JP6240754B2 - 試料加工方法、及び荷電粒子線装置 - Google Patents

試料加工方法、及び荷電粒子線装置 Download PDF

Info

Publication number
JP6240754B2
JP6240754B2 JP2016517773A JP2016517773A JP6240754B2 JP 6240754 B2 JP6240754 B2 JP 6240754B2 JP 2016517773 A JP2016517773 A JP 2016517773A JP 2016517773 A JP2016517773 A JP 2016517773A JP 6240754 B2 JP6240754 B2 JP 6240754B2
Authority
JP
Japan
Prior art keywords
sample
electron
back surface
ion
interference image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016517773A
Other languages
English (en)
Other versions
JPWO2015170397A1 (ja
Inventor
宗史 設楽
宗史 設楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2015170397A1 publication Critical patent/JPWO2015170397A1/ja
Application granted granted Critical
Publication of JP6240754B2 publication Critical patent/JP6240754B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2802Transmission microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Description

本発明は、試料加工方法、及び荷電粒子線装置に関し、例えば、収束イオン線加工観察装置と走査電子顕微鏡を複合した装置を用いて試料加工するための技術に関するものである。
試料中の数100ナノメートルまたはそれ以下のナノ領域の試料加工に、収束イオン線加工観察装置(Focused Ion Beam:FIB)が用いられる。とりわけ透過電子顕微鏡(Transmission Electron Microscope:TEM)や走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)の試料は、試料内部のナノスケールの観察対象場所を含む数100ナノメートルまたはそれ以下の略均一な厚さの薄膜形状に、試料を加工することが求められる。このような薄膜試料の加工は、試料の表面と裏面のそれぞれを収束イオン線でミリングすることで作製される。試料内部に観察対象場所が含まれているかどうかは試料表面に照射した収束イオン線に誘起される2次イオンまたは2次電子を検出し画像化した収束イオン顕微鏡像(Scanning Ion Microscope:SIM像)により試料表面の状態を観察することで行われる。また、ナノスケールの観察対象場所を含む試料においては、SIM像では解像度が不足し試料表面の状態を観察できない場合がある。このような試料の加工にはFIBに走査電子顕微鏡(Scanning Electron Microscope:SEM)を複合させたFIB−SEM複合装置(FIB−SEM)が用いられ、FIBで加工した試料の表面を高解像度のSEM像を用いて観察する方法が用いられる。
作製した薄膜試料の中に所望のナノスケールの観察対象場所が含まれていることは、TEMまたはSTEMを用いた観察に必須である。そのためには、試料の表面側および裏面側双方のFIBによるミリングが適切な終点で停止させることが重要である。終点を求める方法として、例えば、特許文献1は、FIB−SEM内に試料を透過した電子を検出する検出器を設け、前記透過した電子を検出する検出器により検出した信号による透過電子像のコントラストを用い試料の膜厚を求め、予め定めた膜厚に達した時点を表面側および裏面側の終点とする方法を開示している。
また、非特許文献1は、試料表面から入射した電子により試料裏面から放出される電子回折波の菊池パターン(後方散乱電子回折像)を得ることを開示している。
特表2012−507728号公報
鈴木清一、透過EBSD法の評価と材料ミクロ組織観察への応用、日本金属学会誌、2013年、p.268−275
試料内部に2つ以上の相を持ち、少なくとも1つの相がナノスケールの形状である試料について、ナノスケールの相のTEMまたはSTEM用薄膜試料は、FIB−SEMを用いて試料表面側と裏面側の両方をミリングすることにより作製される。この際に、所望の相の表面側および裏面側のどちらか片方または両方に所望の相以外の相が残存する場合には、TEMまたはSTEMで観察した際の像のコントラストは、他の相が残存しない場合に比べ劣化することはいうまでもない。すなわち、所望の相の表面側および裏面側に所望の相以外の相が残存しない薄膜試料を作製することは、高品位のTEMまたはSTEM像を得るために重要である。試料表面側については、SEM像により直接的に表面形状が得られることから比較的容易に終点を得ることができる。
しかしながら、特許文献1の方法を用いた場合、試料の内部に所望の相が存在することは判別できるが、裏面側で所望の相が露出しているかどうかを確実に知ることは困難である。つまり、特許文献1の技術を用いても試料裏面に対するミリング終点を容易に知ることができない。また、非特許文献1は、単に試料裏面から放出される電子回折波を検出することを開示しているだけであり、試料裏面に対するFIBミリングの終点を求めることばかりではなく、ミリングそのものについて開示していない。つまり、非特許文献1は、菊池パターンとミリング動作終点との関係を明らかにするものではない。
本発明はこのような状況に鑑みてなされたものであり、FIB−SEMを用いたTEMまたはSTEM試料の作製において、試料裏面側の加工終点を得るための技術を提供するものである。
上記課題を解決するために、本発明ではFIBによる試料裏面の加工状態を、SEMにより入射した電子が試料裏面から放出される際に形成する菊池パターンを用いて検知する。裏面から放出される電子による電子回折は透過後方散乱電子回折(Transmission Back-Scattered electron Diffraction:t−EBSD)と呼ばれる。t−EBSDにより放出された電子回折波はブラッグ条件を満たすと菊池パターンと呼ばれる結晶構造、入射電子線に対する結晶方位、結晶格子定数に由来する回折図形を生じる。本発明では、t−EBSDによる菊池パターンを検出することにより、裏面側の加工終点を得る。
つまり、本発明は、少なくとも2つ相を含み、その少なくとも2つの相のうち少なくとも1つが観察対象の構造体を含む試料を加工するための試料加工方法であって、イオン線を用いて、試料の電子線照射面である試料表面とは対抗する試料裏面における観察対象の構造体を含む相とは異なる相をイオンミリングする工程と、試料裏面をイオンミリングした後、試料表面の側から電子線を照射し、当該電子線が前記試料を透過することにより試料裏面から発生する電子回折波の干渉像の強度に基づいて試料裏面の加工終点を決定する工程と、を有する。
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本発明の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
本発明によれば、FIB−SEMを用いたTEMまたはSTEM試料の作製する際に、試料裏面側の加工終点を知ることができるようになる。
本発明の実施形態で用いられる試料の概略構造を示す鳥瞰図である。 本発明の実施形態で用いられる試料の概略構造を示す上面透視図である。 本発明の実施形態で用いられる試料の概略構造を示す全面透視図である。 本発明の実施形態で用いられる試料の概略構造を示す右側面透視図である。 本発明の実施形態に係る薄膜試料の概略構造を示す図である。 本発明の実施形態に係る薄膜試料作製時の手順1を示す図である。 本発明の実施形態に係る薄膜試料作製時の手順2を示す図である。 本発明の実施形態に係る薄膜試料作製時の手順3を示す図である。 本発明の実施形態に係る薄膜試料作製時の手順4を示す図である。 本発明の実施形態に係る薄膜試料作製時の手順5を示す図である。 本発明の実施形態に係る薄膜試料作製時の手順6を示す図である。 本発明の実施形態に係る薄膜試料作製の加工終点に全く到達していない状態を示す図である。 薄膜試料作製の加工終点に全く到達していない状態の透過後方散乱電子回折像を示す図である。 本発明の実施形態に係る薄膜試料作製の加工終点到達に近い状態を示す図である。 薄膜試料作製の加工終点到達に近い状態の透過後方散乱電子回折像を示す図である。 本発明の実施形態に係る薄膜試料作製の加工終点に到達した状態を示す図である。 薄膜試料作製の加工終点に到達した状態の透過後方散乱電子回折像を示す図である。 結晶性相に非晶質相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達していない状態を示す図である。 結晶性相に非晶質相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達していない状態の透過後方散乱電子回折像を示す図である。 結晶性相に非晶質相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達した状態を示す図である。 結晶性相に非晶質相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達した状態の透過後方散乱電子回折像を示す図である。 結晶性相に別の結晶性相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達していない状態を示す図である。 結晶性相に別の結晶性相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達していない状態の透過後方散乱電子回折像を示す図である。 結晶性相に別の結晶性相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達した状態を示す図である。 結晶性相に別の結晶性相が含まれる試料から薄膜試料を作製する場合であって加工終点に到達した状態の透過後方散乱電子回折像を示す図である。 本発明の実施形態に係る荷電粒子線装置の概略構成を示す図である。 本発明の実施形態に係る荷電粒子線装置による薄膜試料作製処理を説明するためのフローチャートである。 本発明の第2の実施形態に係る菊池パターンの強度の評価例を示す図である。 本発明の第2の実施形態に係る菊池パターンの強度を示すプロファイル例を示す図である。
以下、添付図面を参照して本発明の実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本発明の原理に則った具体的な実施形態と実装例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。
本実施形態では、当業者が本発明を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本発明の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。
(1)第1の実施形態
<試料構造>
図1は、本発明の実施形態で用いられる試料加工に用いる固体試料構造の一例を示す図である。図1Aは鳥瞰図、図1Bは試料上面からの透視図、図1Cは試料前面からの透視図、図Dは試料右側面からの透視図である。
図1は、試料101が直方体の場合を図示しているが、厳密に直方体である必要はなく、対抗する辺の長さが異なっていても、角度が直角からずれていてもよい。また、試料表面は平面である必要はなく、曲面または起伏のある面であってもよい。略直方体であれば十分である。試料は少なくとも2以上の相からなり、試料内部に少なくとも1相のナノスケールの構造102が存在する。ここでは、説明を簡潔にするために1相からなる試料に異なる相が内包され、内包される相が1個の粒子状形態である場合を示す。粒子は1個である必要がなく、複数の粒子を内包していてもよい。ナノスケール構造102の相の形状は粒子形状に限定されるものではなく、柱状、層状、または複雑な3次元形状でもよい。さらに、試料内部の粒子状の相が試料の表面に露出していない場合を示しているが、一部または複数の部分が試料表面のいずれかの一面または複数の面に露出していてもよい。試料に存在する相のうち少なくとも1相は単結晶または多結晶であり、他の相は単結晶、多結または非晶質である。試料加工後のTEMまたはSTEM観察の対象は内在する粒子状の相とし、TEMまたはSTEMで電子線が透過する方向は矢印103の方向であるとする。したがって、試料の加工後の形状は、図2のように少なくとも試料の一部分が薄膜状に加工された形状となる。図2では薄膜の両端に未加工の領域を残した状態の試料が示されているが、片側または両側の未加工領域を残さなくてもよい。
<薄膜試料作製手順の概要>
図3A乃至Fは、図1の試料を図2の形態に加工する方法の手順を示す図である。以下、ここでは、イオン線105または電子線107を照射する試料面を表面、表面に対抗する面を裏面と呼ぶこととする。
手順1(図3A):試料上面の表面側に収束したイオン線105を照射する。照射するイオン種は代表的にはGa、Ar、O、Heなどであるが、一荷のイオンにこだわらず多荷イオンであってもよいし、正イオンのみならず陰イオンであってもよいし、ここに記載していない元素あるいは化合物のイオンであってもよい。イオン線105により試料表面の物質はスパッタされ、イオン線照射部の試料表面の物質は除去される。
手順2(図3B):試料表面に沿って漸次イオン線105を走査すると、物質が除去された範囲が広がる。本図ではイオン線105の移動は左から右にステップ的(イオン照射位置に移動→イオン照射→照射停止→次の照射位置に移動→イオン照射・・・)に走査しているが、右から左の逆向きでもよい。また、イオン線105の走査はステップ的でなく連続的な走査(イオン照射しながら走査位置を移動)でもよい。さらに、イオン線105の走査は一方向である必要はなく、予め定めた間隔で飛び飛びにイオン線105を移動してもよいし、ランダムな間隔で飛び飛びにイオン線105を移動してもよい。薄膜試料を作製しようとする幅の全領域にイオン線105を照射すればよい。また、同一領域を複数回走査してもよい。
手順3(図3C):試料表面に沿ったイオン線105の走査が完了した後、イオン線105の照射領域を試料表面から奥側にずらして手順2(図3B)のイオン線走査を実施する。そして、手順3を複数回数繰り返すことにより、試料面は手前から奥側に移動し、試料の厚さを減少させる。なお、大まかにどの位の深さまで試料を削るかについては以下のように決定することができる。つまり、加工前の試料(バルク試料)に対してSEMで電子線を照射し、電子線の潜り込む深さを検知する。電子線の加速電圧を徐々に強め、バルク試料表面とは異なる別の構造の電子線像がどの程度の深さで見えるようになるか確認する。このように電子線の加速電圧を制御して電子線の潜り込み深さをコントロールすることができることを利用して試料の加工深さを大まかに知ることができる。そして、イオンミリングの深さを電子線照射によって知ることができた大まかな加工深さに設定し、加工を開始することができる。また、モンテカルロシミュレーションによっても深さを予測することが可能である。さらに、1回のイオン照射による加工深さを予め設定しておき、手順3と4を繰返して加工するようにしても良い。また、加工前の試料を超音波検査することにより観察対象相までの深さを求めても良い。
手順4(図3D):1回の手順3または複数回の手順3を実行した後、イオン線照射を停止し、試料表面の斜め上方から電子線107を照射し試料表面内を走査する。試料表面からは2次電子109、後方散乱電子110、特性X線111および電子回折波112が放出される。これらの信号を走査座標と対応させてマッピングするとそれぞれ試料表面の2次電子像、後方散乱電子像、元素マップ、結晶方位マップが得られる。2次電子像、後方散乱電子像、元素マップ、及び結晶方位マップの少なくとも1つのマップを用いることにより、試料表面に観察対象とする相が露出しているかどうかを確認することができる。観察対象の相が露出している場合は、処理は手順5(図3E)に進む。露出していない場合は、処理は手順4(図3C)に戻り、さらに加工(イオン照射によるミリング)を行った後に、手順4(図3D)を再度実施し、観察対象とする相が露出しているかどうかを確認する。このループを観察対象とする相が露出するまで繰り返す。
手順5(図3E):試料上面の裏面側にイオン線105の照射位置を移動し(或いは試料ステージを移動して試料裏面にイオン照射可能にする)、収束したイオン線105を裏面に照射する。裏面において手順3(図3C)及び手順4(図3D)と同様の処理を行い、裏面側の物質を除去して試料を薄膜化する。
手順6(図3F):イオン線照射を停止し、試料表面の斜め上方から電子線107を照射し、試料表面内を走査する。このとき、電子線107を入射する方向はイオン線105の照射軸に対して20乃至60°傾いた方向であることが望ましく、傾き角が40°であることがなお望ましい。このとき、試料の裏面からは透過電子113およびでt−EBSDによる電子回折波114が放出される。これらの信号を走査座標と対応させてマッピングするとそれぞれ試料の透過電子像、試料裏面のt−EBSD結晶方位マップが得られる。なお、透過電子像は薄膜状試料内部に観察対象の相が含まれているかを確認することができるが、観察対象の相が試料裏面に露出しているかはわからない。これに対し、試料裏面のt−EBSD結晶方位マップ(各電子線照射位置に対応する透過後方散乱電子回折像(菊池パターン)群)を用いることにより、試料裏面の結晶構造を推定することができ、裏面に露出している物質を推定することができるようになる。試料裏面に所望の観察対象相が露出していることが確認できたら、加工を終了する。
ここでは、試料表面の加工が終了した後に裏面の加工を行う例について説明したが。表面と裏面のイオン線105による加工および電子線107による観察ならびに表面と裏面のイオン線105による加工および電子線107による観察を交互に繰り返しおこなってもよい。
<加工終点検出>
次に、本発明の実施形態による裏面の加工終点の検出方法について図4乃至6を用いて説明する。図4は、試料表面の加工が終わり表面側で観察対象の相が露出しているが裏面に他の相が厚く残っている場合でパターンが検出されていない様子を示す図である。図5は、さらに裏面の加工を進め、他の相の裏面側の膜厚が薄くなった場合に検出される菊池パターンを示す図である。図6はさらに裏面の加工を進め、他の相が除去された場合の試料の略断面図とそれに対応する菊池パターンを示す図である。ここでは観察対象相が多結晶または単結晶であり、他の相が非晶質(ガラス、ゴム、プラスティック等)である場合を例にする。なお、図4乃至6で用いられる試料は、非晶質相の中に結晶質相が内包されているような試料を例としている。
図4の場合には、試料裏面から放出される電子回折波114は非晶質から放出される。このためブラッグ条件を満たすことはなく、菊池パターン116は観測されない。図5の場合では、裏面の他の相の厚さがおよそ30nmより小さくなると観察対象相の結晶および非晶質の他の相から電子回折波114が放出される。このうち観察対象相の結晶から放出された電子回折波114はブラッグ条件を満たすため菊池パターン116が観測される。しかしながら、菊池パターン116の強度は弱い。裏面の加工が進むにつれて菊池パターン116の強度は増加し、図6のように裏面の観察対象相が露出すると、明瞭な菊池パターン116が観測される。菊池パターン116が得られると、結晶構造、格子定数、方位を見積もることができ、注目するナノスケールの層が露出していることが確認できる。裏面で観察対象相が露出すると菊池パターン116の強度は飽和するため、飽和を確認(目視確認)した時点を裏面の加工終点として加工を停止する。なお、パターンの強度が飽和したか否かは、前回測定のパターン強度のピーク値と今回測定のパターン強度のピーク値を比較し、強度差が所定閾値以下であった場合に飽和したと判定するようにしても良い。
図7及び図8は、内包される観察対象相が非晶質であり、観察対象相の外側の他の相が単結晶または多結晶である場合について示す図である。試料裏面が結晶であるため、試料裏面から放出される電子回折波114はブラッグ条件を満たすことができる。そのため、菊池パターン116は観測可能である。しかし、試料裏面に入射する電子回折波114は非晶質部を透過する際の散乱により強度が弱まるため、結晶部から放出される場合に比べ、強度は低下する(図7B参照)。また、図8に示されるように、裏面の加工が進み、裏面の結晶相が全て除去されると菊池パターン116は消失し(図8B参照)、消失した時点を裏面の加工終点として加工を停止することが可能である。
図9及び図10は、内包される観察対象相および他の相の両方が単結晶または多結晶である場合について示す図である。裏面にある他の相の厚さがおよそ30nmより大きいときは、他の相の結晶構造に由来した菊池パターン120のみが観測され、厚さがおよそ30nmより小さくなると他の相の結晶構造に由来した菊池パターン120と観察対象相の結晶構造に由来した菊池パターン121が重畳して観測される(図9B参照)。また、加工を進めて裏面の他の相が除去されると他の相の結晶構造に由来した菊池パターン120は消失し、観察対象相の結晶構造に由来した菊池パターン121のみが観測される(図10B参照)。他の相の結晶構造に由来した菊池パターン120が消失した時点を裏面の加工終点として加工を停止する。
なお、どの程度のパターン強度であれば加工終点とするかについては、例えば、様々な物質とそれに対応する菊池パターン強度をデータベースに予め登録しておく。そして、観察対象相の物質が既知であれば、当該物質の観測された菊池パターン強度とデータベースに登録された当該物質の菊池パターン強度とを比較して加工終点か否か判定することができる。
<荷電粒子線装置の構成>
図11は、本発明の実施形態による荷電粒子線装置の概略構成を示す図である。当該荷電粒子線装置(FIB−SEM)100は、電子源、電子加速部、電子収束レンズ、及び電子線走査機構を含むSEM筐体130と、イオン源、イオン加速部、イオン収束レンズ、及びイオン線走査機構を含むFIB筐体132とを有する。そして、それぞれの電子線軸131及びイオン線軸134は、試料101付近で交差するように配置される。本実施形態では、SEM筐体130の電子線軸131を垂直方向、FIB筐体132のイオン線軸134が斜方に配置した例が示されるが、配置方向は任意で良く、イオン線軸134が垂直、電子線軸131が斜方であっても良いし、電子線軸131およびイオン線軸134の両方が斜方であってもよい。また、電子線軸131及びイオン線軸134の交差角は20乃至60°であることが望ましく、40°であることがなお望ましい。
SEM筐体130から放出された電子線107は、電子線走査機構により図示した電子線軸131に垂直な2方向に走査することができる。FIB筐体130から放出されたイオン線105は、イオン線走査機構により図示したイオン線軸131に垂直な2方向に走査することができる。試料101は、図示していない試料台に設置されており、また、試料台は直行した3方向に並進移動および2軸を中心とした回転運動をさせることができるようになっている。
試料101の観察位置および加工位置の大まかな調整は、試料台の移動または回転により行うことできる。一方、ナノスケールの微小な位置移動については、イオン線105の走査位置または電子線108の走査位置をそれぞれの走査機構を用いてシフトさせることにより実現する。試料101は、イオン線軸134上に加工する面がイオン線軸134に平行で且つイオン線走査方向に垂直に配置される。また、試料101は、電子線軸131の直下に配置される。
試料101の上方には2次電子検出器134を設けても良い。2次電子検出器134は、SEM筺体130から電子線108を試料101に照射した場合には電子線108で誘起された2次電子109を、FIB筺体132によりイオン線105を試料101に照射した場合にはイオン線105で誘起された2次電子109を検出することができる。これに限らず、イオン線105で誘起された2次イオンを検出する検出器を別途設けてもよい。また、必要に応じて、試料表面から放出される特性X線111を検出するEDX検出器140、試料表面から放出される後方散乱電子回折波112による干渉図形を検出するEBSD検出器139、及び試料表面から放出される後方散乱電子110を検出するBSE検出器141のうち1つ以上の検出器を設けてもよい。さらに、試料101の下方には、透過後方散乱電子回折波112を検出するt−EBSD検出器115と、試料101を透過した電子を検出する透過電子検出器142が配置されている。
<試料加工時の荷電粒子線装置の動作>
図12は、本発明の実施形態による、荷電粒子線装置を用いた薄膜試料作製の工程を説明するためのフローチャートである。
(i)ステップ1201:コンピュータ136は、オペレータが入力する試料のイオンミリングの深さ(表面及び裏面それぞれからの深さ)の設定を受け付ける。このイオンミリングの深さは、オペレータの経験値による値でも良いし、予め決められた規定値(1回のイオンミリングで削る深さについての設定値)でも良い。また、上述したように、バルク試料に段階的に加速電圧を上げながら電子線を照射し、電子線の潜り込み位置から得られる画像を確認して観察対象相の大まかな位置を特定してイオンミリング深さを決めるようにしても良い。
(ii)ステップ1202:コンピュータ136は、FIB筐体132に含まれるイオン源、イオン加速部、イオン収束レンズ、及びイオン線走査機構を制御し、試料表面にイオン線を照査してステップ1201で設定された深さ分だけ試料を表面から削る。
(iii)ステップ1203:コンピュータ136は、SEM筐体130に含まれる電子源、電子加速部、電子収束レンズ、及び電子線走査機構を制御し、ミリングした試料面に対して電子線を照射・走査する。そして、コンピュータ136は、電子線照射によって試料面放出される2次電子109、後方散乱電子110、特性X線111、電子回折波112、及び反射電子等から2次電子像、後方散乱電子像、元素マップ、結晶方位マップ、及び反射電子像等の少なくとも1つを用いて試料表面の各箇所の像(マップ)を生成する。
(iv)ステップ1204:コンピュータ136は、試料表面側における観察対象相の露出が十分か判断する。例えば、オペレータが目視によって露出が十分であると判断した場合、オペレータが試料表面のイオンミリングが完了したことを示す指示を入力し、コンピュータ136がその指示を受け付けるようにして試料表面のイオンミリングを終了するようにしても良い。或いは、試料が既知の場合には、コンピュータ136が試料表面から得られる各種像の強度と、予めデータベースに登録された該当物質から得られる各種像の強度とを比較し、強度差が所定の閾値範囲内に含まれているか否かによって試料表面のイオンミリングの終了を判定しても良い。観察対象相の露出が十分であると判断された場合(ステップ1204でYes)、処理はステップ1205に移行する。観察対象相の露出が不十分であると判断された場合(ステップ1204でNo)、処理はステップ1202に戻り、試料表面のイオンミリング処理が継続される。
(v)ステップ1205:コンピュータ136は、FIB筐体132に含まれるイオン源、イオン加速部、イオン収束レンズ、及びイオン線走査機構を制御し、イオン線105の照射位置を試料裏面に移動し、試料裏面にイオン線を照査してステップ1201で設定された深さ分だけ試料を裏面から削る。
(vi)ステップ1206:コンピュータ136は、SEM筐体130に含まれる電子源、電子加速部、電子収束レンズ、及び電子線走査機構を制御し、試料表面から電子線を照射・走査する。そして、コンピュータ136は、試料裏面からの透過後方散乱電子回折(t−EBSD)による電子回折波114に基づいて、透過後方散乱電子回折像(菊池パターン或いは電子回折波干渉像とも言う)を取得する。
(vii)ステップ1207:コンピュータ136は、試料裏面の各箇所から得られる菊池パターンからt−EBSD結晶方位マップ(菊池パターン群)を生成する。
(viii)ステップ1208:コンピュータ136は、試料裏面側における観察対象相の露出が十分か判断する。例えば、オペレータが目視によって露出が十分であると判断した場合、オペレータが試料表面のイオンミリングが完了したことを示す指示を入力し、コンピュータ136がその指示を受け付けるようにして試料表面のイオンミリングを終了するようにしても良い。或いは、試料が既知の場合には、コンピュータ136が試料裏面から得られる菊池パターンの強度と、予めデータベースに登録された該当物質から得られる菊池パターンの強度とを比較し、強度差が所定の閾値範囲内に含まれているか否かによって試料裏面のイオンミリングの終了を判定しても良い。観察対象相の露出が十分であると判断された場合(ステップ1208でYes)、試料加工は終了する。観察対象相の露出が不十分であると判断された場合(ステップ1208でNo)、処理はステップ1205に戻り、試料裏面のイオンミリング処理が継続される。
(2)第2の実施形態
第1の実施形態による加工方法では、菊池パターン116の強度の変化により加工終点を決定した。しかしながら、バックグラウンドのノイズが大きい場合等、判定が難しくなる場合がある。そこで、第2の実施形態は、他のパラメータにより加工終点を判定する方法を開示する。
図13Aは、t−EBSDで取得した菊池パターン116の一例を示す図である。また、図13Bは、菊池パターン116について線122に沿って強度プロファイルをプロットすることにより得られるラインプロファイルを示す図である。すなわち、バックグラウンドのノイズと菊池ライン117の信号の重畳されたものである。
菊池ライン117の信号を表すパラメータとして代表的なものは、ピーク高さ126、信号/雑音比、半値幅128などがある。この内、ピーク高さ126は第1の実施形態で示した強度と同一である。例えば、図6Aに示す観察対象相が表面および裏面で露出している場合には、ピーク高さ126は大きく、信号/雑音比は大きく、半値幅128は小さい。これに対し、図5Aに示す裏面に他の相が残っている場合には、ピーク高さ126は小さく、信号/雑音比は小さく、半値幅128は大きくなる。残膜厚に対するピーク高さ126、信号/雑音比および半値幅128の依存性は試料の材質によって異なり、ピーク高さ126、信号/雑音比または半値幅128の中から少なくとも2つ以上のパラメータを観測し、それぞれが所定の閾値の範囲内にあるか否か判定することにより、裏面の加工終点を知ることができる。
(3)第3の実施形態
観察対象の試料と同様の構造を持つ試料について、第1の実施形態と同様の方法で薄膜加工を行い、複数の異なった厚さでのt−EBSDによる菊池パターン116を求めることは有用である。つまり、既知の試料を用いて菊池パターン116のデータベースを作成し、実際に観測した菊池パターンとの照合によって加工終点を検出する。
一方、実際に試料の加工を行わなくても、複数の厚さの菊池パターン116を計算(モンテカルロシミュレーション:前述のように電子線の潜り込み深さを計算する方法)により求めてもよい。具体的には、モンテカルロシミュレーションでは、物質の元素と厚さを設定することができるため、各設定における電子線の減衰強度を知ることができる。電子線の強度と菊池パターンの強度には相関があるので、各設定における菊池パターンの概略的な強度を算出することができる。そして、様々な元素と膜厚に対応させた菊池パターンの強度のデータベースを計算によって求めることができる。このようなデータベースがあることを前提として、観察対象の試料を第1の実施形態による方法で試料の加工および菊池パターン116の観測を行う。そして、観察対象の試料で取得した菊池パターン116を予め求めておいた菊池パターン116と比較し、予め求めておいた加工終点の菊池パターン116と一致した時点を裏面の加工終点として加工を停止する。パターンが完全に一致しなくとも、計算機処理で画像を比較し、予め設定した類似度に達した時点を裏面の加工終点とすることもできる。
(4)実施形態のまとめ
t−EBSDによる電子回折波は試料の裏面の深さ約30nm以内の非常に薄い領域からのみ放出される。また、菊池パターンにより試料裏面近傍の結晶構造を知ることができ、試料裏面近傍の材質を推定することが可能になる。このため、FIB加工の途中でt−EBSDによる電子回折波をモニタすることにより、加工途中の試料裏面の材質の変化を逐次知ることができる。また、所望の菊池パターンの出現または消失を検出することにより、加工終点を検出することが可能になる。SEMにより電子線を入射すると、試料表面から2次電子および後方散乱電子が放出され、同時に試料裏面からt−EBSDによる電子回折波が放出される。試料表面から放出する信号と上記実施形態による方法を用いることにより、一度のSEM観察により試料表面および試料裏面の加工状態を同時に検知することができ、簡便に試料表面および試料裏面の加工終点を検出することが可能になる。
本発明は、実施形態の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をシステム或は装置に提供し、そのシステム或は装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD−ROM、DVD−ROM、ハードディスク、光ディスク、光磁気ディスク、CD−R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
また、プログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。さらに、記憶媒体から読み出されたプログラムコードが、コンピュータ上のメモリに書きこまれた後、そのプログラムコードの指示に基づき、コンピュータのCPUなどが実際の処理の一部又は全部を行い、その処理によって前述した実施の形態の機能が実現されるようにしてもよい。
さらに、実施の形態の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することにより、それをシステム又は装置のハードディスクやメモリ等の記憶手段又はCD−RW、CD−R等の記憶媒体に格納し、使用時にそのシステム又は装置のコンピュータ(又はCPUやMPU)が当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしても良い。
なお、異なる実施形態にわたる構成要素は適宜組み合わせてもよい。本発明は、実施形態により具体的に説明したが、これらは、すべての観点に於いて限定の為ではなく説明の為である。本分野にスキルのある者には、本発明を実施するのに相応しいハードウェア、ソフトウェア、及びファームウエアの多数の組み合わせがあることが解るであろう。例えば、記述したソフトウェアは、アセンブラ、C/C++、perl、Shell、PHP、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。
さらに、上述の実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていても良い。
101・・・試料
102・・・内包された粒状の観察対象相
103・・・TEMまたはSTEMで電子を透過する方向
104・・・内包された粒状の観察対象相の露出部
105・・・イオン線
106・・・イオン線の走査方向
107・・・電子線
108・・・電子線の走査方向
109・・・2次電子
110・・・後方散乱電子
111・・・特性X線
112・・・電子回折波
113・・・透過電子
114・・・t−EBSDによる電子回折波
115・・・t−EBSD検出器
116・・・t−EBSDによる菊池パターン
117・・・菊池ライン
118・・・結晶質の他の相
119・・・非晶質の内包された粒状の観察対象相
120・・・結晶質の他の相の菊池ライン
121・・・観察対象相の菊池ライン
122・・・強度プロファイルのプロット個所
123・・・強度プロファイル
124・・・距離軸
125・・・強度軸
126・・・ピーク高さ
127・・・雑音高さ
128・・・半値幅
129・・・FIB−SEM
130・・・SEM筺体
131・・・電子線軸
132・・・FIB筺体
133・・・イオン線軸
134・・・2次電子検出器
135・・・試料室
136・・・コンピュータ
137・・・モニタ
138・・・コントローラ(キーボード、マウス等)
139・・・EBSD検出器
140・・・EDX検出器
141・・・BSE検出器
142・・・透過電子検出器

Claims (14)

  1. 少なくとも2つ相を含み、その少なくとも2つの相のうち少なくとも1つが観察対象の構造体を含む試料を加工するための試料加工方法であって、
    イオン線を用いて、前記試料の電子線照射面である試料表面とは対抗する試料裏面における前記観察対象の構造体を含む相とは異なる相をイオンミリングする工程と、
    前記試料裏面をイオンミリングした後前記試料表面の側から電子線を照射し、当該電子線が前記試料を透過することにより前記試料裏面から発生する電子回折波の干渉像の強度に基づいて前記試料裏面の加工終点を決定する工程と、
    を有することを特徴とする試料加工方法。
  2. 請求項1において、
    前記観察対象の構造体を含む相とは異なる相に対するイオンミリングの深さは、イオンミリングする前に、前記試料に対して前記電子線を照射し、前記構造体の像が得られるときの前記電子線の潜り込みの深さにより決定されることを特徴とする試料加工方法。
  3. 請求項1において、
    前記イオン線の照射方向と前記電子線の入射方向が交差しており、前記イオン線の照射方向と前記電子線の入射方向がなす角度が20乃至60°であることを特徴とする試料加工方法。
  4. 請求項3において、
    前記イオン線の照射方向と前記電子線の入射方向がなす角度が40°であることを特徴とする試料加工方法。
  5. 請求項1において、
    前記試料裏面から放出された電子回折波の干渉像の強度が飽和したと判断できる時点を裏面の加工終点とすることを特徴とする試料加工方法。
  6. 請求項1において、
    前記試料は、結晶性の相の中に非晶質の構造体を含む試料であり、
    前記試料裏面から放出された電子回折波の干渉像が消失した時点を前記試料裏面の加工終点とすることを特徴とする試料加工方法。
  7. 請求項1において、
    前記試料は、第1の結晶性の相の中に当該第1の結晶性とは異なる第2の結晶性の構造体を含む試料であり、
    前記試料裏面から放出された電子回折波の干渉像が予定した材質の干渉像であることを確認した時点を前記試料裏面の加工終点とすることを特徴とする試料加工方法。
  8. 請求項1において、
    試料の裏面から放出された電子回折波の干渉像の強度のラインプロファイルのピーク高さ、信号/雑音比、及び半値幅のうち、少なくとも2以上のパラメータを選択し、当該選択されたパラメータの変化に基づいて前記試料裏面の加工終点を判定することを特徴とする試料加工方法。
  9. 請求項1において、
    前記試料裏面から放出された電子回折波の干渉像であって、前記試料の複数の厚さにおける前記電子回折波の干渉像を予め取得し、当該予め取得した複数の厚さにおける干渉像と、前記試料を実際に加工したときに得られた、前記試料裏面から放出された電子回折波の干渉像とを比較し、干渉像が一致した時点を前記試料裏面の加工終了点とすることを特徴とする試料加工方法。
  10. 請求項1において、
    前記試料裏面から放出された電子回折波の干渉像であって、前記試料の複数の厚さにおける前記電子回折波の干渉像をモンテカルロシミュレーションによって算出し、当該予め算出した複数の厚さにおける干渉像と、前記試料を実際に加工したときに得られた、前記試料裏面から放出された電子回折波の干渉像とを比較し、干渉像が一致した時点を前記試料裏面の加工終了点とすることを特徴とする試料加工方法。
  11. 少なくとも2つ相を含み、その少なくとも2つの相のうち少なくとも1つが観察対象の構造体を含む試料を加工するための荷電粒子線装置であって、
    電子源と、電子加速部と、電子収束レンズと、電子線走査機構とを有し、前記試料を電子線走査するSEM筐体と、
    イオン源と、イオン加速部と、イオン収束レンズと、イオン線走査機構とを有し、前記試料の電子線照射面である試料表面とは対抗する面である試料裏面にイオン線を照射して前記構造体を含む相とは異なる相をイオンミリングするFIB筐体と、
    前記試料裏面の下方に配置され、前記電子線が前記試料を透過することにより前記試料裏面から発生する電子回折波を検出する透過後方散乱電子回折波検出器と、
    前記透過後方散乱電子回折波検出器によって検出された電子回折波から電子回折波の干渉像を生成するコンピュータと、を有し、
    前記コンピュータは、前記電子回折波の干渉像の強度に基づいて前記試料裏面の加工終点を決定することを特徴とする荷電粒子線装置。
  12. 請求項11において、
    前記電子線の軸と前記イオン線の軸とが前記試料付近で交差するように前記SEM筐体と前記FIB筐体が配置されることを特徴とする荷電粒子線装置。
  13. 請求項11において、さらに、
    前記試料表面から放出される後方散乱電子を検出する検出器、前記試料表面から放出される特性X線を検出する検出器、前記試料表面から放出される後方散乱電子回折波を検出する検出器、及び前記試料を透過した透過電子を検出する検出器のうち少なくとも1つ以上の検出器を有することを特徴とする荷電粒子線装置。
  14. 請求項11において、
    前記コンピュータは、前記試料裏面から放出された電子回折波の干渉像の強度を測定し、予め電子回折波の干渉像の強度と関連付けられた試料膜厚を特定することを特徴とする荷電粒子線装置。
JP2016517773A 2014-05-09 2014-05-09 試料加工方法、及び荷電粒子線装置 Active JP6240754B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/062456 WO2015170397A1 (ja) 2014-05-09 2014-05-09 試料加工方法、及び荷電粒子線装置

Publications (2)

Publication Number Publication Date
JPWO2015170397A1 JPWO2015170397A1 (ja) 2017-04-20
JP6240754B2 true JP6240754B2 (ja) 2017-11-29

Family

ID=54392265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016517773A Active JP6240754B2 (ja) 2014-05-09 2014-05-09 試料加工方法、及び荷電粒子線装置

Country Status (5)

Country Link
US (1) US9922798B2 (ja)
JP (1) JP6240754B2 (ja)
CN (1) CN106233420B (ja)
DE (1) DE112014006546B4 (ja)
WO (1) WO2015170397A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6974820B2 (ja) * 2017-03-27 2021-12-01 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置、試料加工方法
DE102017209423A1 (de) * 2017-06-02 2018-12-06 Carl Zeiss Microscopy Gmbh Elektronenstrahltomographieverfahren und Elektronenstrahltomographiesystem
EP3648138A1 (en) 2018-10-31 2020-05-06 FEI Company Measurement and endpointing of sample thickness
JP7114736B2 (ja) * 2018-11-12 2022-08-08 株式会社日立ハイテク 画像形成方法及び画像形成システム
EP3736561B1 (en) * 2019-05-08 2021-05-05 Bruker Nano GmbH Method for improving an ebsd/tkd map

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321224A (ja) 1999-05-10 2000-11-24 Nippon Steel Corp 結晶粒変化の動的観察方法および装置
JP3776887B2 (ja) * 2003-01-07 2006-05-17 株式会社日立ハイテクノロジーズ 電子線装置
JP4022512B2 (ja) * 2003-11-14 2007-12-19 Tdk株式会社 結晶解析方法及び結晶解析装置
JP4691529B2 (ja) 2007-07-20 2011-06-01 株式会社日立ハイテクノロジーズ 荷電粒子線装置、及び試料加工観察方法
JP5166817B2 (ja) * 2007-10-17 2013-03-21 トヨタ自動車株式会社 単結晶試料の結晶方位測定方法
CN101236143A (zh) * 2008-02-25 2008-08-06 北京科技大学 一种离子束轰击制备扫描电子显微镜试样的方法
EP2351062A4 (en) 2008-10-31 2012-10-31 Fei Co MEASUREMENT AND SENSING OF THE SAMPLE THICKNESS POINT OF A SAMPLE
US8253099B2 (en) 2008-11-06 2012-08-28 Nanomegas Sprl Methods and devices for high throughput crystal structure analysis by electron diffraction
JP2011154920A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp イオンミリング装置,試料加工方法,加工装置、および試料駆動機構
JP5690086B2 (ja) * 2010-07-02 2015-03-25 株式会社キーエンス 拡大観察装置
JP5473891B2 (ja) 2010-12-27 2014-04-16 株式会社日立ハイテクノロジーズ 荷電粒子線装置及び試料作製方法
US8912490B2 (en) * 2011-06-03 2014-12-16 Fei Company Method for preparing samples for imaging
US8822921B2 (en) * 2011-06-03 2014-09-02 Fei Company Method for preparing samples for imaging
US10761043B2 (en) * 2011-07-22 2020-09-01 The Trustees Of The University Of Pennsylvania Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis
JP6105204B2 (ja) * 2012-02-10 2017-03-29 株式会社日立ハイテクサイエンス Tem観察用試料作製方法
CN103323457B (zh) * 2013-05-20 2015-08-26 中国农业大学 水果外观缺陷实时在线检测系统及检测方法
JP6452334B2 (ja) * 2014-07-16 2019-01-16 キヤノン株式会社 ターゲット、該ターゲットを備えたx線発生管、x線発生装置、x線撮影システム

Also Published As

Publication number Publication date
WO2015170397A1 (ja) 2015-11-12
CN106233420A (zh) 2016-12-14
CN106233420B (zh) 2018-10-16
DE112014006546T5 (de) 2016-12-29
JPWO2015170397A1 (ja) 2017-04-20
US20170047196A1 (en) 2017-02-16
DE112014006546B4 (de) 2021-01-21
US9922798B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6240754B2 (ja) 試料加工方法、及び荷電粒子線装置
US10096449B2 (en) Cross-section processing-and-observation method and cross-section processing-and-observation apparatus
JP6174584B2 (ja) 視射角ミル
Zaefferer A critical review of orientation microscopy in SEM and TEM
JP6490938B2 (ja) 断面加工方法、断面加工装置
US9983152B1 (en) Material characterization using ion channeling imaging
JP6261178B2 (ja) 荷電粒子ビーム装置、荷電粒子ビーム装置を用いた試料の加工方法、及び荷電粒子ビーム装置を用いた試料の加工コンピュータプログラム
US10784076B2 (en) 3D defect characterization of crystalline samples in a scanning type electron microscope
US20110186734A1 (en) Electron microscope and specimen analyzing method
US9536704B2 (en) Method for avoiding artefacts during serial block face imaging
JP6521205B1 (ja) 結晶方位図生成装置、荷電粒子線装置、結晶方位図生成方法およびプログラム
WO2016016927A1 (ja) 荷電粒子線装置、シミュレーション方法およびシミュレーション装置
US9245713B2 (en) Charged particle beam apparatus
WO2016121471A1 (ja) 二次粒子像から分析画像を擬似的に作成する荷電粒子線装置
EP2383767A1 (en) Method of imaging an object
US20190279843A1 (en) Apparatus, method, and program for processing and observing cross section, and method of measuring shape
US9046472B2 (en) Crystal analysis apparatus, composite charged particle beam device, and crystal analysis method
JP5878960B2 (ja) 電子顕微鏡
US11598734B2 (en) Joint nanoscale three-dimensional imaging and chemical analysis
TW202301405A (zh) 使用具有背景材料之非切割薄片的改良型x光橫截面影像
Hofmann et al. Coherent X-ray measurements of ion-implantation-induced lattice strains in nano-crystals
JP2023527297A (ja) 試料の構造要素に関する3次元情報の生成
Ocelík et al. Microstructural characterization of surface damage through ultra-short laser pulses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6240754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350