014133814 A JP2014133814 A JP 2014133814A JP 6413394 B2 JP6413394 B2 JP 6413394B2
Authority
JP
Japan
Prior art keywords
heating element
flow path
fluid
flow paths
fluid heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014133814A
Other languages
Japanese (ja)
Other versions
JP2016012481A (en
Inventor
悦弘 西本
悦弘 西本
晃 三雲
晃 三雲
成伸 先田
成伸 先田
桂児 北林
桂児 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014133814A priority Critical patent/JP6413394B2/en
Publication of JP2016012481A publication Critical patent/JP2016012481A/en
Application granted granted Critical
Publication of JP6413394B2 publication Critical patent/JP6413394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

本発明は、抵抗発熱体を用いて流体を加熱する流体加熱器に関する。   The present invention relates to a fluid heater that heats a fluid using a resistance heating element.

プロセス流体や洗浄液などの流体を所定の温度まで加熱する技術は、化学プラントや食品工場等の工業用途に留まらず、商業施設等に設置されたハンドドライヤーや一般家庭に於ける温水洗浄便座に至る様々な分野で広く適用されている。かかる流体の加熱では、被加熱流体である低温側の流体を蒸気や熱媒体などの高温側の流体と熱交換する方式が用いられることが多いが、高温側の流体が経済性等の理由で利用できない場合は、被加熱流体を所望の温度まで比較的すばやく加熱することが可能な抵抗発熱体による加熱方式を採用することがある。   Technology that heats fluids such as process fluids and cleaning liquids to a predetermined temperature is not limited to industrial applications such as chemical plants and food factories, but leads to hand dryers installed in commercial facilities and hot water cleaning toilet seats in general households. Widely applied in various fields. In the heating of such a fluid, a method of exchanging heat between a low-temperature side fluid that is a fluid to be heated and a high-temperature side fluid such as steam or a heat medium is often used. When it cannot be used, a heating method using a resistance heating element capable of heating the heated fluid to a desired temperature relatively quickly may be employed.

例えば特許文献1には、セラミック製のシートの片面に抵抗発熱体となる高融点金属を印刷法により塗布し、これをセラミック製のパイプ材の外周面に抵抗発熱体が内側となるように巻きつけた後、接着及び焼成により一体化させたセラミックヒータが開示されている。また、特許文献2には、片方の面が接液面となる平面状のセラミックス基板のもう片方の面に抵抗発熱体を設け、更にその上に絶縁層を覆うことで形成された流体加熱用のセラミックヒータが開示されている。   For example, in Patent Document 1, a high melting point metal that becomes a resistance heating element is applied to one side of a ceramic sheet by a printing method, and this is wound so that the resistance heating element is on the outer peripheral surface of a ceramic pipe material. A ceramic heater is disclosed that is integrated by bonding and firing after being applied. Patent Document 2 discloses a fluid heating element formed by providing a resistance heating element on the other surface of a flat ceramic substrate whose one surface is a liquid contact surface, and further covering an insulating layer thereon. A ceramic heater is disclosed.

特開2005−183371公報JP 2005-183371 A 特開2002−151236公報JP 2002-151236 A

昨今の環境保全や省電力に対する関心の高まりから、抵抗発熱体を用いた流体加熱器には消費電力が小さく効率よく流体を加熱できるものが求められている。しかしながら、上記した特許文献1に示す構造では、抵抗発熱体を覆うシートの材質が該シートが巻き付けられているパイプ状部材の材質と同じであるため、これらに挟まれている抵抗発熱体で発生した熱をパイプ状部材の内側を流れる流体に効率よく伝えることができなかった。また、特許文献2に示す構造では、温度変化が繰り返されるうちにセラミックス基板と絶縁層とのわずかな熱膨張係数差によりこれらの接着界面にクラックが生じやすく、信頼性を損なうことがあった。またいずれの流体加熱器も作製に手間がかかっていた。   Due to the recent increase in interest in environmental conservation and power saving, a fluid heater using a resistance heating element is required to have a low power consumption and can efficiently heat a fluid. However, in the structure shown in Patent Document 1 described above, since the material of the sheet covering the resistance heating element is the same as the material of the pipe member around which the sheet is wound, it is generated in the resistance heating element sandwiched between them. Heat could not be efficiently transferred to the fluid flowing inside the pipe-shaped member. Further, in the structure shown in Patent Document 2, cracks are likely to occur at the bonding interface due to a slight difference in thermal expansion coefficient between the ceramic substrate and the insulating layer while the temperature change is repeated, and the reliability may be impaired. In addition, both fluid heaters take time and effort.

本発明はかかる従来の流体加熱器が有する問題点に鑑みてなされたものであり、熱効率が高くて信頼性に優れ且つ簡易に作製できる流体加熱器を提供する事を目的としている。   The present invention has been made in view of the problems of the conventional fluid heater, and an object thereof is to provide a fluid heater that has high thermal efficiency, is excellent in reliability, and can be easily manufactured.

上記目的を達成するため、本発明が提供する流体加熱器は、平行な複数の流路を内部に有すると共に前記複数の流路をそれらの延在方向の一端部で封止する蓋部を備えた流路ユニットと、前記複数の流路の各々に収容された発熱体とを有する流体加熱器であって、前記複数の流路の各々に収容されている前記発熱体は、いずれも前記蓋部から各流路内を少なくとも一往復していることを特徴としている。   In order to achieve the above object, a fluid heater provided by the present invention includes a lid portion that has a plurality of parallel flow paths inside and seals the plurality of flow paths at one end in the extending direction thereof. A fluid heater having a flow path unit and a heating element accommodated in each of the plurality of flow paths, each of the heating elements accommodated in each of the plurality of flow paths being the lid It is characterized in that at least one reciprocation is made in each flow path from the section.

本発明によれば、従来の流体加熱器に比べて熱効率が高くて信頼性に優れ且つ簡易に作製できる流体加熱器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, compared with the conventional fluid heater, the fluid heater which has high thermal efficiency, is excellent in reliability, and can be produced simply can be provided.

本発明の流体加熱器の一具体例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one specific example of the fluid heater of this invention. 本発明の流体加熱器が有する発熱体が巻き付けられる櫛歯状部材の一具体例を示す斜視図である。It is a perspective view which shows one specific example of the comb-shaped member by which the heat generating body which the fluid heater of this invention has is wound. 図2の櫛歯状部材を構成する板状部材を示す斜視図である。It is a perspective view which shows the plate-shaped member which comprises the comb-tooth shaped member of FIG. 実施例で作製した4本の櫛歯状部材を、それらが取り付けられている蓋部と共に示す斜視図である。It is a perspective view which shows the four comb-tooth shaped members produced in the Example with the cover part to which they are attached.

最初に本発明の実施形態を列記して説明する。本発明の実施形態の流体加熱器は、平行な複数の流路を内部に有すると共に前記複数の流路をそれらの延在方向の一端部で封止する蓋部を備えた流路ユニットと、前記複数の流路の各々に収容された発熱体とを有する流体加熱器であって、前記複数の流路の各々に収容されている前記発熱体は、いずれも前記蓋部から各流路内を少なくとも一往復していることを特徴としている。かかる構成により従来の流体加熱器に比べて熱効率が高くて信頼性に優れ且つ簡易に作製できる流体加熱器を提供することができる。また、流路ユニットの作製が容易になる上、発熱体の交換や流路内壁面の洗浄などのメンテナンスも容易になる。   First, embodiments of the present invention will be listed and described. A fluid heater according to an embodiment of the present invention includes a flow path unit including a plurality of parallel flow paths therein and a lid that seals the plurality of flow paths at one end in the extending direction thereof, A fluid heater having a heating element housed in each of the plurality of flow paths, each of the heating elements housed in each of the plurality of flow paths from the lid portion to the inside of each flow path Is at least one round trip. With this configuration, it is possible to provide a fluid heater that has higher thermal efficiency than the conventional fluid heater, is excellent in reliability, and can be easily manufactured. Further, the manufacture of the flow path unit is facilitated, and maintenance such as replacement of the heating element and cleaning of the inner wall surface of the flow path is facilitated.

上記した本発明の実施形態の流体加熱器においては、前記流路ユニットは前記複数の流路において前記発熱体をそれぞれ支持する複数の長尺の支持部材を更に有しており、前記複数の長尺の支持部材の各々の一端部が前記蓋部に係合しているのが好ましい。これにより発熱体が使用しているうちに変形するのを防ぐことができ、よって、発熱体が流路の壁面に接触して局所的に過熱状態になるのを防ぐことができる。   In the fluid heater according to the embodiment of the present invention described above, the flow path unit further includes a plurality of long support members that respectively support the heating elements in the plurality of flow paths. It is preferable that one end of each of the scale support members is engaged with the lid. Thereby, it can prevent that a heat generating body deform | transforms during use, and it can prevent that a heat generating body contacts the wall surface of a flow path and becomes a superheated state locally.

上記した本発明の実施形態の流体加熱器においては、前記発熱体は線状の形態を有しており、前記複数の流路の各々において前記長尺の支持部材に螺旋状に巻き付けられているのが好ましく、特に、前記長尺の支持部材が櫛歯状部材で形成されるのが好ましい。これにより、流路内により高い密度で発熱体を収容することが可能になる。また、上記した本発明の実施形態の流体加熱器においては、前記発熱体が電気絶縁材で被覆されているのが好ましい。これにより、発熱体が短絡するのを避けることができる上、発熱体を被加熱流体から保護することが可能になる。   In the fluid heater according to the above-described embodiment of the present invention, the heating element has a linear shape, and is wound spirally around the elongated support member in each of the plurality of flow paths. In particular, the long support member is preferably formed of a comb-like member. Thereby, it becomes possible to accommodate the heating element at a higher density in the flow path. In the fluid heater according to the above-described embodiment of the present invention, it is preferable that the heating element is covered with an electrical insulating material. Thereby, it is possible to prevent the heating element from being short-circuited and to protect the heating element from the fluid to be heated.

次に、図1を参照しながら本発明の流体加熱器の一具体例について説明する。この図1に示す本発明の一具体例の流体加熱器1は、互いに平行に延在する2つの流路を内部に有すると共にこれら複数の流路をそれらの延在方向の一端部で封止する蓋部を備えた流路ユニット10と、これら2つの流路の各々に収容された線状形態の発熱体20とからなる。具体的に説明すると、略直方体形状の流路ユニット10は、互いに平行に延在する往路11a及び復路11bを内部に備えた流路ブロック10aと、これら往路11a及び復路11bを封止すべくその延在方向の両端部にそれぞれ設けられた第1蓋部10b及び第2蓋部10cとからなる。ここで平行とは、厳密な意味での平行のほか、各々の流路の軸が概ね同じ方向を向いている場合をも含むものとする。例えば、2つの流路の軸同士のなす角が30度未満の位置関係にある場合を平行と称するものとする。   Next, a specific example of the fluid heater of the present invention will be described with reference to FIG. The fluid heater 1 according to an embodiment of the present invention shown in FIG. 1 has two flow paths extending in parallel to each other and seals the plurality of flow paths at one end in the extending direction. And a linear heating element 20 accommodated in each of the two flow paths. More specifically, the substantially rectangular parallelepiped channel unit 10 includes a channel block 10a having an outward path 11a and a return path 11b extending in parallel to each other, and a seal block for the forward path 11a and the return path 11b. It consists of the 1st cover part 10b and the 2nd cover part 10c which were each provided in the both ends of the extending direction. Here, the term “parallel” includes not only parallel in a strict sense but also a case where the axes of the respective channels are oriented in substantially the same direction. For example, the case where the angle formed by the axes of two flow paths is less than 30 degrees is referred to as parallel.

第1蓋部10bには、被加熱流体の供給口13及び排出口14が設けられており、これら供給口13及び排出口14は、それぞれ往路11a及び復路11bに連通している。一方、第2蓋部10cには、往路11a及び復路11bを互いに連通させる連通路11cが形成されている。これにより、互いに平行に延在するこれら往路11a及び復路11bは連通路11cと併せて直列の流路11を形成している。これら往路11a及び復路11b内に、それぞれ往路用発熱体20a及び復路用発熱体20bが、いずれも流路ユニット10においてこれら往路11a及び復路11bの延在方向における同じ一端部から各流路内を一往復している。往路用発熱体20aの一端部と復路用発熱体20bの一端部とは互いに接続しており、全体として1つの直列回路を形成している。また、往路用発熱体20aの他端部と復路用発熱体20bの他端部とは共に流路ユニット10の壁面を貫通して外部に延出しており、ここに図示しない電源が接続している。なお、往路用発熱体20a及び復路用発熱体20bは、各々上記流路内を2以上往復してもよい。このように、複数の流路内にそれぞれ収容する発熱体を流路ユニット10の同じ一端部から少なくとも一往復させることで、当該発熱体のうち、流路ユニット10の流路の壁面を貫通させる上記した接続部や末端部を流路ユニット10の一端部にまとめることができるので、加工が容易になる。   The first lid 10b is provided with a supply port 13 and a discharge port 14 for the fluid to be heated, and the supply port 13 and the discharge port 14 communicate with the forward path 11a and the return path 11b, respectively. On the other hand, the second lid portion 10c is formed with a communication path 11c that allows the forward path 11a and the return path 11b to communicate with each other. Thus, the forward path 11a and the return path 11b extending in parallel with each other form a serial flow path 11 together with the communication path 11c. In each of the forward path 11a and the return path 11b, the forward path heating element 20a and the return path heating element 20b respectively pass through the flow path unit 10 from the same end in the extending direction of the forward path 11a and the return path 11b. One round trip. One end portion of the forward heating element 20a and one end portion of the backward heating element 20b are connected to each other to form one series circuit as a whole. Further, the other end of the forward path heating element 20a and the other end of the return path heating element 20b both extend through the wall surface of the flow path unit 10 and are connected to a power source (not shown). Yes. The forward heating element 20a and the backward heating element 20b may reciprocate two or more times in the flow path. As described above, the heating elements respectively accommodated in the plurality of flow paths are reciprocated at least once from the same end portion of the flow path unit 10, thereby passing through the wall surface of the flow path of the flow path unit 10 among the heating elements. Since the connection part and the terminal part described above can be integrated into one end part of the flow path unit 10, processing becomes easy.

上記した構成により、流路ユニット10内に供給口13を介して導入された被加熱流体は、先ず往路11a内を通って流路ユニット10の一端部から他端部に向かって流れ、その間に往路11の内部に収容されている往路用発熱体20aで加熱される。流路ユニット10の他端部に到達した被加熱流体は、連通路11cで流れの向きを180°変えられた後、復路11b内を通って流路ユニット10の上記他端部から上記一端部に向かって流れ、その間に復路11bの内部に収容されている復路用発熱体20bで加熱される。このようにして、流路ユニット10内を一往復して戻ってきた被加熱流体は、排出口14から排出される。   With the above-described configuration, the fluid to be heated introduced into the flow path unit 10 via the supply port 13 first flows from one end portion of the flow path unit 10 to the other end portion through the forward path 11a, Heat is generated by a forward heating element 20 a housed in the forward path 11. The fluid to be heated that has reached the other end of the flow path unit 10 has its flow direction changed by 180 ° in the communication path 11c, and then passes through the return path 11b from the other end of the flow path unit 10 to the one end. In the meantime, it is heated by the return path heating element 20b housed in the return path 11b. In this way, the fluid to be heated that has returned in one reciprocation in the flow path unit 10 is discharged from the discharge port 14.

流路内を一往復する往路用発熱体20a及び復路用発熱体20bは、各流路内で長尺の支持部材15に支持されている。これにより往路用発熱体20a及び復路用発熱体20bは各流路内で自在に変形できなくなるので、発熱体20が例えば被加熱流体の流れの影響を受けて流路壁面に接触し、その結果、局所的に過熱状態になるのを防ぐことができる。長尺の支持部材15は、その一端部が第1蓋部10bに係合しており、これにより、発熱体20を第1蓋部10b及び支持部材15と共に流路ブロック10aに対して容易に着脱することが可能になる。なお、第1蓋部10bには長尺の支持部材15がある程度自在に動けるように遊びを持たせた状態で係合させるのが好ましい。これにより当該係合部分に応力が集中して破損するのを避けることができる。   The forward heating element 20a and the backward heating element 20b that reciprocate once in the flow path are supported by a long support member 15 in each flow path. As a result, the forward heating element 20a and the return heating element 20b cannot be freely deformed in each flow path, so that the heating element 20 comes into contact with the flow path wall surface under the influence of the flow of the fluid to be heated, for example. , It is possible to prevent local overheating. One end of the long support member 15 is engaged with the first lid portion 10b, so that the heating element 20 can be easily attached to the flow path block 10a together with the first lid portion 10b and the support member 15. It becomes possible to attach and detach. In addition, it is preferable to engage with the 1st cover part 10b in the state which gave the play so that the elongate support member 15 may move to some extent freely. Thereby, it can avoid that stress concentrates on the said engaging part and it breaks.

線状形態の発熱体20を上記した長尺の支持部材15で支持する場合は、図1に示すように、長尺の支持部材15を芯にして螺旋状に巻き、その螺旋軸方向が流路方向に略一致するように流路内に収容するのが好ましい。その際、発熱体20の隣接する巻き線同士が互いに接することがないピッチで螺旋状に巻くのが好ましい。これにより、流路内に発熱体20を高密度に収容することができる上、発熱体20のほぼすべての表面を被加熱流体に接触させることができるので、極めて高い熱効率を達成することができる。更に、隣接する巻き線同士が接することで生じ得る局所的な異常過熱を防ぐことができる。   When the linear heating element 20 is supported by the long support member 15 as described above, as shown in FIG. 1, the long support member 15 is wound in a spiral shape, and the direction of the spiral axis flows. It is preferable to accommodate in the flow path so as to substantially match the road direction. At that time, it is preferable that the adjacent windings of the heating element 20 are spirally wound at a pitch that does not contact each other. As a result, the heating element 20 can be accommodated in the flow path with a high density, and almost all the surface of the heating element 20 can be brought into contact with the fluid to be heated, so that extremely high thermal efficiency can be achieved. . Furthermore, the local abnormal overheating which may arise when adjacent windings contact | connect can be prevented.

長尺の支持部材15には、図1に示すように発熱体20の往側又は復側だけを螺旋状に巻き付けてもよいが、往側と複側の両方を螺旋状に巻き付けるのが好ましい。これにより流路内により高い密度で発熱体20を収容することができる。往側と複側の両方を螺旋状に巻く場合は、往側と復側とを同軸状であって且つ螺旋の巻き方向が互いに逆向きとなるように巻くのが好ましい。例えば、往側を右巻きにする場合は復側を左巻きにするのが好ましい。この様に同軸状であって且つ螺旋の巻き方向を逆にすることで、各コイルから発生する磁場を打ち消すことができ、加熱器が周辺に及ぼす磁気の悪影響を抑えることが出来る。   As shown in FIG. 1, only the forward side or the reverse side of the heating element 20 may be spirally wound on the long support member 15, but it is preferable that both the forward side and the multiple side are spirally wound. . Thereby, the heat generating body 20 can be accommodated at a higher density in the flow path. When both the forward side and the multiple side are spirally wound, it is preferable that the forward side and the reverse side are coaxially wound so that the spiral winding directions are opposite to each other. For example, when the forward side is clockwise, the backward side is preferably left-handed. By reversing the spiral winding direction in this way, it is possible to cancel the magnetic field generated from each coil, and to suppress the adverse magnetic effect of the heater on the periphery.

上記したように線状形態の発熱体20を螺旋状に巻いた状態で流路内に収容する際、その隣接する巻き線同士が確実に密着しないようにするために櫛歯状部材を用いるのが好ましい。例えば図2に示す一具体例の櫛歯状部材30は、櫛歯を有する4枚の略同形状の矩形片が櫛歯側を外側に向けて断面十字の放射状となった立体構造を有しており、この櫛歯に沿って線状形態の発熱体20を巻きつけることによって所望のピッチで螺旋状に巻き付けることができる。そして、発熱体20が巻き付けられたままの状態で櫛歯状部材30を流路に挿入することで螺旋軸の延在方向を流路の延在方向に一致させることができる。   As described above, when the linear heating element 20 is spirally wound and accommodated in the flow path, a comb-like member is used to ensure that adjacent windings do not adhere to each other. Is preferred. For example, the comb-like member 30 of one specific example shown in FIG. 2 has a three-dimensional structure in which four rectangular pieces having substantially the same shape having comb teeth have a radial cross section with the comb-tooth side facing outward. By winding the linear heating element 20 along the comb teeth, it can be spirally wound at a desired pitch. And the extending direction of a spiral axis can be made to correspond with the extending direction of a flow path by inserting the comb-tooth shaped member 30 in a flow path in the state in which the heat generating body 20 was wound.

図2の櫛歯状部材30は、例えば図3に示すような櫛歯を両側面に備えた2枚の略同形状の矩形板状部材31を組み合わせることで作製することができる。すなわち、2枚の同形状の矩形板状部材を用意し、各々長手方向に延びる両側面に櫛歯を設けると共に、長手方向の一端部から長手方向の中央部まで切り欠き部を形成し、これら切り欠き部同士を嵌め込むことによって櫛歯状部材30を形成することができる。なお、櫛歯状部材30の材質は、流路ユニット10の材質と同等にするのが好ましい。   The comb-tooth shaped member 30 in FIG. 2 can be produced by combining two substantially identical rectangular plate-like members 31 having comb teeth on both sides as shown in FIG. 3, for example. That is, two rectangular plate-like members having the same shape are prepared, comb teeth are provided on both side surfaces extending in the longitudinal direction, and a notch is formed from one end portion in the longitudinal direction to the central portion in the longitudinal direction. The comb-like member 30 can be formed by fitting the notches into each other. The material of the comb-like member 30 is preferably the same as the material of the flow path unit 10.

線状形態の発熱体20を前述したように往側と複側の両方を螺旋状に巻いて流路内を一往復させる場合は、図3に示す櫛歯状部材30の隣接する歯部32同士の間の隙間33の奥側に往側の発熱体を螺旋状に巻きつけ、隙間33の外側に復側の発熱体を螺旋状に巻きつけるのが好ましい。その際、往側の発熱体と復側の発熱体とが接触しないように、櫛歯状部材30の各歯部32に往側の発熱体と復側の発熱体とを離間させる例えば図3の環状部材のようなスペーサー34を嵌装するのが好ましい。また、復側の発熱体の螺旋の最外周部よりも櫛歯状部材30の各歯部32の先端部が外側に突出しているのが好ましい。これにより発熱体20が流路ユニット10の壁面に接触して局所的に過熱状態になるのを防ぐことができる。   When the heating element 20 in the linear form is spirally wound on both the forward side and the multiple side as described above and reciprocated once in the flow path, the adjacent tooth portions 32 of the comb-like member 30 shown in FIG. It is preferable that the outward heating element is spirally wound around the back side of the gap 33 between them, and the return heating element is spirally wound outside the gap 33. At that time, the outward heating element and the returning heating element are separated from each tooth portion 32 of the comb-like member 30 so that the outward heating element and the returning heating element do not contact each other, for example, FIG. It is preferable to fit a spacer 34 such as an annular member. Moreover, it is preferable that the front-end | tip part of each tooth | gear part 32 of the comb-tooth shaped member 30 protrudes outside rather than the outermost periphery part of the spiral of a return side heat generating body. Thereby, it can prevent that the heat generating body 20 contacts the wall surface of the flow-path unit 10, and becomes a superheated state locally.

上記したような流路を備えた流路ユニットは、例えば中実の円柱又は角柱ブロックにその軸方向に貫通する複数の流路を設けた後、供給口用や排出口用の開口部を少なくとも一方に備えた円板状又は矩形板状の蓋部で両端を封止することで作製できる。上記した連通路はこの蓋部に設けてもよいし、上記した中実の円柱又は角柱ブロックに設けた流路の端部を一部切り欠くことで形成してもよい。流路を形成する際は、その内壁面の加工粗度を粗くして内部を流れる流体が乱流になりやすくしたり、邪魔板を設けて流路を長くしたりしてもよい。これらにより熱効率をより一層高めることができる。   The flow path unit having the flow paths as described above is provided with, for example, a solid cylinder or prism block having a plurality of flow paths penetrating in the axial direction, and at least an opening for a supply port and a discharge port. It can be manufactured by sealing both ends with a disc-shaped or rectangular plate-shaped lid provided on one side. The communication path described above may be provided in the lid portion, or may be formed by partially cutting off the end of the flow path provided in the solid cylinder or prism block. When forming the flow path, the processing roughness of the inner wall surface may be made rough to make the fluid flowing inside easily turbulent, or a baffle plate may be provided to lengthen the flow path. As a result, the thermal efficiency can be further increased.

流路ユニットの流路は、被加熱流体が下側から入って上側から抜けるような構造にするのが好ましい。具体的には図1に示すように、往路11aが復路11bよりも下に位置するように水平に設置した時、供給口13が往路11aの最下部になり、且つ排出口14が復路11bの最上部になるのが好ましい。これにより、空の流路内に被加熱流体を導入するスタートアップ時に最下部から最上部に向けて流体を充満させることができ、被加熱流体が液体の場合は流路内にエアポケットを生じさせることなく満液状態にすることができる。その結果、発熱体をすべて被加熱流体に浸漬させることができるので、極めて高い熱効率を実現することが出来る。   The flow path of the flow path unit is preferably structured such that the fluid to be heated enters from the lower side and exits from the upper side. Specifically, as shown in FIG. 1, when the outgoing path 11a is installed horizontally so as to be positioned below the return path 11b, the supply port 13 is at the bottom of the forward path 11a, and the discharge port 14 is located on the return path 11b. Preferably it is at the top. This allows the fluid to be filled from the bottom to the top during start-up when the fluid to be heated is introduced into the empty channel, and if the fluid to be heated is a liquid, an air pocket is generated in the channel. Can be filled without any trouble. As a result, since all the heating elements can be immersed in the fluid to be heated, extremely high thermal efficiency can be realized.

流路ユニット10の材質には、金属や樹脂など様々なものを用いることができ、被加熱流体の性質やその使用温度域、流路ユニット10の設置環境等により適宜選定することが出来る。金属の場合は、例えば銅、アルミニウム、ステンレス等を使用することができる。これらの金属は汎用的でコストパフォーマンスに長ける他、機械加工やろう付け、溶接等の加工技術により容易に作製できるため加熱器の設置場所や必要とする加熱器のサイズ、形状などに応じて比較的自由に設計することが可能になる。また、金属は樹脂に比べて耐熱温度が高く、機械強度に優れているという利点を有しており、ステンレスの場合は更に耐環境性にも優れている。   Various materials such as metal and resin can be used as the material of the flow path unit 10, and can be appropriately selected depending on the nature of the fluid to be heated, its operating temperature range, the installation environment of the flow path unit 10, and the like. In the case of a metal, for example, copper, aluminum, stainless steel or the like can be used. These metals are versatile and cost-effective, and can be easily manufactured by machining, brazing, welding, and other processing techniques, so depending on the location of the heater and the size and shape of the heater required It becomes possible to design relatively freely. In addition, metals have the advantage that they have a higher heat resistance temperature and superior mechanical strength than resins, and stainless steel is more excellent in environmental resistance.

一方、樹脂の場合は、例えばアクリル、フッ素樹脂等を使用することができる。これらの樹脂は汎用的でコストパフォーマンスに優れ、機械加工や溶着等の加工技術により容易に作製できる。特に、樹脂の場合は金属に比べて融点が低いため、比較的低温で溶接等の形状加工が容易に出来るという利点がある。加えて、樹脂は軽量で且つ耐環境性能に優れるという利点があり、特にテフロンに代表されるフッ素樹脂は極めて高い耐環境性を有している。そのため、重量制限がある場合や環境負荷が特に高い用途に好適に用いることができる。   On the other hand, in the case of resin, for example, acrylic, fluororesin or the like can be used. These resins are general-purpose and have excellent cost performance, and can be easily produced by machining techniques such as machining and welding. In particular, since the melting point of resin is lower than that of metal, there is an advantage that shape processing such as welding can be easily performed at a relatively low temperature. In addition, the resin has the advantage of being lightweight and excellent in environmental resistance, and in particular, a fluororesin represented by Teflon has extremely high environmental resistance. For this reason, it can be suitably used for applications where there is a weight limit or for which the environmental load is particularly high.

上記の流路内に収容する線状形態の発熱体20には、電気絶縁材で被覆された金属素線を用いることが好ましい。金属素線の材質には、ステンレス、ニッケル−クロム、クロムを含む合金等を用いることが出来る。この金属素線の表面全体を略同じ肉厚で被覆する電気絶縁材には例えばビニル、ポリエチレン、ポリイミド、シリコーン、フッ素樹脂等を使用することができる。具体的な材質は被加熱流体の種類やその使用温度域などにより適宜選定することが出来る。耐熱、耐環境性が必要な場合はテフロン等のフッ素樹脂を用いるのが望ましく、それ以外の場合は汎用的なビニル、ポリエチレン、ポリイミド、シリコーンを用いることでコストメリットが得られる。   It is preferable to use a metal wire covered with an electrical insulating material for the linear heating element 20 accommodated in the flow path. As the material of the metal wire, stainless steel, nickel-chromium, an alloy containing chromium, or the like can be used. For example, vinyl, polyethylene, polyimide, silicone, fluororesin, or the like can be used as an electrical insulating material that covers the entire surface of the metal strand with substantially the same thickness. Specific materials can be appropriately selected depending on the type of fluid to be heated and the operating temperature range thereof. When heat resistance and environment resistance are required, it is desirable to use a fluororesin such as Teflon. In other cases, cost advantage can be obtained by using general-purpose vinyl, polyethylene, polyimide, or silicone.

流路ユニット10には温度センサーを設けてもよい。この場合、温度センサーには測温抵抗体を用いることが好ましい。測温抵抗体は、例えば測温素子部として絶縁セラミック基体の平面部に白金抵抗体を蒸着等の手段により形成し、その抵抗値を所定の値となるように調整した後、その電極パッド部にリード線をボンディング等の手段で接合することで得られる。上記の白金抵抗体及び電極パッド部は絶縁膜で被覆されていることが好ましい。かかる構成により測温素子部を小型化することができ、温度応答性を高めることが出来る。   The flow path unit 10 may be provided with a temperature sensor. In this case, it is preferable to use a resistance temperature detector for the temperature sensor. The resistance temperature detector is formed by, for example, forming a platinum resistance element on the flat surface portion of the insulating ceramic substrate as a temperature measuring element portion by means such as vapor deposition, and adjusting the resistance value to a predetermined value, and then the electrode pad portion. It can be obtained by bonding the lead wires to each other by means such as bonding. The platinum resistor and the electrode pad are preferably covered with an insulating film. With this configuration, the temperature measuring element unit can be reduced in size, and the temperature responsiveness can be improved.

測温抵抗体は流路ユニット10の外壁面や内壁面、または流路内(空間)や発熱体の絶縁被覆部の表面上に設置することが出来る。具体的な設置場所は、測定したい部位や制御機器とのマッチング等を考慮して適宜選定する。設置に際して、測温抵抗体のリード線に金属シースまたは樹脂パイプを被せ、流路ユニット10の壁面に設けた挿通孔に通してから該挿通孔を溶接することにより、外部とのシール性を保ったまま流路ユニット10内の温度を測定することができる。   The resistance temperature detector can be installed on the outer wall surface or inner wall surface of the flow path unit 10, or in the flow path (space) or on the surface of the insulating coating portion of the heating element. The specific installation location is appropriately selected in consideration of the part to be measured and matching with the control device. During installation, the lead wire of the resistance temperature detector is covered with a metal sheath or a resin pipe, passed through the insertion hole provided in the wall surface of the flow path unit 10, and then welded to maintain the sealing performance with the outside. The temperature in the flow path unit 10 can be measured as it is.

流路ユニット10の内部で流体温度を測定する際は、被加熱流体からの圧力による機械的な損傷を避けるため、また被加熱流体の種種によっては耐環境性を考慮して樹脂パイプを測温素子部まで被せると共に、その先端部に当該樹脂パイプと略同一材質の樹脂を充填してシールすることが好ましい。また、発熱体の温度を測定する際は、発熱体を被覆している電気絶縁材の表面上に測温素子を当接させた後、上述したように樹脂パイプを被せて同様の手段でシールするのが好ましい。   When measuring the fluid temperature inside the flow path unit 10, in order to avoid mechanical damage due to pressure from the heated fluid, and depending on the type of heated fluid, the temperature of the resin pipe is measured in consideration of environmental resistance. It is preferable that the element portion is covered and the tip portion is filled with a resin substantially the same material as the resin pipe and sealed. Also, when measuring the temperature of the heating element, a temperature measuring element is brought into contact with the surface of the electrical insulating material covering the heating element, and then covered with a resin pipe as described above and sealed with the same means. It is preferable to do this.

温度センサーを流路ユニット10の内外壁面等に設置する際は、接着剤を用いて固定することができる。接着剤にはシリコーンやエポキシ等の有機系樹脂を主成分としたものや、セラミック粒等の無機材料とバインダ成分とを組み合わせたものを利用することが出来る。特にシリコーン樹脂を主成分とした接着剤は、流体加熱に必要な温度帯に耐える耐熱性を有し、且つ弾力性を有することから、測温素子と周辺部材の僅かな熱膨張量差を吸収し得るため好適である。   When the temperature sensor is installed on the inner and outer wall surfaces of the flow path unit 10, it can be fixed using an adhesive. As the adhesive, an adhesive mainly composed of an organic resin such as silicone or epoxy, or a combination of an inorganic material such as ceramic particles and a binder component can be used. In particular, the adhesive mainly composed of silicone resin has heat resistance that can withstand the temperature range required for fluid heating and elasticity, so it absorbs a slight difference in thermal expansion between the temperature measuring element and peripheral members. This is preferable.

以上、本発明の流体加熱器について一具体例を挙げて説明したが、本発明はかかる具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。すなわち、本発明の技術的範囲は、特許請求の範囲およびその均等物に及ぶものである。例えば、上記の一具体例では流路ユニット内に設けられた流路が直列に連通するものであったが、これら複数の流路は並列に連通されていてもよい。また、流路ユニットに設ける流路の本数に限定はなく、被加熱流体の流量及びその目標到達温度、設置可能なスペース等により適宜定められる。例えば図4には、4本の流路を有する流路ユニットの蓋部に、線状の発熱体20が螺旋状に巻きつけられている4本の長尺の支持部材15が設けられている例が示されている。   The fluid heater of the present invention has been described with reference to a specific example. However, the present invention is not limited to such a specific example, and can be implemented in various modes without departing from the gist of the present invention. . That is, the technical scope of the present invention extends to the claims and their equivalents. For example, in the above-described specific example, the flow paths provided in the flow path unit are communicated in series, but the plurality of flow paths may be communicated in parallel. Further, the number of flow paths provided in the flow path unit is not limited, and is appropriately determined depending on the flow rate of the fluid to be heated, the target temperature reached, the space where it can be installed, and the like. For example, in FIG. 4, four long support members 15 in which a linear heating element 20 is spirally wound are provided on a lid portion of a flow path unit having four flow paths. An example is shown.

PTFE製の幅50mm×高さ50mm×長さ100mmの直方体形状の中実ブロックを準備し、そこに第1〜第4流路として長手方向に延在する内径20mmの貫通孔を4本設けた。これら4本の流路内に収容する被覆された発熱体として、外径0.45mm×長さ約10mのSUS304軟質線からなる金属素線に厚み0.5mmのPTFEを被覆したものを用意した。   A solid rectangular solid block having a width of 50 mm, a height of 50 mm, and a length of 100 mm made of PTFE was prepared, and four through-holes with an inner diameter of 20 mm extending in the longitudinal direction were provided as first to fourth flow paths therein. . As the coated heating element accommodated in these four flow paths, a metal wire made of SUS304 soft wire having an outer diameter of 0.45 mm and a length of about 10 m was prepared by coating PTFE with a thickness of 0.5 mm. .

この被覆された線状の発熱体を図2に示すようなPTFE製の櫛歯状部材30の4本に順次螺旋状に巻きつけた。その際、各櫛歯状部材30では先ず櫛歯状部材30の内側に右巻きで螺旋状に巻き付けた後、各歯部にPTFE製の環状スペーサーを嵌装し、櫛歯状部材30の外側に左巻きで螺旋状に巻き付けた。これにより、往側の発熱体と復側の発熱体とを同軸状に巻き付けることができた。また、復側の発熱体の最外周部の外側から櫛歯状部材30の歯部の先端部分を突出させることができた。   The coated linear heating elements were sequentially spirally wound around four PTFE comb-like members 30 as shown in FIG. At that time, in each comb-like member 30, first, a right-handed spiral is wound around the inner side of the comb-like member 30, and then a PTFE annular spacer is fitted to each tooth portion, and the outer side of the comb-like member 30. Wound in a spiral with a left turn. As a result, the outward heating element and the return heating element could be wound coaxially. Moreover, the front-end | tip part of the tooth | gear part of the comb-tooth shaped member 30 was able to protrude from the outer side of the outermost periphery part of a return side heat generating body.

このように、被覆された1本の線状の発熱体が巻き付けられた4個の櫛歯状部材30を、図4に示すように、それらが該1本の線状の発熱体で連なったまま、上記ブロックの長手方向の一端部を封止する矩形の第1蓋部に取り付けた。そして、線状の発熱体上の被覆部に測温抵抗体を当接させ、この状態で該測温抵抗体が当接している線状の発熱体の一部を測温抵抗体と共にパイプで覆い、その内部に液体が侵入しない様にパイプの先端部を溶接シールした。   As shown in FIG. 4, the four comb-like members 30 each wrapped with one coated linear heating element are connected by the one linear heating element. The block was attached to a rectangular first lid that seals one end in the longitudinal direction of the block. Then, the resistance thermometer is brought into contact with the covering portion on the linear heating element, and in this state, a part of the linear heating element in contact with the resistance thermometer is connected with the resistance thermometer by a pipe. The pipe was welded and sealed at the tip of the pipe to prevent liquid from entering the inside.

なお、第1蓋部には、第1と第2の流路、及び第3と第4の流路をそれぞれ連通させる溝を予め設けておいた。一方、上記ブロックの長手方向の他端部を封止する第2蓋部には、第2と第3の流路を連通させる溝と、第1の流路の最下部及び第4の流路の最上部にそれぞれ対向するように貫通した2つの開口部とを予め設けておいた。これら2つの開口部にはPTFE製のパイプを溶接で取り付けてそれぞれ供給口及び排出口とした。更に、第2蓋部に予め設けておいた引き出し線用貫通孔から上記1本の線状の発熱体の両端部と測温抵抗体のコードとを引き出して、それぞれ電源及び制御装置に接続した。これら第1蓋部及び第2蓋部をそれぞれ上記ブロックの長手方向の両端部にそれぞれ溶接した。このようにして流体加熱器を作製した。   The first lid portion was previously provided with grooves for communicating the first and second flow paths and the third and fourth flow paths. On the other hand, the second lid for sealing the other end of the block in the longitudinal direction has a groove for communicating the second and third flow paths, a lowermost portion of the first flow path, and a fourth flow path. Two openings were provided in advance so as to face the top of each of the two. PTFE pipes were attached to these two openings by welding to form a supply port and a discharge port, respectively. Further, the both ends of the one linear heating element and the resistance temperature detector cord are drawn out from the lead wire through hole provided in the second lid in advance, and connected to the power source and the control device, respectively. . These 1st cover parts and 2nd cover parts were each welded to the both ends of the longitudinal direction of the said block, respectively. Thus, a fluid heater was produced.

このようにして作製した流体加熱器に対して、被加熱流体として約22℃に温度管理された水を1.0L/minの流量で連続的に供給し、その状態で線状の発熱体の金属素線に約2kWの電力を印加して水を昇温させた。この状態を長期間継続させて定期的に出口側の温度をモニタしたところ、出口温度は安定的に47℃を維持していた。このように、上記の流体加熱器は、熱効率が高くて信頼性に優れており、また、簡易に作製することができた。   The fluid heater thus manufactured is continuously supplied with water whose temperature is controlled at about 22 ° C. as a fluid to be heated at a flow rate of 1.0 L / min. About 2 kW of electric power was applied to the metal wire to raise the temperature of the water. When this state was continued for a long period of time and the temperature on the outlet side was periodically monitored, the outlet temperature was stably maintained at 47 ° C. As described above, the fluid heater has high thermal efficiency and excellent reliability, and can be easily manufactured.

1 流体加熱器
10 流路ユニット
10a 流路ブロック
10b 第1蓋部
10c 第2蓋部
11 流路
11a 往路
11b 復路
11c 連通路
13 供給口
14 排出口
15 支持部材
20 発熱体
20a 往路用発熱体
20b 復路用発熱体
30 櫛歯状部材
31 板状部材
32 歯部
33 隙間
34 スペーサー
DESCRIPTION OF SYMBOLS 1 Fluid heater 10 Flow path unit 10a Flow path block 10b 1st cover part 10c 2nd cover part 11 Flow path 11a Outbound path 11b Return path 11c Communication path 13 Supply port 14 Outlet 15 Support member 20 Heat generating body 20a Outbound path heating element 20b Heating element for return path 30 Comb-shaped member 31 Plate-shaped member 32 Tooth part 33 Gap 34 Spacer

Claims (4)

平行な複数の流路を内部に有すると共に前記複数の流路をそれらの延在方向の一端部で封止する蓋部を備えた流路ユニットと、前記複数の流路の各々に収容された線状の発熱体とを有する流体加熱器であって、前記発熱体は前記複数の流路の各々に櫛歯状で且つ断面十字形状の長尺の支持部材に支持されて収容されており、いずれも前記蓋部から各流路内を少なくとも一往復しており、前記長尺の支持部材は、前記櫛歯状の支持部材の隣接する歯部の間の隙間の奥側に前記発熱体の往側が巻き付けられており、前記隙間の外側に前記発熱体の復側が巻き付けられている流体加熱器。 A flow path unit having a plurality of parallel flow paths inside and having a lid portion that seals the plurality of flow paths at one end in the extending direction thereof, and each of the plurality of flow paths was accommodated A fluid heater having a linear heating element, wherein the heating element is supported and accommodated by a long support member having a comb-like shape and a cross-shaped cross section in each of the plurality of flow paths, In each case, at least one reciprocation is made in each flow path from the lid portion, and the long support member is located on the back side of the gap between adjacent tooth portions of the comb-like support member. A fluid heater in which the forward side is wound and the return side of the heating element is wound outside the gap . 前記長尺の支持部材の一端部が前記蓋部に係合している、請求項1に記載の流体加熱器。   The fluid heater according to claim 1, wherein one end portion of the elongated support member is engaged with the lid portion. 前記発熱体は、前記複数の流路の各々において前記長尺の支持部材に螺旋状に巻き付けられている、請求項1又は請求項2に記載の流体加熱器。   The fluid heater according to claim 1, wherein the heating element is spirally wound around the long support member in each of the plurality of flow paths. 前記発熱体が電気絶縁材で被覆されている、請求項1〜請求項のいずれか1項に記載の流体加熱器。 The fluid heater according to any one of claims 1 to 3 , wherein the heating element is coated with an electrical insulating material.
JP2014133814A 2014-06-30 2014-06-30 Fluid heater Active JP6413394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014133814A JP6413394B2 (en) 2014-06-30 2014-06-30 Fluid heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014133814A JP6413394B2 (en) 2014-06-30 2014-06-30 Fluid heater

Publications (2)

Publication Number Publication Date
JP2016012481A JP2016012481A (en) 2016-01-21
JP6413394B2 true JP6413394B2 (en) 2018-10-31

Family

ID=55229073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014133814A Active JP6413394B2 (en) 2014-06-30 2014-06-30 Fluid heater

Country Status (1)

Country Link
JP (1) JP6413394B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199881B2 (en) * 1993-01-12 2001-08-20 日本碍子株式会社 Cylindrical far infrared heater
US6732450B1 (en) * 2003-07-11 2004-05-11 Shu-Lien Chen Electrothermal rack of hair dryer
JP2005317268A (en) * 2004-04-27 2005-11-10 Nippon Dennetsu Co Ltd Electric heater
JP4029092B2 (en) * 2004-10-26 2008-01-09 日本ピラー工業株式会社 Fluid heater and fluid heating device

Also Published As

Publication number Publication date
JP2016012481A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
RU2669589C1 (en) Heating element and process heater
JP5955089B2 (en) Fluid heating and cooling cylinder device
JP5347088B1 (en) Thermoelectric generator and power generation method
FI77529B (en) VAERMEVAEXLARE.
US20190145658A1 (en) In-line electric heater for plural component materials
JP2009525570A (en) Heating element of hot air device
US20190189472A1 (en) Pfa tube heater with flexible heating elements
Unver Efficiency analysis of induction air heater and investigation of distribution of energy losses
US9074819B2 (en) High velocity fluid flow electric heater
JP6413394B2 (en) Fluid heater
RU2676551C1 (en) Autonomous thermoelectric generator on pipeline
JP6330518B2 (en) Fluid heater
JP2016011794A (en) Fluid heater
JP6252347B2 (en) Fluid heater
RU2611429C1 (en) Gas and liquid mediums electric heater
RU195116U1 (en) Instantaneous electric heater
JP2018152195A5 (en)
WO2021014432A1 (en) Electric heater
WO2016046171A1 (en) Device for thermal processing of a fluid, having reduced energy consumption
Patil et al. Experimental study of helical coil induction water heater using induction cooker
EP4332455A1 (en) Flow-through heater
JP2015152219A (en) fluid heating device
RU2499369C2 (en) Electric heater for running media
RU2804784C1 (en) Heat exchanger for electric water boiler with thermal energy generation by flat thermistor heating elements and method of its manufacture
JP6102577B2 (en) Corrosive liquid heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250