JP6241265B2 - 内燃機関の排水装置 - Google Patents

内燃機関の排水装置 Download PDF

Info

Publication number
JP6241265B2
JP6241265B2 JP2013265987A JP2013265987A JP6241265B2 JP 6241265 B2 JP6241265 B2 JP 6241265B2 JP 2013265987 A JP2013265987 A JP 2013265987A JP 2013265987 A JP2013265987 A JP 2013265987A JP 6241265 B2 JP6241265 B2 JP 6241265B2
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
combustion engine
room
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013265987A
Other languages
English (en)
Other versions
JP2015121172A (ja
Inventor
雄輔 磯部
雄輔 磯部
洋之 木村
洋之 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013265987A priority Critical patent/JP6241265B2/ja
Publication of JP2015121172A publication Critical patent/JP2015121172A/ja
Application granted granted Critical
Publication of JP6241265B2 publication Critical patent/JP6241265B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は車両の内燃機関に関し、詳しくは吸排気中から水分を排水する排水装置に関する。
ディーゼルエンジンの排気ガス浄化方法として、NOxトラップ触媒を用いたものが知られている。NOxトラップ触媒は、排気中のNOxを酸化雰囲気中で捕捉し、捕捉したNOxを還元雰囲気中で放出してN等に還元することでNOxの排出濃度を低減している。また、ディーゼルエンジン搭載車には、排気中の粒子状物質(PM)を除去するフィルタ装置が設けられており、NOxトラップ触媒はその耐熱性や配置スペースの観点から、一般的にフィルタ装置の下流側に配置されている。
さらに、排気の一部を吸気側に戻すことで燃焼室の燃焼温度を下げ、排気中のNOxを低減させる排気再循環(EGR)方式が知られている。EGR方式には、過給機のタービン上流側排気通路からコンプレッサ下流側吸気通路に排気を戻す高圧EGR方式と、タービン下流側で酸化触媒及びフィルタ装置下流側の排気通路からコンプレッサ上流側吸気通路に排気を戻す低圧EGR方式とがある。ここで、低圧EGR装置及びインタークーラ等の冷却手段を備えた内燃機関では、排気を含む吸気が冷却手段を通過して冷却される際に結露して凝縮水が発生する。この凝縮水が吸気と共に吸気通路から燃焼室に送られると、ウオーターハンマを引き起こしてしまう虞がある。
上述の問題を解決する内燃機関の排気浄化装置の一例が「特許文献1」に開示されている。この排気浄化装置では、インタークーラで発生した凝縮水を貯留する貯留タンクと、凝縮水を加熱して水蒸気とする加熱装置と、貯留タンクと触媒上流側の排気通路とに接続された水蒸気供給路とを有し、凝縮水を水蒸気に変えて触媒の上流側排気通路に供給している。
特開2013−180757号公報
上述の技術では、凝縮水が燃焼室に送られてウオーターハンマを引き起こすことが防止されているが、凝縮水を加熱して水蒸気とする加熱装置が必要となり、同装置の装着によりコスト増、スペース確保等の問題が生じ易い。そこで、インタークーラで発生した凝縮水をNOxトラップ触媒のような排気後処理手段の上流側排気管へ排出するために凝縮水排出通路を設置するという構成を採ることが考えられる。
この場合、凝縮水排出通路の出口より排出された凝縮水がその下流に配備のNOxトラップ触媒のような排気後処理手段に流動して、その凝縮水により触媒が急冷されると、熱応力により担体割れが生じ易くなり、排ガスが悪化するという問題がある。
更に、エンジンの運転域が低負荷域にあって排気ガス温度が低下した状態が続くような場合、凝縮水排出通路の出口より排出された凝縮水の加熱や気化が十分進まない。このような状態が継続すると、凝縮水が液体のままNOxトラップ触媒のような排気後処理手段の担体内部の気流通路に侵入し、目詰まりの領域が増加してしまうという問題が生じ易い。そこで、凝縮水の加熱や気化を促進するために、通常は外気に放出されている排気管の外壁からの熱や排気ガスの熱を加熱源として有効利用できるような構成を採ることが望まれている。
本発明は上述の問題を解決するもので目的とするのは、排気管の外壁からの熱を利用して凝縮水排出通路より排出された凝縮水の加熱や気化を促進して、排気後処理手段の目詰まりあるいは触媒の担体割れのリスクを低減できる内燃機関の排水装置を提供することにある。
請求項1記載の発明は、内燃機関の排気通路を成す排気管と、前記排気通路上に配置される排気後処理手段と、前記排気管の前記排気後処理手段の上流側の外周壁を含み、前記排気管の外側に一体的に形成された部屋と、前記内燃機関の吸気通路に一端が、前記部屋に他端がそれぞれ接続されて前記吸気通路内の凝縮水を前記部屋に排出する排水路と、を備え、前記部屋を形成する前記排気管の壁面に、前記部屋と前記排気通路と連通する通気口を設ける、ことを特徴とする。
請求項2記載の発明は、請求項1記載の内燃機関の排水装置において、前記部屋は前記排気管の外側で排気通路の最下部に対向して配設される、ことを特徴とする。
請求項3記載の発明は、請求項1又は2記載の内燃機関の排水装置において、排気の流れ方向において前記部屋の上流側及び下流側にそれぞれ設けられる、ことを特徴とする。
請求項4記載の発明は、請求項1〜3のいずれか1つに記載の内燃機関の排水装置において、前記通気口には、前記排気管内に向かい突出するガイドが設けられることを特徴とする。
請求項5記載の発明は、請求項2〜4のいずれか1つに記載の内燃機関の排水装置において、前記排気通路を成す排気管と接続し該排気管より前記排気後処理手段に向けて管径が徐々に増加する傾斜拡径部を備え、前記部屋は前記排気管と前記傾斜拡径部または前記排気後処理手段を覆う容器本体の各外側に連続して一体的に形成される、ことを特徴とする。
請求項1の発明は、凝縮水を部屋に滞留することで加熱、蒸発を図った上で、その水を連通箇所より排気通路に流出させるので、排水路から排出される凝縮水の量が急激に増減しても、凝縮水が一気に排気通路に流入することを防ぎつつ、確実に凝縮水を車外に排出できる。また、吸気管内で生じた凝縮水がエンジンの燃焼室を通過することなく排気と混ざり合って排気通路へ排出できるので、エンジンが凝縮水によるウオーターハンマで損傷することを防ぐことが出来る。さらに、部屋に滞留する凝縮水を排気ガスで加熱されている排気管の外壁で確実に加熱できる。
請求項の発明は、排気管の外側最下部に対向して凝縮水を滞留させる部屋を設けるので、排水路から部屋内に排出された凝縮水を、確実に部屋内に導入し加熱、蒸発を図った上で排気通路に流出させることができる。また、排水路から排出される凝縮水の量が急激に増減しても、確実に部屋内に滞留させてから排気通路に流出させることが出来るため、排気後処理手段の目詰まりあるいは触媒の担体割れのリスクをさらに低減できる。
請求項3の発明は、前記通気口が排気の流れ方向において前記部屋の上流側及び下流側にそれぞれ設けられるので、排気を部屋に侵入させるとともに、部屋の蒸気や排気ガスを部屋から排気管に排出させる。
請求項4の発明は、前記通気口に前記排気管内に向かい突出するガイドが設けられるので、排気をより部屋に侵入させやすくなるとともに、部屋の蒸気や排気ガスを部屋から排気管に排出させる。
請求項5の発明は、排気管と傾斜拡径部及び排気後処理手段を覆う容器本体の各外側に連続して一体的に形成された部屋に吸気通路の水を流入し滞留させることで、従来の排気通路の配置を大幅に変更することなく部屋を設けることが出来る。また、排気通路および拡径部の熱で凝縮水の加熱、蒸発を確実に促進させることができ、その凝縮水を連通箇所より排気通路の下流側の排気後処理手段に流出させるので、排気後処理手段の担体の割れのリスクを低減でき、エンジンがウオーターハンマを引き起こすことを防止できる。
本発明の一実施形態の内燃機関の排水装置を搭載する車載用ディーゼルエンジンの吸排気系の全体構成図である。 図1の内燃機関の排水装置で用いる触媒コンバーターの前部の拡大部分切欠断面図である。 図1の内燃機関の排水装置で用いる部屋の拡大部分切欠部の断面図である。 図1の内燃機関の排水装置の変形例で用いる部屋の拡大部分切欠部の断面図である。 本発明の他の実施形態の内燃機関の排水装置で用いる部屋を外壁に付設する排気管の概略部分切欠断面図である。 図5に示す他の実施形態で用いる部屋を外壁に付設する排気管を示し、(a)は図5のB−B線断面図、(b)は図5のC−C線断面図である。 本発明の他の実施形態の内燃機関の排水装置で用いる触媒コンバーターを示し、(a)は前部の拡大部分切欠断面図、(b)は(a)中のD−D線断面図である。
本発明を適用した内燃機関の排水装置徴について、以下の図面を用いて解説する。
本発明は、要するに、吸気通路に生じた凝縮水を排気通路の排気後処理手段の上流側に排水させる際に、予め凝縮水の加熱や気化を促進して排気後処理手段が破損することを防止することを特徴とする。
ここでは、本発明の内燃機関の排水装置を車載用ディーゼルエンジンの給排気系に適用した場合を実施形態1として説明する。
実施形態1の内燃機関の排水装置が搭載された車載用ディーゼルエンジン(以下エンジンという)1は、本体中央部を成すシリンダブロック2を備え、その上部にシリンダヘッド3を設ける。シリンダヘッド3の吸気側には吸気通路IRを構成する吸気管4が、排気側には排気通路ERを構成する排気管5がそれぞれ接続されている。シリンダヘッド3には、コモンレール13を介して燃料噴射ポンプ14が接続されている。更に、シリンダヘッド3には、一端をエアフィルタ6よりも下流側の吸気管4に接続されたブローバイガスを排出するブローバイガス通路21の他端が接続されている。
吸気管4には、吸気通路IRの上流側からエアフィルタ6、低圧スロットル弁7、低圧EGRバルブ8、過給機であるターボチャージャ9の図示しないコンプレッサ、インタークーラ10、高圧スロットル弁11、高圧EGRバルブ12等が設けられている。
排気管5には、シリンダブロック2側である排気通路ERの上流側からターボチャージャ9の図示しないタービン、酸化触媒15及びフィルタ装置16が設けられている。
酸化触媒15は、例えば白金のような貴金属触媒を担持しており、排気中のNOをNOに転換する作用と、排気中のHCやCO等の有害成分を酸化させる作用とを有している。NOはNOよりも酸化作用が強く、NOによってフィルタ装置16に捕獲された粒子状物質(ディーゼル・パティキュレート)の酸化反応が促進される。また、このNOは後述するNOxトラップ触媒18で還元除去される。フィルタ装置16は排気中の粒子状物質を捕獲するフィルタ装置(ディーゼル・パティキュレート・フィルタ)であり、捕獲された粒子状物質はNOの強力な酸化作用で燃焼除去される。
フィルタ装置16の下流側には、排気中の酸素濃度量を検知する酸素濃度センサ(LAFS)17が設けられており、その下流側に触媒であるNOxトラップ触媒18を容器本体に内蔵した触媒コンバーター19が、さらにその下流側に酸素濃度センサ20が設けられている。排気通路上に配置される排気後処理手段であるNOxトラップ触媒18は、酸化雰囲気においてNOxを捕捉し、捕捉したNOxを例えばHCやCO等を含む還元雰囲気中で放出して窒素(N)に還元する機能を有する浄化装置である。つまり、酸化触媒15で生成されたNO及び酸化触媒15で酸化されずに排気ガス中に残存するNOを捕捉し、窒素(N)に還元して放出する。
高圧EGRバルブ12の下方には、高圧EGR管23と高圧EGRクーラ24とを有する高圧EGR装置22が配設されている。高圧EGR管23は、その一端を高圧スロットル弁11とシリンダヘッド3との間の吸気管4に、その他端をシリンダヘッド3とターボチャージャ9のタービンとの間の排気管5にそれぞれ接続しており、その途中には高圧EGRクーラ24が設けられている。高圧EGR管23の一端は、高圧EGRバルブ12によって開閉される。
低圧EGRバルブ8の下方には、低圧EGR管26と低圧EGRクーラ27とを有する排気再循環装置としての低圧EGR装置25が配設されている。低圧EGR管26は、その一端を低圧スロットル弁7とターボチャージャ9のコンプレッサとの間の吸気管4に、その他端をフィルタ装置16とNOxトラップ触媒18との間の排気管5にそれぞれ接続しており、その途中に低圧EGRクーラ27が設けられている。低圧EGR管26の一端は、低圧EGRバルブ8によって開閉される。
次に、吸気通路IR内に生じた凝縮水を排水路wrを成す排水管28を通して排気通路ER内に流出させる本発明の実施形態1に係る内燃機関の排水装置M1を説明する。
ここでの排水路wrはその一端の流入口281がインタークーラ下流側であってインタークーラ10と高圧スロットル弁11との間の吸気管4に接続され、排気後処理手段であるNOxトラップ触媒18の排気路方向Xで上流側の上流側排気管501に加熱容器40を介して他端の排水口282が接続される。
排水管28の途中には開閉弁29が配設され、開閉弁29にはこの開閉弁の開閉制御を行なう制御手段30が接続される。
制御手段30は、上述したように、排水管28内に貯留された凝縮水の量が一定量に達したり、エンジン1の運転時間や走行距離が一定値に達した場合に開閉弁29を開弁し、排水管28内の凝縮水を排気後処理手段である触媒コンバーター19を通過させた上で車外に排出する機能を備える。更に、制御手段30は排水管28から凝縮水が抜けて酸素濃度センサ20が排水管28を通じて漏出する吸気ガス内の酸素濃度を検出して、これがリーン側の所定値に達すると、排水管28から凝縮水が完全に抜けたと判断し、開閉弁29を閉弁させる機能を備える。この制御手段30の制御により排水管28からの凝縮水排出が完了後に吸気ガスが該排水管から排出され、エンジン1のトルク低下や出力低下を引き起こしてしまうことを防止している。
次に、図2、図3に示すように、排気通路ERを成す上流側排気管501は触媒コンバーター19の拡径前部192との接合位置より排気路方向Xで上流側に所定量離れた位置に加熱容器40を一定的に接合している。
この加熱容器40は上流側排気管501の外壁側の最下部及び側部を内壁の一部として形成された部屋D1を覆うように形成される。加熱容器40は、図3に示すように、矩形の容器であり、側壁401の一部にボス402を介して排水管28の排水側が接続されている。ボス402の貫通孔の内端側は側壁401を貫通して部屋D1の内部に向けて排水口282を形成している。加熱容器40の部屋D1は、図3に示すように、上流側排気管501の最下部及び側部を上方壁としており、その上流側排気管501の最下部には部屋D1と排気路ERを連通する下通気口gr1が形成される。更に、上流側排気管501の側部には部屋D1と排気路ERを連通する横通気口gr2が形成される。
ここで、横通気口gr2は部屋D1に接続された排水管28の排水路他端である排水口282より重力方向上側に段差h1を保って形成される。
これにより、横通気口gr2(通気口)が部屋D1内と排気通路ERを連通するので、排ガスの流動を促進でき、部屋内の水の加熱蒸発を促進できる。
このような内燃機関の排水装置M1の作動を説明する。
エンジン1の運転中、特に低圧EGR装置25の使用時にはインタークーラ10の出口部に多量の凝縮水が発生する。発生した凝縮水は、排水路wrを通ってNOxトラップ触媒18の上流側排気管501に送られ、下流の触媒コンバーター19を介して車外に排出される。この場合、排水路wrを成す排水管28の途中に設けられた開閉弁29が閉じられているときには排水管28内に貯留される。開閉弁29は排水管28内に設けられた図示しない水位センサによって貯留された凝縮水の量が一定量に達したとき、あるいはエンジン1の運転時間や走行距離が一定値に達したときに制御手段30に開弁駆動される。
エンジン1の運転中に排気通路ERを流動してきた排気は排気管5を通過し、容器本体(シエル)190内に流入して、そこで、NOxトラップ触媒18を保持する担持体前面f1に拡散して流入している。その際、上流側排気管501には排水口282が開口し、部屋D1内に凝縮水が流入する。
この際、部屋D1が排気ガスに加熱された上流側排気管501の部屋対向壁に加熱される。更に、重力方向上側に排気通路と連通する下通気口gr1と横通気口gr2とを有し、これらを通して流動する排気ガスによっても部屋D1内の凝縮水が加熱され、蒸発し、下通気口gr1と横通気口gr2とを通して排気通路ERに流動する。
この後、気化した凝縮水は排気ガスと合流して、触媒コンバーター19(排気後処理手段)に導入されるので、該触媒コンバーター19の目詰まりあるいは触媒の担体割れのリスクを低減できる。
このように、実施形態1の内燃機関の排水装置M1では、排水口282から流出した凝縮水が部屋D1に滞留することで加熱、蒸発を図れ、その水を連通箇所である下通気口gr1と横通気口gr2より排気通路ERに流出する。
ここで、排気管の外側最下部(図2,3参照)に対向して凝縮水を滞留させる部屋D1を設けるので、排水路wrから部屋D1内に排出された凝縮水を、確実に部屋内に導入し加熱、蒸発を図った上で排気通路に流出させることができる。また、排水路wrから排出される凝縮水の量が急激に増減しても、確実に部屋内に滞留させてから排気通路ERに流出させることが出来るため、触媒コンバーター19(排気後処理手段)の目詰まりあるいは触媒の担体割れのリスクをさらに低減できる。
更に、重力方向上側に排気通路と連通する下通気口gr1と横通気口gr2を有するので、これら通気口が部屋D1内と排気通路ERを連通するので部屋内の圧力が高まり、排水路に凝縮水が逆流すること,または,滞留した凝縮水を排出通路へ勢いよく排出することを防ぐことが出来る。さらに、下通気口gr1と横通気口gr2を通して排気ガスの流動を促進でき、部屋内の凝縮水を高温の排気ガスによって加熱蒸発できる。
さらに、排水路wrの排水口282から排出される凝縮水の量が急激に増減しても、凝縮水が一気に排気通路ERに流入することを防ぎつつ、確実に凝縮水を車外に排出できる。また、吸気通路IR内で生じた凝縮水がエンジン1の燃焼室を通過することなく排気通路ERへ排出できるので、エンジン1が凝縮水によるウオーターハンマで損傷することを防ぐことが出来る。特に、部屋D1に滞留する間、凝縮水は継続して上流側排気管501の部屋対向壁となる外壁で確実に加熱され、しかも排気ガスで直接加熱され、蒸発して排気通路ER下流の排気後処理手段に導入されるので、触媒の担体割れのリスクを低減できる。
上述の実施形態1の内燃機関の排水装置M1では凝縮水が部屋D1に滞留する間に上流側排気管501の対向外壁により加熱されていたが、図4に示すように、その加熱効率を高めるフィン41を利用した実施形態1の変形例を内燃機関の排水装置M1’として、次に説明する。
内燃機関の排水装置M1’では加熱容器40の部屋D1に対向する上流側排気管501の最下部及び側部より下向きのフィン41を複数、所定間隔を保って下方に延出形成する。更に、加熱容器40の低壁403より上向きのフィン42を複数、所定間隔を保って上方に延出形成する。なお、下向きのフィン41、上向きのフィン42にはそれぞれ貫通孔404が形成され、通気性を確保している。
上述の実施形態1の内燃機関の排水装置M1では、排水口282から流出した凝縮水が部屋D1に滞留する間に上流側排気管501の対向外壁により加熱され、排気ガスによっても加熱され蒸発を促進され、下通気口gr1と横通気口gr2より排気通路ERに流出するが、これに代えて、図5に示すような実施形態2に係る内燃機関の排水装置M2を次に説明する。なお、実施形態2に係る内燃機関の排水装置M2は実施形態1の構成と対比し、部屋D2の構成が相違するのみであり、その他の重複説明を略す。
実施形態2に係る内燃機関の排水装置M2では、図5に示すように、部屋D2と対向する上流側排気管501の対向壁の内、排気路方向Xで上流側と下流側に分散して横通気口gr3、gr4が形成される。各横通気口gr3、gr4にはそれぞれ排気ガスを流入させるガイド板45と、蒸気を排出させるガイド板46とが対向配備される。
更に、図6(a)、(b)に示すように、加熱容器40aの部屋D2の側壁401には複数の互いに所定量離れて配備される縦向きのフィン43が突設されている。各縦向きのフィン43は先端が上流側排気管501の側壁面より所定量離れて配備される。
このような実施形態2に係る内燃機関の排水装置M2では、排気路方向Xで上流側の上流側ガイド板45と横通気口gr3が協働して排気ガスを部屋D2に侵入させる。部屋D2の内部では各縦向きのフィン43の先端と上流側排気管501の側壁面との隙間を通って排気ガスが流動し、その間、凝縮水がフィン43の加熱促進作用を設けて蒸発を促進される。更に、下流側のガイド板46と横通気口gr4が部屋D2の蒸気や排気ガスを部屋D2の外部である排気通路EXに排出させ、排気路方向Xに排出する。
この後、凝縮水の蒸気と排気ガスとが合流して、触媒コンバーター19(排気後処理手段)に導入されるので、該触媒コンバーター19内の触媒の担体割れのリスクを低減できる。
このように、実施形態2の内燃機関の排水装置M2では、特に、図5、図6に示すように、加熱容器40a内に加熱効率を高める縦向きのフィン43に加え、上流側ガイド板45及び横通気口gr3と下流側のガイド板46及び横通気口gr4を備える。これらが協働し、部屋D2を通過する排気ガスの量を増大化でき、十分に凝縮水の加熱、蒸発を図れる。
上述の実施形態1の内燃機関の排水装置M1では、上流側排気管501の対向外壁に部屋D1を設けたが、これに代えて、図7(a)、(b)に示すような、実施形態3に係る内燃機関の排水装置M3を次に説明する。なお、実施形態3に係る内燃機関の排水装置M3は実施形態1の構成と対比し、加熱容器40bの構成が相違するのみであり、その他の重複説明を略す。
ここで、内燃機関の排水装置M3では、図7(a)に示すように、上流側排気管501とそれに続く触媒コンバーター19の拡径前部191にわたりそれらの外壁を覆うように加熱容器40bを一体的に取り付け、二重管の構造を成している。
図7(a)、(b)に示すように、加熱容器40bはその部屋D3が上流側排気管501の下壁部と対向する半月型断面部a1とそれに続く傾斜付環状部a2とを有する。
部屋D3の前側の半月型断面部a1は上流側排気管501の下壁部を上壁として成り、この下壁部からの熱を受けて部屋D3の凝縮水を加熱する。なお、半月型断面部a1と対向する上流側排気管501の下壁部には上向き通気口gr5が形成される。
なお、半月型断面部a1の上部であり上流側排気管501の上部となる領域e1は上向き通気口gr5の位置に近くにあり、同位置の上側に凝縮水が貯蔵されないこととなるため、二重管不要域となっている。
部屋D3の後側の傾斜付環状部a2は拡径前部192と筒状の主部191とそれに続く主部191の前部全周を覆うよう形成され、拡径前部192の要部や主部191の前部全周からの熱を受けて部屋D3の凝縮水を加熱する。
なお、傾斜付環状部a2の上端位置には排水管28の下流端が接続される。
このような実施形態3に係る内燃機関の排水装置M3では、排水管28の下流端からの凝縮水が排水口282から部屋D3内に導入された上で主部191の上壁に当たり、拡散して下方に流動し、その間に主部191の外壁面により加熱される。
更に、図7(b)に2点鎖線で示すように、凝縮水は拡径前部192や上流側排気管501の外壁により加熱され、気化し、上流側排気管501の下壁部の上向き通気口gr5より排気通路ERに流動し、排気路方向Xに排出される。
この際、上流側排気管501内は通過する排気ガスの流速が早く、低圧化しており、一方、拡径前部192後方内の排気ガスの流速が遅く、高圧化している。このように、上流側排気管501内は比較的圧力が小さいため、蒸発した凝縮水が上向き通気口gr5より排気通路ERに排出されやすい。
この後、凝縮水の蒸気と排気ガスとが合流して、触媒コンバーター19(排気後処理手段)に導入されるので、該触媒コンバーター19内の触媒の担体割れのリスクを低減できる。
このように、実施形態3の内燃機関の排水装置M3では排気管501と拡径前部192及び容器本体の各外側に連続して一体的に形成された部屋D3に吸気通路IRの水を流入し滞留することで加熱、蒸発を確実に促進させることができる。更に、凝縮水を上向き通気口gr5より排気通路ERの下流側のNOxトラップ触媒18に流出させるので、NOxトラップ触媒18の担体の割れのリスクを低減でき、エンジンがウオーターハンマを引き起こすことを防止できる。しかも、ここでは従来の排気通路の配置を大幅に変更することなく部屋D3を設けることが出来る。
上述のところにおいて、内燃機関の排水装置は車載用ディーゼルエンジンに搭載されるとしたが、場合により定置式ディーゼルエンジンに搭載されてもよく、更に、ガソリンエンジンに搭載されてもよく、これらの場合もほぼ同様の効果が得られる。
1 内燃機関(エンジン)
4 吸気通路(吸気管)
5 排気通路(排気管)
501 上流側排気管
10 インタークーラ
18 NOxトラップ触媒(排気後処理手段)
19 触媒コンバーター
191 主部(拡径部)
192 拡径前部(拡径部)
25 排気再循環装置(低圧EGR装置)
28 排水路(排水管)
30 制御手段
41 下向きのフィン
42 上向きのフィン
43 縦向きのフィン
45、46 ガイド板
gr1 下通気口(通気口)
gr2〜gr4 横通気口(通気口)
gr5 上向き通気口(通気口)
40、40a、40b 加熱容器
D1〜D3 部屋
ER 排気通路
IR 吸気通路
M1〜M3 内燃機関の排水装置
X 排気路方向

Claims (5)

  1. 内燃機関の排気通路を成す排気管と、
    前記排気通路上に配置される排気後処理手段と、
    前記排気管の前記排気後処理手段の上流側の外周壁を含み、前記排気管の外側に一体的に形成された部屋と、
    前記内燃機関の吸気通路に一端が、前記部屋に他端がそれぞれ接続されて前記吸気通路内の凝縮水を前記部屋に排出する排水路と、を備え
    前記部屋を形成する前記排気管の壁面に、前記部屋と前記排気通路と連通する通気口を設ける
    ことを特徴とする内燃機関の排水装置。
  2. 前記部屋は前記排気管の外側で排気通路の最下部に対向して配設される、
    ことを特徴とする請求項1記載の内燃機関の排水装置。
  3. 前記通気口は、排気の流れ方向において前記部屋の上流側及び下流側にそれぞれ設けられることを特徴とする請求項1又は2記載の内燃機関の排水装置。
  4. 前記通気口には、前記排気管内に向かい突出するガイドが設けられる
    ことを特徴とする請求項1〜3のいずれか1つに記載の内燃機関の排水装置。
  5. 前記排気通路を成す排気管と接続し該排気管より前記排気後処理手段に向けて管径が徐々に増加する傾斜拡径部を備え、
    前記部屋は前記排気管と前記傾斜拡径部または前記排気後処理手段を覆う容器本体の各外側に連続して一体的に形成される、
    ことを特徴とする請求項2〜4のいずれか1つに記載の内燃機関の排水装置。
JP2013265987A 2013-12-24 2013-12-24 内燃機関の排水装置 Active JP6241265B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265987A JP6241265B2 (ja) 2013-12-24 2013-12-24 内燃機関の排水装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265987A JP6241265B2 (ja) 2013-12-24 2013-12-24 内燃機関の排水装置

Publications (2)

Publication Number Publication Date
JP2015121172A JP2015121172A (ja) 2015-07-02
JP6241265B2 true JP6241265B2 (ja) 2017-12-06

Family

ID=53532999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265987A Active JP6241265B2 (ja) 2013-12-24 2013-12-24 内燃機関の排水装置

Country Status (1)

Country Link
JP (1) JP6241265B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159402B (zh) * 2019-06-28 2024-01-12 潍柴动力股份有限公司 一种中间管及后处理总成

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395865B2 (ja) * 1995-03-06 2003-04-14 日野自動車株式会社 エンジン排ガス中のNOx低減装置
JP5626017B2 (ja) * 2011-02-28 2014-11-19 三菱自動車工業株式会社 凝縮水排出装置
JP5494528B2 (ja) * 2011-02-28 2014-05-14 三菱自動車工業株式会社 凝縮水排出装置

Also Published As

Publication number Publication date
JP2015121172A (ja) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5494528B2 (ja) 凝縮水排出装置
JP5206403B2 (ja) 内燃機関のegrシステム
US7007459B2 (en) Exhaust gas control device for internal combustion engines
JP2008208787A (ja) 内燃機関のターボチャージャ
JP6229488B2 (ja) 車載内燃機関の排気浄化装置
JP2009275673A (ja) Egrシステム及びegrシステムの制御方法
WO2015075944A1 (ja) 内燃機関の制御装置
JP2003097361A (ja) Egr装置
JP2011208575A (ja) 排ガス再循環装置
JP6241265B2 (ja) 内燃機関の排水装置
JP6252076B2 (ja) 凝縮水分離装置
JP6201737B2 (ja) 内燃機関の排水装置
JP6115347B2 (ja) 凝縮水処理機構
JP6201738B2 (ja) 内燃機関の排水装置
JP6201740B2 (ja) 内燃機関の排水装置
JP6187243B2 (ja) 内燃機関の排水装置
JP5709053B2 (ja) 内燃機関のガスセンサ被水防止構造
JP5800607B2 (ja) Egrガス通路構造
JP6201739B2 (ja) 内燃機関の排水装置
CN101233305B (zh) 用于内燃机的排气净化系统
JP6213224B2 (ja) 内燃機関の排水装置
JP6237158B2 (ja) 内燃機関の排水制御装置
JP6237159B2 (ja) 内燃機関の排水制御装置
JP6964046B2 (ja) エンジン
JP2006291932A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R151 Written notification of patent or utility model registration

Ref document number: 6241265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350