JP6239623B2 - インスリン注入デバイスを制御するシステム及び方法 - Google Patents

インスリン注入デバイスを制御するシステム及び方法 Download PDF

Info

Publication number
JP6239623B2
JP6239623B2 JP2015529818A JP2015529818A JP6239623B2 JP 6239623 B2 JP6239623 B2 JP 6239623B2 JP 2015529818 A JP2015529818 A JP 2015529818A JP 2015529818 A JP2015529818 A JP 2015529818A JP 6239623 B2 JP6239623 B2 JP 6239623B2
Authority
JP
Japan
Prior art keywords
insulin
sensor
glucose
value
iob
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015529818A
Other languages
English (en)
Other versions
JP2015526242A (ja
Inventor
デスモンド バリー ケナン
デスモンド バリー ケナン
ジョン ジェイ マストロトタロ
ジョン ジェイ マストロトタロ
ベニヤミン グロスマン
ベニヤミン グロスマン
ネーア ジェイ パリキ
ネーア ジェイ パリキ
アニーバン ロイ
アニーバン ロイ
Original Assignee
メドトロニック ミニメド インコーポレイテッド
メドトロニック ミニメド インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メドトロニック ミニメド インコーポレイテッド, メドトロニック ミニメド インコーポレイテッド filed Critical メドトロニック ミニメド インコーポレイテッド
Publication of JP2015526242A publication Critical patent/JP2015526242A/ja
Application granted granted Critical
Publication of JP6239623B2 publication Critical patent/JP6239623B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/40ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/582Means for facilitating use, e.g. by people with impaired vision by tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/005Parameter used as control input for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/201Glucose concentration
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Emergency Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Dermatology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本明細書で説明されている発明の主題の実施形態は、一般的に薬物送達システムに関するものであり、より詳しくは状態変数フィードバックに基づきインスリンの注入速度を制御するためのシステムに関するものである。
関連出願の相互参照
本出願は、2012年8月30日に出願した米国仮特許出願第61/694,950号、2012年8月30日に出願した米国仮特許出願第61/694,961号、2013年4月17日に出願した米国仮特許出願第61/812,874号、2013年4月25日に出願した米国特許出願第13/870,902号、2013年4月25日に出願した米国特許出願第13/870,907号、および2013年4月25日に出願した米国特許出願第13/870,910号の利益を主張するものである。上記の出願の内容は、本願に引用して援用する。
正常な健康人の膵臓は、インスリンを産生して、血漿中グルコースレベルの上昇に反応して血流中にインスリンを放出する。膵臓内に存在するベータ細胞(β細胞)は、必要に応じて、インスリンを産生して、インスリンを血流中に分泌する。β細胞が無力化されるか、または死ぬ、1型糖尿病と称される症状を発症した場合(または症例によってはβ細胞が産生するインスリンの量が不十分である、2型糖尿病の場合)、別の供給源からインスリンが人体に供給されなければならない。
従来インスリンは経口摂取され得ないので、インスリンは注射器で注入されていた。近年、注入ポンプ療法の使用が増えてきており、特に糖尿病患者向けのインスリン送達のための使用が増えてきている。例えば、外部注入ポンプがベルト、ポケット、または同様のものに装着され、経皮針またはカニューレを皮下組織内に留置して注入チューブを介してインスリンを人体に送達する。1995年の時点において、米国内の1型糖尿病患者の5%未満が、注入ポンプ療法を使用していた。現在では、米国内の900,000人を超える1型糖尿病患者の7%超が、注入ポンプ療法を使用しており、注入ポンプを使用する1型糖尿病患者のパーセンテージは、毎年2%を超える絶対速度で増加している。さらに、1型糖尿病患者の数も、毎年3%以上増加している。それに加えて、数が増えてきているインスリン使用2型糖尿病患者も注入ポンプを使用している。医者は、持続注入は糖尿病患者の症状の制御を向上させることを認識しており、また患者に対してそれを次第に処方していきつつある。制御は行えるけれども、ポンプ療法には、従来の外部注入ポンプの使用が使用者にとってはあまり望ましくないものとなるいくつかの厄介な問題を引き起こす可能性がある。
米国特許第5,391,250号明細書 米国特許第5,390,671号明細書 米国特許第5,482,473号明細書 米国特許第5,586,553号明細書 米国特許第5,299,571号明細書 米国特許第5,954,643号明細書 米国特許第5,951,521号明細書 米国特許第5,497,772号明細書 米国特許第5,660,163号明細書 米国特許第5,791,344号明細書 米国特許第5,569,186号明細書 米国特許第6,011,984号明細書 国際公開第99/29230号パンフレット 国際公開第00/19887号パンフレット 米国特許第4,562,751号明細書 米国特許第4,678,408号明細書 米国特許第4,685,903号明細書 国際公開第00/10628号パンフレット 米国特許第4,373,527号明細書 米国特許第4,573,994号明細書 米国特許第5,807,315号明細書 米国特許第4,755,173号明細書 国際公開第00/18449号パンフレット
ファン・デン・ベルフェG、NEJM 345:1359−67、2001 コリンドM他、「インスリン依存糖尿病の患者における低血糖中のインスリンクリアランス(Insulin clearance during hypoglycemia in patients with insulin−dependent diabetes mellitus)」、Horm Metab Res, 1991 July; 23(7):333−5 カーンS E他、「人体におけるインスリン感度とベータ細胞機能の関係の数量化、双曲線関数の証明(Quantification of the relationship between insulin sensitivity and beta−cell function in human subjects. Evidence for a hyperbolic function)」、ダイアベーテス(Diabetes), 1993 November; 42(11):1663−72 アーサーC.ガイトン著、「医療生理学テキスト英文版(Textbook of Medical Physiology, Eighth Edition、W.B.サンダースカンパニー(W. B. Saunders Company,1991)」の第78章、861ページの「インスリン分泌刺激の他の要因(Other Factors That Stimulate Insulin Secretion)」
インスリンポンプでは、ポンプがインスリンプロファイルの変化を許すので、注射に使用されるより遅効性のインスリンとは反対に即効性のインスリンを使用するのが普通である。インスリン製造会社はより即効性のインスリンを開発しているので、より即効性のインスリンはすぐに採用されることが多い。しかし、現在のポンプは、まだ、それらが使用しているインスリンの速度の制限を受ける。
本明細書では、プロセッサによって実装される方法が提示される。この方法は、使用者向けにインスリン注入デバイスを制御するために使用され得る。この方法のいくつかの実施形態は、使用者の体内のアクティブインスリンの推定値を表す現在のインスリンオンボード(IOB)値を取得するために少なくとも1つのプロセッサデバイスを有するプロセッサアーキテクチャのオペレーションを伴う。この方法は、プロセッサアーキテクチャにより、取得された現在のIOB値に少なくとも一部は基づきIOB速度(IOB rate)を計算することによって継続する。この方法は、プロセッサアーキテクチャにより、計算されたIOB速度および非補償インスリン注入速度(uncompensated insulin infusion rate)に少なくとも一部は基づき調整済みインスリン注入速度を決定することによって継続する。プロセッサアーキテクチャは、インスリン注入デバイスに対する最終インスリン注入速度を選択し、決定された調整済みインスリン注入速度、非補償インスリン注入速度、または現在の基礎速度が、最終インスリン注入速度として選択される。
ここで、使用者に対してインスリン注入デバイスを制御する、プロセッサによって実装される方法も提示される。この方法のいくつかの実施形態は、使用者の体内のアクティブインスリンの推定値を表す現在のIOB値を生成することから始める。この方法は、生成された現在のIOB値に少なくとも一部は基づきIOB速度を計算することと、非補償インスリン注入速度を取得することと、式[AdjustedRate(n)=max(0;PIDRate(n)−IOBRate(n))]に従って調整済みインスリン注入速度を決定することとによって継続する。この方法は、以下の式に従って最終インスリン注入速度を選択することによって継続する。
この式において、AdjustedRate(n)は決定された調整済みインスリン注入速度であり、PIDRate(n)は取得された非補償インスリン注入速度であり、IOBRate(n)は計算されたIOB速度であり、FinalRate(n)は選択された最終インスリン注入速度であり、Basalは使用者に対してインスリン注入デバイスによって維持される現在の基礎速度である。
ここで、少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャによって実行されたときに、使用者に対してインスリン注入デバイスを制御する方法を実行するプロセッサ実行可能命令を有する有形の非一時的な電子記憶媒体も提示される。いくつかの実施形態において、この方法は、使用者の体内のアクティブインスリンの量を示す現在のIOB値を推定することから始める。この方法は、推定された現在のIOB値に少なくとも一部は基づきIOB速度を計算することと、計算されたIOB速度および非補償インスリン注入速度に少なくとも一部は基づき調整済みインスリン注入速度を決定することと、インスリン注入デバイスに対する最終インスリン注入速度を選択することとによって継続し、決定された調整済みインスリン注入速度、非補償インスリン注入速度、または現在の基礎速度は、最終インスリン注入速度として選択される。次いで、この方法は、インスリン注入デバイスによるインスリンの送達を調節するために選択された最終インスリン注入速度を規定する。
電子デバイスも、ここで提示される。電子デバイスのいくつかの実施形態は、プロセッサアーキテクチャおよびプロセッサアーキテクチャに関連する少なくとも1つのメモリ素子を備える。少なくとも1つのメモリ素子は、プロセッサアーキテクチャによって実行されたときに、使用者に対してインスリン注入デバイスを制御する方法を実行するプロセッサ実行可能命令を格納する。この方法は、使用者の体内のアクティブインスリンの量を示す現在のIOB値を計算することと、計算されたIOB値に少なくとも一部は基づきIOB速度を計算することと、計算されたIOB速度および非補償インスリン注入速度に少なくとも一部は基づき調整済みインスリン注入速度を決定することと、インスリン注入デバイスに対する最終インスリン注入速度を選択することとを伴う。選択ステップでは、決定された調整済みインスリン注入速度、非補償インスリン注入速度、または現在の基礎速度を最終インスリン注入速度として選択する。
インスリン注入デバイス用の電子コントローラも、ここで提示される。電子コントローラは、少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャおよびプロセッサアーキテクチャに関連する少なくとも1つのメモリ素子を具備する。少なくとも1つのメモリ素子は、プロセッサアーキテクチャによって実行されたときに、使用者の体内のアクティブインスリンの量を示す現在のIOB値を推定するIOB補償モジュールを提供するプロセッサ実行可能命令を格納し、推定された現在のIOB値に少なくとも一部は基づきIOB速度を計算し、計算されたIOB速度および非補償インスリン注入速度に少なくとも一部は基づき調整済みインスリン注入速度を決定する。IOB補償モジュールは、インスリン注入デバイスに対する最終インスリン注入速度を選択し、最終インスリン注入速度は、決定された調整済みインスリン注入速度、非補償インスリン注入速度、または現在の基礎速度のいずれかとして選択される。次いで、IOB補償モジュールは、インスリン注入デバイスによるインスリンの送達を調節するために選択された最終インスリン注入速度を規定する。
電子デバイスの例示的な一実施形態も、ここで提示される。電子デバイスは、少なくとも1つのプロセッサデバイスを有するプロセッサアーキテクチャおよびプロセッサアーキテクチャに関連する少なくとも1つのメモリ素子を備える。少なくとも1つのメモリ素子は、プロセッサアーキテクチャによって実行されたときに、使用者に対してインスリン注入デバイスを制御する方法を実行するプロセッサ実行可能命令を格納する。この方法は、使用者の身体にインスリンを送達するために閉ループモードでインスリン注入デバイスを動作させ、一番最近のサンプリング期間においてインスリン注入デバイスによって送達されるインスリンの量を示す現在のインスリン送達データを取得し、一番最近のサンプリング期間に対応する使用者に対する現在のセンサーグルコース値を示す現在のセンサーデータを取得し、一番最近のサンプリング期間の前に複数の履歴的サンプリング期間に対する履歴的(historical)インスリン送達データおよび履歴的センサーデータを処理して、履歴的期間に対する予測されたセンサーグルコース値を取得する。この方法は、現在のセンサーグルコース値と一番最近のサンプリング期間に対する予測された現在のセンサーグルコース値との間の差を計算することによって継続し、履歴的期間に対する予測されたセンサーグルコース値は、予測された現在のセンサーグルコース値を含む。この方法は、この差が誤差量閾値を超えるときにアラートを発生することによって継続する。
以下の詳細な説明は、少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャによって実行されたときに、使用者に対してインスリン注入デバイスを制御する方法を実行するプロセッサ実行可能命令を有する有形の非一時的な電子記憶媒体にも関係する。この方法は、使用者の身体にインスリンを送達するために閉ループモードによるインスリン注入デバイスのオペレーションを伴う。この方法は、使用者に対する履歴的センサーグルコース値から、学習開始サンプリング期間(begin-training sampling period)において取得されたベースラインとなる履歴的センサーグルコース値を識別することによって継続する。この方法は、センサーグルコース予測モデルへの複数の候補解を計算し、複数の候補解のそれぞれは、使用者に対する有界初期条件および履歴的インスリン送達データの関数として計算され、有界初期条件は、ベースラインのセンサーグルコース値の影響を受ける。この方法は、計算された複数の候補解からの最良適合解を、計算された複数の候補解からの予測されるセンサーグルコース値と履歴的センサーグルコース値のうちの第1の部分との比較の結果に基づき選択することによって継続する。最良適合解からの予測されるセンサーグルコース値が、履歴的センサーグルコース値の第2の部分と比較され、履歴的センサーグルコース値の第1の部分は、時間的に遠い履歴期間(distant history period)に対応し、履歴的センサーグルコース値の第2の部分は、最近の履歴期間に対応し、時間的に遠い履歴期間はデータサンプリングする最近の履歴期間の前にあった。この方法は、比較することに応答して、履歴的センサーグルコース値の第2の部分が少なくとも誤差量閾値分だけ最良適合解から外れているときにアラートを発生することによって継続する。
ここで、インスリン注入デバイスに対する電子コントローラの一実施形態も提示される。電子コントローラは、少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャおよびプロセッサアーキテクチャに関連する少なくとも1つのメモリ素子を具備する。少なくとも1つのメモリ素子は、プロセッサアーキテクチャによって実行されたときに、インスリン注入デバイスの閉ループオペレーション中に、一番最近のサンプリング期間中にインスリン注入デバイスによって送達されたインスリンの量を示すインスリン送達データ、および一番最近のサンプリング期間に対応する使用者に対する現在のセンサーグルコース値を示す現在のセンサーデータを取得することをモデルスーパーバイザーモジュールに行わせるプロセッサ実行可能命令を格納する。モデルスーパーバイザーモジュールは、履歴的期間についてモデル学習期間およびモデル予測期間を定義し、モデル学習期間中に取得された履歴的センサーグルコース値に関して、センサーグルコース予測モデルの最良適合解を見つけ、最良適合解は、モデル学習期間中に取得されたベースラインのセンサーグルコース値の関数であり、また履歴期間中に取得された使用者に対する履歴的インスリン送達データの関数である。モデルスーパーバイザーモジュールは、最良適合解からの少なくとも1つの予測されるセンサーグルコース値をモデル予測期間にのみ対応する少なくとも1つの履歴的センサーグルコース値と比較し、比較することに応答して、少なくとも1つの履歴的センサーグルコース値が少なくとも誤差量閾値だけ少なくとも1つの予測されるセンサーグルコース値から外れているときにアラートを発生する。
また、ここには、使用者に対してインスリン注入デバイスを制御する、プロセッサによって実装される方法の詳細な説明が含まれる。この方法は、使用者の身体にインスリンを送達するために閉ループモードでインスリン注入デバイスを動作させることから開始することができる。この方法は、一番最近のサンプリング期間においてインスリン注入デバイスによって送達されるインスリンの量を示す現在のインスリン送達データを取得することと、一番最近のサンプリング期間に対応する使用者に対する現在のセンサーグルコース値を示す現在のセンサーデータを取得することと、一番最近のサンプリング期間の前に複数の履歴的サンプリング期間に対する履歴的インスリン送達データおよび履歴的センサーデータを処理して、履歴的期間に対する予測されたセンサーグルコース値を取得することとによって継続する。次いで、この方法は、現在のセンサーグルコース値と一番最近のサンプリング期間に対する予測された現在のセンサーグルコース値との間の差を計算し、履歴的期間に対する予測されたセンサーグルコース値は、予測された現在のセンサーグルコース値を含む。この差が誤差量閾値を超えるときにアラートを発生する。
また、ここには、使用者に対してインスリン注入デバイスを制御する、プロセッサによって実装される方法の詳細な説明が含まれる。この方法は、使用者の身体にインスリンを送達するために閉ループモードでインスリン注入デバイスを動作させることから開始できる。この方法は、使用者に対する履歴的センサーグルコース値から、学習開始サンプリング期間において取得されたベースラインとなる履歴的センサーグルコース値を識別することによって継続する。次に、センサーグルコース予測モデルへの複数の候補解が計算され、複数の候補解のそれぞれは、使用者に対する有界初期条件および履歴的インスリン送達データの関数として計算され、有界初期条件は、ベースラインのセンサーグルコース値の影響を受ける。この方法は、計算された複数の候補解からの最良適合解を、計算された複数の候補解からの予測されるセンサーグルコース値と履歴的センサーグルコース値のうちの第1の部分との比較の結果に基づき選択することによって継続する。最良適合解からの予測される少なくとも1つのセンサーグルコース値が、履歴的センサーグルコース値の第2の部分と比較され、履歴的センサーグルコース値の第1の部分は、時間的に遠い履歴期間に対応し、履歴的センサーグルコース値の第2の部分は、最近の履歴期間に対応し、時間的に遠い履歴期間はデータサンプリングする最近の履歴期間の前にあった。アラートが、比較することに応答して、履歴的センサーグルコース値の第2の部分が少なくとも誤差量閾値分だけ最良適合解から外れているときに発生する。
使用者に対してインスリン注入デバイスを制御する、プロセッサによって実装される方法の別の実施形態も、以下に提示される。この方法は、使用者の身体にインスリンを送達するために閉ループモードでインスリン注入デバイスを動作させることと、履歴的期間についてモデル学習期間およびモデル予測期間を定義することと、モデル学習期間中に取得された履歴的センサーグルコース値に関して、センサーグルコース予測モデルの最良適合解を見つけることとを伴い、最良適合解は、モデル学習期間中に取得されたベースラインのセンサーグルコース値の関数であり、また履歴期間中に取得された使用者に対する履歴的インスリン送達データの関数である。この方法は、最良適合解からの少なくとも1つの予測されるセンサーグルコース値をモデル予測期間にのみ対応する少なくとも1つの履歴的センサーグルコース値と比較することによって継続する。アラートは、比較することに応答して、少なくとも1つの履歴的センサーグルコース値が少なくとも誤差量閾値だけ少なくとも1つの予測されるセンサーグルコース値から外れているときに発生する。
この概要は、以下の詳細な説明でさらに説明される簡素化された形式の概念の選択を導入するために用意されている。この概要は、請求されている主題の鍵となる特徴または本質的特徴を明示することを意図しておらず、また請求されている主題の範囲を確定する補助として使用されることも意図していない。
類似の参照番号は図全体を通して類似の要素を指している以下の図と併せて考察する際に詳細な説明および請求項を参照すると、発明の主題をより完全に理解することができる。
本発明の一実施形態による閉ループグルコース制御システムのブロック図である。 本発明の一実施形態による身体に配置される閉ループハードウェアの正面図である。 図3Aは、本発明の一実施形態において使用するためのグルコースセンサーシステムの斜視図であり、図3Bは、図3Aのグルコースセンサーシステムの側断面図であり、図3Cは、本発明の一実施形態において使用するための図3Aのグルコースセンサーシステムのセンサーセットの斜視図であり、図3Dは、図3Cのセンサーセットの側断面図である。 図3Dのセンサーの感知端部の断面図である。 本発明の一実施形態において使用するための、貯蔵槽ドアが開位置にある注入デバイスの上面図である。 本発明の一実施形態において使用するための、挿入針が引き出されている輸液セットの側面図である。 本発明の一実施形態によるセンサーおよびその電源の回路図である。 図8Aは、本発明の一実施形態による単一デバイスおよびそのコンポーネントの線図であり、図8Bは、本発明の一実施形態による2つのデバイスおよびそれらのコンポーネントの線図であり、図8Cは、本発明の一実施形態による2つのデバイスおよびそれらのコンポーネントの別の線図であり、図8Dは、本発明の一実施形態による3つのデバイスおよびそれらのコンポーネントの線図である。 図8A〜Dのデバイスおよびそのコンポーネントを一覧にした表である。 図3Aのグルコースセンサーシステムのブロック図である。 図11Aは、本発明の一実施形態による図10のグルコースセンサーシステム用のA/Dコンバータの詳細ブロック図であり、図11Bは、本発明の一実施形態によるパルス持続出力選択オプションを有する図10のグルコースセンサーシステム用のA/Dコンバータの詳細ブロック図である。 本発明の一実施形態によるノード信号のチャートを添付した図10のI−F A/Dコンバータの回路図である。 本発明の一実施形態によるノード信号のチャートを添付した図10のI−F A/Dコンバータの別の回路図である。 本発明の一実施形態によるノード信号のチャートを添付した図10のI−F A/Dコンバータのさらに別の回路図である。 本発明の一実施形態による図10のI−V A/Dコンバータの回路図である。 本発明の一実施形態によるプレフィルターおよびフィルターを有する図10のグルコースセンサーシステムのブロック図である。 本発明の一実施形態による図16のプレフィルターの一例およびデジタルセンサー値Dsigに対するその効果のチャートである。 本発明の一実施形態による図16のフィルターに対する周波数応答チャートである。 図19Aは、本発明の一実施形態による時間と共に変わるフィルター処理済みおよびフィルター未処理のセンサー信号のグラフであり、図19Bは、本発明の一実施形態による図19Aのグラフの一セクションの拡大図である。 本発明の一実施形態による身体に取り付けられているセンサーセットおよび輸液セットの断面図である。 本発明の一実施形態による時間遅延補正ウィナーフィルターの周波数応答チャートである。 本発明の一実施形態による時間と共に変わる実際のグルコース測定値と比較した時間遅延補正の前後のデジタルセンサー値Dsigのグラフである。 図23Aは、グルコースクランプ(時間に関するグルコースレベル)の線図であり、図23Bは、図23Aのグルコースクランプのさまざまな大きさに応答する正常耐糖能(NGT)者の体内のインスリン濃度のグラフである。 図24Aは、グルコースクランプの線図であり、図24Bは、本発明の一実施形態による図24Aのグルコースクランプへの比例インスリン反応の線図であり、図24Cは、本発明の一実施形態による図24Aのグルコースクランプへの積分インスリン反応の線図であり、図24Dは、本発明の一実施形態による図24Aのグルコースクランプへの微分インスリン反応の線図であり、図24Eは、本発明の一実施形態による図24Aのグルコースクランプへの比例、積分、および微分の組合せインスリン反応の線図である。 図25Aは、運動負荷個人および正常人に対するグルコースクランプへのインスリン反応のグラフであり、図25Bは、運動負荷個人および正常人に対するグルコース取り込み速度のバーチャートである。 本発明の一実施形態によるグルコースレベルフィードバックに基づきインスリン注入を通じて血糖値を制御するための閉ループシステムのブロック図である。 本発明の一実施形態による体内にある図26の制御ループの一部分の詳細ブロック図である。 図28Aは、本発明の一実施形態と共に使用するためのグルコースクランプに対する2人の異なる正常耐糖能(NGT)者の測定されたインスリン反応のグラフであり、図28Bは、本発明の一実施形態と共に使用するためのグルコースクランプに対する2人の異なる正常耐糖能(NGT)者の測定されたインスリン反応のグラフである。 図29Aは、本発明の一実施形態によるグルコースクランプ時のグルコース読み取り値と比較した2つの異なるグルコースセンサー出力のグラフであり、図29Bは、本発明の一実施形態による図29Aのグルコースクランプへの反応におけるコントローラ指令インスリン濃度と比較した血中の実際のインスリン濃度のグラフである。 本発明の一実施形態によるグルコース濃度とpHの両方を測定するためのマルチセンサーの端部の上面図である。 図31Aは、本発明の一実施形態による時間と共に変わるセンサーで測定した血糖と比較した血糖の代表図であり、図31Bは、本発明の一実施形態による図31Aと同じ期間にわたるセンサー感度の代表図であり、図31Cは、本発明の一実施形態による図31Aと同じ期間にわたるセンサー抵抗の選択図である。 本発明の一実施形態によるセンサーを再較正または交換する時期を決定するためにセンサー抵抗の微分を使用するブロック図である。 図33Aは、本発明の一実施形態による時間と共に変わるアナログセンサー信号Isigのグラフであり、図33Bは、本発明の一実施形態による図32Aと同じ期間にわたるセンサー抵抗のグラフであり、図33Cは、本発明の一実施形態による図32Bのセンサー抵抗の微分のグラフである。 図34Aは、本発明の一実施形態による遠隔測定特性モニターの底面図であり、図34Bは、本発明の一実施形態による異なる遠隔測定特性モニターの底面図である。 図35Aは、本発明の一実施形態による正常耐糖能(NGT)者のグルコースクランプへの血漿インスリン反応の図であり、図35Bは、本発明で一実施形態によるインスリンが血流中に直接送達されるのではなく皮下組織に送達されることに起因する遅延するときの図35Aの血漿インスリン反応の図である。 図36Aは、本発明の一実施形態によるインスリンボーラスが血流中に直接送達された後の時間と共に変わる血漿インスリン濃度の図であり、図36Bは、本発明の一実施形態によるインスリンボーラスが皮下組織中に送達された後の時間と共に変わる血漿インスリン濃度の図である。 本発明の一実施形態によるコントローラ後補償器および微分フィルターを加えた図26の閉ループシステムのブロック図である。 図38Aは、本発明の一実施形態による時間に関するセンサー信号測定およびVia測定のグラフであり、図38Bは、本発明の一実施形態による時間に関する測定された対向電極電圧Vcntのグラフであり、図38Cは、本発明の一実施形態による時間に関する計算されたセンサー感度のグラフであり、図38Dは、本発明の一実施形態による時間に関するセンサー抵抗Rsの計算結果のグラフであり、図38Eは、本発明の一実施形態による時間に関するセンサー抵抗Rsの別の計算結果のグラフであり、図38Fは、本発明の一実施形態による時間に関する図38Dのセンサー抵抗Rsの微分のグラフであり、図38Gは、本発明の一実施形態による時間に関する図38Eのセンサー抵抗Rsの微分のグラフであり、図38Hは、本発明の一実施形態による時間に関するセンサーが交換されたときのグラフである。 本発明の実施形態による閉ループグルコース制御システムのブロック図である。 本発明の実施形態による閉ループグルコース制御システムのブロック図である。 本発明の一実施形態による自動採血および返血のブロック図である。 図41Aは、本発明の一実施形態による実際の血糖濃度のグラフであり、図41Bは、本発明の一実施形態による図41Aの血糖への反応におけるコントローラ指令インスリン濃度と比較した血中の実際のインスリン濃度のグラフである。 本発明の一実施形態による状態変数フィードバックの制御フィードバックブロック図を示す。 本発明の実施形態による異なる制御ゲインを使用する、時間と共に変わる基礎インスリン送達速度のグラフである。 本発明の実施形態による異なる制御ゲインを使用する、時間と共に変わる皮下インスリンのグラフである。 本発明の実施形態による異なる制御ゲインを使用する、時間と共に変わる血漿インスリンのグラフである。 本発明の実施形態による異なる制御ゲインを使用する、時間と共に変わるインスリン効果のグラフである。 本発明の実施形態による状態変数フィードバックありのPIDコントローラおよび状態変数フィードバックなしのPIDコントローラを使用する、時間と共に変わるシミュレートされたグルコース濃度のグラフである。 本発明の実施形態による状態変数フィードバックありのPIDコントローラおよび状態変数フィードバックなしのPIDコントローラを使用する、時間と共に変わるシミュレートされたインスリン送達のグラフである。 閉ループシステムコントローラの例示的な一実施形態の処理モジュールおよびアルゴリズムを示すブロック図である。 インスリン注入デバイスに対する制御プロセスの例示的な実施形態を示す流れ図である。 積分クリップ値対センサーグルコースレベルのグラフである。 インスリンオンボード(IOB)補償モジュールの例示的な一実施形態の概略を示すブロック図である。 IOB補償プロセスの例示的な実施形態を示す流れ図である。 モデルスーパーバイザーモジュールのオペレーションに関連する特定の時間事象を示す線図である。 センサーモデル監視プロセスの例示的な実施形態を示す流れ図である。 図55に示されているセンサーモデル監視プロセスと連動して実行され得る、センサーモデル学習プロセスの例示的な一実施形態を示す流れ図である。 モデルスーパーバイザーモジュールによって検出され得る2つの例示的な障害状態を示す線図である。
以下の詳細な説明は、本質的に単なる例にすぎず、発明の主題の実施形態またはそのような実施形態の応用および使用を制限することを意図していない。本明細書で使用されているような「例示的な」という単語は、「一例、事例、または例示として使用される」ことを意味する。本明細書に「例示的」と記載されたいかなる実装も、必ずしも他の実装よりも好ましいまたは有利であると解釈されるべきではない。さらに、前記技術分野、背景技術、概要、または以下の詳細な説明で提示されている明示された、または暗示された理論により束縛されることも意図していない。
技法および技術は、本明細書では、機能的および/またはブロックコンポーネントに関して、またさまざまなコンピューティングコンポーネントまたはデバイスによって実行され得るオペレーション、処理タスク、および機能の記号的表現を参照しつつ説明され得る。そのようなオペレーション、タスク、および機能は、ときには、コンピュータ実行、コンピュータ化、ソフトウェア実装、またはコンピュータ実装と称される。図示されているさまざまなブロックコンポーネントは、指定された機能を実行するように構成された任意の数のハードウェア、ソフトウェア、および/またはファームウェアコンポーネントによって実現され得ることは理解されるであろう。例えば、システムまたはコンポーネントの一実施形態は、1つ以上のマイクロプロセッサもしくは他の制御デバイスの制御の下でさまざまな機能を実行することができる、さまざまな集積回路コンポーネント、例えば、記憶素子、デジタル信号処理素子、論理素子、ルックアップテーブル、または同様のものを使用することができる。
ソフトウェアまたはファームウェアで実装される場合、本明細書で説明されているシステムのさまざまな要素は、本質的に、さまざまなタスクを実行するコードセグメントまたは命令である。プログラムまたはコードセグメントは、有形の、非一時的なプロセッサ可読媒体に格納され得る。「プロセッサ可読媒体」または「機械可読媒体」は、情報を格納または転送することができる媒体を含み得る。プロセッサ可読媒体の例として、電子回路、半導体メモリデバイス、ROM、フラッシュメモリ、消去可能ROM(EROM)、フロッピー(登録商標)ディスケット、CD−ROM、光ディスク、ハードディスク、または同様のものが挙げられる。
本明細書で説明されているプロセスに関連して実行されるさまざまなタスクは、ソフトウェア、ハードウェア、ファームウェア、またはこれらの組合せによって実行され得る。説明されているプロセスは、いくつもの追加のまたは代替的なタスクを含むことができ、特定の図に示されているタスクは、図示されている順序で実行される必要はなく、説明されているプロセスは、本明細書で詳しくは説明されていない追加の機能性を有するより包括的なプロシージャまたはプロセスに組み込まれ得ることは理解されるであろう。さらに、図に示されているタスクのうちの1つ以上は、意図された全体的な機能性が損なわれない限り説明されているプロセスの一実施形態から省くことも可能である。
例示することを目的として図面に示されているように、本発明は、人体に対して行った検体濃度測定からのフィードバックに基づき使用者の体内への流体注入速度を調節するための閉ループ注入システムに具現化される。特定の実施形態において、本発明は、人体に対して行ったグルコース濃度測定の結果に基づき使用者の体内へのインスリン注入速度を調節するための制御システムに具現化される。好ましい実施形態では、システムは、膵臓ベータ細胞(β細胞)をモデル化するように設計される。言い換えると、システムは、体内の血糖濃度の変化に応答するときに完全に機能しているヒトβ細胞によって生じるような類似の濃度プロフィルにおいて使用者の体内にインスリンを放出する注入デバイスを制御するということである。
したがって、システムは、インスリンが代謝と細胞分裂の両方の効果を有するので、血糖値への身体の自然なインスリン反応をシミュレートし、インスリンを効率的に使用するだけでなく、他の身体機能にも対応できる。しかし、アルゴリズムでは、β細胞を精密にモデル化しなければならないが、それは、インスリンがどれだけ送達されるかに関係なく、体内のグルコース変動を最小にするように設計されているアルゴリズムは、過度の体重増加、高血圧症、およびアテローム性動脈硬化症を引き起こす可能性があるからである。本発明の好ましい実施形態において、システムは、インビボでのインスリン分泌パターンをエミュレートし、正常な健常人が受けるインビボでのβ細胞適応と一致するようにこのパターンを調整することが意図されている。インスリン感受性(S)が広く変化する、正常耐糖能(NGT)を有する被験者のインビボでのβ細胞反応は、グルコース恒常性の維持に対する最適なインスリン反応である。
好ましい実施形態は、図1に示されているように、グルコースセンサーシステム10、コントローラ12、およびインスリン送達システム14を備える。グルコースセンサーシステム10は、身体20内の血糖値18を表すセンサー信号16を生成し、そのセンサー信号16をコントローラ12に送る。コントローラ12は、センサー信号16を受信して、インスリン送達システム14に伝達されるコマンド22を生成する。インスリン送達システム14は、コマンド22を受信し、コマンド22に応答して身体20内にインスリン24を注入する。
一般的に、グルコースセンサーシステム10は、グルコースセンサーと、電力をセンサーに供給し、センサー信号16を生成するためのセンサー電気コンポーネントと、センサー信号16をコントローラ12に搬送するためのセンサー通信システムと、電気コンポーネントおよびセンサー通信システム用のセンサーシステムハウジングとを備える。
典型的には、コントローラ12は、センサー信号16に基づきインスリン送達システム14に対するコマンドを生成するためのコントローラ電気コンポーネントおよびソフトウェア、ならびにセンサー信号16を受信し、コマンドをインスリン送達システム14に搬送するためのコントローラ通信システムを備える。
一般的に、インスリン送達システム14は、注入デバイスおよび身体20内にインスリン24を注入するための注入チューブを備える。特定の実施形態において、注入デバイスは、コマンド22に従って注入モーターを作動させるための電気コンポーネントと、コントローラ12からコマンド22を受信するための注入通信システムと、注入デバイスを保持するための注入デバイスハウジングとを備える。
好ましい実施形態では、コントローラ12は、注入デバイスハウジング内に収納され、注入通信システムは、コントローラ12から注入デバイスにコマンド22を搬送する電気トレースまたは電線である。代替的実施形態では、コントローラ12は、センサーシステムハウジング内に収納され、センサー通信システムは、センサー電気コンポーネントからコントローラ電気コンポーネントにセンサー信号16を搬送する電気トレースまたは電線である。他の代替的実施形態では、コントローラ12は、それ専用のハウジングを有するか、または付加デバイス内に入れられる。別の代替的実施形態において、コントローラは、注入デバイスおよびセンサーシステムをすべて1つのハウジング内に収めて配置される。さらなる代替的実施形態において、センサー、コントローラ、および/または注入通信システムは、ケーブル、電線、光ファイバー線材、RF、IR、または超音波送信機および受信機、または同様のものを電気トレースの代わりに利用することができる。
システムの概要
本発明の好ましい実施形態は、センサー26、センサーセット28、遠隔計測特性モニター30、センサーケーブル32、注入デバイス34、注入チューブ36、および輸液セット38を備え、すべて、図2に示されているように、使用者の身体20に装着される。遠隔計測特性モニター30は、図3Aおよび3Bに示されているように、プリント基板33、電池35、アンテナ(図示せず)、およびセンサーケーブルコネクタ(図示せず)を支持するモニターハウジング31を備える。センサー26の感知端部40は、露出されている電極42を有し、図3Dおよび4に示されているように、皮膚46を通して使用者の身体20の皮下組織44内に挿入される。電極42は、皮下組織44全体を通して存在する間質液(ISF)と接触している。センサー26は、図3Cおよび3Dに示されているように、使用者の皮膚46に接着されて固定される、センサーセット28によって適所に保持される。センサーセット28は、センサーケーブル32の第1の端部29に接続するようにセンサー26のコネクタ端部27を用意する。センサーケーブル32の第2の端部37は、モニターハウジング31に接続する。モニターハウジング31に備えられている電池35は、プリント基板33上のセンサー26および電気コンポーネント39に電力を供給する。電気コンポーネント39は、センサー信号16をサンプリングし、デジタルセンサー値(Dsig)をメモリ内に格納し、次いで、メモリから、注入デバイスに備えられているコントローラ12にデジタルセンサー値Dsigを定期的に送信する。
コントローラ12は、デジタルセンサー値Dsigを処理し、注入デバイス34に対するコマンド22を生成する。好ましくは、注入デバイス34は、コマンド22に応答し、図5に示されているように、注入デバイス34の内側に配置されている貯蔵槽50からインスリン24を強制的に押し出すプランジャ48を作動させる。特定の実施形態において、貯蔵槽50のコネクタ先端部54は、注入デバイスハウジング52を貫通し、注入チューブ36の第1の端部51が、コネクタ先端部54に取り付けられる。注入チューブ36の第2の端部53は、輸液セット38に接続する。インスリン24は、注入チューブ36を通して輸液セット38および身体20内に強制的に送り込まれる。輸液セット38は、図6に示されているように、使用者の皮膚46に接着されて取り付けられる。輸液セット38の一部として、カニューレ56は皮膚46を貫通し、皮下組織44内で終端し、貯蔵槽50と使用者の身体20の皮下組織44との間の流体的連通を完成する。
代替的実施形態では、閉ループシステムは、病院向けのグルコース管理システムの一部であってよい。集中治療におけるインスリン療法が、被験者がすでに糖尿病を患っているかどうかに関係なく、創傷治癒を劇的に改善し、血液感染、腎不全、および多発性神経障害の死亡率を低減することが証明されていることを考えると(本願に引用して援用するファン・デン・ベルフェGら、NEJM 345:1359−67、2001(非特許文献1)を参照)、本発明は、集中治療の患者の血糖値を制御するためにこの病院環境において使用することができる。これらの代替的実施形態では、静脈(IV)フックは、典型的には、患者が集中治療環境(例えば、ICU)内にいる間に患者の腕の中に埋め込まれるので、既存のIV接続部からピギーバックオフする閉ループグルコース制御部が確立され得る。したがって、病院向けのシステムでは、IV流体を迅速に送達することを目的とする患者の脈管系に直接接続されるIVカテーテルも、採血および血管内腔内への物質(例えば、インスリン、抗凝血剤)の直接注入を円滑にするために使用され得る。さらに、グルコースセンサーを静脈ラインに通して血流からのリアルタイムグルコースレベルを与えることができる。したがって、病院向けシステムのタイプによっては、代替的実施形態は、好ましい実施形態において説明されているようなセンサー26、センサーセット28、遠隔計測特性モニター30、センサーケーブル32、注入チューブ36、および輸液セット38などの説明されているシステムコンポーネントを必ずしも必要としない。その代わりに、本願に引用して援用する2002年9月27日に出願した仮出願第60/414,248号、名称「60/414,248Multi−lumen Catherter」で説明されているような標準的な血糖測定器または血管グルコースセンサーは、血糖値を注入ポンプ制御部に送るために使用され、既存のIV接続部が、インスリンを患者に投与するために使用され得る。
病院向けシステムにおけるデバイスのさまざまな組合せが、本発明の閉ループコントローラと共に使用され得ることを理解することは重要である。例えば、図39Aの好ましいシステムと比較して図39Bに説明されているように、自動血糖/静脈内インスリン注入システムは、自動的に、固定された間隔(好ましくは5〜20分)で血液を採血し、グルコース濃度について分析し、より頻繁な間隔(好ましくは1分)で血糖値を外挿し、その外挿された信号を使用して以下で説明されているコントローラに従ってIVインスリン注入を計算することができる。修正された自動血糖/静脈内インスリン注入システムは、皮下センサー補償および皮下インスリン補償(以下で進み遅れ補償器に関して説明されているような)の必要性をなくす。自動採血、およびその後のグルコース判定は、既存の技術(例えば、VIAまたはBiostatorのような血糖分析器)を使用して、または図40で説明されているシステムによって遂行され得る。図40のシステムは、蠕動ポンプ420を使用して、電流測定センサー410(センサー26で使用されているのと同じ技術)上で採血し、次いで、貯蔵槽400から加えたフラッシュ(0.5から1.0ml)で返血する。フラッシュは、食塩液、ヘパリン、グルコース溶液、および/または同様のものの構成物からなるものとしてよい。血液試料が、1分超、20分未満の間隔で得られる場合、血糖判定結果は、以下で詳しく説明されるようにコントローラの論理機能と連携して現在の値(n)および以前の値(n−1)に基づき外挿により分単位で外挿され得る。20分を超える間隔で得られた血液試料については、ゼロ次ホールドが外挿に使用される。これらの血糖値に基づき、注入デバイスは、以下でさらに詳しく説明されている閉ループコントローラに基づきインスリンを投与することができる。
システムの他の修正形態において、手動血糖/静脈内インスリン注入システムが使用されるものとしてよく、標準血糖測定器(例えば、YSI、Beckmanなど)から血糖値を手動入力し、より頻繁な間隔(好ましくは1分)でその値を外挿し、IVインスリン注入を計算することに対する代理信号を発生する。あるいは、センサー血糖/静脈内インスリン注入システムで、頻繁な血糖判定に対して連続的グルコースセンサー(例えば、血管、皮下組織など)を使用することができる。さらに、インスリン注入分は、以下で説明されているコントローラによる前の例のうちの1つで静脈内ではなく皮下的に投与され得る。
さらなる代替的実施形態において、システムコンポーネントは、より少ないまたはより多くのデバイスに組み合わされ、および/またはそれぞれのデバイスの機能は、使用者のニーズに合わせて異なる仕方で割り当てられ得る。
コントローラ
上で説明されている好ましい実施形態などにおいて、閉ループシステムに対するハードウェアが構成された後、ハードウェアの人体への影響は、このコントローラによって判定される。好ましい実施形態では、コントローラ12は、膵臓ベータ細胞(β細胞)をモデル化するように設計される。言い換えると、コントローラ12は、血液中のインスリン濃度を身体20内の血糖濃度に反応する完全に機能しているヒトβ細胞によって引き起こされるような類似の濃度プロファイルに追随させる速度で身体20内にインスリン24を放出することを注入デバイス34に指令する。さらなる実施形態において、「半閉ループ」システムを使用することができ、そこでは、使用者はインスリンが実際に送達される前にインスリン送達の確認を促される。
血糖値への身体の自然なインスリン反応をシミュレートするコントローラは、インスリンが代謝と細胞分裂の両方の効果を有するので、インスリンを効率的に使用するだけでなく、他の身体機能にも対応できる。インスリンがどれだけ送達されるかに関係なく、体内のグルコース変動を最小にするように設計されているコントローラのアルゴリズムは、過度の体重増加、高血圧症、およびアテローム性動脈硬化症を引き起こす可能性がある。本発明の好ましい実施形態において、コントローラ12は、インビボでのインスリン分泌パターンをエミュレートし、インビボでのβ細胞適応と一致するようにこのパターンを調整することを意図されている。インスリン感受性(S)が広く変化する、正常耐糖能(NGT)を有する被験者のインビボでのβ細胞反応は、グルコース恒常性の維持に対する最適なインスリン反応である。
β細胞とPID制御
一般に、グルコースの変化に対するインビボでのβ細胞反応は、「第1相」および「第2相」インスリン反応によって特徴付けられる。この二相性インスリン反応は、図23Bに示されているように、NGT被験者に適用される高血糖性クランプにおいて明確に見られる。高血糖性クランプでは、図23Aに示されているように、グルコースレベルは、基礎レベルGから新しいより高いレベルGまで急速に増加し、次いで、より高いレベルGで一定を保つ。グルコースの増加の大きさ(ΔG)は、インスリン反応に影響を及ぼす。図23Bには、4つの異なるグルコースクランプレベルについて4つのインスリン反応曲線が示されている。
β細胞の二相性インスリン反応は、比例+積分+微分(PID)コントローラのコンポーネントを使用してモデル化され得る。PIDコントローラは、PIDアルゴリズムが広範な非医療動的システムに対して安定しているため選択され、PIDアルゴリズムは、システムダイナミックスにおいて大きく変わる外乱および変化に対して安定していることが判明している。
高血糖性クランプにおけるβ細胞のインスリン反応は、PIDコントローラのコンポーネントを使用してβ細胞をモデル化することで図24A〜Eに線図として示されている。PIDコントローラの比例成分Uおよび微分成分Uは、第1相インスリン反応440を表すために組み合わされ、これは数分間持続する。PIDコントローラの積分成分Uは、第2相インスリン反応442を表し、これは高血糖性クランプ状態の下でインスリン放出の着実な増加である。それぞれの成分のインスリン反応への寄与の大きさは、以下の式によって記述される。
比例成分応答:U=K(G−G
積分成分応答:
および
微分成分応答:
ただし、式中、
は、インスリン送達システムに送信されるコマンドの比例成分であり、
は、インスリン送達システムに送信されるコマンドの積分成分であり、
は、インスリン送達システムに送信されるコマンドの微分成分であり、
は、比例ゲイン係数であり、
は、積分ゲイン係数であり、
は、微分ゲイン係数であり、
Gは、現在の血糖値であり、
は、所望の基礎グルコースレベルであり、
tは、最後のセンサー較正以降経過した時間であり、
は、最後のセンサー較正の時刻であり、
は、tにおける基礎インスリン濃度であるか、またはU(t)として記述することもできる。
β細胞によるインスリン反応の2つの相をモデル化するPID成分の組合せが、図24Eに示されており、これは図24Aの高血糖性クランプに応答する。図24Eは、第1相反応440の大きさが微分ゲインKおよび比例ゲインKによって駆動されることを示している。また、第2相反応442の大きさは、積分ゲインKによって駆動される。
PIDコントローラのコンポーネントは、それの離散形式で表すこともできる。
比例成分応答:
積分成分応答:
微分成分応答:
ただし、K、K、およびKは、比例、積分、および微分ゲイン係数であり、SGおよびdGdtは、それぞれフィルタリングされたセンサーグルコースおよび微分であり、上付き文字nは、離散時間を指す。
急性インスリン反応は、広い食後血糖変動を防止する上で極めて重要である。一般的に、グルコースレベルの急激な増加に対する初期インスリン反応が生じる結果、グルコースレベルを所望の基礎グルコースレベルに戻すのに必要な全インスリンは少なくなる。これは、インスリンの注入が身体が取り込むグルコースのパーセンテージを高めるからである。グルコース濃度が高い間に大量のインスリンを注入してグルコース取り込みのパーセンテージを高めると、結果として、インスリンの使用効率がよくなる。逆に、グルコース濃度が低い間に大量のインスリンを注入すると、結果として、大量のインスリンを使用して比較的少量のグルコースを取り除くことになる。言い換えると、大きい数のより大きなパーセンテージは、小さい数のより大きなパーセンテージを超えるということである。より少ない全インスリンを注入することは、使用者のインスリン耐性の発症を回避する助けとなる。同様に、第1相インスリンは、結果として肝臓でのグルコース生産を初期に抑制すると考えられる。
インスリン感受性は、固定されず、身体による運動の量に応じて身体内で劇的に変化し得る。一研究において、例えば、運動負荷の高い個人(週5日を超えて訓練した個人)のインスリン反応を高血糖性クランプで正常耐糖能(NGT)を有する被験者のインスリン反応と比較した。運動負荷を受けた個人444のインスリン反応は、図25Aに示されているように、NGT被験者446のインスリン反応の約1/2であった。しかし、これらの個人(運動負荷448または正常450)のそれぞれに対するグルコース取り込み速度は、図25Bに示されているように、実質的に同一であった。したがって、運動負荷を受けた個人は、NGT者と同じグルコース取り込みに至るインスリン感受性の2倍およびインスリン反応の半分を有すると推測することができる。図25Aからわかるように、運動の効果に起因して第1相インスリン反応440が減少するだけでなく、第2相インスリン反応442がインスリン感受性に適応することも示されている。
好ましい実施形態では、閉ループ制御システムを使用することで、機能が不十分であるβ細胞を補償するために身体にインスリンを送達することができる。それぞれの身体に対して所望の基礎血糖値Gがある。所望の基礎血糖値Gと現在の血糖値Gの推定値との間の差は、補正されなければならないグルコースレベル誤差Gである。グルコースレベル誤差Gは、図26に示されているように、コントローラ12への入力として与えられる。
グルコースレベル誤差Gが正(血糖値Gの現在の推定値が所望の基礎血糖値Gより高いことを意味する)である場合、コントローラ12は、インスリン24を身体20に供給するように注入デバイス34を駆動するインスリン送達コマンド22を生成する。制御ループに関して、グルコースは正であると考えられ、したがって、インスリンは負である。センサー26は、ISFグルコースレベルを感知し、センサー信号16を生成する。センサー信号16はフィルタリングされ、現在の血糖値452の推定値を生成するように較正される。特定の実施形態において、現在の血糖値Gの推定値は、ループを再び開始するため新しいグルコースレベル誤差Gを計算するために所望の基礎血糖値Gと比較する前に補正アルゴリズム454で調整される。
グルコースレベル誤差Gが負(血糖値の現在の推定値が所望の基礎血糖値Gより低いことを意味する)である場合、コントローラ12は、グルコース誤差Gの積分成分応答がまだ正であるかどうかに応じてインスリン送達を低減するかまたは停止する。
グルコースレベル誤差GEがゼロ(血糖値の現在の推定値が所望の基礎血糖値GBに等しいことを意味する)である場合、コントローラ12は、微分成分(グルコースレベルが上昇しているかまたは下降しているか)および積分成分(どれだけ長い間、グルコースレベルが基礎血糖値G B よりどれだけ高いか、または低いか)に応じてインスリンを注入するコマンドを発行するか、または発行し得ない。「半閉ループ」実施形態では、使用者は、コントローラ12がインスリンを注入するコマンドを発行する前に促される。このプロンプトは、使用者に対してディスプレイ上に表示されるか、使用者に対して音で知らされるか、または他の何らかの方法で、システムがインスリンを送達する準備ができているという指示、例えば、振動もしくは他の触知性指示を使用者に与えるものとしてよい。それに加えて、送達されるインスリンの量は、その日に注入される全量またはインスリン送達による使用者の血糖値に対する潜在的な効果などの、他の情報と共に、またはなしで、表示され得る。それに応答して、使用者は、例えば、ボタン、キー、または他の入力を選択することによって、インスリンを送達すべきかすべきでないかを指示することができる。さらなる実施形態において、偶然にインスリンが送達されることのないように少なくとも2回キーストロークがなければならない。
制御ループに対して身体が有する効果をより明確に理解するために、インスリンが間質液(ISF)中のグルコース濃度に対して有する生理学的効果のより詳細な説明が必要である。好ましい実施形態では、注入デバイス34は、輸液セット38のカニューレ56を通してインスリンを身体20の皮下組織44のISF中に送達する。また、図27のブロック図で説明されているように、インスリン24は、カニューレの周囲の局部ISFから血漿中に拡散し、次いで、主循環系で身体20の全体に広がる。次いで、インスリンは、血漿から間質液ISF中に、実質的に全身にわたって拡散する。インスリン24は、体内組織の細胞上の膜受容体タンパク質と結合し、活性化させる。これは、活性化された細胞中へのグルコースの浸透を円滑にする。このようにして、身体20の組織は、ISFからグルコースを取り込む。ISFグルコースレベルが減少すると、グルコースは、血漿からISF中に拡散して、グルコース濃度を平衡状態に維持する。最後に、ISF中のグルコースは、センサー膜に浸透し、センサー信号16に影響を及ぼす。
それに加えて、インスリンは、肝臓のグルコース産生に直接的および間接的影響を及ぼす。インスリン濃度が増加すると、肝臓のグルコース産生は減少する。したがって、急性および即時インスリン反応は、身体がグルコースを効率よく取り込むのを助けるだけでなく、さらに肝臓が血流中にグルコースを加えることを実質的に停止する。代替的実施形態では、インスリンは、静脈、動脈、腹膜腔、または同様のもの中への送達など、間質液中に送達する代わりに、血流中により直接的に送達される。したがって、インスリンを間質液から血漿中に移動することに関連する遅延時間は短縮される。他の代替的実施形態では、グルコースセンサーは、血液または間質液以外の体液と接触するか、またはグルコースセンサーは、体外にあり、非侵襲的手段を通じてグルコースを測定する。代替的グルコースセンサーを使用する実施形態では、血糖値と測定された血糖値との間の遅延が短い場合も長い場合もある。
コントローラのゲインの選択
好ましい実施形態では、コントローラのゲインK、K、Kは、コントローラ12からのコマンドが血液中のインスリン濃度を身体内の血糖濃度に反応する完全に機能しているヒトβ細胞によって引き起こされるような類似の濃度プロファイルに追随させる速度で、身体20内にインスリン24を放出することを注入デバイス34に行わせるように選択される。好ましい実施形態では、ゲインは、健全な正常に機能しているβ細胞と共に、複数の正常耐糖能(NGT)者のインスリン反応を観測することによって選択され得る。1セットのコントローラのゲインを決定する第1のステップは、NGT者の群から血糖および血中インスリン濃度の測定を定期的に行うことである。第2に、この群の中のそれぞれの個人は、血糖および血中インスリン濃度を定期的に測定し記録することを続けながら、高血糖性クランプに曝される。第3に、最小二乗曲線適合が、それぞれの個人に対する時間と共に測定された記録済み血中インスリン濃度に適用される。この結果は、この群のそれぞれの個人に対する高血糖性クランプへのインスリン反応を表す1セットの曲線である。第4に、これらの曲線は、それぞれの個人について、コントローラのゲインK、K、およびKを計算するために使用される。そして最後に、個人のそれぞれからの比例ゲインが平均されて、コントローラ12で使用される平均比例ゲインKが得られる。同様に、積分ゲインKおよび微分ゲインKが平均され、コントローラ12に対する平均積分ゲインKおよび平均微分ゲインKが得られる。あるいは、最大値、最小値、高い値、低い値、2または3シグマ偏差値、または同様の値などの、他の統計値を平均値の代わりに使用してもよい。群の中のさまざまな個人について計算されたゲインは、コントローラで使用されるゲインを統計的に計算する前に、フィルタリングして異常なデータ点を除去することができる。
一例において、図28AおよびBに示されているように、最小二乗曲線適合法を使用して、群の中の2人の断食している個人から代表的インスリン反応曲線を生成する。次いで、コントローラのゲインが、2人の代表的な個人のインスリン反応曲線から計算されており、これらは表1に示されている。コントローラのゲインを計算するときに、インスリンクリアランス速度(k)は、10(インスリンml)/分/(体重kg)であると仮定された。インスリンクリアランス速度kは、体内の血流からインスリンが取り出される速度である。最後に、それぞれのタイプのゲインに対する平均値が、表1に示されているように、群からの測定結果を使用して計算される。
コントローラのゲインは、さまざまな単位で表すことができ、および/または英国もしくはS.I単位、浮動小数点もしくは整数ソフトウェア実装、利用可能なソフトウェアメモリ、または同様のものに対する選好に応じて換算係数で修正され得る。表1のコントローラのゲインに対する単位のセットは以下の通りである。
:(グルコースmg)/(血漿dl)当たり(インスリンmU)/分/(体重Kg)、
:(グルコースmg)/(血漿dl)分当たり(インスリンmU)/分/(体重Kg)、および
:(グルコースmg)/(血漿dl)/分当たり(インスリンmU)/分/(体重Kg)。
代替的実施形態では、血中インスリン濃度の測定結果からインスリン反応曲線を生成するために、他の曲線適合法が使用される。
それぞれのNGT者に対するインスリン反応曲線からコントローラのゲインを計算するために、インスリンクリアランス速度(k)、個人の体重(W)、およびインスリン感受性Sの推定値が必要である。インスリンクリアランス速度(k)は、一般的に体重に比例し、文献に十分に記載されている。個人のインスリン感受性Sは、静脈内耐糖能試験、高血糖クランプを使用して、または糖尿病患者の場合には、個人の日常インスリン必要量と日常炭水化物摂取量とを比較して測定され得る。
特定の実施形態において、インスリン感受性Sとインスリンクリアランス速度kの2つのパラメータが、それぞれの個人について測定される。他の実施形態では、インスリンクリアランス速度kは、個人の体重が与えられたときに文献から推定される。他の特定の実施形態において、より長い、またはより短いインスリンクリアランス時間が使用される。さらに他の実施形態では、パラメータはすべて推定される。追加の実施形態では、1つ以上のパラメータが測定され、少なくとも1つのパラメータが文献から推定される。
他の代替的実施形態では、コントローラのゲインは、類似の体格を有する個人の群を使用して計算される。例えば、高血糖性クランプに対するインスリン反応は、背が高く痩せたNGTの男性について測定されて、その群内のそれぞれの個人についてのコントローラインスリン反応ゲインを計算してもよい。次いで、これらのゲインが統計的に組み合わされ、背が高く痩せたNGTの男性について1セットの代表的なコントローラのゲインが生成される。限定はしないが、背が低く重いNGT女性、中程度の背の高さで中程度の体重で運動負荷の高い女性、平均的な身長と体重の10歳児などのような他の群について、同じことが行われ得る。次いで、コントローラのゲインが、それぞれの個別使用者についてそれらを最もよく表す群に基づき選択される。さらなる代替的実施形態において、コントローラのゲインは、それぞれの個別使用者について一意的に選択される。特定の実施形態において、1人の使用者に対するコントローラのゲインは、インスリン感受性、インスリンクリアランス時間、インスリン出現時間、インスリン濃度、体重、体脂肪率、身体代謝、または、妊娠、年齢、心臓状態、もしくは同様のものなどの他の身体特性の測定に基づいて選択される。
他の代替的実施形態では、コントローラのゲインは、使用者の体重Wおよびインスリン感受性Sの関数として推定される。この方法を正当化するために、一連の観測結果が使用される。第1の観測結果は、コントローラのゲインが互いに比例することである。言い換えると、グルコース濃度の小さな変化は、小さな微分応答U、小さな比例応答U、および小さな積分応答Uを引き起こすということである。そして、グルコース濃度のより大きな変化は、図23Bに示されているように、比例的により大きな微分応答U、比例的により大きな比例応答Uおよび比例的により大きな積分応答Uを引き起こす。グルコース濃度の変化は、コントローラ反応UPIDの3つすべての成分に比例的に影響を及ぼす。第2の観測結果は、第1相インスリン反応(φ1)が微分ゲインKに比例することである。そして第3の観測結果は、2つの定数が、公開文献の情報から容易に得られるか、または一般集団の断面から測定され得ることである。2つの定数は、体重が与えられた場合の人についてのインスリンクリアランス速度(k)およびグルコース濃度の変化が与えられた場合の人についての体内動態指標(DI)である。
インスリンクリアランス速度kを計算するのに必要とされる複数の情報源が存在するが、1つの情報源は、Horm Metab Res, 1991 July; 23(7):333−5で公開されているコリンドMらによって書かれた論文「インスリン依存糖尿病の患者における低血糖中のインスリンクリアランス(Insulin clearance during hypoglycemia in patients with insulin−dependent diabetes mellitus)」(非特許文献2)である。インスリンクリアランス速度kは、注入されたインスリンを定常状態血漿インスリン濃度で割った値から得られる。個人の体重と無関係であるインスリンクリアランス定数Aは、(特定の個人から測定された)インスリンクリアランス速度kを個人の体重で割ることによって得られるものとしてよい。インスリンクリアランス定数Aは、個人が、HIV、他の代謝に影響する疾病または同様のものにかかった後などの酌量すべき状況下にあるときを除いて、一般に、すべての人について同じである。
グルコース濃度の変化が与えられた場合の人についての体内動態指標(DI)は、ダイアベータス(Diabetes), 1993 November; 42(11):1663−72で公開されているカーンS Eらによって書かれた論文「人体におけるインスリン感度とベータ細胞機能の関係の数量化、双曲線関数の証明(Quantification of the relationship between insulin sensitivity and beta−cell function in human subjects. Evidence for a hyperbolic function)」(非特許文献3)に提示される情報から入手可能である。
体内動態指標DIおよびインスリンクリアランス速度kは共に、試験から直接測定されてもよい。体内動態指標DIは、グルコースクランプ試験から測定される第1相インスリン反応およびインスリン感受性試験から測定される個人のインスリン感受性が与えられると計算されてもよい。インスリンクリアランス速度kは、インスリンクリアランス試験から測定され得る。グルコースクランプ試験およびインスリンクリアランス試験は、上述の論文に記載され、また、当技術分野でよく知られている。インスリン感受性Sは、静脈内耐糖能試験または高血糖クランプ試験を使用して測定され得る。
これらの観測結果が与えられると、以下のパラメータ、すなわち、所望の第1相インスリン反応φ1、KとKとの比、およびKとKとの比が、グルコースクランプに対するNGT者のインスリン反応から測定され得る。次いで、微分ゲインKが、定数kおよびDIを使用して第1相インスリン反応φ1から計算され得る。そして最後に、KおよびKが、KとKとの比およびKとKとの比を使用して計算され得る。
第1相インスリン反応φ1は、グルコースクランプのほぼ最初の10分の間の、インスリン反応曲線の下の面積として、NGT者において観測され得る。グルコースクランプにおけるグルコース濃度の増加は、ΔG=(G−G)であり、ただし、Gは、クランプにおけるグルコース濃度、Gに等しく、Gは、クランプの前の基礎グルコース濃度である。
第1相インスリン反応φ1の重要性は、正常耐糖能(NGT)を有する被検者において、第1相インスリン反応φ1とインスリン感受性(S)の積が体内動態指標、DI=φ1Sとして知られている定数であることを示す研究によって強調されてきた。したがって、
である。
異なるΔGについて、異なるφ1、したがって、異なるDIが存在する。しかし、比DI/ΔGは、異なるインスリン感受性を有する異なる個体についても実質的に一定である。
インスリン感受性Sは、体内組織が、所定の量のインスリンについて取り込むことになるグルコース濃度のパーセンテージとして定義される。β細胞は、第1相インスリン反応φ1においてβ細胞が分泌するインスリンの量を調整することによってインスリン感受性の変化に自然に適応する。このことは、身体が、最適レベルの耐糖能を自然に求めることを示唆する。β細胞のこの特性を真似るコントローラは、身体の自然なインスリン反応をより正確にシミュレートする。
瞬時インスリン反応(RI)は、インスリンクリアランス速度(k)および第1相インスリン反応φ1が与えられた場合に、RI=kφ1として計算され得る。
インスリンクリアランス速度kは体重(W)に比例する、したがって、kの代わりに比例定数Aと使用者の体重Wを用い、かつ、φ1をDIとSとの比で置換えることで、式
が得られる。
瞬時インスリン反応Rは、微分ゲインKとグルコース濃度の変化ΔGの積、R=KΔGとして表現され得る。
互いに等しい、Rについて2つの方程式を設定し、Kについて解くと
が得られる。
上述のように、DI/ΔGおよびAは、公開文献内のデータから入手可能であるか、または公開文献内のデータから計算される定数である。これらの定数を組み合わせて単一の定数Q、
にすると、使用者の体重Wと使用者のインスリン感受性Sの関数である微分ゲインK
に対する方程式が得られる。
微分ゲインKが計算された後、比を使用して、比例ゲインおよび積分ゲインが計算される。比K/Kは、10〜60分、ただし、より典型的には20〜40分の範囲の、好ましくは30分の、インスリン作用についての優位時定数に設定され得る。例えば、30分の時定数を使用し、Kが与えられたとしてKを計算すると、関係式
が得られる。同様にして、比K/Kは、NGT者の母集団から測定される平均比に設定され得る。そしてKがKから計算され得る。
特定の実施形態において、使用者は、使用者の体重Wとインスリン感受性Sを、コントローラを収容するデバイスに入力する。次いで、コントローラのゲインが、自動的に計算され、コントローラによって使用される。代替的実施形態では、個人が、使用者の体重Wとインスリン感受性Sをデバイスに入力し、デバイスは、ゲインを計算するために情報をコントローラに供給する。
個人に対するインスリン反応が、入力としてグルコースセンサーを使用して再現され得ることを確認するために研究が行われた。この研究では、高血糖性クランプがNGT者に適用されている間に、グルコースおよびインスリン測定が行われた。図29Aに示されている、グルコースレベル測定は、PIDインスリン反応コントローラをシミュレートするために作成された数学的モデルへの入力として使用された。グルコースクランプに応答してコントローラによって指令されるインスリン投与は、図29Bに示されているように、NGT者における実際のインスリン出現を非常に精密に近似する。試験中に個人から取得される周期的な血液サンプル456から測定されるインスリン濃度は、図29Bにおいてドットで表される。コントローラによって指令されるインスリン反応をシミュレートする数学的モデルからの出力は、図29Bにおいて実線458として示されている。
3つの異なるデバイスが、研究中に個人の血糖を測定するために使用された。個人から取得される周期的な血液サンプルからの血糖測定器の読み取り値460は、図29Aにおいてドットで表される。2つのMiniMedセンサー(以下で「センサー」という節で説明されているセンサーなど)が、個人の皮下組織内に留置され、センサーの読み取り値462、464は、図29Aにおいて線で示される。センサーの読み取り値462、464は、測定器の読み取り値460と比較して少し遅延する。遅延は、血糖と間質液(ISF)グルコースとの間の遅延に起因する可能性が非常に高く、必要ならばフィルターの使用によって実質的に補正され得る。この研究では、遅延は、フィルターによって補正されず、NGT者の自然な反応に一致するインスリン反応を指令するコントローラの能力にそれほど影響を及ぼさなかった。この研究は、PIDインスリン反応コントローラモデルが、健康なβ細胞の2相反応を捕えるインスリン分泌の良好な最小モデルであることを示す。遅延の補正は、モデルの精度を増すことのみが予想される。
コントローラのゲインの複数のセットのうちから選択するためのファジー論理機能
好ましい実施形態では、1セットのコントローラのゲインが特定の個人に使用される。代替的実施形態では、コントローラのゲインの2つ以上のセットが使用され、コントローラのゲインのセットを選択し、コントローラのゲインの1つのセットから別のセットへ変更するタイミングを決定するためにファジー論理機能が使用される。特定の代替的実施形態において、コントローラのゲインは、グルコースレベルが所望のグルコース基礎レベルより高いまたは低い場合に異なる。他の代替的実施形態では、コントローラのゲインは、グルコースレベルが増加しているかまたは減少している場合に異なる。ゲインの異なるセットについての正当化は、β細胞がターンオンするよりも速くターンオフすることを示す生理学的研究に由来する。さらに他の代替的実施形態では、コントローラのゲインは、グルコースレベルが所望のグルコース基礎レベルより高いかまたは低いかに応じて、また、グルコースレベルが増加しているかまたは減少しているかに応じて異なり、それにより、コントローラのゲインの4つのセットが生じる。追加の代替的実施形態では、コントローラのゲインは、低血糖値変動の大きさに応じて変化する。言い換えると、グルコースの小さな変化に対するコントローラのゲインは、グルコースの大きな変化に対するコントローラのゲインと異なるということである。
コントローラのゲインの自己調節
さらなる実施形態は、インスリン感受性の変化に対応するために、ゲインK、KおよびKの1つ以上を自己調節するコントローラを備えることができる。特定の実施形態において、グルコースレベルの以前の測定値が、所望の基礎グルコースレベルGと比較される。例えば、所望の基礎グルコースレベルGは、以前のグルコースレベル測定値から減算される。次いで、所定の時間窓内の任意の負値が合計される(本質的には、基礎グルコースレベルGより低いグルコースレベル測定値を積分する)。その結果得られる合計が、予め選択された低血糖積分閾値より大きい場合、コントローラのゲインは、(1+α)倍増加する。逆に、予め定義された時間窓内で基礎グルコースレベルGを超えて測定されたグルコースレベル測定値の積分値が、予め選択された高血糖積分閾値より大きい場合、コントローラのゲインは、(1−α)倍減少する。
特定の実施形態において、グルコース濃度積分がそれにわたって評価される予め定義された時間窓は、一般に24時間であり、コントローラのゲインは、予め定義された各時間窓の終わりに、必要な場合に調整される。代替的実施形態では、グルコースレベル測定値の積分は、移動時間窓にわたって連続して計算され、いずれかの積分値が閾値を超える場合、ゲインが即座に調整される。特定の実施形態において、移動時間窓は1時間であり、また、時間窓は、ゲインが調整されるときはいつでも再始動されてもよい。他の代替的実施形態では、時間窓は、センサーの精度、個人のインスリン感受性が変化する速度、ハードウェアの計算能力、または同様のものに応じて長いか、または、短い。
特定の実施形態において、調整量(α)は0.01である。代替的実施形態では、調整量αは、センサーの精度、個体のインスリン感受性が変化する速度、センサーの感受性Sが変化する速度、または同様のものに応じて大きいか、または小さい。さらに他の代替的実施形態では、調整量αは、測定されるグルコースレベルの積分値が閾値を超える量に応じて大きくされるか、または、小さくされる。この方法で、ゲインは、測定されるグルコースレベルGが所望の血糖値Gから大幅に逸脱する場合により大きな量で調整され、測定されるグルコースレベルGが所望の血糖値Gにより近い場合に小さな量で調整される。追加の代替的実施形態では、コントローラはカルマンフィルターを使用する。
状態変数フィードバック
β細胞のインスリン反応を決定する一次信号はグルコースであるが、インスリン分泌を抑制するインスリン自体の推定上の効果も存在する。この効果は、血漿中のインスリン濃度(IP(t))に直接関係するか、またはインスリン効果に比例するある信号(IEFF(t))によって媒介される場合がある。β細胞は、これらの信号を直接感知する(すなわち、インスリン濃度および遊離脂肪酸などのインスリン効果に比例する2次信号を直接感知する)ことができる可能性がある。これらの仲介信号からのフィードバックは、状態変数フィードバックとして知られるものに似ている、すなわち、それは、被制御変数(この場合、グルコース)が、その変数に影響を及ぼす各仲介信号(血漿および間質液内のインスリン濃度)のフィードバックと共に使用されるフィードバックである。このタイプのフィードバックを用いると、望ましくないゆっくりした動態学的プロセスが、実際よりずっと速いように見える可能性がある。例えば、β細胞インスリン分泌が、インスリンが作用する間質液内のインスリン濃度に比例する信号によって抑制される場合、血漿と間質インスリンとの間の遅延は短いように見える可能性がある。人工的な閉ループアルゴリズムの場合、または「半閉ループ」アルゴリズムの場合、この有益な効果は、「状態観測器」(過去のインスリン送達の履歴を知ることで、身体の種々の部分におけるインスリン濃度を予測する数式)を使用することによって達成され得る。「半閉ループ」アルゴリズムでは、アルゴリズムは、閉ループアルゴリズムの場合と同じであるが、インスリンが実際に投与される前に、使用者確認ステップが存在する。状態変数フィードバックを使用することによって、インスリンが実際にそうであるより速く、インスリンポンプ内のインスリンが作用するようにさせることが可能である。
皮下インスリン濃度、血漿インスリン濃度、およびインスリン効果を推定するために、以下の方程式が使用され得る。
ここで、ISCは皮下腔内の正規化されたインスリン濃度の推定値であり、Iは血漿内の正規化されたインスリン濃度の推定値であり、IEFはグルコースに対するインスリン効果の推定値であり、αはインスリン送達と皮下インスリンコンパートメントとの間の速度定数であり、αは皮下インスリンと血漿コンパートメントとの間の速度定数であり、αは血漿コンパートメントとインスリン効果との間の速度定数である。Iは、送達されるインスリンであり、3つの状態変数(ISC、IおよびIEF)の関数であるものとしてよい。
特定の実施形態において、開ループ固定基礎速度+使用者要求ボーラスは、以下の式に従って、ボーラスがある量増加し、基礎速度が、その後同じ量減少することになる。
’=(1+γ+γ+γ)I−γSC−γ−γEF
ここで、Iは、使用者要求基礎(U/h)+ボーラス(U)プロファイルであり、I’は、状態フィードバック調整プロファイルである。所定の動態学的変動について、要求されるインスリンの総量(Iの曲線の下の面積)と送達されるインスリンの総量(I’の曲線の下の面積)は同一であることに留意されたい。ここで、γ、γ、およびγは、状態フィードバックゲイン(スカラー)である。これらのゲインを注意深く選択することによって、ポンプがその送達速度を補正し、それにより患者の皮下層内への、血漿への、また、身体に対する実際のインスリン効果/作用に至るまでのボーラス注射によるインスリンの分散に伴う遅延が補償される。したがって、ボーラスからのインスリンがどれだけ、皮下層内にあるか、血漿内にあるか、または、患者のグルコースレベルに実際に作用するか(状態変数ISC、IおよびIEF)を推定することによって、患者に対する時間と共に変わるインスリンの送達を最適化することが可能である。状態フィードバックを使用することで、ボーラスは、量(1+γ+γ+γ)だけ増加し、その量は、将来のインスリン送達から徐々に取り去られる(−γSC−γ−γEF)。結果として、見かけのインスリン薬物動態的曲線がより速く見える。これは、即効性インスリンを開発することに似ているが、即効性インスリンは、前もってより多くを送達し、後で余分の量を取り除くことによって、単位ボーラス当たりのインスリン送達の分布を再配置することによってアルゴリズム的に達成される。3つのゲインは、時間遅延(1/α、1/αおよび1/α)を任意の位置に移動するように選択され得る。制御理論では、これは極配置として知られる。
状態フィードバックは、開ループおよび閉ループインスリン送達アルゴリズムにおいて、また「半閉ループ」送達アルゴリズムと共に使用され得る。状態フィードバックは、比例積分微分(PID)または任意の他のタイプの閉ループコントローラと共に使用され得る。γはISGに対して乗算されるフィードバックゲインであり、γはIに対して乗算されるフィードバックゲインであり、γはIEFに対して乗算されるフィードバックゲインである。
上記の方程式から直接取られる物理的状態空間形式は、以下の通りである。
有限差分形式は、以下のように計算される(ここで、eは指数関数を示す)。
以下のように定義する。
Define:
SC(i)=(1−k)(I(i−1))+kSC(i−1) (式1b)
(i)=(1−k)(ISC(i))+k(i−1) (式2b)
EF(i)=(1−k)(I(i))+kEF(i−1) (式3b)
ラプラス形式は以下の通りであり、式中、sは、ラプラスの方程式で使用されるStackel行列式を表す。
状態フィードバックを有するインスリン送達の伝達関数を得るために、制御方程式は次の通りであり、ここで、Eは、実際のグルコース濃度と所望のグルコース濃度との誤差(G−G)を表す。
=PID・E−γSC−γ−γEFF (式6)
方程式(式1c)、(式4)および(式5)を(式6)に代入し、並べ替えると、以下の伝達関数が得られる。ここで、GMはゲイン乗数である。
ゲイン乗数の計算も、状態変数フィードバック法で得られる。状態変数フィードバックが使用されると、ゲイン乗数(GM)は、状態フィードバックが使用されても使用されなくても、ステップ応答が強制的に同じ定常値に到達するようにするスカラーである。言い換えると、GMは、単位ボーラス当たりに与えられる総量が両方の場合に同じになることを確実にする。状態フィードバックの場合、より多くのインスリンが前もって与えられるが、この余分なインスリンは後で取り去られる。特定の実施形態でGMを計算するために、制御システムからの「最終値定理」が使用される。最終値定理は、任意の入力X(s)が与えられる場合に、任意の伝達関数T(s)の定常状態を評価するために、入力に対する定常状態出力応答が、以下の式で与えられることを主張するものである。
SS(t→∞)=lims→0(sT(s)X(s))
ステップ入力のラプラス形式は、
で与えられ、最終値定理の定常状態解は、
SS(t→∞)=lims→0(T(s))
に簡約される。
状態フィードバックが存在しない(γ、γ、およびγ=0)場合、定常状態解は、方程式(式7)から得られて、
(t→∞)=1 (式11)
となる。
ゲイン補正因子の無い状態フィードバックを用いると、定常状態解は、
になる。
次いで、GMは、方程式(式12)と方程式(式11)との比として評価されて、GM=1+γ+γ+γが得られる。
状態変数フィードバックを使用して、閉ループ制御方程式および状態フィードバックゲインが、極配置について決定される。具体的には、ゲインは、先に示したインスリン送達方程式について計算される。特定の実施形態では、これらは、以下のように決定される。最初に、状態フィードバックを用いて、方程式(式7)、(式8)、(式9)、および(式10)の分母が以下のようになる。
D=s+(α+α+α+γα)s
(αα+(α+α)α+γαα+(α+α)γα)s+
(ααα+γααα+γααα+γααα) (式14)
方程式(式7)、(式8)、(式9)または(式10)内でシステムの極を得るため、Dはゼロに等しくなるようにされ、以下の特性方程式が得られる。
+(α+α+α+γα)s
(αα+(α+α)α+γαα+(α+α)γα)s+
(ααα+γααα+γααα+γααα)=0 (式16)
(式16)の所望のシステム極または根が、固有値λ、λ、およびλによって定義される場合、特性方程式は、以下のように書かれ得る。
(s−λ)(s−λ)(s−λ)=0
展開し、sの似た冪を集めることによって(式16)は、以下のように書かれ得る。
−(λ+λ+λ)s+(λλ+λλ+λλ)s−λλλ=0 (式17)
sの似た冪の係数を互いに等しくなるように設定すると、以下の連立方程式が得られる。
α+α+α+γα=−(λ+λ+λ) (式18)
αα+αα+αα+γαα+γα(α+α)=
λλ+λλ+λλ (式19)
ααα+γααα+γααα+γααα=λλλ (式20)
この結果、3つの方程式と3つの未知数γ、γ、およびγが得られる。したがって、未知のゲインは、所望の極λ、λ、およびλ、ならびにシステム時定数α、α、およびαに関して解くことができる。これらの式によって、インスリンが異なるコンパートメントに現れるときに、インスリンの所望の薬物動態を制御することができる。
こうして、上記の計算を通じて、ゲインが計算され、以下のインスリン送達のための制御方程式において使用され得る。
=PID・E−γSC−γ−γEF
PIDは、任意の他の閉ループ(または、「半閉ループ」)コントローラのPIDコントローラの出力である。ゲインは、一般に1回だけ計算されるが、望ましければさらに多く計算することも可能である。制御方程式は、所定の期間後に、または連続して、反復ベースで計算されてもよい。例えば、限定はしないが、5分毎、10分毎、30分毎、または60分毎に計算されてもよい。状態変数部分(γSC−γ−γEF)だけが更新されるか、または方程式全体が更新されてもよい。制御方程式を更新することによって、患者に対するインスリンの送達を継続的に改善することが可能である。
状態変数フィードバックを使用するポンプの一実施形態の制御フィードバックブロック図が図42に示されている。図示されているように、患者の所望のグルコースG600は、PIDコントローラ610に入力される。PIDコントローラの出力は、インスリン送達値I601である。次いで、ブロックは、先に説明したように、インスリン送達値に加えて、どれだけの量のインスリンが実際にボーラスとして患者に送達されるべきか、またどれだけの量が基礎速度から取り去られるべきかを計算する。各離散的時間間隔Ti(T1 620、T2 630およびT3 640)において、ポンプから皮下層内に入れられたインスリンの量が計算されて、ISC602が提供される。その値は、γ605で乗算され(または、そうでなければ因数分解され)、PIDコントローラの出力から減算されて、皮下インスリン濃度に基づいて改善された所望のインスリン値を提供することになる(他の計算が続く)。各離散的時間間隔Tiにおいて、皮下コンパートメントから血漿内に入れられたインスリンの量が計算されて、I603が提供される。その値は、γ606で乗算され(または、そうでなければ因数分解され)、PIDコントローラの出力から減算されて、血漿インスリン濃度に基づいて改善された所望のインスリン値を決定することになる。各離散的時間間隔Tiにおいて、実際に作用するインスリンの量または血漿内インスリンからの有効インスリンコンパートメントが計算されて、IEF604が提供される。その値は、γ607で乗算され(または、そうでなければ因数分解され)、PIDコントローラの出力から減算されて、有効インスリンに基づいて改善された所望のインスリン値を決定することになる。次いで、被検者650に実際に送達されるインスリンは、使用者608の血糖Gを変更することになり、次いで、血糖Gは、センサー660によって測定され、所望のグルコース600と比較されることになる。
図43〜46は、状態フィードバックの効果に関するグラフを示す。図43は、上述のアルゴリズムを使用して達成される基礎インスリン送達速度に関する効果を示す。ボーラスは、時刻ゼロで与えられる。線700は、状態フィードバックが使用されないときのインスリン送達を示す。この線は、送達される基礎速度の量を変えないため、インスリンボーラスの一定の送達と同じになり、0.0000として示される。他の3つの線は、状態フィードバックのすべてがゲインγ、γ、またはγのうちの1つであるときの、時間と共に変わるインスリン送達速度の変化を示す。これからわかるように、すべての状態フィードバックが、(皮下層について)ゲインγである場合、基礎インスリン送達速度701(標準的な基礎速度に関係する)は、低い値から始まり、定常状態に達するにつれて、ゼロの限界または状態フィードバックが無い状態の速度まで徐々に移動する。すべての状態フィードバックが、(血漿層について)ゲインγである場合、基礎インスリン送達速度702は、ゼロで始まり、低く降下し、その後、定常状態に達するにつれて、ゼロの限界まで徐々に戻る。すべての状態フィードバックが、(インスリン作用/効果について)ゲインγである場合、基礎インスリン送達速度703は、ゼロで始まり、低く、しかし、すべてのγ送達速度の場合よりもゆっくりと降下し、その後、定常状態に達するにつれて、ゼロの限界まで徐々に戻る。すべての場合において、インスリンの総送達量は同じである。
図44は、皮下インスリンに対する単位ボーラス当たりの状態フィードバックの効果を示す。言い換えると、インスリンのボーラスは、時刻ゼロで患者に与えられており、図には、そのボーラスからの皮下層内のインスリンの量が、ゼロまで減少する速度が示されている。線705は、状態フィードバックが無い状態で時間と共に変わる皮下層内のインスリンの量を示す。線706は、すべての状態フィードバックがゲインγであるときに時間と共に変わる皮下層内のインスリンの量を示す。線707は、すべての状態フィードバックがゲインγであるときに時間と共に変わる皮下層内のインスリンの量を示す。線708は、すべての状態フィードバックがゲインγであるときに時間と共に変わる皮下層内のインスリンの量を示す。
図45は、血漿インスリンに対する単位ボーラス当たりの状態フィードバックの効果を示す。言い換えると、インスリンのボーラスは、時刻ゼロで患者に与えられており、図には、そのボーラスからの血漿層内のインスリンの量が、ゼロから増加し(インスリンの注射から、インスリンが皮下層から血漿内に移動するときまでに少し遅延が存在する)、そのピークに達し、その後、ゼロに戻る速度を示す。線710は、状態フィードバックが無い状態で時間と共に変わる血漿内のインスリンの量を示す。線711は、すべての状態フィードバックがゲインγであるときに時間と共に変わる血漿内のインスリンの量を示す。線712は、すべての状態フィードバックがゲインγであるときに時間と共に変わる血漿内のインスリンの量を示す。線713は、すべての状態フィードバックがゲインγであるときに時間と共に変わる血漿内のインスリンの量を示す。
図46は、インスリン効果に対する単位ボーラス当たりの状態フィードバックの効果を示す。言い換えると、インスリンのボーラスは、時刻ゼロで患者に与えられており、図には、そのボーラスからのインスリンの量が、ゼロで始まり(皮下層内への、および、血漿を通したインスリンの注射から、インスリン効果までにある遅延が存在する)、その最大点まで上昇し、ゼロまで減少しながら、身体にインスリン効果を生成する速度を示す。線715は、状態フィードバックが無い状態で時間と共に変わるインスリン効果を示す。線716は、すべての状態フィードバックがゲインγであるときに時間と共に変わるインスリン効果を示す。線717は、すべての状態フィードバックがゲインγであるときに時間と共に変わるインスリン効果を示す。線718は、すべての状態フィードバックがゲインγであるときに時間と共に変わるインスリン効果を示す。
図47および48は、PID閉ループコントローラと共に使用されるインスリン状態変数フィードバックを、PID閉ループコントローラだけ(インスリン状態変数フィードバックを持たない)の使用と対照的なものとして比較する。図47は、時間と共に変わる患者のシミュレートされたグルコース濃度を示す。食事は、8時間、13時間、18時間、22時間、および32時間で与えられる。インスリン状態フィードバックを有するPIDを使用したグルコース濃度は、線800で示される。インスリン状態フィードバックを持たないPIDを使用したグルコース濃度は、線801で示される。グルコース濃度が与えられた場合、患者の濃度を高くし過ぎないように、または低くし過ぎないように維持することが常に好ましいため、閉ループプログラムが高い値および低い値を回避することができればできるほど、よりよい。図47からわかるように、時間が経過するにつれて、インスリン状態フィードバックを有するPIDを使用したグルコース濃度は、時間が経過するにつれて少ししか変動しない点で、(インスリン状態フィードバックを持たないPIDを使用したグルコース濃度に対して)時間と共に改善し、患者をより安定したグルコースレベルに維持し、それにより、高血糖事象および低血糖事象を大幅に軽減することになる。図48は、図47と同じシステムからの平均のシミュレートされたインスリン送達プロファイルを示す。線810は、インスリン状態フィードバックを有するPIDを使用したインスリン送達を表す。線811は、インスリン状態フィードバックを持たないPIDを使用したインスリン送達を表す。これからわかるように、インスリン状態フィードバックを有するPIDを使用したインスリン送達は、状態フィードバックから結果として生じる、より多くの急な上昇と急な下降とを含む。
積分器リークを組み込むためのPIDコントローラの修正
好ましい実施形態では、一定のゲイン成分K、K、Kを有するPID制御応答が説明された。好ましい制御応答は、ゼロ定常状態誤差(すなわち、定常状態グルコースから所望の基礎グルコースを引いた値(G)=0)を保証するけれども、本来、積分成分
は、積分成分がインスリン反応の増加をモデル化するが、インスリン反応の一時的な終息が存在しないため、フィードバック制御を不安定にする。補正が無い状態で、積分成分は、インスリン反応の増加を過剰推定する傾向を有する。定常状態グルコースとGとの小さな差は、通常、インスリン反応制御において許容可能であるため、積分成分の代替的モデリングは、不安定化効果の大きさを低減するために、積分器リークを組み込み得る。具体的には、U(t)の変化は、グルコースの誤差に比例する項およびUの大きさに比例して漏洩する項によって記述され得る。これは、初期条件U(t)と共に、式
で表現され得る。
パラメータKLEAKは、漏洩速度の逆時定数(τLEAK(分単位)=1/KLEAK)であり、ここで、τLEAKは、経験的データに基づいて設定され、かつ、他のゲイン成分K、K、Kと結合され得る調節パラメータである。しかし、人工的なβ細胞の最新の実現は、使用者入力としてτLEAKを有する。Uは、標準的な方法によっても離散形式で表現され得る。
コントローラ後(進み/遅れ)補償器
好ましい実施形態では、インスリン送達システムが身体内のどこにインスリンを注入することになるかを考慮することなく、コントローラからコマンドが発行される。本質的に、身体による即座の使用のためにインスリンが血流内に直接送達されるか、または血流以外の身体内のどこかにインスリンを送達することによって生じる任意の時間遅延が、K、KおよびKを調整することによって補償され得ることが仮定される。この場合、コマンドは、一般に、β細胞インスリン分泌プロファイルをモデル化するが、その例は図35Aに示されている。そして、β細胞がインスリンを血流内に直接分泌するため、β細胞インスリン分泌プロファイルは、意図された血漿インスリン濃度プロファイルである。しかし、インスリン送達遅延は、図35Bに示すように、意図された血漿インスリン濃度プロファイルを歪ませる場合がある。インスリン送達遅延は、インスリンを注入するためのコマンドがインスリン送達システムに与えられる瞬間とインスリンが血漿に達する時刻との間の時間量である。インスリン送達遅延は、図20の矢印528を有する円によって表される拡散遅延によって引き起こされる場合があり、拡散遅延は、組織内に注入されたインスリンが血流内に拡散するのに必要とされる時間である。インスリン送達遅延の他の要因は、送達システムが、インスリンを注入するためのコマンドを受け取った後に身体内にインスリンを送達する時間、インスリンが、血流にいったん入って循環系全体に広がる時間、および/または他の機械的または生理学的原因を含んでもよい。さらに、投与インスリンが、インスリン送達システムから身体内に送達されている間でも、身体はインスリンをクリアランスする。インスリンが、身体によって血漿から連続してクリアランスされるため、血漿に非常にゆっくり送達されるか、または遅延する投与インスリンは、全投与インスリンが完全に血漿に達する前に、大幅にではないとしても、少なくとも部分的にクリアランスされる。そして、したがって、血漿中のインスリン濃度プロファイルは、遅延が全く存在しなかった場合に達成することになるのと同じピークを決して達成しない(また、同じプロファイルに追従しない)。投与インスリンが、時刻ゼロで血漿内に1回ですべて送達される場合、血漿中のインスリン濃度は、事実上瞬時に上昇し(図示せず)、次いで方程式
に従って図36Aに示されているように、身体がインスリンをクリアランスする(使用する、または除去する)ため、時間と共に指数関数的に減少することになる。
ここで
は血漿中のインスリン濃度であり、
は時刻ゼロで血漿に直接送達される投与インスリンの質量であり、
は身体内の血漿の体積であり、
はインスリンクリアランスの時定数の逆数であり、
tは投与インスリンが血漿内に直接送達されてから経過した時間である。
インスリンクリアランスPに対する時定数は、方程式
を使用して計算することができ、ここで
kは体積インスリンクリアランス速度であり、
は身体内の血漿の体積である。
または、インスリンクリアランスPに対する時定数は、自分自身のインスリンを生成しない個人にインスリンを提供し、次いでインスリン濃度を求めて個人からの血液サンプルを周期的に試験することによって得ることができる。次いで、指数関数曲線適合ルーチンを使用して、インスリン濃度測定についての最良適合曲線に対する数学的表現が生成され、数学的表現内の時定数が観測される。
血漿内に直接ではなく、皮下組織内へ同じインスリン投与量が与えられる(時刻ゼロで1回ですべてが送達される)と、血漿中のインスリンの濃度は、図36Bに示すように、インスリンが間質液ISFから血漿内に拡散するにつれて、ゆっくり上昇し始めることになる。インスリンが血漿に入ると同時に、身体は、血液からインスリンをクリアランスし続ける。インスリンが血漿に入る速度はインスリンクリアランス速度を超える間、血漿中のインスリン濃度は増加し続ける。インスリンクリアランス速度が、インスリンが間質液ISFから血漿に入る速度を超えるとき、血漿中のインスリン濃度は減少し始める。そのため、血流内に直接行う代わりに、間質液ISF内にインスリンを送達する結果として、血漿中のインスリン濃度は、事実上瞬時にピークまで増加しその後減衰するのではなく、時間と共に広がる。
投与インスリンが皮下組織に送達される場合、2重指数方程式
が使用されて、血漿中のインスリン濃度がモデル化される。ここで、
は血漿中のインスリン濃度であり、
は時刻ゼロで皮下組織に送達される投与インスリンの質量であり、
Dは拡散係数(インスリンが間質液ISFから血糖内に拡散する速度)であり、
は身体内の血漿の体積であり、
ISFはインスリンが送達される先の間質液ISFの容積であり、
は時定数であり、
はP以上の時定数であり、
tは投与インスリンが間質液ISF内に送達されてから経過した時間である。
時定数は、以下の二次方程式の解の公式を使用して計算することができる。
ただし、式中、
および
である。
代替的実施形態では、図37に示されているように、コントローラ後進み/遅れ補償器522を使用して、インスリン送達遅延および/またはインスリンクリアランス速度kを補償するようにコマンド(UPID)を修正する。コントローラ後進み/遅れ補償器522は、形式
であり、ここで、1/αおよび1/γは、それぞれ、進み定数および遅れ定数であり、sはラプラス変数であり、UCOMPは、進み−遅れ補償器522によって計算された補償済みコマンドである。
PIDコントローラは、血漿内への所望のインスリン送達速度についてのコマンド(UPID)を生成する。コマンドUPIDは、血糖値の予測される最大変化率、インスリン送達システムの最小インスリン投与量、インスリン感受性、最大および最小許容可能グルコース濃度、または同様のものに基づいて選択される、制御ループ用の更新速度に応じて周期的に計算され発行される。コマンドUPIDは、コントローラ後進み/遅れ補償器522への入力として使用される。
特定の実施形態において、コントローラ後進み/遅れ補償器522から発行される補償済みコマンド(UCOMP)は、コントローラからの2つ以上の値を使用する。特定の実施形態において、コントローラ後進み/遅れ補償器522は、現在のコマンド(UPID )および以前のコマンド(UPID n−1)を使用して、以下の補償方程式に従って補償済みコマンドを計算する。
COMP =(1−γ)UCOMP n−1+UPID +(1−α)UPID n−1、ただし、式中、
PID は現在のコマンドであり、
PID n−1は以前のコマンドであり、
COMP n−1は以前の補償済み制御出力であり、
αは進み時定数の逆数(1/分)であり、
γは遅れ時定数の逆数(1/分)である。
これは、第1の前進差分方程式である。しかし、別法として、他の形式(例えば、第1の後退または双1次)が使用され得るが、すべて結果として、過去のPID出力(UPID)と過去の補償済み出力(UCOMP)の両方の重み付き履歴からなる補償済み制御出力(UCOMP)をもたらす。
インスリン送達遅延および/またはインスリンクリアランスを補償するためにコマンド(UPID)を修正する代替の方法は、過去のインスリン送達の重み付き履歴に基づいて実施され得る。一番最近の送達履歴により大きな重みを与えることによって、送達された以前のインスリンの重み付き履歴は、現在のPID制御出力から減算されて、補償済み制御出力がもたらされ得る。ラプラス領域で表すと、この結果、
が得られるが、ただし、式中、Eはラプラス変換された誤差信号(G−G)であり、λは過去の制御出力の重み付き履歴に比例してどれだけのPID出力が減少するかを決定し、αは履歴がどれだけ長く重み付けされるかを決定する時定数の逆数である(αの好ましい値は、支配的時定数の逆数または皮下インスリン出現Pに等しいことになる)。誤差の関数として補償済み信号を解くことによって、
が得られ、これは先に述べた進み−遅れ補償と同一である。
他の代替的実施形態では、追加の以前のコマンド値が使用されてもよい。さらに他の代替的実施形態では、補償方程式は、時定数PとPの両方を補償する。
さらなる代替的実施形態において、コントローラ後進み/遅れ補償器がインスリン送達遅延を反映するためにコマンドを修正する必要がないように、コントローラのゲインは、コントローラ後進み/遅れ補償器の効果を含むように修正される。
特定の実施形態において、インスリン送達システムは、コントローラからのコマンドに応じて身体内に有限インスリン投与量を供給する。インスリン送達システムが送達することができるインスリンの最小量が、最小有限インスリン投与量である。コントローラは、最小有限インスリン投与量の整数倍でないインスリン投与量を送達するコマンドを生成することができる。したがって、それより多過ぎるか、または少な過ぎるインスリンは、コマンドに応答してインスリン送達システムによって送達される。特定の代替的実施形態において、コントローラ後進み/遅れ補償器は、コマンドを最小有限インスリン投与量の最も近い整数倍に切り捨て、インスリンの指令された残りの体積を次のコマンドに加える。他の代替的実施形態では、補償器は、コマンドを最小有限インスリン投与量の最も近い整数倍に丸める。さらに他の代替的実施形態では、コマンドと最小有限インスリン投与量の最も近い整数倍との差を補償するために他の方法が使用される。他の実施形態では、補償は必要とされない。
予測される血漿インスリンのフィードバックによる進み−遅れ補償器の排除
さらに別の代替的実施形態において、PID制御コマンドは、β細胞に対する血漿インスリンの効果をエミュレートするように修正され、これにより皮下インスリン注入による予測される血漿インスリンをフィードバックすることによって最適インスリン投与を決定することができる。こうしたフィードバックの正味の効果は、望ましくない動態をより望ましい動態と置換え、β細胞が達成することになる血漿インスリンプロファイルを達成することである。これは、(ラプラス変換された変数を使用して)以下のように考えられ得る。基礎を超えるグルコース(G−G)とインスリン送達(ID)との間の関係が、線形伝達関数D(s)=C(s)(G(s)−G)によって記述され、C(s)は、必ずというわけではないが、PIDコントローラ伝達関数によって記述され得る、と仮定する。β細胞が、インスリン分泌を抑制するために末梢インスリン(I(s))レベルを使用している場合、インスリン送達の予測される速度は、D(s)=C(s)(G(s)−G )−kI(s)と修正されることになる。
門脈インスリン送達の場合、ID(s)と血漿インスリンI(s)との間の関係は、単一時間遅延
によって近似されることが知られている。
(s)を前の式に代入し、kを大きくすると、
が得られ、望ましくない時定数1/αを完全に消去することになる。実際、kの低い値が使用されると、
が得られ、ここで、γ=α+kkである(すなわち、αより大きい何かの値)。こうして、血漿インスリンフィードバックを付加するというβ細胞に対する効果は、門脈インスリン送達時定数(α)をより速い時定数(γ=α+kk、γ>α)で置換えることである。ブロック図形式では、
であり、これは
と等価である。
このメカニズムを皮下インスリン送達に適用するために、必要なのは、scインスリン送達と血漿インスリンとの間の伝達関数である。この伝達関数は、2重指数時間推移(ボーラス反応)または
したがって、
によって適切に近似され、制限的な場合には、kk/(s+α)(s+α)>>1であるため、これは、
にほぼ等しく、ここでもまた、皮下インスリン送達に伴う望ましくない時定数が排除される。実際には、望ましくない時定数は、より望ましい速度定数(すなわち、より速い時定数)と置換えられるだけである。
約200分までの低血糖変動の補正(段階的縮小)
PIDコントローラを使用するβ細胞の先のモデリングは、増加したグルコースの長い期間の出現中に、「第1」相および「第2」相インスリン反応の優れた予測性を与える。しかし、増加したグルコースの出現の期間が、グルコース出現の急速な減少を伴う場合、PIDコントローラは、低いグルコースレベルに対するインスリン反応の終息を正しく予測することができないことになる。図41Bは、臨床データ(データ点として示されている)、PIDモデリング(実線で示されている)、および低血糖変動に対するPIDの補正(点線として示されている)に基づく図41Aの血糖値に対するインスリン反応を示す。
好ましい実施形態では、PIDコントローラを、元のPID方程式の修正形式である、適応的比例ゲインを有するPDコントロール(または双1次PIDコントローラ)に修正することによって、低血糖変動が補正される。先に述べたように、離散的PIDアルゴリズムは次の通りである。
比例成分応答:
積分成分応答:
および
微分成分応答:
ただし、K、K、およびKは、比例、積分、および微分ゲイン係数であり、SGおよびdGdtは、それぞれフィルタリングされたセンサーグルコースおよび微分であり、上付き文字nは、離散時間を指す。
双1次PIDコントローラでは、比例ゲインKは積分された誤差項に基づく。それぞれの成分のインスリン反応への寄与の大きさは、以下の式によって記述される。
ただし、比例ゲインは、次に速度K(初期値KP0)で積分し、比例成分は、インターセプト値(INT)(INT<GSP)に関係する。修正された式は、図39の破線として示されている適応的PD線として、系統誤差の無い状態で低血糖グルコース変動に適合するとみなせる。
追加の実施形態では、双1次PIDコントローラは、以下のようにαなどの値を以前のKに乗算して式を修正することによって積分器リークを組み込むこともできる。
低血糖グルコース変動を補正する代替的方法は、PID制御内への積分器クリップによって実施され得る。PIDコントローラは、一般に、過度の「終息」を防止する積分器リセットルールを有し、こうしたルールが使用されて、低血糖グルコース変動を補正し得る。例えば、この積分器は以下のようにクリッピングされ得る。
(SG≦60mg/dl AND Icon n−1>K(SP−60))
の場合、
con n−1=K(SP−60)
この方程式は、センサーグルコースが60mg/dl未満に降下する場合に、すべての安定した、または降下するセンサーグルコース信号について、インスリン送達がゼロになるように積分器をリセットする。このクリッピング限界は、人の逆調節反応に類似の絶対閾値を表す。
しかし、β細胞をより正確にエミュレートし得る他の手法は、区分的連続関数の使用を含む。例えば、以下の関数は、漸進的クリッピングが調節されることを可能にする。
の場合、
この方程式は、2つの付加的な調節パラメータ(γおよびT)を導入し、高い閾値の積分器出力をチェックし始める。例えば、γ=5およびT=100mg/dlである場合、積分器出力は、グルコースが90mg/dlまで降下すれば4K60、グルコースが80mg/dlまで降下すれば3K60などにクリッピングされることになり、ついには、グルコースが60に達し、積分器出力がK60にクリッピングされる。上記方程式で提案される以外の関数(例えば、グルコースの降下速度またはIconのパーセント減少に基づく関数)が代替的に使用されてもよい。
システム構成
以下の節は、上述のコントローラと共に使用され得るコンポーネントの、限定はしないが例示的な、図を提示する。コンポーネント、さまざまなコンポーネントのレイアウト、要素の組合せ、または同様のもののさまざまな変更が、本発明の実施形態の範囲から逸脱することなく行われ得る。
センサー信号16は、コントローラ12への入力として供給される前に、一般に、プレフィルターによるフィルタリング、フィルタリング、較正、または同様のものなどの信号調節を受ける。プレフィルター、1つ以上のフィルター、較正器、およびコントローラ12などのコンポーネントは、分離されるか、または、物理的に一緒に配置されて、遠隔測定特性モニター送信機30、注入デバイス34、または付加デバイス内に含まれ得る。好ましい実施形態では、図8Bに示されているように、プレフィルター、フィルター、および較正器は、遠隔測定特性モニター送信機30の一部として備えられ、コントローラ12は、注入デバイス34内に備えられる。代替的実施形態では、図8Cに示されているように、プレフィルターは、遠隔測定特性モニター送信機30内に備えられ、フィルターおよび較正器は、注入デバイス内のコントローラ12に備えられる。他の代替的実施形態では、図8Dに示されているように、プレフィルターは、遠隔測定特性モニター送信機30内に備えられ得るが、フィルターおよび較正器は、付加デバイス41内に備えられ、コントローラは注入デバイス内に備えられる。さまざまな実施形態を別の形で示すために、図9は、図8A〜8Dからのさまざまなデバイス(遠隔測定特性モニター送信機、付加デバイス、または注入デバイス)内のコンポーネント(プレフィルター、フィルター、較正器、およびコントローラ)のグループ化の表を示している。他の代替的実施形態では、付加デバイスは、コンポーネントの一部(または全部)を収容する。
好ましい実施形態では、センサーシステムは、デジタルセンサー値、プレフィルターでフィルタリングされたデジタルセンサー値、フィルタリングされたデジタルセンサー値、較正されたデジタルセンサー値、コマンド、または同様のものなどのセンサー信号に基づく情報を含むメッセージを生成する。メッセージは、シリアル番号、IDコード、チェック値、他の感知されるパラメータの値、診断信号、他の信号、または同様のものなどの他のタイプの情報を含み得る。特定の実施形態において、デジタルセンサー値Dsigは、遠隔測定特性モニター送信機30でフィルタリングされ、次いでフィルタリングされたデジタルセンサー値が注入デバイス34に送信されるメッセージに入れられ、フィルタリングされたデジタルセンサー値は較正され、コントローラ内で使用されるものとしてよい。他の実施形態では、デジタルセンサー値Dsigは、注入デバイス34内のコントローラ12に送達される前にフィルタリングされ較正され得る。あるいは、デジタルセンサー値Dsigは、フィルタリングされ、コントローラ内で較正され使用され、この後遠隔測定特性モニター送信機30から注入デバイス34に送達されるコマンド22を生成する。
さらなる実施形態において、較正後フィルター、ディスプレイ、記録装置、および血糖測定器などの追加のオプションのコンポーネントは、他のコンポーネントのうちの任意のコンポーネントと共にデバイス内に備えられるか、または独立型であってもよい。一般に、血糖測定器がデバイスの1つに組み込まれる場合、血糖測定器は、較正器を収容するデバイス内で同じ場所に配置される。代替的実施形態では、コンポーネントの1つ以上は使用されない。
好ましい実施形態では、コンポーネントの群を含む、遠隔測定特性モニター送信機30および注入デバイス34などのデバイス間で通信するためにRFテレメトリが使用される。代替的実施形態では、電線、ケーブル、IR信号、レーザー信号、光ファイバー、超音波信号、または同様のものなどの他の通信媒体が、デバイス間で使用され得る。
フィルタリング
好ましい実施形態では、デジタルセンサー値Dsigおよび/またはデジタルセンサー値の微分が、処理され、フィルタリングされ、修正され、解析され、平滑化され、結合され、平均化され、クリッピングされ、スケーリングされ、較正されるなどして、コントローラへの入力として提供される前に、異常なデータ点の効果を最小にする。特定の実施形態において、デジタルセンサー値Dsigは、図16に示されているように、送信機70に渡される前にプレフィルター400、次いでフィルター402に通される。フィルターは、異常なデジタルセンサー値Dsigの効果を検出し、最小にするために使用される。デジタルセンサー値Dsigが異常である原因のいくつかとして、皮下組織からのセンサー分離によって引き起こされる一時的な信号過渡特性、センサー雑音、電源雑音、一時的な切断または短絡、および同様のものが挙げられる。特定の実施形態において、それぞれの個別のデジタルセンサー値Dsigは、最大および最小閾値と比較される。他の特定の実施形態において、デジタルセンサー値Dsigの連続する対の間の差は、増加値または減少値について変化率閾値と比較される。
プレフィルター
特定の実施形態において、プレフィルター400は、ファジー論理機能を使用して、個別のデジタルセンサー値Dsigが調整される必要があるかどうかを判定する。プレフィルター400は、デジタルセンサー値Dsigの群の部分集合を使用して、パラメータを計算し、次いでそのパラメータを使用して、全体としてその群と比較して、個々のデジタルセンサー値Dsigが調整される必要があるかどうかを判定する。例えば、デジタルセンサー値Dsigの群の部分集合の平均が計算され、次いで雑音閾値がその平均の上または下に置かれるものとしてよい。次いで、その群内の個別のデジタルセンサー値Dsigは、雑音閾値と比較され、雑音閾値の外側にある場合には排除されるか、または修正される。
プレフィルターの実施形態を限定はしないがより明確に示すために、より詳細な例を以下に示す。時刻iにおいてアナログセンサー信号Isigからサンプリングされた、一番最近サンプリングされた値(Lとラベル付けされる)ならびに時刻(i−1)から(i−7)においてサンプリングされた7つの以前の値K、H、G、F、E、DおよびCを含む8つのデジタルセンサー値Dsigの群が図17に示される。群内の時間的に中央の4つの値、時刻(i−2)から(i−5)においてサンプリングされたH、G、FおよびEを使用して、平均値が計算される。計算された平均値は、平均鎖線/点線404として表される。高い雑音閾値406は、平均線404より高い100%で確立される。言い換えると、高い雑音閾値406の大きさは、平均線404の大きさの2倍である。負の雑音閾値408は、平均線404より小さい50%で確立される。言い換えると、負の雑音閾値408の大きさは、平均線404の大きさの半分である。8つの値L、K、H、G、F、E、DおよびCのそれぞれの個々の大きさは、高い雑音閾値406および負の雑音閾値408と比較される。値が、高い雑音閾値406より大きいか、または、負の雑音閾値408より小さい場合、値は、異常であると考えられ、異常値は、平均線404の大きさで置換えられる。図17に示す例では、値Kは、高い雑音閾値406より大きいため、平均値Mで置換えられる。また、値Dは、負の雑音閾値408より小さいため、平均値Nで置換えられる。こうして、ノイジーな信号スパイクが減らされる。したがって、例では、値L、K、H、G、F、E、DおよびCがプレフィルター400に対する入力であり、値L、M、H、G、F、E、NおよびCがプレフィルター400からの出力である。代替的実施形態では、他の雑音閾値レベル(またはパーセンテージ)が使用されてもよい。他の代替的実施形態では、閾値の外側の値は、以前の値などの平均値以外の値、最も近い閾値の値、以前のデータを通る傾向線を外挿することによって計算される値、閾値の内側にある他の値の間での内挿によって計算される値または同様なものなどの、平均値以外の値で置換えられてもよい。
好ましい実施形態では、ある群の値がいずれも、雑音閾値406または408の外側にある場合、警告フラグがセットされる。1から3つの値が雑音閾値406または408の外側にある場合、「雑音」フラグがセットされる。3つを超える値が雑音閾値406または408の外側にある場合、「廃棄」フラグがセットされ、全体の群の値が無視され使用されないことを指示する。代替的実施形態では、「雑音」フラグまたは「廃棄」フラグをトリガーするために、より多くの値、またはより少ない値が、閾値406または408の外側にある必要がある。
好ましい実施形態では、それぞれのデジタルセンサー値Dsigは、飽和および切断があるかを調べられる。図17の例に関して継続すると、それぞれの個別の値は、飽和閾値410と比較される。値が飽和閾値410以上である場合、「飽和」フラグがセットされる。特定の実施形態において、「飽和」フラグがセットされると、センサー26が較正または交換を必要とする可能性があるという警告が使用者に提供される。さらなる特定の実施形態において、個別のデジタルセンサー値Dsigが飽和閾値410以上である場合、個別のデジタルセンサー値Dsigは、無視されるか、平均線404に等しい値に変更されるか、または個別のデジタルセンサー値Dsigに関連する値の群全体が無視され得る。好ましい実施形態では、飽和閾値410は、生成され得るデジタルセンサー値の範囲の最大値の約16%下にセットされる。好ましい実施形態では、最大デジタルセンサー値は、150mg/dlより大きいグルコース濃度を表す。代替的実施形態では、最大デジタルセンサー値は、予想される被測定グルコース濃度の範囲、センサー精度、閉ループ制御に必要とされるセンサーシステム分解能または同様のものに応じて、より大きなまたはより小さなグルコース濃度を表し得る。値の全範囲は、生成され得る最大デジタルセンサー値と最小デジタルセンサー値との差である。センサーの予想される信号範囲、センサー雑音、センサーゲイン、または同様のものに応じて、より高いかまたはより低い飽和閾値レベルを使用することができる。
同様に、好ましい実施形態では、デジタル信号値Dsigが切断閾値412より小さい場合、「切断」フラグがセットされ、センサーが電源に適切に接続されていないこと、および電源またはセンサーが交換または再較正を必要とする可能性があることを使用者に指示する。さらなる特定の実施形態において、デジタルセンサー値Dsigが切断閾値412より小さい場合、個別の値は、無視されるか、平均線404に等しい値に変更されるか、または個別のデジタルセンサー値Dsigに関連する値の群全体が無視され得る。好ましい実施形態では、切断閾値412は、値の全範囲の約20%にセットされる。センサーの予想される信号範囲、センサーシステム雑音、センサーゲイン、または同様のものに応じて、より高いかまたはより低い切断閾値レベルが使用され得る。
代替的実施形態では、変化率閾値、変化率2乗閾値、群の値の部分集合の平均に関するのではなく最小二乗適合線に関する雑音閾値、より高いもしくは低い雑音閾値線、または同様のものなどの、他の方法が使用されて、デジタルセンサー値Dsigをプレフィルターによりフィルタリングする。
雑音フィルター
デジタルセンサー値Dsigは、評価され、必要ならばプレフィルター400によって修正された後、デジタルセンサー値Dsigはフィルター402に渡される。特定の周波数帯の雑音を低減するためにフィルター402が使用され得る。一般に、身体の血糖値18は、デジタルセンサー値Dsigが収集される速度と比較して比較的ゆっくり変化する。したがって、高周波数信号成分は、典型的には雑音であり、信号対雑音比を改善するためにローパスフィルターが使用され得る。
好ましい実施形態では、フィルター402は、雑音を低減するために使用される有限インパルス応答(FIR)フィルターである。特定の実施形態において、FIRフィルターは、図18の例の周波数応答曲線414に示されているように、0から3サイクル/時間(c/hr)の周波数に対するパスバンドおよび約6c/hrより大きい周波数に対するストップバンドを持つように調節された7次フィルターである。しかし、典型的には、0から約2c/hrと5c/hrとの間までの周波数に対するパスバンドおよび選択されたパスバンド周波数の1.2から3倍で始まるストップバンドを持つように調節されたFIRフィルターは、センサー信号を通しながら、雑音を十分に低減する。特定の実施形態において、0から約2c/hrと10c/hrとの間までの周波数に対するパスバンドおよび選択されたパスバンド周波数の1.2から3倍で始まるストップバンドを持つように調節されたFIRフィルターは、雑音を十分に低減する。7次フィルターでは、8つのデジタルセンサー値Dsigのそれぞれに、固有の重み付け因子が適用される。デジタルセンサー値Dsigは、一番最近にサンプリングされた値と7つの以前の値を含む。1分間隔で収集されるデジタルセンサー値に対するローパスフィルターの影響が、図19Aおよび19Bに示されている。デジタルセンサー値のフィルターに通されていないセンサー信号曲線416が、7次FIRフィルターの効果の後の同じ信号の曲線418と対比される。フィルタリングされた信号曲線418は、遅延され、ピークは、フィルターに通されていないセンサー信号曲線416と比較して平滑である。他の特定の実施形態では、より高いか、またはより低い次数のフィルターが使用され得る。さらに他の特定の実施形態では、フィルター重み付け係数は、身体の生理学的状態に基づく所望のセンサーサンプル速度、遠隔測定特性モニター送信機30の計算能力、センサーの応答時間、または同様のものに応じて、1分より短いかまたは長い時間間隔で収集されるデジタルセンサー値Dsigに適用され得る。代替的実施形態では、他の周波数応答を有するフィルターが使用され、これにより、センサーのタイプ、電源もしくは他の電子部品からの雑音、身体に関するセンサーの相互作用、センサー信号に対する身体の動きの影響、または同様のものに応じて、他の雑音周波数を排除することができる。さらに他の代替的実施形態では、フィルターは無限インパルス応答(IIR)フィルターである。
代替的実施形態では、変化率閾値、変化率2乗閾値、群の値の部分集合の平均に関するのではなく最小二乗適合線に関する雑音閾値、より高いもしくは低い雑音閾値線、または同様のものなどの、他の方法が使用されて、デジタルセンサー値Dsigをプレフィルターによりフィルタリングする。
遅延補償フィルター
雑音低減に加えて、フィルターは、時間遅延を補償するために使用され得る。理想的には、センサーは、血糖測定などの、制御システムが制御することを意図されているパラメータのリアルタイムの無雑音測定を行うであろう。しかし、現実には、センサー測定を血糖の現在値より遅らせる、生理学的な、化学的な、電気的な、およびアルゴリズムに関わる時間遅延源が存在する。
生理学的遅延422は、グルコースが血漿420と間質液(ISF)との間を移動するのに必要とされる時間に起因するものである。遅延は、図20の円で囲んだ双頭矢印422で表される。一般に、上で説明されているように、センサー26は、身体20の皮下組織44内に挿入され、センサーの先端部40に近い電極42は、間質液(ISF)と接触している。しかし、測定される所望のパラメータは、血糖の濃度である。グルコースは、血漿420で全身に運ばれる。拡散プロセスを通じて、グルコースは、血漿420から皮下組織44のISF内へ移動し、またその逆に移動する。血糖値18が変化すると、ISF中のグルコースレベルも変化する。しかし、ISF中のグルコースレベルは、血漿420とISFとの間のグルコース濃度平衡を身体が達成するのに必要とされる時間に起因して血糖値18より遅れる。研究から血漿420とISFとの間のグルコース遅れ時間は0から30分までの間で変動することがわかっている。血漿420とISFとの間のグルコース遅れ時間に影響を及ぼし得るいくつかのパラメータは、個人の代謝、現在の血糖値、グルコースレベルが上昇しているか、もしくは下降しているか、または同様のものである。
化学反応遅延424は、図20のセンサー26の先端部を囲む円424で表される、センサー応答時間によって導入される。センサー電極42は、電極42をISFで湿潤した状態に維持し、グルコース濃度を減衰させ、電極表面上でのグルコース濃度変動を低減させる保護膜でコーティングされる。グルコースレベルが変化すると、保護膜は、ISFと電極表面との間でのグルコース交換速度を遅くする。それに加えて、単に、グルコースがグルコースオキシダーゼGOXと反応して、過酸化水素を生成するための反応時間、ならびに2次反応、水、酸素および自由電子への過酸化水素の還元のための反応時間に起因する化学的反応遅延が存在する。
アナログセンサー信号Isigがデジタルセンサー値Dsigに変換されるときの処理遅延も存在する。好ましい実施形態では、アナログセンサー信号Isigは、1分間隔にわたって積分され、次いでカウント数に変換される。本質的に、A/D変換時間は結果として、30秒の平均遅延をもたらす。特定の実施形態において、1分の値は、コントローラに送信される前に、5分の値になるよう平均化される。その結果得られる平均遅延は2分半である。代替的実施形態では、より長いかまたは短い積分時間が使用され、その結果遅延時間はより長いかまたは短くなる。他の実施形態では、アナログセンサー信号電流Isigは、アナログ電圧Vsigに連続して変換され、A/Dコンバータは電圧Vsigを10秒毎にサンプリングする。次いで、6つの10秒の値が、プレフィルターによりフィルタリングされ、平均されて、1分の値が生成される。最後に、5つの1分の値がフィルタリングされ、次いで平均されて、5分の値が生成され、その結果、2分半の平均遅延がもたらされる。他の実施形態では、他の電気コンポーネントまたは他サンプリング速度を使用し、その結果他の遅延期間が生じる。
フィルターは、フィルターを動作させるため十分な数のデジタルセンサー値Dsigを採取するのに必要とされる時間に起因する遅延も持ち込む。高次フィルターは、定義により、より多くのデジタルセンサー値Dsigを必要とする。一番最近のデジタルセンサー値Dsigに加えて、FIRフィルターは、フィルターの次数に等しい数の以前の値を使用する。例えば、7次フィルターは、8つのデジタルセンサー値Dsigを使用する。それぞれのデジタルセンサー値Dsigの間にある時間間隔が存在する。引き続き例を参照すると、デジタルセンサー値Dsig間の時間間隔が1分である場合、7次FIRフィルターで使用される最も古いデジタルセンサー値Dsigは、7分古いことになる。したがって、フィルターで使用される値のすべてについての平均時間遅延は3分半である。しかし、値のそれぞれに関連する重み付け因子が等しくない場合、時間遅延は、係数の影響に応じて、3分半より長くても短くてもよい。
本発明の好ましい実施形態は、上で説明されているように、約30分までのさまざまな時間遅延と、これまた上で説明されている約10c/hrより大きい高周波数雑音の両方を補償するFIRフィルターを含む。特定の実施形態は、7次ウィーナ型FIRフィルターを使用する。このフィルターに対する係数は、時間遅れを補正し、その一方で、同時に高周波数雑音を低減するように選択される。周波数応答曲線426の例が、図21に示されている。例示的な周波数応答曲線426は、約20μA/100mg/dlの感度を有するセンサーの場合、ゼロから約8c/hrまでの周波数に対するパスバンドおよび約15c/hrより大きい周波数に対するストップバンドを有するウィナーフィルターに対して生成される。FIRフィルターが、時間遅延を補償するのに使用され得ることは、センサーを犬に埋め込んで行った研究によって実証されている。この研究において、フィルターは、約12分の時間遅延を補償するために使用された。図22に提示されている結果は、血糖測定器で測定された実際の血漿グルコースレベルを表す点428、遅延補償無しでのセンサー測定を表す破線430および遅延補償を用いたセンサー測定を表す実線432を示す。試験中のセンサーは、感度が異常に低かった。人における平均感度のセンサーに関する研究は、約3〜10分の時間遅延がより正常であることを示している。他のフィルター係数および他のフィルター次数を使用して、時間遅延および/または雑音を補償することができる。
代替的実施形態では、センサー信号から雑音の十分な部分を除去する限り他のタイプのフィルターも使用できる。他の代替的実施形態では、血糖値の変化率が時間遅延に比較して遅い場合、時間補償は全く使用されない。例えば、血漿グルコースとセンサー測定との間の5分遅延は、閉ループグルコース制御システムを機能させるために補正される必要はない。
微分フィルター
さらなる実施形態は、コントローラが使用する前に、センサー信号の微分から雑音を除去するフィルターを備えることができる。デジタルセンサー値Dsigから微分を取り、その結果デジタル微分センサー値(dDsig/dt)が得られる。デジタル微分センサー値dDsig/dtは、FIRフィルターに通される。特定の実施形態において、微分フィルターは、高周波雑音を除去するよう調節された少なくとも7次FIRフィルターである。代替的実施形態では、より高い、またはより低い次数のフィルターを使用し、フィルターをさまざまな周波数の雑音を除去するように調節することができる。他の代替的実施形態では、図37に示されているように、微分は、グルコースレベル誤差G値から取られ、次いで微分フィルター526に通される。さらなる代替的実施形態において、微分は、アナログセンサー信号Isigから取られ、雑音を除去するためにハードウェアフィルターが使用される。
較正
好ましい実施形態では、フィルタリング後、デジタルセンサー値Dsigは、1つ以上のグルコース基準値に関して較正される。グルコース基準値は、較正器に入力され、デジタルセンサー値Dsigと比較される。較正器は、較正アルゴリズを適用して、典型的にはカウント数であるデジタルセンサー値Dsigを血糖値に変換する。特定の実施形態において、この較正法は、本願に引用して援用する2000年2月23日に出願された米国特許出願第09/511,580号、名称「GLUCOSE MONITOR CALIBRATION METHODS」で説明されているタイプのものである。特定の実施形態において、較正器は、注入デバイス34の一部として備えられ、グルコース基準値が使用者によって注入デバイス34に入力される。他の実施形態では、グルコース基準値は、遠隔測定特性モニター送信機30に入力され、較正器は、デジタルセンサー値Dsigを較正し、較正されたデジタルセンサー値を注入デバイス34に送信する。さらなる実施形態において、グルコース基準値は、較正が実行される補助デバイスに入力される。代替的実施形態では、血糖測定器は、注入デバイス34、遠隔測定特性モニター送信機30、または付加デバイスと通信し、これにより、グルコース基準値を血糖測定器の通信相手であるデバイス内に直接送信することができる。追加の代替的実施形態において、血糖測定器は、本願に引用して援用する1999年6月17日に出願された米国特許出願第09/334,996号、名称「CHARACTERISTIC MONITOR WITH A CHARACTERISTIC METER AND METHOD OF USING THE SAME」に示されているように、注入デバイス34、遠隔測定特性モニター送信機30、または付加デバイスの一部である。
好ましい実施形態では、血糖基準値を得るために、1つ以上の血液サンプルが、身体20から採取され、サンプルの血漿グルコース濃度を測定するために一般的な市販の血糖測定器が使用される。次いで、デジタルセンサー値Dsigが、血糖測定器からの血糖測定値と比較され、数学的補正が適用されて、デジタルセンサー値Dsigが血糖値に変換される。代替的実施形態において、本願に引用して援用する1999年9月14日に出願された米国特許出願第09/395,530号、名称「METHOD AND KIT FOR SUPPLYING A FLUID TO A SUBCUTANEOUS PLACEMENT SITE」で説明されているような方法および装置を使用することによって、または、注射、注入、噴射圧、管腔を通じての導入、または同様のものを使用することによって、既知のグルコース濃度の溶液が、センサー26を囲む皮下組織内に導入される。デジタルセンサー値Dsigは、センサー26が既知のグルコース濃度の溶液内に浸かっている間に収集される。因数、オフセット、方程式、または同様のものなどの数式が、デジタルセンサー値Dsigを既知のグルコース濃度に変換するために導出される。次いで、その数式は、その後のデジタルセンサー値Dsigに適用されて、血糖値が得られる。代替的実施形態において、デジタルセンサー値Dsigは、フィルタリングの前に較正される。追加の代替的実施形態では、デジタルセンサー値Dsigは、プレフィルターによるフィルタリングの後、およびフィルタリングの前に較正される。他の代替的実施形態では、センサーは、身体内で使用される前に較正されるか、または較正を全く必要としない。
センサー信号処理システム
フィルタリングし較正する前に、一般に、センサー信号は、センサー信号を生の形式からフィルターおよび/または較正器での使用に許容可能な形式に変換するために処理される。好ましい実施形態では、図10に示されているように、アナログセンサー信号Isigは、A/Dコンバータ68を通して二値量子化され、結果として送信機70によって遠隔測定特性モニター送信機30から別のデバイスに送信されるデジタルセンサー値Dsigをもたらす。特定の実施形態において、アナログセンサー信号Isigは、図11(a)に示されているように、デジタル周波数測定の形態でデジタルセンサー値Dsigに変換されるアナログ電流値である。一般的な回路は、積分器72、比較器74、カウンター76、バッファ78、クロック80および送信機70を備える。積分器72は、実質的に傾斜した電圧信号(A)を生成し、ランプ電圧信号の瞬時傾斜は、瞬時アナログセンサー信号Isigの大きさに比例する。比較器74は、積分器72からのランプ電圧信号(A)を方形波パルス(B)に変換する。比較器74からの各パルスは、カウンター76を増分し、また、積分器72をリセットする。クロック80は、バッファ78を周期的にトリガーして、カウンター76からの現在値を格納し、次いでカウンター76をリセットする。バッファ78に格納される値は、デジタルセンサー値Dsigである。クロック80は、送信機70に周期的に信号を送信して、バッファ78から値を送信することもできる。好ましい実施形態では、クロック周期は1分である。しかし、代替的実施形態では、クロック周期は、測定が必要とされる頻度、センサー信号雑音、センサー感度、要求される測定分解能、送信される信号のタイプ、または同様のものに基づいて調整され得る。代替的実施形態において、バッファは使用されない。
A/Dコンバータ
さまざまなA/Dコンバータ設計が、本発明の実施形態において使用され得る。以下の例は、他のA/Dコンバータが使用され得るので、例示的であり、制限的ではない。
IからF(電流から周波数(カウント))、単一コンデンサ、急速放電
好ましい実施形態において、積分器72は、図12に示されているように、第1のオペアンプ92およびコンデンサ82からなる。積分器72は、コンデンサ電圧(A’)がHigh基準電圧(VrefH)に達するまで、コンデンサ82を充電することによって、アナログセンサー信号Isig電流を総和する。コンデンサ電圧(A’)は、第1のオペアンプ92の出力のところで測定される。第2のオペアンプ94は、比較器として使用される。コンデンサ電圧(A’)がVrefHに達すると、比較器出力(B’)は、LowからHighに変わる。High比較器出力(B’)は、リセットスイッチ84を閉じ、これにより電圧源(V+)を通じてコンデンサ82を放電させる。High比較器出力(B’)は、また、基準電圧スイッチ88が閉じるようにトリガーし、一方、実質的に同時に、インバータ86が、比較器出力(B’)を反転させる。そして、インバータ出力(C’)は、基準電圧スイッチ90が開くようにトリガーする。その結果、比較器の基準電圧は、VrefHからLow基準電圧(VrefL)に変わる。
コンデンサ電圧(A’)がVrefLまで放電されると、比較器出力(B’)は、Lowに戻り、それによりパルスを形成する。Low比較器出力(B’)は、リセットスイッチ84を開き、コンデンサ82が再び充電し始めることを可能にする。
事実上同時に、Low比較器出力(B’)は、また、基準電圧スイッチ88が開くようにトリガーし、インバータ出力(C’)は、基準電圧スイッチ90が閉じるようにトリガーし、比較器基準電圧がVrefLから元のVrefHに変わることになる。
IからF、単一可逆コンデンサ
代替的実施形態において、1つ以上のコンデンサの極性を制御するために2つ以上の積分器スイッチが使用される。特定の実施形態が図13に示されている。一般に、2つの積分器スイッチ110および112の一方だけが閉じ、他の積分器スイッチは開く。第1の積分器スイッチ110が閉じると、第2の積分器スイッチ112が開き、積分器オペアンプ114は、コンデンサ電圧(A’’)がHigh基準電圧(VrefH)に達するまで、コンデンサ116を充電することによって、アナログセンサー信号Isig電流を総和する。比較器120は、積分器出力(A’’)を基準電圧(VrefH)と比較する。そして、コンデンサ電圧(A’’)がVrefHに達すると、比較器出力(B’’)は、LowからHighにシフトし、パルスを始動する。
High比較器出力(B’’)パルスは、以下の方法を使用してコンデンサ極性を反転させる。High比較器出力(B’’)は、第2の積分器スイッチ112が閉じるようにトリガーし、一方、事実上同時に、インバータ118が、比較器出力(B’’)を反転させる。そして、Lowインバータ出力(C’’)パルスが、第1の積分器スイッチ110が開くようにトリガーする。コンデンサの極性が反転すると、コンデンサ116は、アナログセンサー信号Isigに比例する速度で放電する。High比較器出力(B’’)パルスも、比較器の基準電圧がVrefHからLow基準電圧(VrefL)に変わるようにトリガーする。コンデンサ電圧(A’’)がVrefLまで放電すると、比較器出力(B’’)はLowに戻る。Low比較器出力(B’’)は、第2の積分器スイッチ112を開き、事実上同時に、Highインバータ出力(C’’)は、第1の積分器スイッチ110を閉じ、コンデンサ116が再び充電し始めることを可能にする。Low比較器出力(B’’)も、比較器基準電圧がVrefLからVrefHに変わるようにトリガーする。
この実施形態の利点は、アナログセンサー信号Isigの振幅が、コンデンサ116の充電速度と放電速度の両方を駆動するため、コンデンサ放電時間に起因して生成される可能性があるセンサー信号誤差が低減されることである。
IからF、二重コンデンサ
さらなる代替的実施形態において、1つのコンデンサが充電するときに、アナログセンサー信号Isigの大きさに比例する速度で、別のコンデンサが放電するように、2つ以上のコンデンサが使用される。この実施形態の例は図14に示されている。各コンデンサについて、一連の3つのスイッチが使用される。第1の群のスイッチ210はラッチ電圧C’’’によって制御され、第2の群のスイッチ212は、C’’’の反転である電圧D’’’によって制御される。実質的に、1つの群のスイッチだけが一度に閉じる。第1の群のスイッチ210が閉じると、第1のコンデンサ216の両端の電圧は、オペアンプ214の出力のところの積分器電圧(A’’’)が基準電圧(Vref)に達するまで、アナログセンサー信号Isigに比例する速度で増加する。それと同時に、これらのスイッチのうちの1つは、第2のコンデンサ222間の回路を短絡し、第2コンデンサ222を放電させる。比較器220は、積分器出力(A’’’)を基準電圧Vrefと比較する。そして、積分器出力(A’’’)がVrefに達すると、比較器出力(B’’’)はパルスを生成する。積分器出力パルスは、カウンター76を増分し、ラッチ221からのラッチ出力電圧C’’’が、Low電圧からHigh電圧へトグルするようにトリガーする。ラッチ電圧C’’’の変化は、第2の群のスイッチ212が閉じ、第1の群のスイッチ210が開くようにさせる。第2の群のスイッチ212からのスイッチのうちの1つは、第1のコンデンサ216間の回路を短絡し、第1のコンデンサ216を放電させる。それと同時に、第2のコンデンサ222の両端の電圧は、オペアンプ214の出力の積分器電圧(A’’’)が基準電圧(Vref)に達するまで、アナログセンサー信号Isigに比例する速度で増加する。ここでもまた、比較器220は、積分器出力(A’’’)を基準電圧Vrefと比較する。そして、積分器出力(A’’’)がVrefに達すると、比較器出力(B’’’)はパルスを生成する。比較器出力パルスは、カウンター76を増分し、ラッチ出力電圧C’’’が、High電圧からLow電圧へトグルするようにトリガーし、それにより、第1の群のスイッチ210が閉じ、第2の群のスイッチ212が開く状態の初期位置にスイッチが戻る。
要約すると、血糖値18が増加するにつれて、アナログセンサー信号Isigが増大し、それにより、積分器72から出る電圧がHigh基準電圧VrefHまで急速に増加し、それにより、比較器74がより頻繁にパルスを生成し、そのパルスが、急速にカウンター76にカウントを加える。したがって、より高い血糖値は、1分当たりより多くのカウントを生成する。
積分器72で使用されるコンデンサに対する電荷蓄積容量ならびに基準電圧VrefHおよびVrefLは、200mg/dlのグルコースレベルにおいて1分間で収集されるカウントについてのカウント分解能が、1mg/dl未満の血糖測定誤差を表すように選択される。特定の実施形態では、VrefHは1.1ボルトであり、VrefLは0.1ボルトである。アナログセンサー信号Isigの大きさ、コンデンサの容量および所望の測定分解能に基づいて、より大きいかまたは小さい基準電圧が選択され得る。ソース電圧V+は、放電時間が、200mg/dlの血糖値において1分当たりのカウント数を大幅に減少させないように十分に急速に1つ以上のコンデンサを放電させるのに十分に高い電圧にセットされる。
パルス幅出力機能
好ましい実施形態では、送信機70は、クロック80によってトリガーされるときにはいつでも、バッファ78からデジタルセンサー値Dsigを送信する。しかし、特定の実施形態では、使用者または他の個人は、図11Bに示されているように、セレクタ96を使用して、送信機70から送信される他の出力を選択することができる。好ましい実施形態では、セレクタ96は、遠隔測定特性モニター送信機30の表面にあるボタンを使用することによって使用者または別の個人によってアクセスされるスクリーン上に表示されるメニューの形態である。他の実施形態では、ダイアルセレクタ、専用ボタン、タッチスクリーン、遠隔測定特性モニター送信機30に送信される信号、または同様のものが使用され得る。デジタルセンサー値Dsig以外の、送信されるように選択され得る信号は、限定はしないが、単一のパルス幅、プレフィルターによるフィルタリングの前のデジタルセンサー値、プレフィルターによるフィルタリングの後かつフィルタリング前のデジタルセンサー値、フィルタリング後のデジタルセンサー値、または同様のものを含む。
特定の実施形態において、パルス幅カウンター98は、図11Bに示されているように、比較器74からのパルスの立上りエッジまたは立下りエッジによって、パルス幅カウンター98がリセットされるまで、パルス幅クロック100からのクロックパルスを計数する。パルス幅カウンター98がリセットされるときに蓄積されているカウントは、比較器74からの単一パルスの部分のパルス幅を表す。パルス幅カウンター98からの蓄積されたカウントは、リセット信号によってトリガーされると、単一パルスバッファ102に格納される。個人が単一パルス出力を選択すると、送信機70は、単一パルスバッファ102から値を送信する。比較器74からの異なるパルス幅を定量化するのに十分な分解能を有する高いアナログセンサー信号Isigが与えられる場合、パルス幅クロック100の周期は、比較器74からの個別のパルスエッジ間の期間より十分に短くなければならない。
IからV(電流から電圧)、電圧A/D
アナログセンサー信号Isigをアナログ電流信号からデジタル電圧信号に変換するために代替的な方法が使用され得る。アナログセンサー信号Isigは、図15に示されているように、オペアンプ302および抵抗器304を使用してアナログ電圧Vsigに変換される。そしてその後周期的に、クロック308は、A/Dコンバータ306が、アナログ電圧Vsigからサンプル値を取得し、サンプル値を、電圧の大きさを表すデジタル信号に変換するようにトリガーする。A/Dコンバータ306の出力値は、デジタルセンサー値Dsigである。デジタルセンサー値Dsigは、バッファ310に、次いで送信機312に、送信される。特定の実施形態において、センサー感度、測定される最大グルコース濃度、電圧A/Dコンバータ306からの所望の分解能、または同様のものに応じて、電圧A/Dコンバータ306の範囲のかなりの部分を使用するようにVsigをスケーリングするために、抵抗器304が調整され得る。
代替的実施形態において、バッファ310は必要とされず、デジタルセンサー値Dsigは、A/Dコンバータから送信機312に直接送信される。他の代替的実施形態では、デジタルセンサー値Dsigは、送信機70に送信される前に、処理され、フィルタリングされ、修正され、解析され、平滑化され、結合され、平均化され、クリッピングされ、スケーリングされ、較正され、または同様の処理がなされる。好ましい実施形態では、クロック308は、10秒毎に測定をトリガーする。代替的実施形態において、血糖値がどれほど急速に変化することができるか、センサー感度、送達システム14を制御するのにどれほど頻繁に新しい測定が必要とされるか、または同様のことに応じて、クロック308は、速くまたは遅く動作し、頻度多くまたは少なく測定をトリガーする。
最後に、他の代替的実施形態では、以下の「センサーおよびセンサーセット」の節で説明されているような、他のタイプのセンサーからの他のセンサー信号は、デジタルセンサー値Dsigを別のデバイスに送信する前に、必要ならば、デジタルセンサー値Dsigに変換される。
追加のコントローラ入力
一般に、比例+積分+微分(PID)インスリン反応コントローラは、入力としてグルコース(デジタルセンサー値Dsig)だけを使用する。逆に、普通の耐糖能がある人体では、健康なβ細胞は、神経刺激、消化管ホルモン刺激、遊離脂肪酸(FFA)の変化、および蛋白質刺激などの追加の入力から恩恵を受ける。そのため、他の代替的実施形態では、上で説明されているように、PIDコントローラは、1つ以上の追加の入力によって増強され得る。特定の代替的実施形態では、使用者は、食事の開始、食事の予想される炭水化物含有量、睡眠サイクルの開始、予想される睡眠期間、運動期間の開始、予想される運動期間、運動強度推定、または同様のものなどの付加的情報を手作業で入力するものとしてよい。次いで、モデル予測制御機能は、コントローラが付加的情報を使用して、グルコース濃度の変化を予想し、しかるべく出力コマンドを修正するのを補助する。例えば、NGT者において、神経刺激は、血糖濃度が上昇し始めるかなり前である、食事が始まる前に、β細胞がインスリンを血流に分泌し始めるようにトリガーする。そのため、代替的実施形態では、使用者は、食事が始まっていることをコントローラに知らせ、コントローラは、食事を予想してインスリンを分泌し始めることになる。
他の代替的実施形態では、使用者または別の個人は、制御システムに手作業でオーバライドするか、または異なるコントローラアルゴリズムを選択することができる。例えば、特定の代替的実施形態では、個人は、基礎グルコースレベルに即座に正規化するよう選択してもよく、β細胞をエミュレートするPIDコントローラを使用する代わりに、異なるゲインを有するPIDコントローラ、迅速なグルコース調整用のPIDコントローラ、または同様のものなどの別のコントローラが取って代わることになる。追加の代替的実施形態は、グルコースレベルが正規化され、食事が予想されないと、個人がPIDコントローラの積分成分をターンオフすることを可能にする。他の特定の代替的実施形態では、使用者は、コントローラを完全にターンオフするように選択することができ、したがって、閉ループシステムを係脱させることができる。閉ループシステムがインスリン投与を制御しなくなると、使用者は、基礎速度、可変基礎速度、ボーラス、または同様のものを注入デバイスにプログラムするか、または使用者は必要とされるときにそれぞれの個別の投与量を手作業で入力してもよい。
さらに他の代替的実施形態では、複数の身体特性が測定され、測定値がコントローラへの入力として供給される。コントローラによって使用され得る測定される身体特性として、限定はしないが、血中グルコースレベル、血液および/またはISFのpH、身体温度、血液中のアミノ酸(アルギニンおよび/またはリシンなどを含む)の濃度、血液またはISF中の胃腸ホルモン(ガストリン、セクレチン、コレシストキニンおよび/または胃抑制ペプチドなどを含む)の濃度、血液またはISF中の他のホルモン(グルカゴン、成長ホルモン、コルチゾール、プロゲステロンおよび/またはエストロゲンなどを含む)の濃度、血圧、身体の動き、呼吸数、心拍数および他のパラメータが挙げられる。
NGT者において、健康なβ細胞によるグルコース誘導性のインスリン分泌は、過剰のアミノ酸の存在下で2倍程度になり得る。しかし、血中グルコースの増加がない場合の、過剰のアミノ酸だけの存在は、アーサーC.ガイトン著「医療生理学テキスト英文版(Textbook of Medical Physiology, Eighth Edition)、W.B.サンダースカンパニー(W. B. Saunders Company,1991)」の第78章、861ページの「インスリン分泌刺激の他の要因(Other Factors That Stimulate Insulin Secretion)」(非特許文献4)の節によれば、インスリン分泌を少し増加させるだけである。特定の代替的実施形態では、アミノ酸濃度が推定されるか、または測定され、コントローラのインスリン応答は、アミノ酸濃度が十分に高いときに増加する。
NGT者において、血液中における十分な量の胃腸ホルモンの存在は、血中インスリンの事前の増加を生じ、このことは、個人の食事の予想に起因して血糖が増加する前にβ細胞がインスリンを放出することを示唆する。特定の代替的実施形態では、胃腸ホルモン濃度が、測定されるか、または推定され、食事が予想されることを指示するのに濃度が十分に高いときに、コントローラコマンドは、血糖値が変化する前でも、身体にインスリン導入を生じるように調整される。他の代替的実施形態では、コントローラは、他のホルモンの測定値または推定値を使用して、インスリン分泌速度を修正する。
NGT者において、身体の細胞は、インスリンが著しく低いレベルでも激しい運動期間中にグルコースを吸収する。代替的実施形態では、身体の動き、血圧、パルス速度、呼吸数、または同様のものなどの生理学的パラメータを使用して、身体による激しい運動期間を検出し、したがって、身体に注入されるインスリンの量を減少させる(または排除する)入力をコントローラに提供し、それにより、グルコース濃度を補償する。
センサー補償および寿命末期検出
特定の実施形態において、センサー感度510は、図31Bに示されているように、時間と共に低下し得る。センサー感度510が変化すると共に、センサー信号精度は低下する。センサー感度510が著しく変化する場合、センサーは、再較正されるか、または交換されなければならない。診断信号は、センサー信号精度が変化したかどうかを評価するのに使用され、および/または信号を調整するか、またはセンサーを再較正するかもしくは交換する時期を指示するために使用され得る。センサー感度510が減少すると、センサー信号を使用した測定されるグルコースレベル512は、実際の血中グルコースレベル514を過小評価し、測定されるグルコースレベル512と実際の血糖値514との間の測定誤差516は、図31Aに示されているように、時間と共に大きくなる。センサー感度510は、図31Cに示されているように、センサー抵抗Rsの増加に起因して減少する。センサー抵抗Rsは、図7の回路図内のR1とR2の和として示される、作電極WRKと対向電極CNTとの間で身体によって提供される抵抗である。センサー抵抗Rsは、アナログセンサー信号Isigおよび対向電極電圧Vcntを測定し、次いで抵抗Rs=Vcnt/Isigを計算することによって間接的に得ることができる。
センサー抵抗Rsが増加すると共に、所定のグルコース濃度に対するアナログセンサー信号Isig応答は、減少する。好ましい実施形態では、アナログセンサー信号Isigの減少は、最後の較正以来、センサー抵抗Rsが変化した量を識別し、補正アルゴリズム454において抵抗の変化を使用して、アナログセンサー信号値を調整することによって補償され得る。補正アルゴリズム454によって計算される補償値は、センサーアナログ信号値を高めるために使用される。補償値は、センサー抵抗Rsが増加するにつれて時間と共に増大する。補正アルゴリズム454は、センサー抵抗Rsの変化と共に変化する少なくとも1つの値を含む。特定の実施形態では、最後の較正以来センサー抵抗Rsがどれだけ変化したかを評価する前に、ローパスフィルターをセンサー抵抗Rs測定に適用し、高周波雑音を減少させる。
代替的実施形態において、センサー抵抗Rsは、異なる方程式を使用して計算され得る。例えば、センサー抵抗Rsは、以下のように計算され得る。
Rs=(V−Vcnt/Isig)
特定の実施形態では、VはVsetと同じ電圧である。この手法の利点は、この手法が、センサー毎に、および/またはモニター毎に、および/または、アナログセンサー信号が変化するにつれて、変動する可能性がある電圧レベルVsetを反映することである。これは、Vsetの変動に伴う雑音および/またはオフセットを除去し、センサー抵抗のより正確な指示を提供することができる。他の特定の実施形態では、Vは、Vsetについて一般に使用される電圧である−0.535ボルトにセットされる。さらなる実施形態では、Vは、VcntとIsigの対の測定値から計算される。最小二乗法または別の曲線適合法を使用することで、曲線を表す数式(典型的には、直線式)は、VcntとIsigとの関係から導出される。次いで、Vは、曲線を外挿して、IsigがゼロであるときのVcntについての値を見出すことによって得られる。
図38A〜Hは、Vを用いたセンサー抵抗の計算とVを用いないセンサー抵抗の計算との比較を示している。図38Gに示されているRsの微分のプロットは、より明確であり、図38Fに示されているRsの微分のプロットに比べてより明確にセンサー故障を指示する。したがって、センサー抵抗Rsが、上で説明されているセンサー抵抗Rsの代わりに、またはセンサー抵抗Rsと共に使用され得る。
好ましい実施形態において、最後の較正以来のセンサー抵抗Rsの変化が閾値を超えるか、センサー抵抗の変化率dRs/dtが別の閾値を超えるときに、センサーは再較正されるか、または交換される。特定の実施形態では、センサー抵抗の変化率dRs/dtは、図32に示されているように、2つの閾値と比較され得る。dRs/dtが「交換」閾値を超える場合、センサーを交換するように使用者に警告が与えられる。dRs/dtが「再較正」閾値を超える場合、センサーを再較正するように使用者に警告が与えられる。
図33A〜33Cに示されている例において、アナログセンサー信号Isigは、図33Aからわかるように、ほぼ0.3日で劇的に減少する。アナログセンサー信号Isigだけが与えられた場合、使用者は、アナログセンサー信号Isigの減少は血中グルコースの減少のせいだと信じ込む。しかし実際には、アナログセンサー信号Isigの低下は、センサー感度の突然の変化に起因するものである。図33に示されているセンサー抵抗Rsは、アナログセンサー信号Isigが約0.3日で低下すると増加する。図33Cに示されているセンサー抵抗の微分dRs/dtは、アナログセンサー信号Isigが低下したときに約0.3日経ってから生じるスパイク524を明確に示す。センサー抵抗の変化dRs/dtにおけるスパイク524は、血糖の現実の低下ではなく、センサーの異常を指示する。閾値が、dRs/dtに関して±4に置かれた場合、使用者は、センサーを約0.3日で交換するという警告を受け取っているであろう。図33Aからわかるように、センサーは約1.4日まで交換されなかった。アナログセンサー信号Isigは、センサーが約1.4日で交換されるまで、約0.3日から真のグルコースレベルを過小評価していた。
特定の実施形態において、センサー抵抗Rsの微分が取られる時間量dtは、最後の較正以来の全時間である。他の実施形態では、微分が取られる時間量dtは、固定されている、例えば、最後の時間、90分、2時間、または同様のものである。
代替的実施形態において、所定の時間窓にわたるセンサー抵抗Rsの積分(∫Rsd/dt)が所定の抵抗積分閾値を超えるときに、センサーは再較正されるか、または交換される。この手法にとっての利点は、この手法が、時折のスパイク、電圧レベルの突然の変動、または同様のものを含む、信号が受ける可能性のある潜在的な雑音をフィルタリング除去する傾向があることである。好ましくは、センサー抵抗Rsの積分は、時間窓中の設定速度(1分、5分、または同様の時間)で得られるRs測定値に基づいて、時間窓(15分または同様の時間など)にわたって計算される。代替的実施形態において、時間窓は、より長いかまたは短くてもよく、また異なるサンプリング速度が使用されてもよく、選択は、雑音、システム応答、コントローラで使用されるサンプリング速度、または同様のものに依存する。さらなる実施形態では、時間窓およびサンプリング速度は、予想されるセンサー寿命の終わりに近づくとき、またはセンサーが劣化していることを方程式が示すときなど時間と共に変化し得る。
上記のように、複数の閾値を使用することができる。例えば、∫Rsd/dtが「交換」閾値を超える場合、センサーを交換するように使用者に警告が与えられる。また、∫Rsd/dtが「再較正」閾値を超える場合、センサーを再較正するように使用者に警告が与えられる。さらなる代替的実施形態では、対向電極電圧Vcntが使用され、これによりセンサー精度、センサーバイオファウリング、センサー機能、センサー電圧動作範囲、センサー付着、または同様のものが評価される。
pHコントローラ入力
代替的実施形態では、コントローラは、間質液(ISF)グルコースレベルとセンサーを囲むISFの局所pHの両方の測定値を使用して、注入デバイスに対するコマンドを生成する。特定の代替的実施形態では、皮下組織内に配置された単一マルチセンサー508を使用し、グルコースレベルとpHの両方を測定する。3つの電極を有する、皮下組織内に留置されるマルチセンサー508の先端部が、図30に示されている。作電極502は、プラチナブラックでメッキされ、グルコースオキシダーゼ(GOX)でコーティングされる。基準電極506は、銀−塩化銀でコーティングされる。そして、対向電極504は、酸化イリジウム(IrOx)でコーティングされる。アナログセンサー信号Isigは、好ましいセンサー実施形態に関して説明されているように、グルコースオキシダーゼ(GOX)とISFグルコースとの反応に起因して作用電極502において生成される。しかし、この代替的実施形態では、ISF内のグルコースが作用電極上のグルコースオキシダーゼGOXと反応し、グルコン酸が生成されるため、センサーを囲むISF内の局所pHは減少し、基準電極506に関して、対向電極504上の酸化イリジウムの電位を変化させる。そのため、pHが減少するにつれて、対向電極504の電圧が増大する。したがって、グルコース濃度が増大するにつれて、局所pHが減少し、対向電極電圧を増大させる。そのため、グルコース濃度は、対向電極電圧に基づいて推定され得る。グルコース濃度の対向電極での電圧推定値は、アナログセンサー信号Isigからのグルコースレベルの推定値と比較され得る。グルコースレベルの2つの推定値は、重み付け平均によって結合されるか、または一方の推定値が、他の検知方法が適切に機能しているかどうかを確認するためのチェックとして単に使用されてもよい。例えば、2つの推定値間の差が、ある期間に10%であり、次いで、突然、差が50%まで増加する場合、センサーが交換されるか、または再較正される必要があり得ることを使用者に知らせる警告が発せられることになる。
追加の代替的実施形態では、センサーの近くのpHレベルは、感染を検出するために使用され得る。時間と共に変わるpHの傾向を追跡することによって、pHの劇的な変化を使用しセンサーの近くで感染が発症したことを識別することができる。センサーを交換するよう使用者に通知するために、警告が使用される。
pHセンサーは他の実施形態でも使用され得る。身体がグルコースを使用するのを補助するためにインスリンが利用可能でないとき、身体は、エネルギーを得るために脂肪を消費することにシフトする。エネルギーを得るために、グルコースを使用することからほとんど排他的に脂肪を使用することに身体がシフトするので、ケト酸(アセト酢酸およびβヒドロキシ酪酸)の濃度は、約1mEq/リットルから10mEq/リットル程度まで増加する。特定の代替的実施形態において、pHレベルを測定して、身体内のケト酸の増加を検出する。本発明の実施形態では、ISFのpHレベルが低過ぎるときに、使用者に警告が与えられる。
ケト酸の濃度の増大の副作用は、ナトリウムが身体の細胞外流体から引き出され、身体が酸を排出するように酸と結合することである。これは、水素イオンの量の増加をもたらし、アシドーシスを著しく増加させる。重篤な事例では、急速深呼吸、アシドーシス性昏睡を生じ、さらには死ぬことすらある。他の代替的実施形態では、イオン選択性電極(ISE)が使用され、これによりナトリウム濃度の変化を検出する。ISEがナトリウム濃度の変化だけを検知するようにISEをコーティングするために、特別な膜が使用される。特定の代替的実施形態では、ISEは、グルコースセンサーに付加される第4電極である。別の代替的実施形態では、銀−塩化銀基準電極REF、IrOx対向電極CNT、およびナトリウムイオン選択性(Na ISE)作用電極WRKを有する3電極システムが使用される。
pH測定、寿命末期測定、ホルモン測定、または同様のものは、インスリン送達の精度に著しく影響を及ぼす可能性がある入力をコントローラに付加するが、コントローラに対する基本入力は、一般にグルコース測定である。グルコース測定は、センサーシステムによって行われる。そしてコントローラがグルコース測定値を使用して、コマンドを生成すると、送達システムはコマンドを実行する。以下は、センサーシステムおよび送達システムについてのいくつかの装置実施形態の詳細な説明である。
センサーシステム
センサーシステムは、コントローラによって使用されるグルコース測定値を提供する。センサーシステムは、センサー、必要ならばセンサーを保持するためのセンサーセット、遠隔測定特性モニター送信機、ならびに必要ならばセンサーと遠隔測定特性モニター送信機との間で電力および/またはセンサー信号を伝達するケーブルを備える。
センサーおよびセンサーセット
好ましい実施形態において、グルコースセンサーシステム10は、米国特許第5,391,250号(特許文献1)、名称「METHOD OF FABRICATING THIN FILM SENSORS」、2000年2月10に出願した米国特許出願第09/502,204号、名称「IMPROVED ANALYTE SENSOR AND METHOD OF MAKING THE SAME」に開示されるタイプなどの薄膜電気化学センサー、または同一譲受人による米国特許第5,390,671号(特許文献2)、米国特許第5,482,473号(特許文献3)、および米国特許第5,586,553号(特許文献4)で説明されているような他の典型的な薄膜センサーを含み、これらの特許は本願に引用して援用する。米国特許第5,299,571号明細書(特許文献5)も参照されたい。
グルコースセンサーシステム10は、本願に引用して援用する、米国特許第5,586,553号(特許文献4)、名称「TRANSCUTANEOUS SENSOR INSERTION SET」(国際公開第96/25088号として公開された)、米国特許第5,954,643号(特許文献6)、名称「INSERTION SET FOR A TRANSCUTANEOUS SENSOR」(国際公開第98/56293号として公開された)、および米国特許第5,951,521号(特許文献7)、名称「A SUBCUTANEOUS IMPLANTABLE SENSOR SET HAVING. THE CAPABILITY TO REMOVE OR DELIVER FLUIDS TO AN INSERTION SITE」で説明されているようなセンサー26をサポートするためのセンサーセット28も備える。
好ましい実施形態では、センサー26は、挿入針58を使用して使用者の皮膚46を通して挿入され、挿入針58は、センサーが皮下組織44内に配置された後、取り除かれるか、または廃棄される。挿入針58は、図3C、3Dおよび図4に示されているように、尖った先端部59および皮膚46内への挿入時にセンサーを保持する開いたスロット60を有する。針58およびセンサーセット28のさらなる説明は、本願に引用して援用する、米国特許第5,586,553号(特許文献4)、名称「TRANSCUTANEOUS SENSOR INSERTION SET」(国際公開第96/25088号として公開された)および米国特許第5,954,643号(特許文献)、名称「INSERTION SET FOR A TRANSCUTANEOUS SENSOR」(国際公開第98/5629号として公開された)に記載されている。
好ましい実施形態では、センサー26は、図3Dおよび4に示されているように、皮下組織44内で間質液(ISF)に曝される3つの電極42を有する。作用電極WRK、基準電極REF、および対向電極CNTは、図7に示されているように、回路を形成するために使用される。適切な電圧が、作用電極WRKと基準電極REFに供給されると、ISFは、電極42間にインピーダンス(R1とR2)をもたらす。そして、アナログ電流信号Isigが、作用電極WRKから身体を通って(合計してRsになるR1とR2)対向電極CNTに流れる。好ましくは、作用電極WRKは、プラチナブラックでメッキされ、グルコースオキシダーゼ(GOX)でコーティングされ、基準電極REFは、銀−塩化銀でコーティングされ、対向電極は、プラチナブラックでメッキされる。作用電極WRKの電圧は、一般にグラウンドに保持され、基準電極REFの電圧は、設定電圧Vsetに実質的に保持される。Vsetは、300mVと700mVとの間、好ましくは約535mVである。
電極間の電圧差によって促進される最も顕著な反応は、グルコースの還元であるが、それは、グルコースが最初にGOXと反応して、グルコン酸および過酸化水素水(H)を生成するからである。その後、Hは、作用電極WRKの表面において水(HO)と(O)に還元される。Oは、センサーの電気コンポーネントから正電荷を引寄せ、それにより、電子をはじき、電流を引き起こす。この結果、アナログ電流信号Isigが、センサー電極42に接触するISF内のグルコースの濃度に比例する。アナログ電流信号Isigは、作用電極WRKから対向電極CNTに流れ、典型的には、フィルターを通ってオペアンプ66のLowレールに戻る。オペアンプ66への入力は、設定電圧Vsetである。オペアンプ66の出力は、Isigがグルコース濃度と共に変化するにつれて、対向電極CNTの逆電圧Vcntを調整する。作用電極WRKの電圧は、一般にグラウンドに保持され、基準電極REFの電圧は、一般にVsetに実質的に等しく、対向電極CNTの電圧Vcntは必要に応じて変動する。
代替的実施形態において、血糖を測定するために、複数のセンサーが使用される。特定の実施形態では、冗長センサーが使用される。使用者は、センサーが故障したときにそのことを遠隔測定特性モニター送信機の電子機器によって通知される。また、インジケータは、まだ機能しているセンサーおよび/またはまだ機能しているセンサーの数を使用者に知らせることもできる。他の特定の実施形態では、センサー信号は、平均化手段または他の手段によって結合される。センサー信号間の差が閾値を超える場合、少なくとも1つのセンサーを再較正するか、または交換するように使用者に警告が出される。他の代替的実施形態では、複数のグルコースセンサーが使用され、グルコースセンサーは同じ設計でない。例えば、同時に血糖を測定するために内部グルコースセンサーと外部グルコースセンサーとが使用される。
代替的実施形態では、他の連続血糖センサーおよびセンサーセットが使用され得る。特定の代替的実施形態では、センサーシステムは、本願に引用して援用する、1999年12月13日に出願した米国特許出願第09/460,121号、名称「INSERTION SET WITH MICROPIERCING MEMBERS AND METHODS OF USING THE SAME」で説明されているような微小針検体サンプリングデバイス、または本願に引用して援用する、米国特許第5,497,772号(特許文献)、第5,660,163号(特許文献)、第5,791,344号(特許文献10)、および第5,569,186号明細書(特許文献11)で説明されているような内部グルコースセンサー、および/または本願に引用して援用する、米国特許第6,011,984号(特許文献12)で説明されているような、蛍光を使用するグルコースセンサーである。他の代替的実施形態では、センサーシステムは、国際公開第99/29230号(特許文献13)で説明されているような他の感知技術、光ビーム、導電率、噴射サンプリング、微小透析、マイクロポレーション、超音波サンプリング、逆イオン泳動、または同様のものを使用する。さらに他の代替的実施形態では、作用電極WRKだけが、皮下組織内に、ISFと接触して配置され、逆電圧CNTおよび基準電極REFは、身体の外部に、皮膚と接触して配置される。特定の実施形態では、対向電極CNTおよび基準電極REFは、図34Aに示されているように、モニターハウジング518の表面上に配置され、遠隔測定特性モニターの一部として皮膚にくっつけられる。他の特定の実施形態では、対向電極CNTおよび基準電極REFは、電極に電線を配線し電極を皮膚にテーピングする、皮膚に接触する時計の下側に電極を組み込む、または同様なことなどをして、他のデバイスを使用して皮膚にくっつけられる。さらなる代替的実施形態では、複数の作用電極WRKが、冗長性を持たせるために皮下組織内に留置される。追加の代替的実施形態では、対向電極は使用されず、基準電極REFは皮膚と接触して身体の外に配置され、1つ以上の作用電極WRKはISF内に配置される。基準電極REFをモニターハウジング520上に配置することによって実装されるこの実施形態の例は、図34Bに示されている。他の実施形態では、ISFは、個人の身体から収集され、身体に埋め込まれていない外部センサーの上を流れる。
センサーケーブル
好ましい実施形態において、センサーケーブル32は、本願に引用して援用する1999年2月25日に出願した米国特許出願第60/121,656号、名称「TEST PLUG AND CABLE FOR A GLUCOSE MONITOR」で説明されているタイプである。他の実施形態では、nAの電流を伝送するシールドされた低雑音ケーブル、光ファイバーケーブル、または同様のものなどの他のケーブルが使用されてもよい。代替的実施形態では、短いケーブルが使用されるか、またはケーブルの必要性がない状態で、センサーがデバイスに直接接続されてもよい。
遠隔測定特性モニター送信機
好ましい実施形態では、遠隔測定特性モニター送信機30は、本願に引用して援用する1999年12月17日に出願された米国特許出願第09/465,715号、名称「TELEMETERED CHARACTERISTIC MONITOR SYSTEM AND METHOD OF USING THE SAME」(国際公開第00/19887号(特許文献14)、名称「TELEMETERED CHARACTERISTIC MONITOR SYSTEM」として公開された)で説明されているタイプであり、図3Aおよび3Bに示されているように、センサーセット28に接続される。
代替的実施形態において、センサーケーブル32は、図8Aに示されているように、注入デバイスハウジングに直接接続され、それにより、遠隔測定特性モニター送信機30が不要になる。注入デバイスは、センサー26を動作させ、センサー信号値を格納するための電源および電気コンポーネントを収容する。
他の代替的実施形態では、遠隔測定特性モニター送信機は、さらなるセンサーデータについての更新または要求を受信するか、または情報が正しく受信されたことを指示する確認ハンドシェイク信号を受信するための受信機を備える。具体的には、遠隔測定特性モニター送信機は、注入デバイスから確認信号を受信しない場合に、情報を再送信する。特定の代替的実施形態では、注入デバイスは、定期的に、血糖値または他の情報を受信することを予想する。期待される情報が、必要とされるときに供給されない場合、注入デバイスは、「ウェークアップ」信号を送達して、遠隔測定特性モニター送信機に情報を再送信させる。
インスリン送達システム
注入デバイス
センサー信号16が受信され、コントローラ12によって処理されると、注入デバイス34を動作させるためのコマンド22が生成される。好ましい実施形態では、本願に引用して援用する、米国特許第4,562,751号(特許文献15)、米国特許第4,678,408号(特許文献16)、米国特許第4,685,903号(特許文献17)、および1999年6月17日に出願された米国特許出願第09/334,858号、名称「EXTERNAL INFUSION DEVICE WITH REMOTE PROGRAMMING, BOLUS ESTIMATOR AND/OR VIBRATION CAPABILITIES」(国際公開第00/10628号(特許文献18)として公開された)で概要が説明されているような、外部タイプの半自動化薬剤注入デバイスが使用される。代替的実施形態では、本願に引用して援用する、米国特許第4,373,527号(特許文献19)および第4,573,994号(特許文献20)に概要が説明されているような、自動化埋め込み可能薬剤注入デバイスが使用される。
インスリン
好ましい実施形態では、注入デバイス貯蔵槽50は、身体20に注入されるHUMALOG(登録商標)リスプロインスリンを収容する。あるいは、HUMALIN(登録商標)、ヒトインスリン、ウシインスリン、ブタインスリン、類似体、または本願に引用して援用する米国特許第5,807,315号(特許文献21)、名称「METHOD AND COMPOSITIONS FOR THE DELIVERY OF MONOMERIC PROTEINS」、および2000年1月24日に出願した米国特許出願第60/177,897号、名称「MIXED BUFFER SYSTEM FOR STABILIZING POLYPEPTIDE FORMULATIONS」で説明されているようなインスリンタイプなどの他のインスリン、または同様のものなどの他の形態のインスリンも使用され得る。さらなる代替的実施形態では、本願に引用して援用する、1999年6月25日に出願した米国特許出願第09/334,676号、名称「MULTIPLE AGENT DIABETES THERAPY」で説明されているポリペプチド、2000年5月8日に出願した米国特許出願第09/566,877号、名称「DEVICE AND METHOD FOR INFUSION OF SMALL MOLECULE INSULIN MIMETIC MATERIALS」で説明されているような小分子インスリン模倣薬、または同様のものなどの他の成分がインスリンに添加される。
注入チューブ
好ましい実施形態では、インスリン24を注入デバイス34から輸液セット38に運ぶために注入チューブ36が使用される。代替的実施形態では、注入チューブは、インスリン24を注入デバイス34から身体20に直接運ぶ。さらなる代替的実施形態では、例えば、注入デバイスが皮膚に直接取り付けられ、インスリン24が注入デバイスからカニューレまたは針を通って身体に直接流れる場合、注入チューブは必要でない。他の代替的実施形態では、注入デバイスは、身体の内部にあり、注入チューブは、注入デバイスの場所からインスリンを離れたところに運ぶのに使用されても、されなくてもよい。
輸液セット
好ましい実施形態では、輸液セット38は、本願に引用して援用する米国特許第4,755,173号(特許文献22)、名称「SOFT CANNULA SUBCUTANEOUS INJECTION SET」で説明されているタイプである。代替的実施形態では、本願に引用して援用する米国特許第4,373,527号(特許文献19)および第4,573,994号(特許文献20)で説明されているような、他の輸液セットが使用される。代替的実施形態では、Disetronic社のRapidセット、MiniMed社のSilhouette、または同様のものなどの他の輸液セットが使用され得る。さらなる代替的実施形態では、例えば、注入デバイスが内部注入デバイスである場合または注入デバイスが皮膚に直接取り付けられる場合に、輸液セットは不要である。
付加デバイスを有する構成
さらなる代替的実施形態では、プレフィルター、フィルター、較正器、および/またはコントローラ12は、遠隔測定特性モニター送信機30と注入デバイス34の両方と通信する補助デバイス内に配置される。付加デバイスの例として、本願に引用して援用する2000年1月20日に出願した米国特許出願第09/487,423号、名称「HANDHELD PERSONAL DATA ASSISTANT (PDA) WITH A MEDICAL DEVICE AND METHOD OF USING THE SAME」で説明されているようなハンドヘルド型携帯情報端末、コンピュータ、遠隔測定特性モニター送信機30に取り付けられ得るモジュール、注入デバイス34に取り付けられ得るモジュール、本願に引用して援用する1999年6月17日に出願した米国特許出願第09/334,858号、名称「EXTERNAL INFUSION DEVICE WITH REMOTE PROGRAMMING, BOLUS ESTIMATOR AND/OR VIBRATION CAPABILITIES」(国際公開第00/10628号(特許文献18)として公開された)で説明されているようなRFプログラマ、または同様のものが挙げられる。特定の実施形態では、付加デバイスは、較正後フィルター、ディスプレイ、記録装置、および/または血糖測定器を含む。さらなる代替的実施形態では、付加デバイスは、ボタン、キーボード、タッチスクリーン、および同様のものなどの、注入デバイス34および/または遠隔測定特性モニター送信機30に伝達される情報を使用者が付加するかまたは修正するための方法を備える。
特定の代替的実施形態では、付加デバイスは、検体モニターとRFプログラマとを組み合わせたコンピュータである。検体モニターは、遠隔測定特性モニター送信機30からRF信号を受信し、信号を格納し、必要なときに、信号をコンピュータにダウンロードする。RFプログラマは、インスリン注入速度を再プログラムするための制御信号を注入デバイス34に送達する。検体モニターとRFプログラマは共に、別個の通信ステーション内に留置される。通信ステーションは、検体モニターおよびRFプログラマと通信するためにIR送信機およびIR受信機を備える。センサー信号値は、遠隔測定特性モニター送信機30を介して、通信ステーションのうちの1つに配置されている検体モニターに送信される。次いで、センサー信号値は、IR受信機を通して、第1の通信ステーションおよびコンピュータに伝達される。コンピュータは、1つ以上のフィルター、較正器、およびコントローラを通じてセンサー信号値を処理し、コマンド22を生成する。コマンドは、第2の通信ステーションに送信され、通信ステーション内のIR送信機によってRFプログラマに送信される。最後に、RFプログラマは、コマンド22を注入デバイス34に送信する。通信ステーション、検体モニター、および注入デバイス34は、本願に引用して援用する1999年9月29日に出願した米国特許出願第09/409,014号、名称「COMMUNICATION STATION FOR INTERFACING WITH AN INFUSION PUMP, ANALYTE MONITOR, ANALYTE METER OR THE LIKE」(国際公開第00/18449号(特許文献23)として公開された)で説明されているタイプであってよい。あるいは、RFプログラマを省き、注入デバイスを通信ステーション内に留置するか、または注入デバイスは、RFプログラマおよび/または通信ステーションを使用することなくコマンドを受信することもできる。
夜間閉ループシステム
本明細書で説明されているタイプの閉ループインスリン送達システムは、さまざまな制御アルゴリズムを利用して、安全にかつ予測可能な形での患者の身体へのインスリンの送達を調節することができる。閉ループインスリン注入システムの夜間のオペレーションは、患者、使用者、または介護人によるインタラクティブな操作に依存することを必要としない自動化された方法で慎重に制御されるべきである。この点で、多数の安全保護手段がシステムにより実装され得る。これらの安全保護手段は、すぐに使用できるセンサーグルコース読み取り値を提供し、センサー読み取り値の精度を評価し、考えられるセンサー過剰読み取り状態に基づきインスリン送達を制約することが意図されている。これらの安全保護手段は、使用者に警告し、患者が適切な処置を講じることができるようにするものである。したがって、これらの安全保護手段は、夜間閉ループ制御の潜在的危険性を緩和する。
システムによって利用される制御アルゴリズムは、インスリン抑制インスリン分泌の効果をエミュレートするという点である種の安全保護手段と考えられ得る。このシステムは、センサー性能安全保護手段も実装することができる。例えば、閉ループ開始アルゴリズムは、最近の較正係数を計算することによってシステムが閉ループモードに入り得るかどうかを判定する。開始アルゴリズムは、最近の較正係数と以前の較正係数との間の時間をチェックし、それらの読み取り値の間の相対的センサー誤差を判定する。センサー安全保護手段の別の例として、システムは、閉ループモードにおいてモデルスーパーバイザーを採用することができる。モデルスーパーバイザーは、実際のセンサーグルコース値に対してリアルタイムでモデル予測センサーグルコース値を比較することによって夜間閉ループモードにおける使用に適しているかチェックする。モデル予測グルコース値と実際の値とが著しく異なる場合、システムは、故障センサーを示すフェイルセーフアラートをトリガーする。このフェイルセーフアラートは、センサードリフト、センサー転位、センサー圧縮アーチファクトなどの多数のセンサー問題に応答して生成され得る。
システムは、目標グルコースレベル安全保護手段も実装することができる。この点で、起動アルゴリズムは、閉ループモードに入っている間に目標グルコースレベルを徐々に調整することによって開ループモードと閉ループモードとの間の滑らかな遷移を実現するように展開することができる。調整された目標グルコースは、調整された目標グルコースが特定の設定点に収束するまで閉ループ制御アルゴリズムによって使用される。収束した時点で、設定点は、閉ループモードにおける将来の投与計算に使用され得る。
システムは、少なくとも1つのインスリン限度をインスリン送達およびセンサー性能の安全保護手段として利用することもできる。この文脈において、インスリン限度は、潜在的なセンサー故障に起因する閉ループ制御システムによるインスリンの過剰送達を回避するために随時患者に送達されるインスリンの最大量を制約する。実際、インスリン限度は、それぞれの患者に特有の値であり、患者の基礎速度、断食血糖、およびインスリン感受性に基づき計算される。
システムは、1つ以上のインスリン送達安全保護手段を採用することもできる。例えば、インスリン送達タイムアウトで、患者が長期間にわたってインスリン限度でインスリンを受けているかどうかを連続的に監視し(閉ループオペレーション中に)、もしそうであれば、フェイルセーフアラートをトリガーする。この安全保護手段は、システムが長期間にわたってインスリンを送達していないかも監視し、もしそうであれば、フェイルセーフアラートをトリガーする。補正ボーラスは、別のインスリン送達安全保護手段である。システムは、患者が指定された血糖値閾値を超える場合に閉ループモードの開始時に高血糖症を緩和するためのインスリンボーラス用量を計算する。この決定は、閉ループモードの開始時に血糖測定器の読み取り値を取得することによって達成され得る。補正ボーラスは、患者のインスリン感受性、インスリンオンボードの量、およびグルコース目標値に基づき計算される。インスリンオンボード(IOB)補償は、さらに別のインスリン送達安全保護手段である。IOB補償では、手動で投与されるボーラスに基づきインスリンオンボードの量を推定し、これにより、システムはIOBを効果的に対応することができる。この点で、手動ボーラスは、PID−IFB制御アルゴリズムによって計算されるインスリン投与量から減算される。
システムは、1つ以上の通信安全保護手段を実装することもできる。例えば、「欠落センサー送信」機能は、コントローラによって受信されているデータを連続的に監視する。合計で15分未満の動作時間となる欠落データパケットについて、システムは閉ループモードに入ったままである。ただし、この時間中、システムは、最後の有効なセンサーグルコース値に基づき閉ループ制御アルゴリズムを使用してインスリン投与量を計算し続ける。合計15〜60分となる欠落データパケットについては、この安全保護手段は、患者の夜間基礎率の半分として定義される、事前プログラミングされた安全基礎率に切り替わる。コントローラは、安全基礎速度の時間枠内でデータパケットの受信を開始する場合、システムは、再び、閉ループモードに切り替わる。合計で60分超となる欠落データパケットについては、システムは開ループモードに切り替わり、そこで、事前プログラミングされた基礎速度(介護人によって設定され得る)で送達する。
以下でさらに詳しく説明されている例示的な閉ループ制御アルゴリズム、方法論、および技法は、本開示の前の節で提示されているタイプのPID制御アルゴリズムに基づくものとしてよい。いくつかの実施形態において、閉ループ制御アルゴリズムは、PIDインスリンフィードバック(PID−IFB)制御アルゴリズムを利用する。より具体的には、PID−IFB制御アルゴリズムは、夜間使用時に(および/または他の期間の使用時に)適用することができる追加の安全保護手段を代表する他のアルゴリズム、プロセス、および制御と連携する。これらの追加の安全保護手段として、限定はしないが、「インスリン限度」パラメータの使用、グルコースセンサー較正結果に基づく閉ループ開始回路、インスリンオンボード(IOB)補償アルゴリズム、欠落送信の監視、および予測されるセンサーグルコースに対するセンサーグルコースの監視が挙げられる。
実際、インスリン限度パラメータに対する最適な、または所望の設定が決定されるべきである。この点で、インスリン限度パラメータは、それぞれの患者に対するコントローラ論理機能への入力として使用され、これは、潜在的なセンサー誤差に起因するコントローラによるインスリンの過剰送達を回避するために追加の安全機能としてインスリン送達速度に上限を課す。いくつかの実施形態において、インスリン限度パラメータは、患者の基礎速度、空腹時食血糖、およびインスリン感受性から計算される。
図1を再び参照すると、閉ループシステムは、一般に、グルコースセンサーシステム10、コントローラ12、およびインスリン送達システム14を備えることがわかる。図1は、これらの一次要素を別個のブロックとして示しているけれども、システムの実施形態は、実施されているブロックのうちの2つ以上を単一の物理的コンポーネントに組み合わせることができる。例えば、閉ループシステムの治験構成は、伝統的な患者着用注入ポンプ(インスリン送達システム14に対応する)、従来の連続的グルコースセンサー/送信機アセンブリ(グルコースセンサーシステム10に対応する)、および適切に書かれたソフトウェアアプリケーションがインストールされているモバイルコンピューティングデバイス(コントローラ12に対応する)を備えることができる。モバイルコンピューティングデバイスは、例えば、スマートフォン、タブレットコンピュータ、ネットブックコンピュータ、デジタルメディアプレーヤー、ハンドヘルドビデオゲームデバイス、または同様のものであるものとしてよい。モバイルコンピューティングデバイス上で実行されるように設計された1つ以上のコンピュータ実行可能プログラムまたはアプリケーションを使って所望の閉ループ制御機能が実行され得ることは理解されるであろう。治験構成は、コンピューティングデバイス(Wi−FiまたはBLUETOOTH(登録商標)データ通信プロトコルなどの標準ワイヤレスデータ通信技術を利用し得る)とグルコースセンサーシステム10(通常モバイルコンピューティングデバイスと互換性のない専用データ通信プロトコルを使用し得る)との間のデータ通信インターフェースとして使用されるトランスレータデバイスも備え得る。
他の実施形態では、グルコースセンサーシステム10の機能は、インスリン送達システム14内に、たぶん、インスリン送達システム14のハウジングに取り付けられる交換可能な使い捨て型モジュールとして組み込まれることもあり得る。さらに他の実施形態では、コントローラ12の機能は、別個の、異なるコントローラデバイスが患者によって実行される必要がないようにインスリン送達システム14に組み込むことも可能である。実際、コントローラ12によって利用される制御ソフトウェアは、インスリン注入ポンプ、ポンプモニターデバイス、または同様のものに取り付けるようにポーティングされ、これによりこれらのデバイス内にコントローラ12の機能を実装することを、そうするのが望ましければ行うことができる。さらなる実施形態において、インスリン送達システム14、グルコースセンサーシステム10、およびコントローラ12の機能に対応できるように単一のハードウェアデバイスプラットフォームが適切に設計され得る。これらの、および他の可能な実装も、本開示によって企図されており、閉ループシステムが構成され配備される特定の様式は、本明細書で説明されている閉ループ制御技法の範囲または適用を制限または他の何らかの形で制約することを意図されていない。
図1には図示されていないけれども、閉ループシステムは、測定されたBG値をコントローラ12および/またはインスリン送達システム14に供給する従来の血糖測定器(例えば、指先採血デバイス)を備えるか、または連携し、これによりグルコースセンサーシステム10を較正することができる。いくつかの実施形態において、測定されたBG値は、インスリン送達システム14に送信され、次いで、このシステムはBG値、センサー較正係数、および較正時間をコントローラ12に送信する。コントローラ12は、受信した情報を処理し、分析して、システムが閉ループオペレーションモードに入り得るかどうかを判定することができる。この点で、コントローラ12は、グルコースセンサーシステム10の較正が許容可能な範囲内にあることをチェックして確認してから、システムが閉ループモードに入るのを許すことができる。
閉ループモードに入った後、インスリン送達システム14は、所定のスケジュールに従って、例えば、5分間隔で、センサーグルコース(SG)値、センサーIsig値、較正係数、「送達済みインスリン」値、および他のデータを必要に応じてコントローラ12に送信する。コントローラ12は、閉ループアルゴリズムに基づき所望のインスリン投与量を決定して患者を目標グルコース設定点に維持し、好適な制御データおよび命令をインスリン送達システム14に伝達する。インスリン送達システム14は、コントローラ12によって指定されたインスリン投与量を使用者に送達するように反応する。
図49は、閉ループシステムコントローラ900の例示的な一実施形態の処理モジュールおよびアルゴリズムを示すブロック図であり、図50は、インスリン送達システム14を制御するためにコントローラ900によって少なくとも一部は実行され得る制御プロセス1000の例示的な一実施形態を示す流れ図である。図1に示されているコントローラ12は、図49に示されているものに従って構成され得る。図49は、コントローラ900のいくつかの入力および出力の概略を示し、ここでは、平行四辺形は入力を表し、卵形は出力を表し、矩形はコントローラ900のさまざまな機能モジュールを表す。本明細書の説明の文脈において、「機能モジュール」は、プロセス、技法、方法、アルゴリズム、コンピュータ実行可能プログラム論理機能、または同様のもであってよい。この点で、コントローラ900は、少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャおよびプロセッサアーキテクチャと連携し関連する少なくとも1つのメモリ素子を有する電子デバイスとして実現することも可能であろう。プロセッサアーキテクチャは、コントローラ900が本明細書で詳しく説明されているさまざまな制御オペレーションおよび方法を実行することができるように少なくとも1つのメモリ素子内に格納されたプロセッサ実行可能命令を実行する適切な構成を取る。
コントローラ900を実装するホスト電子デバイスは、インスリン注入デバイス用のモニターデバイスとして実現され、モニターデバイスおよびインスリン注入デバイスは、2つの物理的に明確に区別できるハードウェアデバイスである。このシステムの別の実施形態において、コントローラ900を実装するホスト電子デバイスは、携帯型ワイヤレスデバイスとして実現され、携帯型ワイヤレスデバイスおよびインスリン注入デバイスは、2つの物理的に明確に区別できるハードウェアデバイスである。この文脈における携帯型ワイヤレスデバイスは、限定することなく、携帯電話デバイス、タブレットコンピュータデバイス、ラップトップコンピュータデバイス、携帯型ビデオゲームデバイス、デジタルメディアプレーヤーデバイス、携帯型医療機器、または同様のものであるものとしてよい。さらに他のシステム実施形態では、ホスト電子デバイスおよびインスリン注入デバイスは、単一のハードウェアデバイスに物理的に、また機能的に一体化され得る。このような実施形態では、インスリン注入デバイスは、本明細書で提示されているようにコントローラ900の機能を含む。
コントローラ900のいくつかの実施形態は、夜間閉ループオペレーションモードで目標グルコース設定点に患者を保持するために送達されるインスリン投与量を決定するように設計され、構成された複数の連携する機能モジュールを備える。この点で、コントローラ900の例示されている実施形態は、機能モジュールとして、限定はしないが、閉ループ開始モジュール902、起動モジュール904、比例積分微分インスリンフィードバック(PID−IFB)制御モジュール906、インスリン制限モジュール908、インスリンオンボード(IOB)補償モジュール910、インスリン送達タイムアウトモジュール912、モデルスーパーバイザーモジュール914、および欠落送信モジュール916を含み得る。
図50を参照すると、制御プロセス1000は、閉ループオペレーションモードに入ることが望まれている場合にいつでも開始することができることがわかる。したがって、制御プロセス1000は、使用者開始コマンドに応答して、通常は閉ループオペレーションを示す動作状態(例えば、スリーピング)の検出に応答して自動的に、または同様の様式で開始することができる。制御プロセス1000のいくつかの実施形態は、1つ以上のシステムチェック(タスク1002)が、システムが閉ループオペレーションモードに入ることが許されるかどうかを確認することから開始することができる。この特定の例では、システムが閉ループモードに進むことを許す前にセンサー較正チェックを使用する。図49を参照すると、タスク1002において閉ループ開始モジュール902が関わり得ることがわかる。
いくつかの実施形態では、閉ループ開始モジュール902では、閉ループ開始を妨げるいくつかのセンサー性能基準を考慮するものとしてよい。このような基準として、限定はしないが、(1)較正が安定していないときの起動時、(2)センサー感度が著しく変化するとき、(3)センサーが、潜在的に無効な測定器読み取り値で較正されることがあり、したがってセンサー感度が著しく変化するとき、(4)指定された一定の期間にわたって間隔をあけて行われる多数の一番最近の較正(例えば、2つの一番最近の較正)についてセンサーと測定器との間の不整合を引き起こす可能性のある他の状況が挙げられる。
閉ループ開始モジュール902の図示されている実施形態は、少なくとも、入力として、測定器(測定された)BG値920、少なくとも1つのセンサー較正係数922(すなわち、較正測定結果、較正データなど)、現在のセンサーIsig値924、およびBG値920に関連する較正時間およびセンサー較正係数922を示すタイムスタンプデータ926を受け取る。この入力データの一部または全部は、インスリン送達システム14(図1を参照)、トランスレータデバイス、モニターデバイス、または閉ループシステム内の任意のデバイスによって直接的にまたは間接的に提供され得る。この説明では、新しいセンサー較正係数922および新しいタイムスタンプデータ926が、それぞれの測定されたBG値920について生成されると仮定しており、センサー較正係数922は、患者を監視するために使用されているグルコースセンサーシステム10(図1を参照)の較正に関連付けられている。特に、センサー較正係数は、測定器BG値920および対応するセンサーIsig値924に基づくものとしてよい。
閉ループ開始モジュール902は、入力データ(現在の値と過去の値の両方)を分析して、システムが閉ループモードに入るのを許されているかどうかを判定する。例えば、閉ループ開始モジュール902は、2つの連続する較正タイムスタンプ値の間の期間をチェックし、最近の較正係数値と以前の較正係数値とを比較し、および同様の作業を実行することができる。閉ループ開始モジュール902の「出力」は、システムの2つの動作モードに対応する。より具体的には、閉ループ開始モジュール902は、システムが開ループモード928で動作し続けているかどうか、またはシステムが閉ループモード930を開始するかどうかを制御する。
図50を参照すると、閉ループモードが許可されていない場合(クエリタスク1004の「いいえ」分岐)、制御プロセス1000は、開ループモードにとどまるようにシステムを動作させることがわかる(タスク1006)。その一方で、閉ループモードが許可されている場合(クエリタスク1004の「はい」分岐)、制御プロセス1000は、適切な様式で閉ループモードを開始し起動することができる(タスク1008)。図49を再び参照すると、補正ボーラス932が計算され、送達されて(必要ならば)、閉ループモードの開始時に高血糖症を緩和することができることがわかる。この補正ボーラス932は、測定された測定器読み取り値が閾値より高い場合に目標血糖値を達成する追加の安全保護手段として使用される。制御プロセス1000が、補正ボーラスが必要であると判定した場合、閉ループモードの開始時にインスリン送達システムによって実行される適切なインスリン投与量命令が生成される。
図49を参照すると、動モジュール904が、システムが閉ループ動作モードに進み得るという決定に応答して呼び出され得ることがわかる。システムが閉ループモードにいったん入った後、コントローラは、以下でさらに詳しく説明されているように処理され使用され得る履歴データを取り出す。いくつかの実施形態において、例えば、コントローラは、最近24時間のデータを取得する(インスリン送達システムから、モニターから、または同様のものから)。これ以降、コントローラは、データパケットをサンプリング期間毎に1回取り出して、限定することなく、センサーグルコース(SG)値、センサーIsig値、センサー較正係数、送達されるインスリンの量に関係する情報、送達される手動ボーラスに関係する情報、およびセンサー較正係数を取得する。以下でさらに詳しく説明されているように、受信された情報は、さまざまな安全保護手段において、最終的なインスリン投与量を決定するために使用され得る。
起動モジュール904は、センサーグルコース(SG)値940を入力として受け取り、起動モジュール904の機能は、閉ループモード930の起動に応答して開始され得る(このトリガー機構は、図49の破線の矢印942によって表されている)。SG値940は、グルコースセンサーシステム10によって直接的に提供されるか、またはインスリン送達システム14、トランスレータデバイス、または閉ループシステム内の任意のデバイスによって間接的に提供され得る(図1を参照)。この説明では、SG値940は利用可能になったときに進行中に起動モジュール904によって受信される。起動モジュール904は、目標グルコース設定点944も利用することができ、これはコントローラ900によって内部的に維持され、生成され、および/または提供され得る。ここで提示されている実装について、目標グルコース設定点944は、使用者が指定することができる固定された(一定の)値を表す(図49は、目標グルコース設定点値944を破線で表し、その値が機能モジュールまたはシステムによって受信されたデータではなく使用者指定のパラメータであることを示す)。
いくつかの実施形態において、起動モジュール904は、PID−IFB制御モジュール906への入力として使用される、最終目標グルコース値946を計算する。最終目標グルコース値946は、システムが開ループモードと閉ループモードとの間でより滑らかな遷移を行うことを可能にする(最終目標グルコース値946を徐々に調整することによって)。起動モジュール904は、目標グルコース設定点値944を利用して、最終目標グルコース値946を計算することができる。この点で、起動モジュール904は、センサーグルコースが特定の閾値より高いと仮定して、最終目標グルコース値946を閉ループモードの開始時のセンサーグルコース値と同じレベルにまで高める。時間が進むにつれ、最終目標グルコース値946は、目標グルコース設定点値944まで徐々に減少しながら戻る(通常は、2時間ほどで)。図50を参照すると、制御プロセス1000が、最終目標グルコース値を計算し(タスク1010)、最終目標グルコース値に少なくとも一部は基づき非補償のインスリン注入速度PIDRate(n)を計算することによって継続する(タスク1012)。この例では、起動モジュール904は、タスク1010で関わり、PID−IFB制御モジュール906は、タスク1012で関わり得る。
追加の安全保護手段として、インスリン制限モジュール908は、PID−IFB制御モジュール906と連携して、患者の基礎速度、断食血糖、およびインスリン感受性に基づき計算されるインスリン上限を与える。このインスリン上限は、潜在的なセンサー誤差に起因するシステムによるインスリンの過剰送達を回避するためにインスリン送達速度に上限を課す。
PID−IFB制御モジュール906は、図1〜48を参照しつつ上でより詳しく説明されている制御プロセスを実行するように構成され得る。いくつかの実施形態では、PID−IFB制御モジュール906は、入力として、少なくとも、SG値940(SG値の変化率を示す変化率値を計算するために使用され得る)、現在のセンサーIsig値950、現在のセンサー較正係数952、および送達されるインスリンの量954を受信する。PID−IFB制御モジュール906への入力は、インスリン送達システム14、グルコースセンサーシステム10、トランスレータデバイス、モニターデバイス、および/または閉ループシステム内の任意のデバイスによって直接的にまたは間接的に提供され得る(図1を参照)。PID−IFB制御モジュール906は、現在および過去のSG値940、SG変化率、センサーIsig値950、センサー較正係数952、最終目標グルコース値946、および正常血糖を達成するために送達されるインスリン954に基づきインスリン注入速度を計算するように適宜構成される。これらの(および場合によっては他の)値は、進行中に利用可能になったときに、例えば、5分間隔で、または望ましいスケジュールに従ってPID−IFB制御モジュール906によって受信され得る。
送達されるインスリン954は、インスリン送達システムによって患者に送達されたインスリンの量を示すパラメータまたは値である。したがって、送達されるインスリン954は、一定期間にわたって送達される最近のボーラス(典型的にはユニットで)示すことができる。いくつかの実装では、送達されるインスリン954は、限定はしないが1分、5分、30秒、または任意の指定されたサンプリング時間であってよい、最後のサンプリング時間で送達されたインスリンの量に対応する。送達されるインスリン954は、過去の任意の定義された期間(例えば、最後のN時間)に基礎またはボーラスとして送達システムによって送達されるインスリンの量または最後のサンプリングサイクルでシステムによって送達されるインスリンの量も示し得る。実際、PID−IFB制御モジュール906(およびIOB補償モジュール910)は、必要に応じて送達されるインスリン954に対して履歴値を収集し、保存するように「初期化」され得る。その後、送達されるインスリン954は、ボーラスまたは基礎チャネルによるものであれば最後のサンプリング期間にシステムによって投与されるインスリンの量を単純に示し得る。
上で述べたように、PID−IFB制御モジュール906は、患者特有のパラメータである、インスリン上限を利用することができる。いくつかの実施形態において、インスリン上限は、使用者、介護人、または同様の者によって入力され得る。あるいは、インスリン制限モジュール908が、そうするのが望ましければインスリン上限を計算または他の何らかの形で管理することを受け持つものとしてよい。インスリン上限は、潜在的なセンサー誤差に起因するコントローラ900によるインスリンの過剰送達を回避するために追加の安全機能としてインスリン送達速度に上限を課す。したがって、PID−IFB制御モジュール906がインスリン限度より高い用量を推奨する場合、インスリン限度は、送達されるインスリンをインスリン限度値に制約する。それに加えて、インスリン限度は、PIDの積分成分を以前の値に「凍結」し、最大値に達するまでグルコース誤差の連続的積分を引き起こし得る積分飽和を防ぐ。いくつかの実施形態において、インスリン上限は、患者の基礎速度の5倍に設定されたデフォルト値を有する。したがって、最大値に達した場合、PID−IFB制御アルゴリズムは、かなり攻撃的にインスリン投与量を計算する。したがって、積分飽和を最小にするために、インスリン限度をPID−IFB制御モジュール906(図49に示されているような)にフィードバックして、次のインスリン投与量計算で使用する。
PID−IFB制御モジュール906は、現在のインスリン投与量958を出力値として計算するためにすでに説明されているように動作する(現在のインスリン投与量958は、本明細書では非補償インスリン注入速度PIDRate(n)とも称される)。実際、現在のインスリン投与量958は、典型的には、注入速度(ユニット/時間)として表される。この説明の文脈において、現在のインスリン投与量958は、IOB補償モジュール910によるさらなる調整または補償を受ける可能性のある、ベースラインとなる閉ループ注入速度を表す。再び図50を参照すると、制御プロセス1000は、非補償インスリン注入速度に少なくとも一部は基づき調整されたインスリン注入速度AdjustedRate(n)を計算することによって患者の「オンボード」でインスリンを補償することができる(タスク1014)ことがわかる。この例について、IOB補償モジュール910は、タスク1014において関わり得る。
IOB補償モジュール910は、入力として、少なくとも、現在のインスリン投与量958、および送達される手動ボーラス960に関する情報を受信する。送達される手動ボーラス960は、インスリン送達システム14、トランスレータデバイス、モニターデバイス、および/または閉ループシステム内の任意のデバイスによって直接的にまたは間接的に提供され得る(図1を参照)。この説明では、送達される手動ボーラス960は、進行中に利用可能になったときに、例えば、5分間隔で、または望ましいスケジュールに従ってIOB補償モジュール910によって受け取られる。IOB補償モジュール910は、コントローラ900によるインスリンの過剰送達を回避するのを補助することを目的として最終注入速度を補償するために閉ループオペレーション前または閉ループオペレーション中に送達される手動ボーラスに基づきオンボードでインスリンを推定するように適宜構成される。したがって、IOB補償モジュール910の出力は、最終注入速度(ユニット/時間)として表される最終インスリン投与量962であるものとしてよい。最終インスリン投与量962は、本明細書では調整済みインスリン注入速度AdjustedRate(n)とも称される。
図50を参照すると、制御プロセス1000は、調整済みインスリン注入速度AdjustedRate(n)を使用して、インスリン注入デバイスを制御し、次いで、使用者の身体へのインスリンの送達を調節する(タスク1016)ことがわかる。いくつかの実施形態において、調整済みインスリン注入速度は、適切な様式(ワイヤレスデータ通信など)でインスリン注入デバイスに伝達される。制御プロセス1000は、上で説明されているように、反復進行する様式で継続し、使用者の関与なく必要に応じて使用者の状態を監視し、インスリンを送達することができる。そうは言っても、制御プロセス1000が、閉ループ動作モードを終了させるべきと決定した場合(クエリタスク1018の「はい」分岐)、制御プロセス1000は、システムを開ループモードに切り替えて戻す(タスク1020)。閉ループモードは、使用者開始コマンドに応答して、通常は開ループオペレーションを示す動作状態の検出に応答して自動的に、または同様の様式で終了され得る。
クエリタスク1018で、閉ループモードを続けるべきと決定した場合(クエリタスク1018の「いいえ」分岐)、制御プロセス1000は、制御ルーチンの別の反復を実行するときであるかどうかをチェックすることができる。言い換えると、制御プロセス1000は、次のサンプリング時間をチェックすることができる(クエリタスク1022)。次の反復の時間である場合、制御プロセス1000はタスク1010に戻り、データ値の次のセットで計算を繰り返すことができる。例えば、制御ルーチンの次の反復で、限定することなく、SG値940、SG変化率、センサーIsig値924、送達されるインスリンの量954、および送達される手動ボーラス960のうちの一部または全部の現在値を取得し、処理することができる。これにより、制御プロセス1000は、所定のスケジュール、指定されたサンプリングレート、または同様のものに従って進行中に最終インスリン注入速度を調整することができる。
インスリン送達タイムアウトモジュール912は、コントローラによって指定された時間に対する最大インスリン限度またはゼロユニット/時間の最小許容可能注入でインスリンの連続的送達を受けているかどうかを監視する。したがって、インスリン送達タイムアウトモジュール912は、送達されるインスリン954を入力として受信することができる。指定された時間を超えた場合、システムはフェイルセーフアラート966をトリガーする。そうでない場合、システムは閉ループ動作モード968にとどまる。
図49を再び参照すると、モデルスーパーバイザーモジュール914は、入力として、少なくとも、送達されるインスリン954、センサーIsig値950、および1つ以上のセンサー較正係数952を受信する。モデルスーパーバイザーモジュール914への入力は、インスリン送達システム14、グルコースセンサーシステム10、トランスレータデバイス、モニターデバイス、および/または閉ループシステム内の任意のデバイスによって直接的にまたは間接的に提供され得る(図1を参照)。モデルスーパーバイザーモジュール914は、送達されるインスリン954、センサーIsig値950、およびセンサー較正係数952に基づき、リアルタイムで(または実質的にリアルタイムで)使用者のグルコース濃度を推定するように適宜設計され構成される。モデルスーパーバイザーモジュール914によって使用されるセンサー較正係数は、閉ループ開始モジュール902によって使用されるセンサー較正係数922に等しい。そうは言っても、閉ループ開始モジュール902は、特定の一時点においてセンサー較正係数922を利用するが、モデルスーパーバイザーモジュール914では、閉ループモードでのオペレーション中に進行中に連続的な様式でセンサー較正係数952を考慮する。モデル予測グルコースおよびセンサーグルコース値が著しく異なる場合、システムは閉ループモードを終了する。したがって、モデルスーパーバイザーモジュール914は、システムが閉ループモード974にとどまるか、または開ループモード976に切り替わるかを調節する。
欠落送信モジュール916は、限定することなく、適宜、センサーIsig値950、SG値940、およびセンサー較正係数952を監視するように構成される。より具体的には、欠落送信モジュール916は連続監視で、システムが必要な情報および入力値を運ぶデータパケットを受信しているかどうかをチェックする。合計で下限閾値未満の時間(例えば、15分)となる欠落データパケットについて、システムは、図49のブロック980によって示されているように、閉ループモードに入ったままである。この時間中、システムは、最後の有効なセンサーグルコース値に基づく閉ループ制御方法を使用してインスリン投与量を計算し続ける。合計で下限閾値時間より長く、上限閾値時間より短い時間(例えば、60分)となる欠落データパケットについて、欠落送信モジュール916は、図49のブロック982に示されているように、システムを事前プログラムされた安全基礎速度に切り替える。いくつかの実施形態において、この安全基礎速度は、患者の夜間基礎速度の半分として定義され、このパラメータは、介護人または医師によってプログラムされ得る。欠落送信モジュール916が、安全基礎速度で投与されている間にデータパケットの受信を開始する場合、システムは、再び、閉ループモードに切り替わって戻る。合計で上限閾値を超える時間となる欠落データパケットについて、システムは、図49のブロック984によって示されているように、開ループモードに切り替わる。この時点で、システムは、事前プログラムされた開ループ夜間基礎速度の送達を行うように制御される。
要約すると、コントローラ900は、少なくとも最近の測定器BG値920、センサー較正係数922、および較正タイムスタンプデータ926に応答して閉ループモードに入るかどうかを決定する。コントローラ900は、閉ループ開始モジュール902を利用して、最後の2つの較正値の間のセンサー較正時間が許容可能な範囲内にあるかどうか、またこれら2つの較正値(最近の値と以前の値)との間の変化が許容可能であるかどうかをチェックする。そうならば、コントローラ900は、システムを閉ループモードに切り替える。システムがいったん閉ループモードに入ると、コントローラ900は、現在のSG値940、現在のセンサーIsig値950、送達されるインスリン954、センサー較正係数952、および送達される手動ボーラス960を含むデータパケットを定期的に(例えば、5分おきに)受信する。いくつかの実施形態において、コントローラ900によって受信されるデータパケットのそれぞれは、前の24時間の間に収集されるデータを含む。
起動モジュール904は、SG値940および目標グルコース設定点値944を利用して、最終目標グルコース値946を計算する。いくつかの実施形態では、目標グルコース設定点値944は、120mg/dLに設定されるが、他の設定の使用も、そうするのが望ましければ可能である(設定の典型的な範囲は、例えば、70〜300mg/dLであってよい)。この結果、開ループモードと閉ループモードとの間のより滑らかな遷移が、最終目標グルコース値946を徐々に調整することによって行われる。最終目標グルコース値946は、最終インスリン投与量962を計算するための1つの入力として使用するためにPID−IFB制御モジュール906に送信される。
PID−IFB制御モジュール906は、最終目標グルコース値946、現在および過去のSG値940、SG変化率値、および送達されるインスリン954を利用して、インスリン注入速度(最終インスリン投与量962)を決定し、正常血糖を達成する。追加の安全保護手段として、インスリン制限モジュール908からのインスリン上限(患者の基礎速度、断食血糖、およびインスリン感受性に基づき計算される)は、それぞれの患者についてコントローラ900に入力され、これにより、コントローラ900によるインスリンの過剰送達を回避するためにインスリン送達速度に上限を課す。PID−IFB制御モジュール906は、IOB補償モジュール910に最終インスリン投与量962を送信する前にインスリン上限を考慮し、IOB補償モジュール910は最終インスリン投与量962を計算するために、閉ループオペレーションの前または閉ループオペレーションの実行中に、手動ボーラスからのインスリンオンボードを推定する。最終インスリン投与量962は、コントローラ900から直接的にまたは間接的にインスリン送達システム14に伝達され、これにより、最終インスリン投与量962は閉ループオペレーションにおいて患者に送達され得る。
追加の安全保護手段は、閉ループオペレーションにおいてシステムを監視するように実装することが可能であり、したがってシステムはいくつかの基準が満たされない場合に閉ループモードを終了する。例えば、コントローラ900は、指定された数の連続データパケットが欠落している場合に閉ループモードを終了することを行わせることができる。これは、コントローラ900が、通常、閉ループオペレーションにおいて連続的な様式でデータパケットを(インスリン送達システム14から、モニターから、翻訳デバイスから、または同様のものから)受信することを仮定する。したがって、コントローラ900が、閾値数より多い連続データパケットが予想通りに受信されないことを検出した場合、システムは、閉ループモードを終了するように指令される。この機能は、すでに説明されているように、欠落送信モジュール916に関連する。
さらに、モデルスーパーバイザーモジュール914は、送達されるインスリン954、センサーIsig値950、およびセンサー較正係数952に基づき、進行中に使用者のグルコース濃度を推定する。モデル予測グルコースとセンサーグルコース値との間の差が、主張されている閾値より大きい場合、コントローラ900は、システムに閉ループモードを終了させることができる。
上で要約されているように、コントローラ900は、閉ループオペレーションにおいてインスリンの送達を調節するため連携する多数のモジュールまたは機能、すなわち、閉ループ開始モジュール902、起動モジュール904、PID−IFB制御モジュール906、インスリン制限モジュール908、およびIOB補償モジュール910を使用する。さらに、コントローラ900は、閉ループオペレーションにおいてさまざまな安全保護機能を実行する多数のモジュールを使用することができる。これらの安全保護モジュールは、インスリン送達タイムアウトモジュール912、モデルスーパーバイザーモジュール914、および欠落送信モジュール916を含み得る。
閉ループ開始モジュール:第の表現
閉ループ開始モジュール902は、センサー感度の変化をチェックし、システムが閉ループモードに入るのを許されているかどうかを判定する。再び図49を参照すると、閉ループ開始モジュール902への入力は、測定器BG値920、センサー較正係数922、および較正タイムスタンプデータ926を含む。閉ループ開始モジュール902は、センサー較正係数値922に関係する一連の条件およびセンサー較正係数値922が取得された時刻をチェックする。すべての条件が満たされた場合、コントローラ900は、閉ループ動作モードを開始する。この基準が満たされない場合、システムは開ループ動作モードのままであり、コントローラ900は、新しいセンサー較正を要求する。
閉ループ開始モジュール902のいくつかの実施形態は、システムが閉ループモードに進むことができるかどうかを決定するために1つ以上の機能、アルゴリズム、または方法を実行する。以下は、閉ループ開始モジュール902の例示的な一実施形態によって使用されるパラメータおよび変数である。
t=閉ループモードに入ろうと試みるときの時刻、
最近の較正係数(CFR)=一番最近のセンサー較正係数(CF)値、
tR=CFRが取得された時刻、
以前の較正係数(CFP)=CFRの前の最後のCF値、
tP=CFPが取得された時刻、
CFchange=CFの対に対する、以前のCFから現在のCFへの変化のパーセンテージ、CFchangeは、次の式に従って計算され得る。
CFchange=(abs(CFcurrent−CFprevious)/CFprevious)*100 (式50)
tRecent=閉ループモードを開始することを試みる前の一番最近の較正係数に対する時間窓(分)
tDiffmin=最近の較正と最近の構成の前の較正との間の最小時間差(分)
tDiffmax=最近の較正と以前の較正との間の最大時間差(分)
CFmin=最小許容可能CF(mg/dL/nA)
CFmax=最大許容可能CF(mg/dL/nA)
CFprevious=CF値の対におけるCFcurrentの前のCF値
CFchangeTh=%の許容可能なCFchangeに対する閾値(mg/dL/nA)
いくつかの実施形態では、閉ループ開始モジュール902は、一連の処理ステップの形態で実装される。以下で説明されている論理を使用することで、閉ループ開始モジュール902は、システムを閉ループモードに入れるかどうかを決定する。
ケースA
If(tPが時間窓(tR−tDiffmin:tR)内にない)、以下の論理がチェックされる。
If(CFmin≦CFR≦CFmax)、
If(t−tRecent≦tR≦t)
If(tR−tDiffmax≦tP≦tR−tDiffmin)
If(CFmax≦CFP≦CFmax)
上で述べた式50において、CFRをCFcurrentとして、CFPをCFpreviousとして、CFchangeを計算する
If(CFchange≦CFchangeTh)
閉ループに入る
Else その時点で閉ループに入れない
Else その時点で閉ループに入れない
Else その時点で閉ループに入れない
Else その時点で閉ループに入れない
Else 閉ループに入れない
上記の条件のどれも満たされない場合、システムは開ループモードのままである。したがって、閉ループモードに入るためには、ケースA(または以下で説明されているようにケースB)の条件のすべてを満たす新しい較正(複数可)が必要になる。
ケースB
If(tPが時間窓(tR−tDiffmin:tR)内にある)、
CFV=tR−tDiffmax:tR−tDiffminの時間窓内の一番最近のCF値
tV=CFVが取得された時刻
If(CFmin≦CFR≦CFmax)
If(利用可能なCFVがある)
上で述べた式50において、CFRをCFcurrentとして、CFVをCFpreviousとして、CFchangeを計算する
If(CFV、CFR、およびtVとtRとの間のすべてのCF値が(CFmin:CFmax)の範囲内に収まる)AND(CFVとCFRとの間のCFchangeが≦CFchangeThである)
閉ループに入る
Else その時点で閉ループに入れない
Else その時点で閉ループに入れない
Else その時点で閉ループに入れない
Else 閉ループに入れない
上記の条件のどれも満たされない場合、システムは開ループモードのままである。したがって、閉ループモードに入るためには、ケースAまたはケースBの条件のすべてを満たす新しい較正(複数可)が必要になる。
閉ループ開始モジュール902のいくつかの変更形態によれば、システムは、閉ループモードに入るときに測定器BGおよび関係する較正を要求する。このような代替的実施形態では、したがって、閉ループ開始モジュール902は、測定器BGおよびIsigを使用して、CFRを計算する。したがって、そのような一実装では、センサー電流は、閉ループ開始モジュール902への入力となる。したがって、CFRは閉ループ開始モジュール902それ自体により現在計算されているので、ケースAおよびケースBの条件(すなわち、t−tRecent≦tR≦tをチェックする)が常に満たされる。
特定の実装において、上で述べられているパラメータのいくつかは、固定することができる。この点で、以下の値は、例示的な一実施形態において利用され得る。これらの値は、ここでは、例示することを目的としてのみ与えられていること、また閉ループ開始モジュール902の実装は、そうするのが望ましければ異なる値を利用し得ることは理解されるであろう。
tRecent=120分
tDiffmin=120分
tDiffmax=480分
CFmin=2.5mg/dL/nA
CFmax=6mg/dL/nA
閉ループ開始モジュール:第2の表現
いくつかの実施形態によれば、閉ループ開始モジュール902の機能は、以下のように表現され得る。閉ループ開始モジュール902は、一連のケースステップの形態で実装され得る。この点で、閉ループ開始モジュール902は、最初に、以下の式A1に示されているような一番最近の測定器BGおよびIsig値を使用して最近の較正係数値(CFR)を計算する。
CFR=meterBG/(Isig−2) (式A1)
ここで、CFRは、最近の較正係数値であり、meterBGは、測定器BG値であり、Isigは、センサーIsig値である。式A1中の「−2」は、較正係数およびセンサーグルコースを計算するときに較正アルゴリズムによって使用される定数オフセットを表す。
ケースCまたはケースDについて以下で説明されている論理を使用することで、閉ループ開始モジュール902は、システムを閉ループモードに入れるかどうかを決定する。それぞれのケースの条件は、一番最近の以前の較正係数(CFP)が取得された時刻に依存する。
ケースC
ケースCは、以前の較正の時刻が一番最近の較正から120分超前であるシナリオに対応する。それに加えて、最近の較正係数(CFR)および以前の較正係数(CFP)は、以下の論理式に示されているような限度内にある。
CFmin≦CFR≦CFmax (式A2)
CFmin≦CFP≦CFmax (式A3)
ここで、CFRは、最近の較正係数値であり、CFPは、以前の較正値であり、CFminは、2.5mg/dL/nAとして設定されている較正係数に対する最小値であり、CFmaxは、6mg/dL/nAとして設定されている較正係数に対する最大値である。
ケースCについて、最近の較正の時刻(tR)は、以下の論理式に示されているような閉ループ開始の始まりから2時間以内である。
t−tRecent≦tR≦t (式A4)
ここで、tRは、最近の較正の時刻であり、tは、閉ループモードに入ろうと試みるときの時刻であり、tRecentは、閉ループモードを開始することを試みる前の一番最近の較正に対する時間窓である(120分に設定される)。
ケースCについて、以前の較正の時刻(tP)は、以下の論理式に示されているような最近の較正係数の時刻より2から8時間前に生じる。
tR−tDiffmax≦tP≦tR−tDiffmin (式A5)
ここで、tPは、以前の較正の時刻であり、tRは、CFRが取得された時刻であり、tDiffmaxは、最近の較正と以前の較正との間の最大時間差(480分(8時間)として設定されている)であり、tDiffminは、最近の較正と最近の較正の前の較正との間の最小時間差(120分(2時間)として設定されている)である。
ケースCについて、較正の変化(CFchange)は、以下の論理式に示されているように35%未満であり、CFchangeは、式A6に従って計算される。
CFchange=(abs(CFR−CFP)/CFP)×100 (式A6)
CFchange≦CFchangeTh (式A7)
ここで、CFchangeは、較正係数の任意の対について以前の較正係数から現在の較正係数への較正係数の変化のパーセンテージであり、CFchangeThは、許容可能なCFchangeに対する閾値であり(これは、この例では35%に設定されている)、CFRは、一番最近の較正係数値であり、CFPは、CFRの前の最後の較正係数である。
前記の条件のすべてが、ケースC(式A2〜A7)について満たされている場合、閉ループ開始モジュール902は、補正ボーラスを計算するための方法を開始することができる(必要ならば)。しかし、どのような条件も満たされない場合、コントローラ900は開ループモードのままである。したがって、閉ループモードに入るためには、ケースCまたはケースDの条件のすべてを満たす新しい較正(複数可)が必要になる。
ケースD
ケースDは、以前の較正の時刻が一番最近の較正から120分未満前であるシナリオに対応する。以前の較正が、最近の較正から2時間未満前である場合、追加の以前の較正係数(CFP2)が分析に含まれる。これは、閉ループ開始モジュール902が少なくとも2時間の範囲を有するセンサー感度を評価することを可能にする。
ケースDについて、閉ループ開始モジュール902は、以下の論理式に示されているように最近の較正係数(CFR)の時刻より前の2から8時間の範囲内で生じる時間的に前の第2の以前の較正係数(CFP2)を見つける。
tR−tDiffmax≦tP2≦tR−tDiffmin (式A8)
ここで、tP2は、第2の以前の較正係数(CFP2)が取得される時刻であり、tRは、CFRが取得された時刻であり、tDiffmaxは、tP2とtRとの間の最大時間差(この例では480分(8時間)として設定されている)であり、tDiffminは、tP2とtRとの間の最小時間差(この例では120分(2時間)として設定されている)である。
ケースDについて、閉ループ開始モジュール902は、以下の論理式に示されているように、複数の較正係数(CF1...CFn)が第2の以前の較正係数(CFP2)の時刻と最近の較正係数(CFR)の時刻との間で利用可能かどうかも判定する。
tP2≦t1...tn≦tR (式A9)
ここで、t1...tnは、さらに多くの較正係数(CF1...CFn)が観測されるときの時刻であり、tRは、CFRが取得された時刻であり、tP2は、CFP2が取得された時刻である。
ケースDについて、最近の較正の時刻(tR)は、以下の論理式に示されているように、閉ループ開始の始まりから2時間以内である。
t−tRecent≦tR≦t (式A10)
ここで、tRは、最近の較正の時刻であり、tは、閉ループモードに入ろうと試みるときの時刻であり、tRecentは、閉ループモードを開始することを試みる前の一番最近の較正に対する時間窓である(この例では120分に設定される)。
ケースDについて、最近の較正係数(CFR)、以前の較正係数(CFP)、第2の以前の較正係数(CFP2)、およびCF1...CFnを含むすべての較正係数は、以下の論理式に示されているような限度内にある。
CFmin≦CFR≦CFmax (式A11)
CFmin≦CFP≦CFmax (式A12)
CFmin≦CFP2≦CFmax (式A13)
CFmin≦CF1...CFn≦CFmax (式A14)
ここで、CFRは、最近の較正係数であり、CFPは、以前の較正係数であり、CFP2は、第2の以前の較正係数であり、CF1...CFnは、tP2とtRとの間で取得される較正係数であり、CFminは、較正係数に対する最小値(この例では2.5mg/dL/nAとして設定される)であり、CFmaxは、較正係数に対する最大値(この例では、6mg/dL/nAとして設定される)である。
ケースDについて、CFRとCFP2との間の較正の変化(CFchange)は、以下の論理式に示されているように、35%未満であり、CFchangeは、式A15に従って計算される。
CFchange=(abs(CFR−CFP2)/CFP2)×100 (式A15)
CFchange≦CFchangeTh (式A16)
ここで、CFchangeは、較正係数の任意の対について以前の較正係数から現在の較正係数への較正係数の変化のパーセンテージであり、CFchangeThは、許容可能なCFchangeに対する閾値であり(これは、この例では35%に設定されている)、CFRは、一番最近の較正係数値であり、CFP2は、式A8に記述されている時間範囲内の一番最近の較正係数値である。
前記の条件のすべてが、ケースD(式A8〜A16)について満たされている場合、閉ループ開始モジュール902は、補正ボーラスを計算するための方法を開始することができる(必要ならば)。しかし、どのような条件も満たされない場合、コントローラ900は開ループモードのままである。したがって、閉ループモードに入るためには、ケースCまたはケースDの条件のすべてを満たす新しい較正(複数可)が必要になる。
IOB補償のある補正ボーラス
上で説明されているように、補正ボーラス932は、閉ループモードの始めにコマンドで指令され得る。補正ボーラスの目的は、閉ループモードの開始時に高血糖を緩和するためのインスリン投与量を与えることである。これは、最初に閉ループの開始直前に血糖測定器の読み取り値を取得することによって達成され得る。そのBG測定器読み取り値が、特定の補正閾値(この例では180mg/dLである、CTH)より高い場合、コントローラ900は、患者のインスリン感受性(ISF、mg/dL/ユニット)、インスリンオンボード、および所望の目標グルコースレベル(TG、mg/dL)に基づきインスリン投与量を送達し、被験者のグルコースレベルを目標グルコースレベルにする。
いくつかの実装によれば、補正ボーラス(CB)は、以下に示されているように、閉ループモードの開始時に取得される測定器BG値(md/dL単位)に基づき送達される。
ここで、CBは、補正ボーラスであり、BGは、血糖測定器の値(mg/dL)であり、TGは、目標グルコース(mg/dL)であり、ISF(式A18を参照)は、患者の調整済みインスリン感受性係数(mg/dL/ユニット)であり、CTHは、血糖に対する補正閾値であって、これを超えると較正ボーラスが送達される値であり(mg/dL)、IOB(n)は、nをすでに説明されているような現在のサンプリング点とする手動ボーラス(ユニット)からの活性インスリンオンボードである。
ISF=ISFfactor×ISF (式A18)
ここで、ISFは、患者の調整済みインスリン感受性係数(mg/dL/ユニット)であり、ISFは、患者の確定したインスリン感受性係数(mg/dL/ユニット)であり、ISFfactorは、ISF調整係数(無名数)である。ISFfactorに対するデフォルト値は、1に設定され、これによりISF=ISFとなる。しかし、この特定の例に関しては、ISFfactorは、患者のインスリン感受性係数を最適化する柔軟性を高めるために0.5から2の範囲を有する調整可能なパラメータとして割り当てられている。
ここで、CBは、ユニットで表される補正ボーラスである。式A19が利用されるのは、コントローラ900がポジティブボーラス(positive boluses)しか送達し得ないからであることは理解されるであろう。
起動モジュール
起動モジュール904は、目標グルコース設定点値944(いくつかの実施形態では120mg/dLに設定される)、およびセンサーグルコース(SG)値940を処理して、最終目標グルコース値946を計算し、次いでこの値はPID−IFB制御モジュール906への入力として使用される。したがって、最終目標グルコース値946は、最終インスリン投与量962を計算するためにPID−IFB制御モジュール906に送信される。再び図49を参照すると、起動モジュール904は、閉ループモードの始まりに応答して「作動」または開始されることがわかる。
閉ループ動作モードの始めに、起動モジュール904は、以下の式51によって示されているように、現在のSG値940と目標グルコース設定点値944との間の差を計算する。
式51中、SGは、センサーグルコース値であり、nは、現在のサンプリング点であり、Setpointは、使用者によって定義された目標グルコース設定点値であり、mは、閉ループオペレーションにおけるサンプリング時間である(m=1は、閉ループモードの開始を示し、mは、閉ループモードにおいてサンプルが受信される毎に増加する)。DeltaGlu(n)は、m>1のときに、さらには式52で記述される以下の状況において強制的にゼロにされる。
DeltaGluを、コントローラ900で設定されている特定の閾値(MinDeltaGluと称される)未満である場合に強制的にゼロにする。そうでなければ、DeltaGlu(n)は、式52に記述されているように、コントローラ900で設定されている閾値より大きい場合にそのままである。
ここで、DeltaGluは、上の式51から計算された、現在のSG値と定義済みの目標グルコース設定点値944との間の差であり、MinDeltaGluは、現在のSG値940と目標グルコース設定点値944との間の許容可能な最小差(コントローラ900において設定されている)である。
動的な設定点(DynSP)は、式53に記述されているように、離散化2次伝達関数モデルに基づいて計算される。
DynSP(n)=cd・DynSP(n−1)+cd・DynSP(n−2)+cn・DeltaGlu(n)+cn・DeltaGlu(n−1) (式53)
ここで、DynSPは、動的な設定点値であり、nは、現在のサンプリング点であり、n−1は、最後のサンプリング点であり、n−2は、最後から2番目のサンプリング点である。パラメータcd、cd、cn、およびcnは、設定点モデルの係数である。これらのパラメータは、以下で示されているように、設定点モデルの2つの時定数(τsp1およびτsp2)に基づき計算される。
ただし、
axx1=1/τsp1
axx2=1/τsp2
eaxx1=e−axx1・Ts
eaxx2=e−axx2・Ts
daxx21=axx2−axx1
上記の式において、Tsはサンプリング間隔(分)を示し、τsp1およびτsp2は、設定点モデルの時定数である。さらに、axx1は、時定数τsp1の逆数であり、axx2は、時定数τsp2の逆数であり、eaxx1は、τsp1に対する指数関数的減衰係数であり、eaxx2は、τsp2に対する指数関数的減衰係数であり、daxx21は、τsp1およびτsp2の逆数の間の差である。
最終目標グルコース値946は、式54に示されているように目標グルコース設定点値944と共に動的な設定点値(式53において計算されている)を加えることによって取得される。
FinalTarget=Setpoint+DynSP(n) (式54)
特定の実装において、起動モジュール904に対する上で述べられているパラメータのいくつかは、固定することができる。この点で、以下の値は、例示的な一実施形態において利用され得る。これらの値は、ここでは、例示することを目的として与えられていること、また起動モジュール904の実装は、そうするのが望ましければ異なる値を利用し得ることは理解されるであろう。
Setpoint=120mg/dL
MinDeltaGlu=30mg/dL(公称)、0mg/dL(下限)、600mg/dL(上限)
τsp1=25分(公称)、0.1分(下限)、250分(上限)
τsp2=30分(公称)、0.1分(下限)、250分(上限)
PID−IFB制御モジュール
PID−IFB制御モジュール906は、現在および過去のセンサーグルコース値940、センサーIsig値950、センサーグルコース値の変化率、センサー較正係数952、最終目標グルコース値946、目標グルコース設定点値944、インスリン上限などのインスリン限度、および正常血糖を達成するために送達されるインスリン954に基づきインスリン注入速度(最終インスリン投与量962)を計算する。いくつかの実施形態において、PID−IFB制御モジュール906は、その入力を5分おきに受け取り、したがって、インスリンフィードバック成分の計算では、コントローラ900によって入力データが受け取られる頻度を考慮する。
PID−IFB制御モジュール906は、式55に従って最終インスリン投与量962を計算する。
u(n)=P(n)+I(n)+D(n)−γSC−γ−γEFF (式55)
PIDRate(n)≡u(n)であることに留意されたい。式55において、インスリン注入速度u(n)は、図49に示されている最終インスリン投与量962を表す。式55、P(n)、I(n)、およびD(n)は、それぞれ、PIDコントローラの比例、積分、および微分成分である。インスリンフィードバック成分は、残りの項に対応する。変数γ、γ、およびγは、調節係数を表す。いくつかの実施形態によれば、γ=0.64935、γ=0.34128、およびγ=0.0093667であるが、他の値も使用することができる。パラメータISC(n)、I(n)、およびIEFF(n)は、それぞれ、皮下、血漿、および有効部位コンパートメントに対応するインスリン薬物動態モデルの状態に対応する。したがって、送達されるインスリンの量は、異なるコンパートメント内の予測されるインスリン濃度に比例して低減される。
PID−IFB制御モジュール906によって使用される制御アルゴリズムの例示的な実装は、離散(サンプリングされる)時間で実装される。使用される表記中、nは、現在の時間ステップであり、ただし=nTであり、tは、サンプリング期間Tを使用しているときの連続時間(分)である。
比例成分P(n)は、以下のように計算される。
P(n)=Kp[SG(n)−FinalTarget(n)] (式56)
ここで、Kpは、コントローラの総ゲイン((ユニット/時)/(mg/dL))であり、SG(n)は、現在のセンサーグルコースであり、nは、現在のサンプリング点を示し、FinalTarget(n)は、式54から計算された最終目標グルコース設定点である。Kpは、患者特有の値であり、したがってKpの実際の値は、人によって異なることは理解されるであろう。範囲は、患者に応じて変化し得るけれども、ほとんどの典型的なシナリオでは、Kpの値は0.008から0.200の範囲内にあるものとしてよい。
積分成分I(n)は、以下のように計算できる。
ここで、I(n−1)は、前のサンプリング点からの積分成分であり、nは、現在のサンプリング点を示し、n−1は、前のサンプリング点を示し、Kpは、コントローラの総ゲインであり、Tsは、サンプリング期間であり、Tは、積分時定数であり、SG(n)は、現在のセンサーグルコースであり、FinalTarget(n)は、式54から計算された最終目標グルコース設定点である。
微分成分D(n)は、以下のように計算できる。
D(n)=Kp×T×dSGdt(n) (式58)
ここで、Kpは、コントローラの総ゲインであり、Tは、微分時定数であり、dSGdt(n)は、センサーグルコース値の微分(プレフィルターで雑音を除去)であり、nは、現在のサンプリング点を示す。
コントローラ900に対して設定(調節)される必要のあるパラメータは、K、τ、およびτである(式56、57、および58を参照)。最初の3つのPIDパラメータについて、これらは、以下で述べている前の研究に従って計算される(これらの前の手法を取った結果、コントローラの性能が改善された)。公称(すなわち、インスリンフィードバックのない場合の)コントローラのゲインKP0は、式59に示されているように、被験者の一日総インスリン投与量ITDD(ユニット/日)に基づき計算される。
ここで、KP0は、デフォルトのコントローラのゲインであり、ITDDは、被験者の一日総インスリン投与量(ユニット/日)である。
インスリンフィードバックの目的は、コントローラ900がより多くのインスリンを前もって(例えば、食事障害の開始時に)送達するが、インスリンの過剰注入を防ぐことを可能にすることであり、これはボーラスの積み重ねを防ぐために既存のインスリンポンプで使用されるボーラス推定量計算と似た様式である。したがって、インスリンフィードバックが使用される場合、コントローラのゲインKは、定常状態において(すなわち、基礎送達条件において)、インスリン送達システムが正常な場合と同じ量のインスリンを送達するように調整され得る。これは、以下に示されているように、公称のコントローラのゲインKP0(インスリンフィードバックなしについて計算される)に(1+γ+γ+γ)を乗ずることによって達成される。
=Kfactor・KP0・(1+γ+γ+γ) (式60)
ここで、Kは、コントローラの総ゲインであり、Kfactorは、Kに対するゲイン係数であり、KP0は、デフォルトのコントローラのゲインであり、γ(0.64935)は、皮下インスリン濃度に対する調節係数であり、γ(0.34128)は、血漿インスリン濃度に対する調節係数であり、γ(0.0093667)は、有効インスリン濃度に対する調節係数である。
積分成分I(n)は、積分飽和問題を解消するために飽和防止機能および飽和制約も設けられる。これは、以下の式で示されているように積分クリップ値(積分成分に対する上限IClip)を計算することによって達成される。
Imax(n)=Imaxfactor×Basal×(1+γ+γ+γ) (式61a)
ここでImaxfactorは、Imaxに対するゲイン係数であり、Basalは、被験者の夜間基礎速度である。これらの式により、IClipは、センサーグルコース値が閾値上限(UnwindHigh)より高いときにImax(定数値である)に等しくなる。いくつかの実施形態において、Imaxの値(ユニット/時単位で表される)は、約15に達し得る。典型的な場合において、Imaxは、5.0のデフォルト値を有することができる。センサーグルコース値が、閾値上限と閾値下限(UnwindLow)との間にある場合、IClipはIramp(n)に等しくなり、これは式62に示されているように計算される。
ここで、Kpは、コントローラの総ゲインであり、SG(n)は、現在のセンサーグルコースであり、UnwindLowは、センサーグルコース閾値下限であり、UnwindHighは、センサーグルコース閾値上限であり、Imaxは、定数値であり、Setpoint(n)は、使用者定義の目標グルコース設定点である。
最後に、センサーグルコースが、UnwindLow閾値より低い場合、IClipは、式61によって計算され得る、Ilow(n)の値を取る。
Ilow(n)=Kp[Setpoint(n)−Unwindlow] (式63)
ここで、Kpは、コントローラの総ゲインであり、Setpointは、使用者によって定義された目標グルコースであり、UnwindLowは、センサーグルコース閾値下限である。
図51は、一例によるIClip(ユニット/時)対センサーグルコースレベル(mg/dL)のグラフである。図51は、この特定の例に対するImax、Ilow、UnwindLow、およびUnwindHighの間の関係を示している。
式57で計算されるような積分成分I(n)は、式64に示されているようなIClip値以下でなければならない。
インスリンフィードバック成分は、残りの項に対応する。上で述べたように、この特定の例については、γ=0.64935、γ=0.34128、およびγ=0.0093667(調節係数)であるが、パラメータISC(n)、I(n)、およびIEFF(n)は、それぞれ、皮下、血漿、および有効部位コンパートメントに対応するインスリン薬物動態モデルの状態に対応する。したがって、送達されるインスリンの量は、異なるコンパートメント内の予測されるインスリン濃度に比例して低減される。
インスリン薬物動態(インスリンPK)を記述するモデルは、以下の式によって与えられる。
SC(n)=α11×ISC(n−1)+β×I(n) (式65)
ただし、
ここで、Tsは、サンプリング時間(この例では5分)であり、τは、分単位の推定された皮下インスリンレベルの時定数(この例では50分に設定される)である。
(n)=α21×ISC(n−1)+α22×I(n−1)+β×I(n) (式65c)
ただし、
ここで、Tsは、サンプリング時間であり、この例では5分であり、τは、分単位の推定された皮下インスリンレベルの時定数であり、この例では50に設定され、τは、分単位の推定された血漿インスリンレベルの時定数であり、この例では70に設定される。
EFF(n)=α31×ISC(n−1)+α32×I(n−1)+α33×IEFF(n−1)+β×I(n) (式66)
式66について、
ここで、Tsは、サンプリング時間であり、この例では5分であり、τは、分単位の推定された皮下インスリンレベルの時定数であり、この例では50に設定され、τは、分単位の推定された血漿インスリンレベルの時定数であり、この例では70に設定され、τは、分単位の推定された間質インスリンレベルの時定数であり、この例では55に設定される。
ID(n)は、計算され、投与されるインスリン注入である。
表記(n−1)は、前の時間ステップにおける値を示す。
SCは、皮下インスリンモデル推定/予測である。
は、血漿インスリンモデル推定/予測である。
EFFは、有効部位インスリンモデル推定/予測である。
この特定の例について、インスリンPKモデルパラメータα11、α21、α22、α31、α32、α33、β、β、およびβは、0.9802、0.014043、0.98582、0.000127、0.017889、0.98198、1.1881、0.0084741、および0.00005にそれぞれ設定される。これらの値は、実証的研究および調査の一部としてインスリンについてPK−PDデータから計算された。ここで提示されている特定の値が好適な値の可能な1つのセットを反映しているに過ぎないこと、およびこれらの値のうちの1つ以上が特定の実施形態に適切であるように調整され得ることは理解されるであろう。
インスリン限度
式55によって計算されるような最終注入速度は、以下の式67で示されているように最大インスリン上限(Umax)を超えないように制限される。
Umaxは、式68によって示されているように計算される。
ここで、Umaxは、BGLBLを上限値とするインスリン上限であり(以下の式68aを参照)、Ibasal,0は、患者を値FBGmg/dLの空腹時血糖(FBG)にするために使用者について定義されている基礎速度である。BGLBL(mg/dL)は、Umaxに達したときのバッファ下限BGであり、FBGは、夜間の終わりの測定器血糖読み取り値を使用して推定された血糖であり、KIは、以下の式69によって計算されるようなインスリンゲインである。
BGLBL=Setpoint−ILB (式68a)
ここで、BGLBL(mg/dL)は、Umaxに達したときのバッファ下限BGであり、Setpointは、使用者によって定義されている目標グルコース設定点値944(図49)であり、ILBは、システムがより高いインスリン必要量を扱えるように追加のバッファとして許容する量(mg/dL単位)である、インスリン限度バッファである。例えば、ILBが50であれば、システムは、追加のインスリンを送達してSetpointから50mg/dLだけ下げることができる。
ここで、KIは、インスリンゲインであり、ISは、IS=1800/TDI(一日総インスリン)として1800ルールによって推定されるインスリン感受性である。いくつかの実施形態では、Umaxの値は、150ユニット/時に到達し得る。典型的な実装では、Umaxの値は、患者毎に計算され、Umaxに対する標準範囲は、0.5から3.0ユニット/時の範囲である。
さらに、インスリン限度がアクティブである場合、PIDアルゴリズムの積分コンポーネントは、前の値に凍結される。この機能は、積分飽和の防止を補助するために使用され得る。この情報は、次のPID計算中に使用するためPID−IFB制御モジュール906に戻される。
上で述べたように、PID−IFB制御モジュール906を構成し、および/または動作させるために、前の研究を活用することができる。第1の研究(研究1、パンテレオンら、2006)では、8頭の糖尿病犬に関する研究におけるコントローラのゲインを変更する効果を考察した。公称ゲインは、1つの実験についてインスリンの一日総用量に基づき計算され、再現実験では、この公称ゲインは50%増減した。6時間の食後期間におけるインスリン送達は、ゲインの増加と共に増加する傾向があったが、これは統計的有意性を達成しなかった。これは、フィードバックに起因するもので、グルコースレベルが低下すると送達されるインスリンも減った。本質的に、ゲインが高ければ高いほど、早い段階でより多くのインスリンを与える傾向があり(かなりよいグルコース調節を行う)、後で注入を減らすが、ゲインが低ければ低いほど、グルコースレベルが目標値より著しく高いままとなることに起因して、長期間にわたりインスリン注入を基礎値より高く維持する傾向が有していた。コントローラのゲインは、積分および微分項を含む、PIDアルゴリズムのコンポーネントのすべてに影響を及ぼすことに留意されたい。
第2の研究(研究2、シュタイルら、2006)では、PIDコントローラを10人のヒト被験者に適用した。この研究では、公称のコントローラのゲインは、本明細書で提案されているものよりも約42%高く、積分時定数は同じであるが(したがって、より高い積分応答でもある)、わずかに低い微分時定数(昼間または夜間応答の代わりに、立上がりまたは立下がり血糖に関して定義される)であった。ここで提示されている提案実施形態において、夜間微分時定数は、研究2で使用されたものに比べてわずかに低いだけである。
第3の研究(研究3、ワインジマーら、2008)では、PIDコントローラを17人のヒト被験者に適用した。8人の被験者のサブセットについて、食事前ボーラスを与えず、残り9人の被験者では、標準食事ボーラスの約50%を食事の約15分前に与えた。コントローラの調節は、本明細書で提案されているものと同じであった。両方の場合において、性能は許容可能な範囲であり、食事前ボーラスは食後ピークグルコース変動を下げるのに役立った。標準ポンプ療法を使用する在宅治療と比較した場合、両方の閉ループアルゴリズムが優れており、両方のグルコース変動を180mg/dlより高く、また70mg/dlより低く、低減した。
研究3の観察結果の1つは、食事関係のインスリン注入は食事から少なくとも4時間経過して食事前レベルより高く持続したことである。この結果から、すでに送達されているインスリンを補償するために使用される、アルゴリズムにインスリンフィードバックが導入されたが、それと同時に、必要な場合に、食事の開始時により積極的なアクションを許容する。
特定の実装において、PID−IFB制御モジュール906に対する上で述べられているパラメータのいくつかは、固定することができる。この点で、以下の値は、例示的な一実施形態において利用され得る。これらの値は、ここでは、例示することを目的として与えられていること、またPID−IFB制御モジュール906の実装は、そうするのが望ましければ異なる値を利用し得ることは理解されるであろう。
γ=0.64935
γ=0.34128
γ=0.0093667
α11=0.90483741803596
α21=0.065563404170158
α22=0.931062779704023
α31=0.00297495042963571
α32=0.083822962634882
α33=0.083822962634882
β=5.70975491784243
β=0.202428967549153
β=0.202428967549153
上で述べたPIDパラメータ(K、τ、およびτ)は、変更することが予想されていないが、変更するとグルコース変動の応答を改善するのであれば調整することが望ましい場合がある。これらのPIDパラメータに対する公称値は、例示的な許容可能な範囲と共に、表2に示されている。
コントローラのゲインKP0に対する下限は、これを公称値から95%だけ下げ、その結果、コントローラ900の全体的な攻撃的応答が下がり、またその結果、同じグルコースレベルおよび動向について送達されるインスリンが減る。この上限により、このゲインを公称値から最大20倍まで高められる。この結果、より多くのインスリンが与えられることになるけれども、これは、常に、実際のグルコースレベルに関するものであり、急速に血糖を下げる、その微分は、血糖値の上昇があるとしても、結果として、微分成分に起因してインスリンの送達の減少を引き起こす。
積分時定数τは、所望のグルコース目標値からの血糖の逸脱がどれだけ速く蓄積するかを決定する。値が高ければ高いほど、結果として、目標値からのグルコースの持続的逸脱に対応する応答は遅くなる。最後に、微分時定数τは、ゼロになるまで安全に減少させることができ、低ければ低いほど、送達されるインスリンは少なくなる。500分の上限を超えてかなり高いと、コントローラは、センサーグルコースの変化率のわずかな変化にも敏感になり、必ずしも危険ではないとしても、全体的性能に関して望ましくない。
IOB補償モジュール
図52は、IOB補償モジュール910の好適な一実施形態の概略をさらに詳しく示すブロック図である。上で簡単に述べたように、IOB補償モジュール910は、最終インスリン投与量962(すなわち、インスリン注入デバイスによって使用される最終調整済み注入速度)を生成するために必要に応じて現在のインスリン投与量958(すなわち、PID−IFB制御モジュール906によって計算されるインスリン注入速度)を調整する。IOB補償モジュール910は、最終インスリン投与量962の現在値を計算することを目的として、および/または最終インスリン投与量962の将来の値を計算することを目的として、基礎速度データ990および送達される手動ボーラス960に関係する情報を入力として受信することもできる。基礎速度データ990は、使用者に送達されているインスリンの現在の基礎速度を示し、送達される手動ボーラス960は、それぞれのボーラスの送達日時に対応するタイムスタンプデータと共に、使用者に投与されるそれぞれのボーラスに対する量を示し得る。この点で、送達される手動ボーラス960は、過去に送達されたボーラスの数についての情報を含むものとしてよく、送達される手動ボーラス960は、いずれは送達されるそれぞれのボーラスに応答して必要に応じて更新され得る。さらに、基礎速度は、(システムによって自動的に、使用者、介護人などによって)必要とされるか、または望まれる場合に動的に調整することも可能である。
送達される手動ボーラス960は、ボーラス履歴992として使用するためIOB補償モジュール910に関連して収集され保存され得る。この点で、ボーラス履歴992は、所定の期間中に投与された任意の数の過去のボーラス量を含み得る。IOB補償モジュール910は、多数の定数、パラメータ、係数、構成設定、ゲイン値、または同様のものを使用することもできる(簡単のため、図52に示されている定数994は、最終インスリン投与量962を計算するためにIOB補償モジュール910によって使用されることもあり得るこれら、および他の量を包含することが意図されている)。図52は、すでに計算されているIOB値(すなわち、過去のサンプリング時間について計算された履歴IOB値)を表す、IOB履歴996も示す。以下でさらに詳しく説明されているように、IOB履歴996およびボーラス履歴992は、最終インスリン投与量962の決定に影響を及ぼし得る。ボーラス履歴992、定数994、およびIOB履歴996は、ホストシステムの1つ以上のメモリ記憶素子に格納され、維持され得ることは理解されるであろう。図52は、簡単のため、また説明しやすくするために、IOB補償モジュール910の「内側」にこれらのデータ項目を示している。
IOB補償モジュール910は、閉ループモードの作動前に送達された手動ボーラスから患者の身体のインスリンオンボードを推定し、最終インスリン投与量962を補償し、インスリンの過剰送達を回避するのを助ける追加の安全保護手段を提供する。システムが、最初に、閉ループモードに入るときに、IOB補償モジュール910は、定義されている期間(例えば、最後の8時間)にわたって投与されている送達された手動ボーラス960を考慮し、手動ボーラスを差し引く。これ以降、閉ループモードにおいて、IOB補償モジュールは、それぞれのサンプリング期間において(例えば、5分おきに)送達された手動ボーラスに合わせて調整する。
図53は、IOB補償プロセス1100の例示的な実施形態を示す流れ図であり、これはIOB補償モジュール910によって実行され得る。プロセス1100は、現在のサンプリング点または時間nについて実行される1回の反復を表す。したがって、プロセス1100は、IOB補償モジュールの出力に対して影響を及ぼし得るさまざまな入力を受信するか、取得するか、またはアクセスする(タスク1102)。例えば、プロセス1100は、PID−IFB制御モジュール906によって生成されるような、非補償のインスリン注入速度PIDRate(n)の現在値を利用することができる。プロセス1100は、必要に応じて、現在の基礎速度(基礎速度データ990と共に提供される)、ボーラス履歴992の一部、および/またはIOB履歴996の一部も使用することができる。
プロセス100の文脈において、IOB補償モジュール910は、それぞれのサイクルで手動ボーラスからインスリンオンボードを計算し、アクティブなIOBが特定の閾値より大きい場合にコントローラ出力速度(インスリン注入速度)を補償する。したがって、プロセス1100は、使用者の身体内のアクティブインスリンの推定値を表す現在のIOB値を計算するか、生成するか、または他の何らかの形で取得する(タスク1104)。いくつかの実施形態において、アクティブなIOBは、以下に示されているように、離散化された3コンパートメントインスリン薬物動態(PK)モデルに従って推定される。
IOB(n)=ci1・IOB(n−1)+ci2・IOB(n−2)+ci3・IOB(n−3)+cb0・Ubolus(n)+cb1・Ubolus(n−1)+cb2・Ubolus(n−2) (式71)
ここで、IOBは、アクティブなインスリンオンボードであり、Ubolusは、1サンプル当たりのユニット数単位の送達される手動ボーラスの量であり、nは、現在のサンプリング点であり、n−1は、最後のサンプリング点であり、n−2は、最後から2番目のサンプリング点であり、n−3は、最後から3番目のサンプリング点である。したがって、プロセス1100は、使用者に対する過去の履歴ボーラス送達データに少なくとも一部は基づき、現在のIOB値IOB(n)を取得する(図52の送達される手動ボーラス960およびボーラス履歴992を参照されたい)。パラメータci、ci、ci、cb、cb、およびcbは、インスリン吸収モデルの係数である。これらのパラメータは、以下に示されているように、インスリン薬物動態モデルの3つの時定数(τsc、τ、およびτeff)に基づき計算される。
ci=eaxx3+eaxx4+eaxx5 (式71a)
ci=−(eaxx3×eaxx4+(eaxx3+eaxx4)×eaxx5) (式71b)
ci=eaxx3×eaxx4×eaxx5 (式71c)
cb=1
cb=dprod×(−(daxx22×eaxx3+daxx22×eaxx4)×axx3×axx4+(daxx31×eaxx3+daxx31×eaxx5)×axx3×axx5−(daxx32×eaxx4+daxx32×eaxx5)×axx4×axx5) (式71d)
cb=dprod×(daxx22×eaxx3×eaxx4×axx3×axx4+daxx32×eaxx4×eaxx5×axx4×axx5−daxx31×eaxx3×eaxx5×axx3×axx5) (式71e)
ただし、
axx3=1/τSC (式71f)
axx4=1/τ (式71g)
axx5=1/τeff (式71h)
eaxx3=e−axx3・TsC (式71i)
eaxx4=e−axx4・TsC (式71j)
eaxx5=e−axx5・TsC (式71k)
daxx22=axx4−axx3 (式71l)
daxx31=axx5−axx3 (式71m)
daxx32=axx5−axx4 (式71n)
dprod=−1/(daxx22×daxx31×daxx32) (式71o)
上記の式では、TsCは、TsC=Ts*6/CurveSpeedとして計算され得る、分単位の修正されたサンプリング間隔を示し、ただし、Tsは、サンプリング間隔であり、CurveSpeedは、インスリンオンボード減衰速度(時)である。τSC、τ、およびτeffは、インスリンPKモデルの皮下、血漿、および有効コンパートメントの各時定数である。
式71によって計算されるようなIOB(ユニット)は、最終インスリン送達速度の計算のため考慮されなければならない手動ボーラス(閉ループモードの開始前または閉ループオペレーションの実行中に投与されている可能性がある)からの身体中の残留アクティブインスリンを表す。これは、以下に示されているように、最初にIOB速度を計算し(タスク1106)、次いで、IOB速度をPID−IFBの計算済み注入速度から差し引くことによって達成される。したがって、いくつかの状況において、プロセス1100は、計算されたIOB速度および非補償インスリン注入速度PIDRate(n)に少なくとも一部は基づき調整済みインスリン注入速度を決定する(タスク1108)。
AdjustedRate(n)=max(0,PIDRate(n)−IOBRate(n)) (式73)
プロセス1100は、現在のIOB値IOB(n)に少なくとも一部は基づきIOB速度IOBRate(n)を計算することに留意されたい。1時間当たりのユニット数(U/h)で表されるIOB速度は、時間単位で手動ボーラスから体内に蓄積されたアクティブインスリンの量を表す。したがって、体内にすでに存在しているこの追加のインスリンは、コントローラ送達速度(PIDRate)から差し引かれる。これは、使用者によって投与されているすべての手動ボーラスを考慮し、コントローラによる過剰送達の可能性を最小限度に抑える。ここで、GainIOBは、IOB減衰速度(h-1)であり、MinIOBは、PIDRateを補償するために必要な最小IOBである(ただし、MinIOBはユニットで表される)。したがって、IOB速度は、現在のIOB値が最小IOB値より大きいときにIOB減衰速度を掛けた現在のIOB値に等しいものとして計算され、また現在のIOB値が最小IOB値以下であるときにゼロに等しいとして計算される。この点で、MinIOBは、IOBに対する最小閾値であり、これより低いときにグルコースに対するIOBの効果は無視できると考えられ、したがって、補償される必要はない。
式73に反映されているように、プロセス1100は、ゼロまたは非補償インスリン注入速度と計算されたIOB速度(タスク1106)との間の差のうちの最大の値となるように調整されたインスリン注入速度を選択する。PIDRateとIOBRateとの間の差は、これらの値が異なるソースから計算されるので、負である可能性があることに留意されたい。PIDRateは、コントローラ計算注入速度であり、IOBRateは、手動ボーラスから取得された体内に蓄積されたアクティブインスリンである。したがって、式73は、AdjustedRateがゼロより低くならないことを保証する。
次に、プロセス1100は、最終インスリン注入速度を計算するか、選択するか、または他の何らかの形で決定することができる(タスク1110)。いくつかの実施形態において、最終インスリン注入速度(図49の最終インスリン投与量962)は、以下に示されているように計算される。
この式によって示されているように、プロセス1100は、調整済みインスリン注入速度(AdjustedRate(n))、非補償インスリン注入速度(PIDRate(n))、または現在の基礎速度(Basal)をインスリン注入デバイスに対する最終インスリン注入速度(FinalRate(n))として選択する。ここで、PIDRateは、PID−IFB制御モジュール906によって計算されるようなインスリン注入速度であり、Basalは、現在の事前プログラムされたポンプ基礎速度である。したがって、タスク1110は、最終インスリン注入速度を、現在の基礎速度が非補償インスリン注入速度以上であるときに非補償インスリン注入速度に等しいものとして選択する。対照的に、現在の基礎速度が、非補償インスリン注入速度より低い場合、タスク1110は、最終インスリン注入速度を、現在の基礎速度または調整済みインスリン注入速度のうちのいずれか高い方として選択する。
タスク1110の文脈において、PIDRateは、FinalRateとして使用され(PIDRateがBasal以下である場合)、これにより、潜在的な低血糖症を防ぐためにコントローラが「ブレーキを掛ける」(言い換えると、インスリン送達速度を抑制する)ことができる。その一方で、PIDRateがBasalより大きいときに、FinalRateは、BasalまたはAdjustedRateの最大値となり、これにより、インスリン調整は基礎ではなくボーラスに由来するインスリンのみを考慮することが保証される。下限(すなわち、Basalの値)がFinalRateに適用されるのは、PIDRateがBasalより大きいときであり、この下限は、これらの状況の下でインスリンオンボードの過剰補償を防ぐために利用される。
プロセス1100は、最終インスリン注入速度FinalRate(n)をインスリン注入デバイスに伝達するか、または他の何らかの形で供給することによって継続することができる(タスク1112)。プロセス1100が、インスリン注入デバイスそれ自体によって独自に実行される実施形態では、プロセス1100は、単純に、最終インスリン注入速度を注入デバイスの処理論理機能または流体送達制御モジュールに送るものとしてよい。次いで、インスリン注入デバイスは、最終インスリン注入速度に従ってインスリンの送達を調節することによって応答する。
この説明では、プロセス1100がそれぞれのサンプリング時間について繰り返されると仮定している。したがって、次のサンプリング時間では、nの値は、1だけ(または所望の量だけ)増分され、プロセス1100の次の反復に対するインデックスを確定することができる(タスク1114)。この後、プロセス1100は、タスク1102に戻り、最新の入力データ値を取得し、上で説明されているさまざまなタスクを繰り返し得る。したがって、プロセス1100は、システムが閉ループモードで動作している間に、最終インスリン注入速度を連続的に調整することによって、制御され継続される様式で、使用者の身体へのインスリン送達の調節を円滑にする。
いくつかの実施形態において、IOB補償モジュール910によって利用されるパラメータのうちのいくつかを調整することは、そうすることで性能が改善されるのであれば望ましいものとしてよい。これらのパラメータに対する公称値は、例示的な許容可能な範囲と共に、表3に示されている。
インスリン送達タイムアウトモジュール
インスリン送達タイムアウトモジュール912は、患者が長期間にわたってインスリン限度でインスリンを摂取しているか(Umax)、またはインスリンを全く摂取していないか(Umin、これはインスリン送達のユニット/時単位の量がほとんどないか、または全くないものとして定義され得る)を(閉ループモードのときに)連続的に監視するように適宜設計され、構成される。これらのインスリン送達条件のうちの1つが検出された場合、システムは、警告を発し、閉ループモードの下で動作を継続する。すでに述べているように、インスリン送達タイムアウトモジュール912は、送達されるインスリン954を入力として処理することができる。
したがって、インスリン送達タイムアウトモジュール912は、長期間の間、インスリン限度(Umaxタイムアウト)で、またはインスリンなし(Uminタイムアウト)でのインスリンの送達に対する以下で説明されているような一連のステップをチェックする追加の安全保護手段を導入する。これは、インスリン時間窓として識別されている事前に指定された移動窓において閉ループモードでシステムによって送達されるインスリンの総量を計算することによって達成される。
Uminタイムアウト条件に関して、Uminに対するインスリン時間窓(0ユニット/時でインスリンを送達するものとして定義され得る)に、閉ループモードの開始から到達した後、システムは、使用者指定のインスリン時間窓で送達されているインスリンの量を監視し、それを、以下の論理式で示されているように、同じ時間範囲に対する患者の基礎速度で動作している場合に送達された可能性のある量と比較する。
ここで、PumpDeliveryRate(ユニット/時)は、式74からのFinalRate(すなわち、閉ループモードのときにコントローラによって計算される注入速度)または開ループオペレーションのときに使用される事前プログラムされた夜間基礎速度のいずれかに等しい、注入速度である。量
は、Uminに対する使用者指定インスリン時間窓において閉ループ制御アルゴリズムによって送達されるインスリンの総量(ユニット)であり、量
は、Uminに対する同じインスリン時間窓において事前にプログラムされた夜間基礎速度で動作している場合に送達される可能性のあるインスリンの総量である。パラメータMinDeliveryTolは、閉ループモードにとどまるためにシステムが送達しなければならない、
のパーセンテージの、使用者指定の許容範囲である。
この特定の例によれば、閉ループ制御は、システムによりインスリン時間窓(この例では120分に設定されている)において送達されるインスリンの総量が、基礎の5パーセント(この例ではデフォルトの最小許容範囲)で動作している場合に送達された可能性のあるインスリンの総量より大きい限り継続する。さらに、フェイルセーフアラートが、システムによってインスリン時間窓(120分)において送達されるインスリンの総量が基礎の5パーセント未満となった後にトリガーされる。
Umaxタイムアウト条件に関して、Umaxに対するインスリン時間窓に、閉ループモードの開始から到達した後、システムは、使用者指定のインスリン時間窓で送達されているインスリンの量を監視し、それを、以下の論理式で示されているように、同じ時間範囲に対するUmax速度で動作している場合に送達される可能性のある量と比較する。
ここで、PumpDeliveryRateは、FinalRate、または開ループモードでのオペレーションにおいて使用される事前プログラムされた夜間基礎速度のいずれかに等しい注入速度である。量
は、Umaxに対する使用者指定インスリン時間窓において閉ループ制御アルゴリズムによって送達されるインスリンの総量(ユニット)であり、量
は、計算されたUmax速度で動作している場合に使用者指定の移動窓における送達された可能性のあるインスリンの総量である。パラメータMaxDeliveryTolは、閉ループモードにとどまるためにシステムが順守しなければならない、
のパーセンテージの、使用者指定の許容範囲である。
この特定の例によれば、閉ループ制御は、システムによりインスリン時間窓(この例では600分に設定されている)において送達されるインスリンの総量が、Umaxの95%(この例ではデフォルトの最大許容範囲)で動作している場合に送達された可能性のあるインスリンの総量より小さい限り継続する。さらに、フェイルセーフアラートが、システムによってインスリン時間窓(600分)において送達されるインスリンの総量がUmaxの95%で動作している場合に送達された可能性のある総量より多くなった後にトリガーされる。
いくつかの実施形態において、インスリン送達タイムアウトモジュール912によって利用されるパラメータのうちのいくつかを調整することは、そうすることで性能が改善されるのであれば望ましいものとしてよい。これらのパラメータに対する公称値は、例示的な許容可能な範囲と共に、表4に示されている。
モデルスーパーバイザーモジュール
モデルスーパーバイザーモジュール914は、閉ループオペレーションの実行中にシステムを監視し、規制するという点でインスリン送達タイムアウトモジュール912に類似している。実際、閉ループシステムは、測定デバイス(複数可)によって提供されている信号(入力)に気づくだけである。測定結果が真の値から逸脱している場合、制御システムはこの逸脱に反応し得る。連続的グルコースセンサーを糖尿病に使用している場合、センサーは、測定結果を閉ループ制御システムに送り、これらの測定結果に基づき、インスリンが被験者に送達される。したがって、センサーの性能および完全性は、細かく監視されるべきである。幸運なことに、インスリンおよび食事摂取と血糖反応との間には関係がある。この関係は、送達されたインスリンに基づきセンサーグルコース反応を予測することができる数学的モデルに翻訳され得る。送達されるインスリンに対するセンサーグルコースの感度は、患者特有のものである(感度は、通常、それぞれの患者について3日から6日の期間にわたって学習され得る)。
モデルスーパーバイザーモジュール914は、患者特有の血糖時間依存反応の個人化を可能にする数学的モデルを使用する。このモデルは、センサーグルコース時間依存反応をインスリンおよび食事の摂取量の関数として記述する。本明細書で説明されている例示的な数学的モデルには、多数のメリットおよび利点がある、すなわち、線形である、生理学に基づく、測定可能なデータ(センサーグルコースおよび送達されるインスリン)との直接的つながりを有するパラメータのみを含むという点が挙げられる。これらの特徴は、線形モデルの分析および予測が容易であるため重要である。さらに、生理学に基づくモデルは、予測の元となるもの(例えば、インスリン感度、食事摂取など)の理解を高め、測定可能なデータを使用することで、観測されない変数(例えば、代謝作用、細胞活動など)を推定する必要性が減じる。
図54は、モデル監視に対するいくつかの時間事象を定義する図である。ラベル「現在」は、一番最近のサンプリング時間またはサンプリング期間1120を示し、kは、現在のサンプリング時間から、サンプリング時間における予測範囲の長さ(LPH)に対応する期間を引いた値に等しい。図54は、モデル学習期間を指す、サンプリング時間における学習範囲の長さ(LTH)に対応する期間も示す。インスリン履歴は、血漿インスリンを推定するために必要なデータの長さとして定義される。モデルスーパーバイザーモジュール914が障害を推定することができるようにするために、これは、過去のインスリン履歴にLTHおよびLPHサンプリング期間を足した期間にわたって送達されたインスリンの記録、およびk−LTHおよびkからのIsig(電気信号)測定結果の少なくとも80パーセントを考慮する。
以下でさらに詳しく説明されているように、モデルスーパーバイザーモジュール914は、現在(一番最近のサンプリング期間1120)から遡ってLTHの始めまでと定義されている履歴的期間1122を含む「移動窓」を考慮する。モデルスーパーバイザーモジュール914によって考慮される移動窓は、図54に示されているように、LTHに先行するインスリン履歴も含み得る。それぞれの時間窓で取得されたデータは、現在の時刻または近い時刻において、また好ましくは次のサンプリング期間が終了する前に、処理され、分析される。したがって、それぞれの新しいサンプリング期間の終わりに、「移動窓」は、サンプリング期間1つ分だけシフトし、これにより、モデルスーパーバイザーモジュール914は、更新された時間窓内にもはや出現しないデータを無視しながら現在のサンプリング期間に対する一番最近に取得されたデータを考慮することができる(すなわち、最も古いデータはもはや考慮されない)。履歴的期間1122は、LTHおよびLPHによって定義されるものとしてよく、この例では、LTHにすぐ続く(図54に示されているように)。LPHは、本明細書では、以下の説明から明らかになる理由により「最近の履歴期間」または「モデル予測期間」とも称され得る。LTHは、本明細書では、以下の説明から明らかになる理由により「時間的に遠い履歴期間」または「モデル学習期間」とも称され得る。この点で、LTH(時間的に遠い履歴期間)は、学習開始サンプリング期間1124から学習終了サンプリング期間1126までのこの期間も含めた期間に対応するが、LPH(最近の履歴期間)は、予測開始サンプリング期間1128から一番最近のサンプリング期間1120までのこの期間も含めた期間に対応する。したがって、定義により、現在のサンプリング期間(すなわち、一番最近のサンプリング期間1120)はLPH内にある。この特定の例では、予測開始サンプリング期間1128は、学習終了サンプリング期間1126に対応する。あるいは、予測開始サンプリング期間1128は、学習終了サンプリング期間1126のすぐ後に続くものとしてよい。
図55は、センサーモデル監視プロセス1150の例示的な実施形態を示す流れ図であり、これはモデルスーパーバイザーモジュール914によって実行され得る。プロセス1150は、理解しやすいように機能に注目する簡素化された様式で図示され、説明されている。プロセス1150のいくつかの態様は、モデルスーパーバイザーモジュール914の特定の表現を参照しつつ以下でさらに詳しく取り扱われる。
プロセス1150は、一番最近のサンプリング期間に対応する、現在のサンプリング点または時間について実行される1回の反復を表す。この例では、インスリン注入デバイスは、閉ループモードですでに動作しており(タスク1152)、インスリンを使用者の身体に送達していること、およびプロセス1150が所定のスケジュール(例えば、5分のサンプリング期間)に従って関連するデータを受信することを仮定する。したがって、プロセス1150は、モデルスーパーバイザーモジュール914のオペレーションに対して影響を及ぼし得るさまざまな入力を受信するか、取得するか、またはアクセスする(タスク1154)。例えば、プロセス1150は、現在のサンプリング期間について少なくとも、一番最近のサンプリング期間においてインスリン注入デバイスによって送達されるインスリンの量を示す現在のインスリン送達データ、一番最近のサンプリング期間に対応する使用者に対する現在のセンサーグルコース値を示す現在のセンサーデータと、最近の測定器に基づく較正を補償するために必要と思われる、現在のセンサー較正係数とを受信することができる。そうするのが望ましければタスク1154において履歴データをいくつか受信することも可能である。したがって、ある程度の冗長性がシステムに組み込まれ得る(これは、欠落送信、損失パケット、または同様のものを考慮するために望ましい場合がある)。センサーデータは、好適な形態で受信され、処理され得る。例えば、連続的グルコースセンサーは、センサーグルコース値にマッピングされ得るIsig(電流)値を生成することができる。モデルスーパーバイザーモジュール914は、Isig値を直接処理するように適宜構成され得るか、または生のIsig値を所望の表現に翻訳またはマッピングすることも可能である。
プロセス1150は、過去のサンプリング期間に受信された履歴データをアクセスまたは取り出すこともできる(タスク1156)。タスク1156は、以下でさらに詳しく説明されているさまざまな計算、分析、および機能についてモデルスーパーバイザーモジュール914を準備するために必要に応じてグリッド、行列、または他の種類のデータベース構造に初期値を埋める初期化ルーチンを表すものとしてよい。プロセス1150のその後の反復(閉ループモードにおいて進行中に実行される)は、履歴データの初期化を繰り返す必要がないことは理解されるであろう。むしろ、タスク1156は、単純に、新規に受信されたデータを反映するようにデータ履歴を調整することができる。ここで説明されている実施形態について、モデルスーパーバイザーモジュール914によって処理され得る履歴データは、限定することなく、使用者に対する履歴的インスリン送達データ、および使用者に対する履歴的センサーグルコース値であるものとしてよい。履歴的インスリン送達データは、注目するそれぞれの履歴的サンプリング期間においてインスリン注入デバイスによって送達されるインスリンの量に対応し、履歴的センサーグルコース値は、注目するそれぞれの履歴的サンプリング期間において取得された各センサーグルコース測定結果に対応し得る。いくつかの実装では、それぞれの履歴的センサーグルコース値は、履歴的Isig値およびセンサー較正係数に関連付けられるか、またはそれらから導かれ得る。
プロセス1150は、本質的に反復的であり、それぞれの反復では、定義済みの履歴的期間に関連するデータを考慮する(図54を参照)。したがって、プロセス1150は、履歴的期間に対するモデル学習期間およびモデル予測期間を定義することができる(タスク1158)。この点で、タスク1158は、どのデータサンプルがモデル学習期間(図54のLTH)に入り、および/またはどのデータサンプルがモデル予測期間(図54のLPH)に入るかを識別するか、または指定することができる。タスク1158は、ゆくゆくは考慮される必要がない「陳腐化した」データサンプルを識別するか、または指定するためにも使用され得る。実際、最も古いサンプリング期間に対するデータが、何らかの理由により欠落している場合、プロセス1150は、適切な調整を行うことができる(例えば、最も近い利用可能なデータサンプルを探索する、次のサンプリング期間を待つ、または同様のことを行う)。
次に、プロセス1150は、履歴データの少なくとも一部を処理して、センサーグルコース予測モデルに対する最良適合解を決定する(タスク1160)。タスク1160は、最良適合センサーグルコース予測関数を求める学習手順であると考えることができ、次いでこれを使用してグルコースセンサーの完全性および品質をチェック(予測)することができる。いくつかの実施形態において、センサーグルコース予測モデルは、初期条件を与えて解いたときに、モデル予測センサーグルコース値を出す4次常微分方程式として表される。特に、タスク1160は、モデル学習期間に取得された実際のセンサーグルコース値を使用して(またモデル予測期間に取得された実際のセンサーグルコース値のどれも使用しないで)、どの候補解が最良適合解として選択されるかを決定する。概念的には、タスク1160は、複数の曲線(またはこの説明の目的に関して曲線を視覚化するために使用され得る離散値)を生成し、モデル学習期間内の曲線の一部分をモデル学習期間に取得された実線のセンサーグルコース値と比較する。完全に適合するという理想的なシナリオでは、生成される曲線の1つは、モデル学習期間内の実際のセンサーグルコース値を正確に追跡する。しかし、実際には、生成される曲線は、実際のセンサーグルコース値から逸脱する。したがって、タスク1160は、実際のセンサー値と最良適合する計算された曲線を識別する。この最良適合曲線は、モデル学習期間を超えて、モデル予測期間に入り込むモデル予測センサーグルコース値も含む。
プロセス1150は、モデル予測期間に取得された少なくとも1つの履歴的センサーグルコース値を、最良適合解の少なくとも1つの対応する予測されたセンサーグルコース値と比較することによって継続し得る(タスク1162)。いくつかの実施形態において、タスク1162は、ただ1つの実際のセンサーグルコース値である、一番最近のサンプリング期間に取得された現在のセンサーグルコース値をチェックする。他の実施形態では、モデル予測期間に取得されたセンサーグルコース値のどれか、またはすべてが、タスク1162において分析されることも可能である。本明細書で説明されているわかりやすい例では、タスク1162における比較が単純で、わかりやすいものとなるように現在のセンサーグルコース値のみを考慮する。この点で、タスク1162では、現在のセンサーグルコース値(すなわち、一番最近の履歴値)と一番最近のサンプリング期間に対する予測された現在のグルコース値との間の差を計算することができ(差は、絶対値として表され得る)、プロセス1150は、計算された差を誤差量の閾値と比較することによって継続することができる(クエリタスク1164)。他の実施形態では、タスク1162で実行される比較は、より高度な方法、例えば、モデル予測期間内の複数のサンプリング点を考慮する曲線当てはめ、統計的分析、または同様のものを伴い得る。例えば、プロセス1150は、点毎に誤差を計算する代わりに、適切な方法を利用して、モデル予測期間内の履歴的センサーグルコース値が(少なくとも閾値量だけ)最良適合解における対応するモデル予測値から逸脱するかどうかを判定することも可能である。
モデル予測グルコース値(複数可)と対応する実際の履歴的センサーグルコース値(複数可)との間の計算された誤差が、誤差閾値以下であるか、または他の何らかの形で、モデルスーパーバイザーモジュール914によって監視されている所定の基準を満たす場合に、クエリタスク1164の「いいえ」分岐を辿り、プロセス1150は、引き続き次のサンプリング期間に進む(タスク1166)。この時点で、プロセス1150はタスク1152に戻り、これにより、プロセス1150のコアが繰り返され、次のサンプリング期間で受信されるデータを考慮することができる。したがって、プロセス1150の前の反復で考慮されていた最も古いデータは、無視され、新規に受信されたデータが、「一番最近の」データとして指定され、プロセス1150の現在の反復に対する履歴的期間または「分析窓」は、サンプリング期間1つ分だけシフトする(図54を参照)。
計算された誤差が、誤差閾値量を超える場合(クエリタスク1164の「はい」分岐)、プロセス1150は、アラート、警報、および/またはメッセージを生成することができる(タスク1168)。実際、アラート、警報、またはメッセージは、描写、告知、送達、録音再生などのためモデルスーパーバイザーモジュール914によって開始され得る。例えば、アラートは、インスリン注入デバイス、遠隔監視ステーション、ハンドヘルドコントローラデバイス、または同様のものに提示することも可能である。いくつかの実施形態において、プロセス1150は、誤差閾値量を超えたときに閉ループモードから開ループモードに(またはインスリン送達が低減されるある種の安全動作モードに)切り替わる(タスク1170)。
プロセス1150の重要な一態様は、最良適合センサーグルコース予測モデルが選択される様式に関係する(タスク1160を参照)。この点で、図56は、図55に示されているセンサーモデル監視プロセス1150と連動して実行され得る、センサーモデル学習プロセス1180の例示的な一実施形態を示す流れ図である。プロセス1180は、理解しやすいように簡素化された様式で図示され、説明されている。プロセス1180のいくつかの態様は、モデルスーパーバイザーモジュール914の特定の実装を参照しつつ以下でさらに詳しく取り扱われる。
すでに述べたように、本明細書に利用されている例示的なセンサーグルコース予測モデルは、4次常微分方程式として表される。従来の数学によれば、時間単位のモデル予測センサーグルコース値(G)は、2つのモデル予測初期条件GおよびdGの関数として計算される。ここで、Gは、学習開始サンプリング期間1124(図54のLTHの開始)の推定されたセンサーグルコース値であり、dGは、Gの微分である。したがって、初期条件の値が異なると、結果として、センサーグルコース予測モデルの解も異なり、初期条件のそれぞれの明確に区別できるセットは、異なる予測モデルに対応する。処理効率のために、モデルスーパーバイザーモジュール914は、初期条件の値に制限または境界を課して、管理可能な数の候補解を計算し、分析する。この点で、センサーモデル学習プロセス1180は、それぞれの有界初期条件について範囲または境界を計算することによって開始することができる(タスク1182)。
ここで提示されている例示的な実施形態について、初期条件dGは、所定のパラメータ(調整可能であるものとしてよい)に基づく単純な様式で有界である、つまり、dG=±grad_bound。対照的に、初期条件Gに対する境界は、学習開始サンプリング期間1124に取得されたセンサーグルコース値などの、モデル学習期間に取得されたベースラインの履歴的センサーグルコース値に基づく(または他の何らかの形で影響を受ける)。したがって、プロセス1180は、履歴的センサーグルコース値から、初期条件Gに対する境界を計算する目的のために使用されるベースラインのセンサーグルコース値を識別することができ、GはG=SGk−LTH±0.14・SGk−LTHと表され、式中、SGk−LTHは、分析対象の履歴期間における最も早いサンプリング期間に取得されたベースラインのセンサーグルコース値である(図54を参照)。特に、Gに対する境界は、ベースラインのセンサーグルコース値の関数となっており、これはシステムのオペレーションにおいて進行中に変化し、またプロセス1180の1つの反復から次の反復にかけて変化し得る。実際、センサーグルコースデータが、学習開始サンプリング期間1124について欠落している場合、プロセス1180は、適切な対策を講じる、例えば、最も近い利用可能なセンサーグルコースデータ点を探索する、次のサンプリング期間を待つ、または同様のことを行うことができる。
次いで、プロセス1180は、初期条件の次のセットを決定するか、計算するか、または他の何らかの形で取得することによって継続することができる(タスク1184)。プロセス1180が異なる初期条件を選択し、1ステップずつ進める様式は、この文脈では重要でない。初期条件の現在のセットは、センサーグルコース予測モデルへの候補解を計算するために使用される(タスク1186)。上で述べたように、それぞれの候補解は、2つの有界な初期条件の関数として計算される。さらに、それぞれの候補解は、使用者に対する推定された血漿インスリンの関数として計算され、この関数は使用者に送達されるインスリンの量の関数として計算される。したがって、タスク1186が使用者に対する血漿インスリンを推定するために、現在のインスリン送達データ(一番最近のサンプリング期間に取得された)、履歴的インスリン送達データ、および使用者に対するインスリン基礎速度に基づくものとしてよい。実際、タスク1186では、すべてのサンプリング期間について全インスリン(基礎、ボーラス、および他の送達されるインスリン)を考慮する。これにより、プロセス1180は、推定される血漿インスリンに少なくとも一部は基づき、また分析対象の最も早いサンプリング期間で取得されたベースラインのセンサーグルコース値に少なくとも一部は基づき、センサーグルコース予測モデルへの候補解を取得することができる。
プロセス1180は、候補解に対する学習誤差値、量、または関数を生成することによって継続することができる(タスク1188)。学習誤差は、候補解からの予測されたセンサーグルコース値を対応する履歴的センサーグルコース値と比較し、予測された値が実際の値にどれだけ正確に一致するかを示す計量を取得することによって計算され得る。いくつかの実施形態において、学習誤差は、モデル学習期間(図54のLTH)に対する予測された値および実際の値にのみ基づき、したがって、タスク1188は、モデル予測期間(図54のLPH)に対する予測された、または実際の値を考慮しない。
プロセス1180が、初期条件のすべての組合せを考慮した場合(クエリタスク1190の「はい」分岐)、プロセス1180は、タスク1192に進むことができる。初期条件のさらに多くのセットが残っている場合(クエリタスク1190の「いいえ」分岐)、プロセス1180はタスク1184に戻り、初期条件の次のセットを取り出し、上で説明されているように継続することができる。タスク1192は、複数の異なる候補解が、初期条件の異なるセットを使用して計算された後、実行される。タスク1192は、複数の計算された解から最良適合候補解を選択するために実行され得る。この特定の実施形態では、選択は、タスク1188において生成される学習誤差に基づく。例えば、最低の学習誤差を有する候補解は、最良適合解として選択され得る。
プロセス1180は、例示されている順序で実行される必要がないこと、およびいくつかのタスクは、並列実行され得ることは理解されるであろう。例えば、学習誤差の計算(タスク1188)は、その代わりに、候補解のすべてが取得され、保存された後に実行され得る。さらに、プロセス1180は、所定の誤差閾値を超える学習誤差を有する候補解を(タスク1188の完了に続いて)即座に排除するように設計することも可能である。別のオプションとして、プロセス1180は、関連する学習誤差がいくつかの基準を満たしている場合に候補解を最良適合解として即座に指定するように設計することも可能である。
前記の概念および方法は、モデルスーパーバイザーモジュール914の実用的な実施形態において実装され得る。以下の説明は、上で提示されている一般的な概念を実装する2つの可能な実施形態に関するものである。以下で説明されている特定の実施形態は完全なものではないこと、および実施形態の説明は、本明細書で掲示されている発明の主題の範囲または適用を制限または制約することを意図していないことは理解されるであろう。
モデルスーパーバイザーモジュール:第1の表現
モデルスーパーバイザーモジュール914は、潜在的に障害のあるセンサー測定結果を検出するように適宜設計され構成される。モデルスーパーバイザーモジュール914は、オフラインで学習した数学的モデルを利用することができる。例えば、オフラインで推定され得るパラメータとして、限定はしないが、K(インスリンゲイン((mg/dL)/(U/h))、τ(第1のインスリン時定数(分))、τ(第2のインスリン時定数(分))、Ibasal(基礎インスリン(U/h))、およびSGbase(Ibasalのインスリンが送達されるときの、断食時の血糖(BG)(mg/dL))が挙げられる。
モデルスーパーバイザーモジュール914は、モデル予測初期条件GおよびdGをサンプリング時間毎に学習する。GおよびdGは、k−LTHにおけるBG(mg/dL)およびBG微分(mg/dL/分)推定値を表し(図54を参照)、ただし、LTHは、学習データの長さ(サンプリング時間)であり、kは、現在のサンプリング時間からLPHを引いた値である。この文脈において、LPHは、予測範囲の長さ(サンプリング時間)である。GおよびdG推定値は、式77として以下でまとめて識別されている式によって定式化される。これらの初期条件およびその境界も、センサーモデル学習プロセス1180のタスク1182を参照しつつ上で説明されたことに留意されたい。
=CGMk−LTH±0.14・CGMk−LTH (式77)
dG=±grad_bound
式77について、CGMk−LTHは、サンプリング時間k−LTHにおけるCGM測定であり、grad_boundは、時間を単位とする定義済み絶対最大BG微分(mg/dL/分)である。
モデルスーパーバイザーモジュール914は、式81に従って、k−LTHインスリン履歴およびk−LTH(図54を参照)からのインスリン履歴記録を使用してk−LTHにおける血漿インスリンIpを推定する。推定されたI、G、およびdGがあるので、モデル予測は、現在までの現在−LTH−LPHから生成される(センサーモデル学習プロセス1180のタスク1186について上で説明されているように)。モデル予測により、TerrおよびPerrの2つの値の計算が可能になる。Terrは、モデル予測とk−LTHおよびkからのCGM記録との間の誤差平均平方和として定義される(式78)。Perrは、モデル予測とkおよび現在からのCGM記録との間の絶対平均誤差として定義される(式79)。Terrは、プロセス1180のタスク1188について上で説明された、一種の学習誤差であり、Perrは、センサーモデル監視プロセス1150のタスク1162およびクエリタスク1164について上で説明されているような、一種の予測誤差である。Perr<err1かつTerr>err2(式80)である場合に障害が定義される。
式80では、Fault 1は、障害のあるセンサーを示し、Fault 0は、障害のないセンサーを示し、Fault −1は、決定すべき十分な情報がないことを示す。図55を再び参照すると、Fault 1は、クエリタスク1164の「はい」分岐に対応する。
いくつかの実施形態において、モデルスーパーバイザーモジュール914によって使用されるパラメータのうちのいくつかは、調整可能であるものとしてよい。表5は、これらのパラメータに対するいくつかの例示的な値と共に、調整可能なパラメータを明記している。
以下の式は、ラプラス変換形式で数学的モデル方程式を記述している。
この式において、α=3500、β=120、および
は偏差形式のIPである。
およびdIP0は、それぞれ、
および微分初期条件である。
すべてのインスリン状態は、以下の式82によって表されるときに所定のインスリン値Ibasalから偏差形式で定式化される。
式82中、xはD、in、またはPを表す。
以下の式83は、SGbaseからの偏差形式でBGを表す。式83は、センサーグルコース予測モデルに対する1つの好適な式を表し、これは4次常微分方程式であることに留意されたい。
式83において、以下の関係が成り立つ。
α=120+τ+τ
β=3500+120τ+120τ+ττ
χ=3500τ+3500τ+120ττ
δ=3500ττ
さらに、式78において、
、K
、dG、τ、およびτは、それぞれSGbaseからの偏差形式のBG、インスリンゲイン、偏差形式のBG初期条件、BG微分初期条件、および2つの時定数である。
モデルスーパーバイザーモジュール:第2の表現
いくつかの実施形態によれば、モデルスーパーバイザーモジュール914の機能は、以下のように表現され得る。上で述べたように、モデルスーパーバイザーモジュール914は、送達されるインスリン、センサーIsig値、およびセンサー較正係数に基づき、リアルタイムで使用者のグルコース濃度を推定する。モデル予測センサーグルコース値(SG)および実際のSG値が、著しく異なる場合、システムは、収集されたデータが不明な挙動を含むことを指示するフェイルセーフアラートをトリガーし、この挙動は、障害のあるセンサーおよび/またはインスリン送達、または予告なしの食事摂取に関連し得る。
モデルスーパーバイザーモジュール914に対する時間枠および基準期間は、図54に示されているように定義される。モデルスーパーバイザーモジュール914によって実行される方法は、過去の時間枠について受信されたデータパケットを使用して、血漿インスリンおよびモデル予測グルコースを推定し、障害条件を推定する。サンプリング時間は、2つの連続するデータパケットの間の時間間隔であり、この特定の例では5分である。図54のインスリン履歴は、血漿インスリンを推定するために必要とされる定義済みの過去の時間枠に対応する(この例では、インスリン履歴は4時間または48サンプリング期間に対応する)。この例の学習範囲の長さ(LTH)は、24個のデータパケットを含み、これらは120分の過去の時間枠に対応する。この例の予測範囲の長さ(LPH)は、24個のデータパケットを含み、これらは120分の過去の時間枠に対応する。図54において、kは、データパケットの現在の数からLPHを引いた値に等しく、「現在」は、一番最近のサンプリング時間を示す。
以下の式は、ラプラス変換形式で数学的モデルを記述している。式84は、血漿インスリンの推定値を与え、式85は、モデル予測SG値を与える。したがって、この特定の実施形態によるモデルスーパーバイザーモジュール914は、以下のように血漿インスリンを推定する。
この例については、ε=3500、γ=120、
は、偏差形式の推定された血漿インスリンであり、(s)はラプラス変換形式を指し、
は、偏差形式のシステムから送達されるインスリンである。さらに、
は、k−LTHとして識別されるサンプリング時間に対する偏差形式の推定される血漿インスリンであり(図54を参照)、dIP0は、推定される血漿インスリンの微分であり、αおよびβは、定数である。
上で説明されているインスリン状態は、以下の式によって表されるときに所定のインスリン値Ibasalから偏差形式で定式化される。
式85において、xは、DまたはPを表し(ただし、Dは送達されるインスリンを指し、Pは血漿インスリンを指す)、Ibasal,0は、患者を値FBG(mg/dL)の断食血糖(FBG)にするためにそれぞれの使用者について定義されている推定基礎速度である。
この第2の実施形態について、時間単位のモデル予測センサーグルコース値
は、モデルスーパーバイザーモジュール914の第1の実施形態について説明されているように、式83および関連する関係に従って計算される。この点で、
は、FBGからの偏差形式のモデル予測SG値であり(夜間の終わりの測定器血糖読み取り値を使用して推定された血糖)、(s)は、ラプラス変換形式を指し、τおよびτは、患者がインスリンに対してどれだけ速く反応するかに関係する、それぞれの患者に対して識別された2つのインスリン時定数であり、Kは、インスリンゲインであり、そして
は、偏差形式の推定される血漿インスリンである。さらに、
は、以下の式86に従って計算されるように、k−LTHのサンプリング時間に対する偏差形式の推定されるSG値(mg/dL)であり(図54を参照)、dG(以下の式87によって計算される)は、k−LTHのサンプリング時間に対する推定されるSG値(mg/dL/分)の微分である。定数α、β、χ、およびδは、式83の文脈において上で述べたように計算される。
推定される血糖値は、モデル予測初期条件GおよびdGの関数として計算される。この特定の実施形態については、GおよびdGに対する推定は、以下の式によって定式化されるように有界である。これらの初期条件およびその境界も、センサーモデル学習プロセス1180のタスク1182を参照しつつ上で説明されたことに留意されたい。
=SGk−LTH±0.14・SGk−LTH (式86)
dG=±grad_bound (式87)
ここで、Gは、k−LTHのサンプリング時間に対する推定されるSG値(mg/dL)であり、SGk−LTHは、k−LTHのサンプリング時間に対するSG測定であり、dGは、k−LTHのサンプリング時間に対する推定されるSG値の微分(mg/dL/分)であり、grad_boundは、時間を単位とする定義済み絶対最大SG微分(mg/dL/分)である。いくつかの実施形態では、grad_boundは、固定されたパラメータである。本明細書で提示されている例については、grad_boundは、値5mg/dL/分を有する。
モデル予測により、TerrおよびPerrの2つの値の計算が容易になる。Terrは、以下の式88によって計算されるようにk−LTHおよびkとして識別されるサンプリング時間に対するモデル予測SG値と実際のSG記録との間の平均絶対誤差として定義される。Perrは、以下の式89によって計算されるようにkから現在まで(図54を参照)として識別されるサンプリング時間に対するモデル予測SG値と実際のSG記録との間の平均絶対誤差として定義される。
ここで、Terrは、k−LTHおよびkとして識別されるサンプリング時間に対するモデル予測SG値(Model)とSG記録(SG)との間の平均絶対誤差として定義される。
ここで、Perrは、現在の(一番最近の)サンプリング時間におけるモデル予測とSG測定との間の誤差のパーセンテージとして定義される。
この特定の実装によれば、モデルスーパーバイザーモジュール914は、式90に基づき障害シナリオを推定し、ただし、Fault 1は、障害のあるセンサーを示し、Fault 0は、障害のないセンサーを示し、Fault 3は、学習誤差を示し、Fault −1は、決定を下すのに利用可能な十分なデータがないことを示す。
式90において、err1は、平均絶対誤差に対する上限閾値である(式88を参照)。したがって、学習誤差がこの閾値より高い場合、学習の信頼性が疑わしいので、障害はトリガーされ得ない。err2は、式89に対する下限閾値である。モデルの予測値およびセンサー測定結果が目下のところこの閾値より高く、学習誤差がerr1より小さい場合、障害がトリガーされる。err3は、学習期間に対する下限閾値を定義する。式88がこの閾値より高い値を示す場合、学習の不良に関連する警告がトリガーされ得る。
図57は、障害のないセンサー(Fault 0)および障害のあるセンサー(Fault 1)に対応する例示的なセンサー条件を示す図である。共通水平軸は、LPHおよびLTHによって識別される期間と共に、最も右のところに現在のサンプリング時間を示す。サンプリング時間1202は、現在の時刻におけるモデルスーパーバイザーモジュール914によって考慮される最も古いデータに対応する。したがって、サンプリング時間1202の前に現れたサンプリング時間に対する履歴データ1204は無視される。
図57の上のプロット1206は、障害のないセンサー(Fault 0)を示し、真ん中のプロット1208は、障害のあるセンサー(Fault 1)を示し、下のプロット1210は、血漿インスリンを推定しモデル予測SG値を生成するために必要とされる、投与されるインスリンを示す。プロット1206、1208において、実線1212は、モデル予測SG値を表し、点は、実際のSG測定結果を表す。破線の垂直線1214は、LTH時間枠とLPH時間枠との間の境界を表す。実線1212と点との間の直線は、モデル予測SG値と実際のSG測定結果との間の差(誤差)を表す。破線は、LPH時間枠で利用され、この例では15分間または3つのサンプリング期間に対応する。
上のプロット1206を参照すると、モデル予測SG値(実線1212によって表される)と実際のSG測定結果(点によって表される)との間に良好な呼応関係があることがわかる。言い換えると、実際の測定結果は、予測値から著しくは逸脱しない。いくつかの実施形態において、モデルスーパーバイザーモジュール914は、LPH時間枠内にある実際の測定値を比較するだけである。例示的な一実施形態によれば、モデルスーパーバイザーモジュール914は、一番最近に取得されたデータ、すなわち、最後のサンプリング時間に受信された情報だけに基づき障害ステータスを決定する。図55に示されているこの例については、Perrは、err2以下である。したがって、式90によれば、モデルスーパーバイザーモジュール914は、Fault 1を返し、システムは、閉ループモードにとどまるように指令される。
図57の真ん中のプロット1208を参照すると、LTH期間において(この期間、式90においてTerrはerr1未満である)モデル予測SG値と実際のSG測定結果との間に良好な呼応関係がある。ただし、最後のモデル予測SG値と実際の最後のSG測定結果1218との間に有意な差が観察されることに留意されたい(Perrは、式90においてerr2より大きい)。このシナリオでは、したがって、モデルスーパーバイザーモジュール914は、フェイルセーフアラートを発行し、および/または他の適切な対策を講じる。
いくつかの実施形態において、モデルスーパーバイザーモジュール914によって使用されるパラメータのうちのいくつかは、調整可能であるものとしてよい。表6は、これらのパラメータに対するいくつかの例示的な値と共に、この実施形態に対するいくつかの調整可能なパラメータを明記している。
欠落送信モジュール
欠落送信モジュール916は、コントローラが処理のためデータパケット(SG値を含む)を受信しているかどうかを連続的にチェックする。欠落送信モジュール916は、提示されている数より少ないデータパケットが欠落している(例えば、1列に4つより少ないデータパケット、15分未満の時間範囲を表すデータパケットの総数、または同様のもの)場合についてシステムを閉ループモードでの動作状態に保つ。この時間中、システムは、最後の有効なセンサーグルコース値またはセンサーIsig値に基づく閉ループ制御アルゴリズムを使用してインスリン投与量を計算し続ける。下限時間閾値より長く、上限時間閾値より長い時間(例えば、15分から60分の間)を表す欠落データパケットについて、欠落送信モジュール916は、システムを、患者の夜間基礎速度の半分として定義され得る事前プログラムされた安全基礎速度に切り替える。コントローラが、安全基礎速度の時間枠内でデータパケットの受信を開始する場合、システムは、閉ループモードに切り替わって戻る。しかし、上限時間閾値より長い時間を表す欠落データパケットについては、欠落送信モジュール916は、医療サービス提供者または介護人によって設定され得る、事前プログラミングされた夜間基礎速度で送達するようにシステムを開ループモードに切り替える。
欠落送信モジュール916は、送信中にパケットがいつ喪失し、またどのような種類のパケットが喪失したかに関して異なるシナリオをチェックする。喪失した送信のタイプに応じて異なるステップが実行される。4つの異なるシナリオの詳細について以下で説明する。
ケース1
センサーIsig値およびSG値が両方ともコントローラによって受信される場合、
(a)センサーIsigは、コントローラによって保存され、
(b)SG値は、コントローラによって保存され、
(c)ゼロ次ホールド(ZOH)カウントは、ゼロに設定され、
(d)システムは、すでに説明されているように閉ループモードにとどまる。
ケース2
センサーIsig値がコントローラによって受信されないが、SG値は受信される場合、
(a)ZOHカウントは、ゼロに設定され、
(b)Isigは、SG値およびセンサー較正係数を使用して式91(以下を参照)によって計算され、
(c)システムは閉ループモードにとどまる。
Isigcalc=(SG/CF’)+2 (式91)
ケース3
センサーIsig値がコントローラによって受信されるが、SG値は受信されない場合、
(a)ZOHカウントは、ゼロに設定され、
(b)SGは、Isig値およびセンサー較正係数を使用して式92(以下を参照)によって計算され、
(c)システムは閉ループモードにとどまる。
SGcalc=(Isig−2)×CF’ (式92)
ケース4a
センサーIsig値もSG値もコントローラによって受信されない場合(すなわち、両方の値が受信されない)、かつ
ZOH Count≦ZOH Count Max
である場合、
(a)センサーIsigおよびSGに対するZOHカウントは、前の値に基づき計算され、
(b)ZOH Count=ZOH Count+1、
(c)TimeoutCount=0、
(d)システムは閉ループモードにとどまる。
ケース4b
センサーIsig値もSG値もコントローラによって受信されない場合(すなわち、両方の値が受信されない)、かつ
ZOH Count>ZOH Count Max
である場合、
(a)センサーIsigおよびSG値に対する「無効」プレースホルダーは、保存され、
(b)システムは閉ループモードにとどまるが、開ループモードに入っているときの患者の夜間基礎速度の半分である、一時的安全基礎速度に切り替わり、
(c)安全基礎速度で送達している間にパケットがシステムによって受信される場合、システムは、閉ループモードに遷移して戻り、
(d)システムが安全基礎速度で送達している1分おきに、TimeoutCountは、増分され、すなわち、TimeoutCount=TimeoutCount+1となり、
(e)TimeoutCount>Timeout Count Maxである場合、システムは、開ループモードに切り替わる。
いくつかの実施形態によれば、ZOH Count Maxは、2の固定された値を有し、Timeout Count Maxは、45の固定された値を有するが、特定の実装に対して適切であれば異なる値も使用することができる。さらに、欠落送信モジュール916によって使用される安全基礎速度は、調整可能であってもよい。この点で、安全基礎速度は、約0から5ユニット/時の範囲内で調整可能であるものとしてよい。
前記の詳細な説明では、少なくとも1つの例示的な実施形態が提示されたが、膨大な数の変更形態が存在することは理解されるであろう。本明細書で説明されている1つ以上の例示的な実施形態は、請求されている発明の主題の範囲、応用性、または構成を制限することをいっさい意図していないことも理解されるであろう。むしろ、前記の詳細な説明は、当業者に対して、説明されている1つ以上の実施形態を実装するための従来のロードマップを提供する。請求項によって定められた範囲から逸脱することなく要素の機能および配置構成に対してさまざまな変更を加えることができ、これは本特許出願の出願時点において知られている等価物および予見可能な等価物を含むことは理解されるであろう。

Claims (6)

  1. 使用者に対してインスリンを注入するインスリン注入デバイスを制御するシステムであって、
    前記使用者に送達されたインスリンの手動ボーラスの過去の値を受信する手段と、
    少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャと、
    前記プロセッサアーキテクチャに関連し、プロセッサ実行可能命令を記憶するメモリと、を備え、
    前記プロセッサ実行可能命令を、前記プロセッサアーキテクチャが実行することで、
    a)過去の値から、前記手動ボーラスによって求められる前記使用者の身体内のアクティブインスリンの推定値を表す現在のインスリンオンボード(IOB)値を計算し、現在のIOB値は、前記使用者に対する履歴ボーラス送達データに少なくとも部分的に基づき、
    b)計算された現在のIOB値に少なくとも部分的に基づいてIOB速度を計算し、IOB速度は、時間単位で前記手動ボーラスから前記使用者の体内に蓄積されたアクティブインスリンの量であり、
    c)比例積分微分インスリンフィードバック(PID−IFB)制御アルゴリズムに従って非補償インスリン注入速度を計算し、
    d)計算されたIOB速度と非補償インスリン注入速度とに少なくとも部分的に基づき調整済みインスリン注入速度を決定し、
    e)決定された調整済みインスリン注入速度、または、非補償インスリン注入速度、または、現在の基礎速度が前記インスリン注入デバイスに対する最終インスリン注入速度として選択され、
    最終インスリン注入速度を選択することは、

    に従って行われ、
    上記式において、
    FinalRate(n)は選択された最終インスリン注入速度であり、
    Basalは現在の基礎速度であり、
    AdjustedRate(n)は決定された調整済みインスリン注入速度であり、
    PIDRate(n)は取得された非補償インスリン注入速度であり、
    f)選択された最終インスリン注入速度に従って前記使用者の体内にインスリンを送達し、
    g)前記a)から前記f)を繰り返し実行する閉ループモードで前記インスリン注入デバイスを動作させるシステム。
  2. 請求項1に記載のシステムであって、
    実行時に、前記プロセッサアーキテクチャにIOB速度を計算させる命令は、
    計算されたIOB値が最小IOB値より大きい場合、前記プロセッサアーキテクチャに、IOB速度を、IOB減衰速度を乗算した計算されたIOB値と等しく設定させ、
    計算されたIOB値が最小IOB値以下である場合、前記プロセッサアーキテクチャに、IOB速度をゼロに設定させる、ことを特徴とするシステム。
  3. 少なくとも1つのプロセッサデバイスを備えるプロセッサアーキテクチャと、前記プロセッサアーキテクチャに関連し、プロセッサ実行可能命令を記憶するメモリと、を含むコントローラによって実行されるインスリン注入デバイスのインスリン注入速度を制御する方法であって、
    p)過去の手動インスリンボーラスから求められる使用者の身体内のアクティブインスリンの推定値を表す現在のインスリンオンボード(IOB)値を計算し、
    q)計算された現在のIOB値に少なくとも部分的に基づきIOB速度を計算し、IOB速度は、時間単位で前記手動インスリンボーラスから前記使用者の体内に蓄積されたアクティブインスリンの量であり、
    r)比例積分微分インスリンフィードバック(PID−IFB)制御アルゴリズムに従って非補償インスリン注入速度を計算し、
    s)計算されたIOB速度および非補償インスリン注入速度に少なくとも部分的に基づき調整済みインスリン注入速度を決定し、
    t)決定された調整済みインスリン注入速度、または、非補償インスリン注入速度、または、現在の基礎速度が前記インスリン注入デバイスに対する最終インスリン注入速度として選択され、
    最終インスリン注入速度を選択することは、

    に従って行われ、
    上記式において、
    FinalRate(n)は選択された最終インスリン注入速度であり、
    Basalは現在の基礎速度であり、
    AdjustedRate(n)は決定された調整済みインスリン注入速度であり、
    PIDRate(n)は取得された非補償インスリン注入速度であり
    )前記p)から前記)を繰り返し実行する閉ループモードで前記インスリン注入デバイスのインスリン注入速度制御する方法。
  4. 請求項3に記載の方法であって、
    操作により、3コンパートメントインスリン薬物動態モデルに従って現在のIOB値を計算することを特徴とする方法。
  5. 請求項3または4に記載の方法であって、
    IOB速度を計算することは、
    計算されたIOB値が最小IOB値より大きい場合、IOB速度を、IOB減衰速度を乗算した計算されたIOB値と等しくなるように計算し、
    計算されたIOB値が最小IOB値以下である場合、IOB速度をゼロに等しくなるように計算する、ことを特徴とする方法。
  6. 請求項3に記載の方法であって、
    調整済みインスリン注入速度を決定することは、式 AdjustedRate(n)=max(0;PIDRate(n)−IOBRate(n))
    に従って行われ、
    IOBRate(n)は計算されたIOB速度である方法。
JP2015529818A 2012-08-30 2013-07-24 インスリン注入デバイスを制御するシステム及び方法 Active JP6239623B2 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201261694961P 2012-08-30 2012-08-30
US201261694950P 2012-08-30 2012-08-30
US61/694,961 2012-08-30
US61/694,950 2012-08-30
US201361812874P 2013-04-17 2013-04-17
US61/812,874 2013-04-17
US13/870,902 US9364609B2 (en) 2012-08-30 2013-04-25 Insulin on board compensation for a closed-loop insulin infusion system
US13/870,907 US20140066884A1 (en) 2012-08-30 2013-04-25 Sensor model supervisor for a closed-loop insulin infusion system
US13/870,910 US9526834B2 (en) 2012-08-30 2013-04-25 Safeguarding measures for a closed-loop insulin infusion system
US13/870,907 2013-04-25
US13/870,902 2013-04-25
US13/870,910 2013-04-25
PCT/US2013/051886 WO2014035570A2 (en) 2012-08-30 2013-07-24 Safeguarding measures for a closed-loop insulin infusion system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015134640A Division JP6338553B2 (ja) 2012-08-30 2015-07-03 インスリン注入デバイスを制御するシステム及び方法

Publications (2)

Publication Number Publication Date
JP2015526242A JP2015526242A (ja) 2015-09-10
JP6239623B2 true JP6239623B2 (ja) 2017-11-29

Family

ID=50188481

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015529818A Active JP6239623B2 (ja) 2012-08-30 2013-07-24 インスリン注入デバイスを制御するシステム及び方法
JP2015134640A Active JP6338553B2 (ja) 2012-08-30 2015-07-03 インスリン注入デバイスを制御するシステム及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2015134640A Active JP6338553B2 (ja) 2012-08-30 2015-07-03 インスリン注入デバイスを制御するシステム及び方法

Country Status (8)

Country Link
US (5) US20140066884A1 (ja)
EP (2) EP2891087B1 (ja)
JP (2) JP6239623B2 (ja)
KR (2) KR102028790B1 (ja)
CN (2) CN104756116B (ja)
AU (2) AU2013309425B2 (ja)
CA (1) CA2882027C (ja)
WO (1) WO2014035570A2 (ja)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080091466A1 (en) 2006-10-16 2008-04-17 Hospira, Inc. System and method for comparing and utilizing activity information and configuration information from multiple device management systems
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
US10852069B2 (en) 2010-05-04 2020-12-01 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a fractal heat sink
ES2959510T3 (es) 2011-10-21 2024-02-26 Icu Medical Inc Sistema de actualización de dispositivos médicos
US20140066884A1 (en) 2012-08-30 2014-03-06 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
US10130767B2 (en) 2012-08-30 2018-11-20 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
US10496797B2 (en) 2012-08-30 2019-12-03 Medtronic Minimed, Inc. Blood glucose validation for a closed-loop operating mode of an insulin infusion system
US9641432B2 (en) 2013-03-06 2017-05-02 Icu Medical, Inc. Medical device communication method
US20140309615A1 (en) * 2013-04-16 2014-10-16 Bryan Mazlish Discretionary insulin delivery systems and methods
US11284815B2 (en) * 2013-04-26 2022-03-29 Roche Diabetes Care, Inc. Bolus calculator time keeping between mobile phone application and bG meters
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
CA2922425C (en) 2013-08-30 2023-05-16 Hospira, Inc. System and method of monitoring and managing a remote infusion regimen
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
ES2731219T3 (es) 2013-11-19 2019-11-14 Icu Medical Inc Sistema y método de automatización de bomba de infusión
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
EP3132820A4 (en) * 2014-04-14 2017-12-13 Multidimension Technology Co., Ltd. Micro guiding screw pump using magnetic resistance sensor and manufacturing method therefor
ES2984732T3 (es) 2014-04-30 2024-10-30 Icu Medical Inc Sistema de asistencia al paciente con reenvío de alarma condicional
AU2015271133B2 (en) 2014-06-06 2018-07-05 Dexcom, Inc. Fault discrimination and responsive processing based on data and context
CA2950966C (en) 2014-06-10 2019-07-09 Bigfoot Biomedical, Inc. Insulin delivery systems and methods
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
CN105688308A (zh) * 2014-11-13 2016-06-22 上海泽生科技开发有限公司 注射泵控制方法、控制单元及注射泵
US10617363B2 (en) 2015-04-02 2020-04-14 Roche Diabetes Care, Inc. Methods and systems for analyzing glucose data measured from a person having diabetes
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
US10671704B2 (en) 2015-07-23 2020-06-02 PrioBio, LLC Predicting immune response
US20170024539A1 (en) * 2015-07-23 2017-01-26 PrioBio, LLC Enhancing blood cell estimation
CN104958077A (zh) * 2015-07-24 2015-10-07 珠海福尼亚医疗设备有限公司 一种智能控制的闭环式人工胰腺系统
WO2017040927A1 (en) * 2015-09-02 2017-03-09 University Of Virginia Patent Foundation System, method, and computer readable medium for dynamic insulin sensitivity in diabetic pump users
EP3359039B1 (en) * 2015-10-09 2021-07-14 Dianovator AB Medical arrangements and a method for determining parameters related to insulin therapy, predicting glucose values and for providing insulin dosing recommendations
JP2019509770A (ja) 2016-01-05 2019-04-11 ビッグフット バイオメディカル インコーポレイテッドBigfoot Biomedical, Inc. 動作するマルチモーダル薬剤デリバリ・システム
US10449294B1 (en) 2016-01-05 2019-10-22 Bigfoot Biomedical, Inc. Operating an infusion pump system
US10610643B2 (en) 2016-01-14 2020-04-07 Bigfoot Biomedical, Inc. Occlusion resolution in medication delivery devices, systems, and methods
CN112933333B (zh) 2016-01-14 2023-03-28 比格福特生物医药公司 调整胰岛素输送速率
US10575790B2 (en) 2016-03-02 2020-03-03 Roche Diabetes Care, Inc. Patient diabetes monitoring system with clustering of unsupervised daily CGM profiles (or insulin profiles) and method thereof
US10518031B2 (en) 2016-03-04 2019-12-31 Roche Diabetes Care, Inc. Bolus calculator with probabilistic glucose measurements
US10311976B2 (en) 2016-04-28 2019-06-04 Roche Diabetes Care, Inc. Bolus calculator with probabilistic carbohydrate measurements
US10297350B2 (en) 2016-06-01 2019-05-21 Roche Diabetes Care, Inc. Risk-based control-to-range
US10332632B2 (en) 2016-06-01 2019-06-25 Roche Diabetes Care, Inc. Control-to-range failsafes
US10332633B2 (en) 2016-06-01 2019-06-25 Roche Diabetes Care, Inc. Control-to-range aggressiveness
WO2018013842A1 (en) 2016-07-14 2018-01-18 Icu Medical, Inc. Multi-communication path selection and security system for a medical device
US11631486B2 (en) 2016-08-17 2023-04-18 Novo Nordisk A/S Systems and methods for optimization of bolus timing relative to meal events
GB201614676D0 (en) * 2016-08-30 2016-10-12 Imp Innovations Automatic closed-loop glucose control with an adaptive meal bolus calculator
FR3056094B1 (fr) 2016-09-21 2018-10-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme automatise de regulation de la glycemie d'un patient
FR3056095B1 (fr) * 2016-09-21 2018-10-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme automatise de regulation de la glycemie d'un patient
US10561788B2 (en) * 2016-10-06 2020-02-18 Medtronic Minimed, Inc. Infusion systems and methods for automated exercise mitigation
EP3532958B1 (en) 2016-10-31 2024-03-27 Novo Nordisk A/S Systems and methods for estimating the risk of a future hypoglycemic event
KR20180047534A (ko) * 2016-10-31 2018-05-10 한국전자통신연구원 패턴 인식 모델에 기반한 캘리브레이션이 가능한 후각 정보 생성 장치 및 생성 방법
US10854323B2 (en) * 2016-12-21 2020-12-01 Medtronic Minimed, Inc. Infusion systems and related personalized bolusing methods
US10500334B2 (en) 2017-01-13 2019-12-10 Bigfoot Biomedical, Inc. System and method for adjusting insulin delivery
US10583250B2 (en) 2017-01-13 2020-03-10 Bigfoot Biomedical, Inc. System and method for adjusting insulin delivery
US11027063B2 (en) 2017-01-13 2021-06-08 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
EP3568860A1 (en) 2017-01-13 2019-11-20 Bigfoot Biomedical, Inc. Insulin delivery methods, systems and devices
US10758675B2 (en) 2017-01-13 2020-09-01 Bigfoot Biomedical, Inc. System and method for adjusting insulin delivery
US10881792B2 (en) 2017-01-13 2021-01-05 Bigfoot Biomedical, Inc. System and method for adjusting insulin delivery
CN106860955A (zh) * 2017-01-21 2017-06-20 广东食品药品职业学院 基于模糊自适应比例微积分控制胰岛素泵闭环输注的方法
WO2018167543A1 (en) * 2017-03-17 2018-09-20 Universität Bern System and method for drug therapy management
USD853583S1 (en) 2017-03-29 2019-07-09 Becton, Dickinson And Company Hand-held device housing
US11497851B2 (en) 2017-03-31 2022-11-15 Lifescan Ip Holdings, Llc Maintaining maximum dosing limits for closed loop insulin management systems
US10729849B2 (en) * 2017-04-07 2020-08-04 LifeSpan IP Holdings, LLC Insulin-on-board accounting in an artificial pancreas system
US11147920B2 (en) 2017-04-18 2021-10-19 Lifescan Ip Holdings, Llc Diabetes management system with automatic basal and manual bolus insulin control
EP4290320A3 (en) 2017-05-05 2024-02-21 Ypsomed AG Closed loop control of physiological glucose
FR3069165A1 (fr) * 2017-07-21 2019-01-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme automatise de regulation de la glycemie d'un patient
EP3438858A1 (en) 2017-08-02 2019-02-06 Diabeloop Closed-loop blood glucose control systems and methods
US11311217B2 (en) 2017-09-13 2022-04-26 Medtronic Minimed, Inc. Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output
CN109692010A (zh) * 2017-10-20 2019-04-30 爱科来株式会社 测定装置、计算机可读取的记录介质和测定方法
US11154660B2 (en) 2017-12-12 2021-10-26 Bigfoot Biomedical, Inc. Diabetes therapy management systems, methods, and devices
US10987464B2 (en) 2017-12-12 2021-04-27 Bigfoot Biomedical, Inc. Pen cap for insulin injection pens and associated methods and systems
US11077243B2 (en) 2017-12-12 2021-08-03 Bigfoot Biomedical, Inc. Devices, systems, and methods for estimating active medication from injections
US11083852B2 (en) 2017-12-12 2021-08-10 Bigfoot Biomedical, Inc. Insulin injection assistance systems, methods, and devices
US11116899B2 (en) 2017-12-12 2021-09-14 Bigfoot Biomedical, Inc. User interface for diabetes management systems and devices
US11464459B2 (en) 2017-12-12 2022-10-11 Bigfoot Biomedical, Inc. User interface for diabetes management systems including flash glucose monitor
US11901060B2 (en) 2017-12-21 2024-02-13 Ypsomed Ag Closed loop control of physiological glucose
SE542950C2 (en) * 2018-02-01 2020-09-22 Leine & Linde Ab Methods, computer programs, devices and encoders for signal error correction
US11497456B2 (en) * 2018-03-21 2022-11-15 Philips Capsule Corporation Alarm setting derived from the variability in signal characteristics
US11158413B2 (en) 2018-04-23 2021-10-26 Medtronic Minimed, Inc. Personalized closed loop medication delivery system that utilizes a digital twin of the patient
US11147919B2 (en) * 2018-04-23 2021-10-19 Medtronic Minimed, Inc. Methodology to recommend and implement adjustments to a fluid infusion device of a medication delivery system
US12020797B2 (en) 2018-06-22 2024-06-25 Ypsomed Ag Insulin and pramlintide delivery systems, methods, and devices
WO2020010074A1 (en) * 2018-07-02 2020-01-09 Minnetronix Neuro, Inc. Systems, catheters, and methods for treating along the central nervous system
EP3824386B1 (en) 2018-07-17 2024-02-21 ICU Medical, Inc. Updating infusion pump drug libraries and operational software in a networked environment
US11139058B2 (en) 2018-07-17 2021-10-05 Icu Medical, Inc. Reducing file transfer between cloud environment and infusion pumps
US11483403B2 (en) 2018-07-17 2022-10-25 Icu Medical, Inc. Maintaining clinical messaging during network instability
WO2020018389A1 (en) * 2018-07-17 2020-01-23 Icu Medical, Inc. Systems and methods for facilitating clinical messaging in a network environment
EP3827337A4 (en) 2018-07-26 2022-04-13 ICU Medical, Inc. MEDICATION LIBRARY MANAGEMENT SYSTEM
WO2020023473A1 (en) * 2018-07-26 2020-01-30 Sanofi Method of adjusting medication doses
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
US11097052B2 (en) * 2018-09-28 2021-08-24 Medtronic Minimed, Inc. Insulin infusion device with configurable target blood glucose value for automatic basal insulin delivery operation
US11071821B2 (en) 2018-09-28 2021-07-27 Medtronic Minimed, Inc. Insulin infusion device with efficient confirmation routine for blood glucose measurements
EP3902469B1 (en) 2018-12-28 2024-07-03 Dexcom, Inc. Evaluation and visualization of glycemic dysfunction
CN113261064B (zh) * 2019-01-23 2024-03-08 国立研究开发法人科学技术振兴机构 给药量管理支援系统
US11382510B2 (en) * 2019-02-13 2022-07-12 Sports Data Labs, Inc. Biological data tracking system and method
US11986629B2 (en) 2019-06-11 2024-05-21 Medtronic Minimed, Inc. Personalized closed loop optimization systems and methods
CN110236572B (zh) * 2019-05-07 2021-10-26 平安科技(深圳)有限公司 基于体温信息的抑郁症预测系统
AU2020267477A1 (en) 2019-05-08 2022-01-06 Icu Medical, Inc. Threshold signature based medical device management
US11823783B2 (en) * 2019-06-19 2023-11-21 Dexcom, Inc. Dynamic equivalent on board estimator
AU2020314752A1 (en) 2019-07-16 2022-02-24 Beta Bionics, Inc. Blood glucose control system
CN112294298A (zh) * 2019-08-02 2021-02-02 华广生技股份有限公司 生物传感器的植入装置及其植入方法
WO2021026399A1 (en) 2019-08-06 2021-02-11 Medtronic Minimed, Inc. Machine learning-based system for estimating glucose values
US11213623B2 (en) 2019-09-20 2022-01-04 Medtronic Minimed, Inc. Infusion systems and related personalized bolusing methods
US20210377726A1 (en) 2020-05-27 2021-12-02 Medtronic Minimed, Inc. Method and system for automatically associating a non-medical device with a medical device
US11735305B2 (en) * 2020-06-26 2023-08-22 Medtronic Minimed, Inc. Automatic configuration of user-specific data based on placement into service
US11955210B2 (en) 2020-06-26 2024-04-09 Medtronic Minimed, Inc. Automatic configuration of user-specific data based on networked charger devices
CN116097370A (zh) 2020-07-30 2023-05-09 美敦力迷你迈德公司 自动装置配置
KR102481888B1 (ko) * 2020-09-01 2022-12-28 고려대학교 산학협력단 딥러닝을 이용한 수면유도제 투여량 예측방법 및 예측 장치
US11389091B2 (en) 2020-09-09 2022-07-19 Know Labs, Inc. Methods for automated response to detection of an analyte using a non-invasive analyte sensor
CN116075266A (zh) * 2020-09-09 2023-05-05 知识实验室股份有限公司 非侵入式分析物传感器和自动响应系统和方法
US12019034B2 (en) 2020-09-09 2024-06-25 Know Labs, Inc. In vitro sensing methods for analyzing in vitro flowing fluids
US11510597B2 (en) 2020-09-09 2022-11-29 Know Labs, Inc. Non-invasive analyte sensor and automated response system
US12007338B2 (en) 2020-09-09 2024-06-11 Know Labs Inc. In vitro sensor for analyzing in vitro flowing fluids
CN112426585B (zh) * 2020-11-20 2022-04-29 南京信息职业技术学院 胰岛素泵计量校准方法
US20220199218A1 (en) * 2020-12-07 2022-06-23 Beta Bionics, Inc. Ambulatory medicament pump with integrated medicament ordering interface
US11904139B2 (en) * 2021-04-05 2024-02-20 Medtronic Minimed, Inc. Closed-loop control in steady-state conditions
US20220395638A1 (en) * 2021-06-14 2022-12-15 Insulet Corporation Method for modification of maximum delivery limits in automatic drug delivery systems
US20220401647A1 (en) * 2021-06-17 2022-12-22 Bellco Srl Hemodialysis system including continuous glucose monitoring
US20240312590A1 (en) * 2021-07-19 2024-09-19 Sanofi Systems and methods for performing titration of basal and bolus insulin
ES2932844B2 (es) * 2022-07-28 2023-04-18 Univ Valencia Politecnica Metodo para mejorar el control de la glucemia con un controlador hibrido, modulo complementario para su incorporacion a un sistema de pancreas artificial para realizar el metodo y sistema de pancreas artificial que incorpora el modulo complementario
FR3140549A1 (fr) * 2022-10-11 2024-04-12 Diabeloop Dispositif de régulation pour la détermination d’une valeur de recommandation d’un paramètre de régulation d’un dispositif d'infusion de fluide.
US20240139415A1 (en) * 2022-11-02 2024-05-02 University Of Virginia Patent Foundation SYSTEM AND METHOD FOR DETECTING PRESSURE INDUCED SENSOR ATTENUATIONS (PISAs) OF CONTINUOUS GLUCOSE MONITORING (CGM)
WO2024097813A2 (en) * 2022-11-02 2024-05-10 Kovatchev Boris P System and method for detecting sensor compression of continuous glucose monitoring (cgm) sensors
WO2024119078A1 (en) * 2022-12-01 2024-06-06 Tandem Diabetes Care, Inc. Devices, systems, and methods for closed- and semi-closed-loop operation of infusion pumps

Family Cites Families (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5338157B1 (en) 1992-09-09 1999-11-02 Sims Deltec Inc Systems and methods for communicating with ambulat
US5935099A (en) 1992-09-09 1999-08-10 Sims Deltec, Inc. Drug pump systems and methods
US3631847A (en) 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
FR2385406A1 (fr) 1977-03-28 1978-10-27 Akzo Nv Rein artificiel
DE2758368C2 (de) 1977-12-28 1985-10-17 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur vorprogrammierbaren Infusion von Flüssigkeiten
US4559037A (en) 1977-12-28 1985-12-17 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
DE2758467C2 (de) 1977-12-28 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur vorprogrammierbaren Infusion von Flüssigkeiten
FR2444064A1 (fr) 1978-12-15 1980-07-11 Sodip Sa Melange de polymere du chlorure de vinyle et de polyetherurethane a groupe amine tertiaire et/ou ammonium, notamment pour objet conforme a usage medical
US4731051A (en) 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4573994A (en) 1979-04-27 1986-03-04 The Johns Hopkins University Refillable medication infusion apparatus
US4373527B1 (en) 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4533346A (en) 1979-06-26 1985-08-06 Pharmacontrol Corporation System for automatic feedback-controlled administration of drugs
DE3035670A1 (de) 1980-09-22 1982-04-29 Siemens AG, 1000 Berlin und 8000 München Vorrichtung zur infusion von fluessigkeiten in den menschlichen oder tierischen koerper
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4443218A (en) 1982-09-09 1984-04-17 Infusaid Corporation Programmable implantable infusate pump
US4826810A (en) 1983-12-16 1989-05-02 Aoki Thomas T System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof
US4678408A (en) 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
US4562751A (en) 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US5100380A (en) 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US4550731A (en) 1984-03-07 1985-11-05 Cordis Corporation Acquisition circuit for cardiac pacer
US4542532A (en) 1984-03-09 1985-09-17 Medtronic, Inc. Dual-antenna transceiver
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US4781798A (en) 1985-04-19 1988-11-01 The Regents Of The University Of California Transparent multi-oxygen sensor array and method of using same
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US5003298A (en) 1986-01-15 1991-03-26 Karel Havel Variable color digital display for emphasizing position of decimal point
US4755173A (en) 1986-02-25 1988-07-05 Pacesetter Infusion, Ltd. Soft cannula subcutaneous injection set
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4803625A (en) 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
EP0290683A3 (en) 1987-05-01 1988-12-14 Diva Medical Systems B.V. Diabetes management system and apparatus
US5011468A (en) 1987-05-29 1991-04-30 Retroperfusion Systems, Inc. Retroperfusion and retroinfusion control apparatus, system and method
US4809697A (en) 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US5041086A (en) 1987-12-04 1991-08-20 Pacesetter Infusion, Ltd. Clinical configuration of multimode medication infusion system
US5025374A (en) 1987-12-09 1991-06-18 Arch Development Corp. Portable system for choosing pre-operative patient test
US4898578A (en) 1988-01-26 1990-02-06 Baxter International Inc. Drug infusion system with calculator
GB2218831A (en) 1988-05-17 1989-11-22 Mark John Newland Personal medical apparatus
US5153827A (en) 1989-01-30 1992-10-06 Omni-Flow, Inc. An infusion management and pumping system having an alarm handling system
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5320725A (en) 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5264105A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5101814A (en) 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5108819A (en) 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5080653A (en) 1990-04-16 1992-01-14 Pacesetter Infusion, Ltd. Infusion pump with dual position syringe locator
US5097122A (en) 1990-04-16 1992-03-17 Pacesetter Infusion, Ltd. Medication infusion system having optical motion sensor to detect drive mechanism malfunction
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5078683A (en) 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
JPH04278450A (ja) 1991-03-04 1992-10-05 Adam Heller バイオセンサー及び分析物を分析する方法
US5593852A (en) 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5247434A (en) 1991-04-19 1993-09-21 Althin Medical, Inc. Method and apparatus for kidney dialysis
US5322063A (en) 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5284140A (en) 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
JPH08275927A (ja) 1992-02-13 1996-10-22 Seta:Kk 在宅医療システム及びこのシステムに用いる医療装置
US5788669A (en) 1995-11-22 1998-08-04 Sims Deltec, Inc. Pump tracking system
US5376070A (en) 1992-09-29 1994-12-27 Minimed Inc. Data transfer system for an infusion pump
US5913310A (en) 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5918603A (en) 1994-05-23 1999-07-06 Health Hero Network, Inc. Method for treating medical conditions using a microprocessor-based video game
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5897493A (en) 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5960403A (en) 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5879163A (en) 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5997476A (en) 1997-03-28 1999-12-07 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5832448A (en) 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5940801A (en) 1994-04-26 1999-08-17 Health Hero Network, Inc. Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US5371687A (en) 1992-11-20 1994-12-06 Boehringer Mannheim Corporation Glucose test data acquisition and management system
ZA938555B (en) 1992-11-23 1994-08-02 Lilly Co Eli Technique to improve the performance of electrochemical sensors
US5299571A (en) 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5357427A (en) 1993-03-15 1994-10-18 Digital Equipment Corporation Remote monitoring of high-risk patients using artificial intelligence
US5350411A (en) 1993-06-28 1994-09-27 Medtronic, Inc. Pacemaker telemetry system
US5368562A (en) 1993-07-30 1994-11-29 Pharmacia Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
DE4329229A1 (de) 1993-08-25 1995-03-09 Meditech Medizintechnik Gmbh Adaptive kontrollierte Pumpensteuerung, insbesondere zur Adaptiven Patientenkontrollierten Analgesie (APCA)
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5497772A (en) 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5594638A (en) 1993-12-29 1997-01-14 First Opinion Corporation Computerized medical diagnostic system including re-enter function and sensitivity factors
US5660176A (en) 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
FR2716286A1 (fr) 1994-02-16 1995-08-18 Debiotech Sa Installation de surveillance à distance d'équipements commandables.
US5543326A (en) 1994-03-04 1996-08-06 Heller; Adam Biosensor including chemically modified enzymes
US5536249A (en) 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5630710A (en) 1994-03-09 1997-05-20 Baxter International Inc. Ambulatory infusion pump
US5391250A (en) 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5370622A (en) 1994-04-28 1994-12-06 Minimed Inc. Proctective case for a medication infusion pump
US5482473A (en) 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5704366A (en) 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US5569187A (en) 1994-08-16 1996-10-29 Texas Instruments Incorporated Method and apparatus for wireless chemical supplying
US5505709A (en) 1994-09-15 1996-04-09 Minimed, Inc., A Delaware Corporation Mated infusion pump and syringe
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
IE72524B1 (en) 1994-11-04 1997-04-23 Elan Med Tech Analyte-controlled liquid delivery device and analyte monitor
US5573506A (en) 1994-11-25 1996-11-12 Block Medical, Inc. Remotely programmable infusion system
US6749586B2 (en) 1994-11-25 2004-06-15 I-Flow Corporation Remotely programmable infusion system
US5685844A (en) 1995-01-06 1997-11-11 Abbott Laboratories Medicinal fluid pump having multiple stored protocols
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5814015A (en) 1995-02-24 1998-09-29 Harvard Clinical Technology, Inc. Infusion pump for at least one syringe
US5609060A (en) 1995-04-28 1997-03-11 Dentsleeve Pty Limited Multiple channel perfused manometry apparatus and a method of operation of such a device
US5772635A (en) 1995-05-15 1998-06-30 Alaris Medical Systems, Inc. Automated infusion system with dose rate calculator
US5665065A (en) 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US6018289A (en) 1995-06-15 2000-01-25 Sekura; Ronald D. Prescription compliance device and method of using device
US5750926A (en) 1995-08-16 1998-05-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed electrical feedthrough for use with implantable electronic devices
US5754111A (en) 1995-09-20 1998-05-19 Garcia; Alfredo Medical alerting system
US5972199A (en) 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5665222A (en) 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US6689265B2 (en) 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
EP0861089B1 (en) 1995-11-13 2002-07-17 Medtronic MiniMed, Inc. Methods and compositions for the delivery of monomeric proteins
ATE278801T1 (de) 1995-11-22 2004-10-15 Medtronic Minimed Inc Detektion von biologischen molekülen unter verwendung von chemischer amplifikation und optischem sensor
AUPN707195A0 (en) 1995-12-12 1996-01-11 University Of Melbourne, The Field programmable intravenous infusion system
FI118509B (fi) 1996-02-12 2007-12-14 Nokia Oyj Menetelmä ja laitteisto potilaan veren glukoosipitoisuuden ennustamiseksi
FR2748588B1 (fr) 1996-05-07 1998-08-07 Soc Et Tech Set Dispositif comportant au moins un reseau de neurones pour determiner la quantite d'une substance a administrer a un patient, notamment de l'insuline
US5861018A (en) 1996-05-28 1999-01-19 Telecom Medical Inc. Ultrasound transdermal communication system and method
US5885245A (en) 1996-08-02 1999-03-23 Sabratek Corporation Medical apparatus with remote virtual input device
US5807336A (en) 1996-08-02 1998-09-15 Sabratek Corporation Apparatus for monitoring and/or controlling a medical device
RU99104137A (ru) 1996-08-05 2001-01-20 Пролинкс Комплексообразующие реагенты для борсодержащих соединений и комплексы на их основе
WO1998020439A1 (en) 1996-11-08 1998-05-14 Roman Linda L System for providing comprehensive health care and support
WO1998024358A2 (en) 1996-12-04 1998-06-11 Enact Health Management Systems System for downloading and reporting medical information
US6043437A (en) 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5978236A (en) 1997-01-31 1999-11-02 Silverline Power Conversion Llc Uninterruptible power supply with direction of DC electrical energy depending on predetermined ratio
DE69809391T2 (de) 1997-02-06 2003-07-10 Therasense, Inc. Kleinvolumiger sensor zur in-vitro bestimmung
US6009339A (en) 1997-02-27 1999-12-28 Terumo Cardiovascular Systems Corporation Blood parameter measurement device
AU8938598A (en) 1997-03-27 1999-04-23 Medtronic, Inc. Implantable Medical Device Remote Expert Communications System For Coordina ted Implant And Follow-Up
US5960085A (en) 1997-04-14 1999-09-28 De La Huerga; Carlos Security badge for automated access control and secure data gathering
US5779665A (en) 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
US6558351B1 (en) 1999-06-03 2003-05-06 Medtronic Minimed, Inc. Closed loop system for controlling insulin infusion
US5954643A (en) 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
AU8165498A (en) 1997-06-23 1999-01-04 Enact Health Management Systems Improved system for downloading and reporting medical information
US6130620A (en) 1997-08-11 2000-10-10 Electronic Monitoring Systems, Inc. Remote monitoring system
AU8826498A (en) 1997-08-22 1999-03-16 Apex Inc. Remote computer control system
US6071391A (en) 1997-09-12 2000-06-06 Nok Corporation Enzyme electrode structure
US6259937B1 (en) 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US5917346A (en) 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
US5999849A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Low power rectifier circuit for implantable medical device
US5999848A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Daisy chainable sensors and stimulators for implantation in living tissue
AU9787498A (en) 1997-10-02 1999-04-27 Micromed Technology, Inc. Implantable pump system
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6081736A (en) 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
FI107080B (fi) 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd Mittauslaite
US6579690B1 (en) 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
WO1999047190A1 (en) 1998-03-16 1999-09-23 Medtronic, Inc. Hemostatic system and components for extracorporeal circuit
US5904708A (en) 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6294281B1 (en) 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6254586B1 (en) 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
US5951521A (en) 1998-09-25 1999-09-14 Minimed Inc. Subcutaneous implantable sensor set having the capability to remove deliver fluids to an insertion site
CA2653180C (en) 1998-09-30 2013-11-19 Medtronic Minimed, Inc. Communication station and software for interfacing with an infusion pump, analyte monitor, analyte meter, or the like
WO2000019887A1 (en) 1998-10-08 2000-04-13 Minimed Inc. Telemetered characteristic monitor system
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US20040158193A1 (en) 1999-02-10 2004-08-12 Baxter International Inc. Medical apparatus using selective graphical interface
WO2000047109A1 (en) 1999-02-12 2000-08-17 Cygnus, Inc. Devices and methods for frequent measurement of an analyte present in a biological system
US6560741B1 (en) 1999-02-24 2003-05-06 Datastrip (Iom) Limited Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same
US6360888B1 (en) 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system
US6424847B1 (en) 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
CA2360513C (en) 1999-02-25 2004-11-16 Minimed Inc. Test plug and cable for a glucose monitor
US6461331B1 (en) 1999-05-21 2002-10-08 Minimed Inc. Device and method for infusion of small molecule insulin mimetic materials
US7806886B2 (en) 1999-06-03 2010-10-05 Medtronic Minimed, Inc. Apparatus and method for controlling insulin infusion with state variable feedback
US6752787B1 (en) 1999-06-08 2004-06-22 Medtronic Minimed, Inc., Cost-sensitive application infusion device
WO2000078210A1 (en) 1999-06-17 2000-12-28 Minimed Inc. Characteristic monitor system for use with analyte sensor
EP1192269A2 (en) 1999-06-18 2002-04-03 Therasense, Inc. MASS TRANSPORT LIMITED i IN VIVO /i ANALYTE SENSOR
US7247138B2 (en) 1999-07-01 2007-07-24 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6804558B2 (en) 1999-07-07 2004-10-12 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6553263B1 (en) 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6616819B1 (en) 1999-11-04 2003-09-09 Therasense, Inc. Small volume in vitro analyte sensor and methods
ATE364046T1 (de) 1999-11-15 2007-06-15 Therasense Inc Übergangsmetallkomplexe, die über ein bewegliches zwischenglied an ein polymer gebunden sind
AU2001220765A1 (en) 2000-01-24 2001-07-31 Medtronic Minimed, Inc. Mixed buffer system for stabilizing polypeptide formulations
US6484045B1 (en) 2000-02-10 2002-11-19 Medtronic Minimed, Inc. Analyte sensor and method of making the same
US20030060765A1 (en) 2000-02-16 2003-03-27 Arthur Campbell Infusion device menu structure and method of using the same
US7890295B2 (en) 2000-02-23 2011-02-15 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6485465B2 (en) 2000-03-29 2002-11-26 Medtronic Minimed, Inc. Methods, apparatuses, and uses for infusion pump fluid pressure and force detection
US6623501B2 (en) 2000-04-05 2003-09-23 Therasense, Inc. Reusable ceramic skin-piercing device
AU2001263022A1 (en) 2000-05-12 2001-11-26 Therasense, Inc. Electrodes with multilayer membranes and methods of using and making the electrodes
US9600633B2 (en) 2000-05-18 2017-03-21 Carefusion 303, Inc. Distributed remote asset and medication management drug delivery system
US6544173B2 (en) 2000-05-19 2003-04-08 Welch Allyn Protocol, Inc. Patient monitoring system
US6659947B1 (en) 2000-07-13 2003-12-09 Ge Medical Systems Information Technologies, Inc. Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities
US6678548B1 (en) 2000-10-20 2004-01-13 The Trustees Of The University Of Pennsylvania Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US20020055857A1 (en) 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
US7041468B2 (en) 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US6748250B1 (en) 2001-04-27 2004-06-08 Medoptix, Inc. Method and system of monitoring a patient
US6676816B2 (en) 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US6932894B2 (en) 2001-05-15 2005-08-23 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
JP2005521109A (ja) 2001-06-20 2005-07-14 パワー メディカル インターベンションズ,インコーポレイテッド 統合医療追跡のための方法及びシステム
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
US6747556B2 (en) 2001-07-31 2004-06-08 Medtronic Physio-Control Corp. Method and system for locating a portable medical device
US6671554B2 (en) 2001-09-07 2003-12-30 Medtronic Minimed, Inc. Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same
US7025760B2 (en) 2001-09-07 2006-04-11 Medtronic Minimed, Inc. Method and system for non-vascular sensor implantation
US6728576B2 (en) 2001-10-31 2004-04-27 Medtronic, Inc. Non-contact EKG
US7399277B2 (en) 2001-12-27 2008-07-15 Medtronic Minimed, Inc. System for monitoring physiological characteristics
US20050027182A1 (en) 2001-12-27 2005-02-03 Uzair Siddiqui System for monitoring physiological characteristics
US20030212379A1 (en) 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
US6852104B2 (en) 2002-02-28 2005-02-08 Smiths Medical Md, Inc. Programmable insulin pump
US7500949B2 (en) 2002-03-01 2009-03-10 Medtronic Minimed, Inc. Multilumen catheter
US7448996B2 (en) 2002-04-16 2008-11-11 Carematix, Inc. Method and apparatus for remotely monitoring the condition of a patient
US20040167465A1 (en) 2002-04-30 2004-08-26 Mihai Dan M. System and method for medical device authentication
JP2005523793A (ja) 2002-04-30 2005-08-11 バクスター・インターナショナル・インコーポレイテッド 医療機器に関連するデータストリームを識別するためのシステムおよび方法
US7736309B2 (en) 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
US7162289B2 (en) 2002-09-27 2007-01-09 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
US7138330B2 (en) 2002-09-27 2006-11-21 Medtronic Minimed, Inc. High reliability multilayer circuit substrates and methods for their formation
US20040061232A1 (en) 2002-09-27 2004-04-01 Medtronic Minimed, Inc. Multilayer substrate
DE60336834D1 (de) 2002-10-09 2011-06-01 Abbott Diabetes Care Inc Kraftstoffzufuhrvorrichtung, system und verfahren
CA2505639C (en) 2002-10-11 2012-07-03 Becton, Dickinson And Company System and method for initiating and maintaining continuous, long-term control of a concentration of a substance in a patient using a feedback or model-based controller coupled to a single-needle or multi-needle intradermal (id) delivery device
US20040074785A1 (en) 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them
US6931328B2 (en) 2002-11-08 2005-08-16 Optiscan Biomedical Corp. Analyte detection system with software download capabilities
US20050038680A1 (en) 2002-12-19 2005-02-17 Mcmahon Kevin Lee System and method for glucose monitoring
US20040122353A1 (en) 2002-12-19 2004-06-24 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
US6932584B2 (en) 2002-12-26 2005-08-23 Medtronic Minimed, Inc. Infusion device and driving mechanism and process for same with actuator for multiple infusion uses
US7396330B2 (en) 2003-01-07 2008-07-08 Triage Data Networks Wireless, internet-based medical-diagnostic system
JP2006520657A (ja) 2003-03-21 2006-09-14 ウェルチ・アリン・インコーポレーテッド 個人状態生理学的監視システム及び構造、及びモニタリング方法
US7761261B2 (en) 2003-04-08 2010-07-20 Medic4All A.G. Portable wireless gateway for remote medical examination
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20050038331A1 (en) 2003-08-14 2005-02-17 Grayson Silaski Insertable sensor assembly having a coupled inductor communicative system
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
WO2005083940A1 (en) 2004-02-19 2005-09-09 Koninklijke Philips Electronics, N.V. Method and associated system for wireless medical monitoring and patient monitoring device
JP2006065690A (ja) 2004-08-27 2006-03-09 Ntt Docomo Inc デバイス認証装置、サービス制御装置、サービス要求装置、デバイス認証方法、サービス制御方法及びサービス要求方法
JP5108522B2 (ja) 2004-11-12 2012-12-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線医療装置の安全な通信のためのメッセージインテグリティ
CN101061481B (zh) 2004-11-16 2010-09-29 皇家飞利浦电子股份有限公司 医疗设备和传感器的无线ad hoc网络中的时间同步
US20060293571A1 (en) 2005-06-23 2006-12-28 Skanda Systems Distributed architecture for remote patient monitoring and caring
JP2007030087A (ja) * 2005-07-26 2007-02-08 Fanuc Ltd 物流トラッキング装置
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
CN100446724C (zh) 2005-11-28 2008-12-31 中国科学院电子学研究所 用于闭环胰岛素注射的无创血糖仪
US20070135866A1 (en) 2005-12-14 2007-06-14 Welch Allyn Inc. Medical device wireless adapter
US20100121314A1 (en) 2006-10-12 2010-05-13 Mario Iobbi Regulated drug delivery system
US7946985B2 (en) 2006-12-29 2011-05-24 Medtronic Minimed, Inc. Method and system for providing sensor redundancy
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US20080228056A1 (en) * 2007-03-13 2008-09-18 Michael Blomquist Basal rate testing using frequent blood glucose input
US20080269723A1 (en) 2007-04-25 2008-10-30 Medtronic Minimed, Inc. Closed loop/semi-closed loop therapy modification system
US20080269714A1 (en) 2007-04-25 2008-10-30 Medtronic Minimed, Inc. Closed loop/semi-closed loop therapy modification system
US20100145262A1 (en) 2007-05-03 2010-06-10 Novo Nordisk A/S Safety system for insulin delivery advisory algorithms
US7783442B2 (en) 2007-10-31 2010-08-24 Medtronic Minimed, Inc. System and methods for calibrating physiological characteristic sensors
WO2009059187A1 (en) * 2007-11-02 2009-05-07 University Of Virginia Patent Foundation Predictive control based system and method for control of insulin delivery in diabetes using glucose sensing
AU2009231601B2 (en) 2008-04-04 2014-02-27 Reshape Lifesciences, Inc. Methods and systems for glucose regulation
US8140275B2 (en) * 2008-07-18 2012-03-20 Insulet Corporation Calculating insulin on board for extended bolus being delivered by an insulin delivery device
US20100057040A1 (en) 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US9943644B2 (en) * 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8784364B2 (en) 2008-09-15 2014-07-22 Deka Products Limited Partnership Systems and methods for fluid delivery
US8348844B2 (en) 2008-12-02 2013-01-08 Kislaya Kunjan Automated blood sampler and analyzer
AU2010210157B2 (en) 2009-02-04 2014-08-28 Sanofi-Aventis Deutschland Gmbh Medical system and method for providing information for glycemic control
EP4043878A1 (en) 2009-02-25 2022-08-17 The University of Virginia Patent Foundation Method, system and computer program product for cgm-based prevention of hypoglycemia via hypoglycemia risk assessment and smooth reduction insulin delivery
WO2010138848A1 (en) 2009-05-29 2010-12-02 University Of Virginia Patent Foundation System coordinator and modular architecture for open-loop and closed-loop control of diabetes
TWI353263B (en) 2009-07-28 2011-12-01 Chen Yi Lin Kung fu training device
US10092691B2 (en) * 2009-09-02 2018-10-09 Becton, Dickinson And Company Flexible and conformal patch pump
US8690820B2 (en) * 2009-10-06 2014-04-08 Illinois Institute Of Technology Automatic insulin pumps using recursive multivariable models and adaptive control algorithms
US8542202B2 (en) 2009-12-31 2013-09-24 Motorola Mobility Llc Electronic device and method for determining a touch input applied to a capacitive touch panel system incorporated therein
CA2789630C (en) 2010-02-11 2016-12-13 The Regents Of The University Of California Systems, devices and methods to deliver biological factors or drugs to a subject
US8579879B2 (en) 2010-02-19 2013-11-12 Medtronic Minimed, Inc. Closed-loop glucose control startup
US9089292B2 (en) 2010-03-26 2015-07-28 Medtronic Minimed, Inc. Calibration of glucose monitoring sensor and/or insulin delivery system
US10561785B2 (en) * 2010-06-22 2020-02-18 Medtronic Minimed, Inc. Method and/or system for closed-loop control of glucose to a treatment range
US20120103835A1 (en) 2010-10-28 2012-05-03 Bradley Liang System and/or method of validating metered blood glucose for glucose sensor calibration
WO2012058694A2 (en) 2010-10-31 2012-05-03 Trustees Of Boston University Blood glucose control system
US20130060106A1 (en) 2011-09-06 2013-03-07 Medtronic Minimed, Inc. Optical sensing systems and methods
US9623179B2 (en) 2012-08-30 2017-04-18 Medtronic Minimed, Inc. Safeguarding techniques for a closed-loop insulin infusion system
US9662445B2 (en) 2012-08-30 2017-05-30 Medtronic Minimed, Inc. Regulating entry into a closed-loop operating mode of an insulin infusion system
US20140066884A1 (en) 2012-08-30 2014-03-06 Medtronic Minimed, Inc. Sensor model supervisor for a closed-loop insulin infusion system
US9861748B2 (en) 2014-02-06 2018-01-09 Medtronic Minimed, Inc. User-configurable closed-loop notifications and infusion systems incorporating same

Also Published As

Publication number Publication date
JP2015526242A (ja) 2015-09-10
KR102158135B1 (ko) 2020-09-23
JP6338553B2 (ja) 2018-06-06
JP2015178044A (ja) 2015-10-08
EP2891087A2 (en) 2015-07-08
EP2905711B1 (en) 2023-04-26
US20140066884A1 (en) 2014-03-06
WO2014035570A2 (en) 2014-03-06
US10758674B2 (en) 2020-09-01
US20170119968A1 (en) 2017-05-04
AU2013309425A1 (en) 2015-02-26
WO2014035570A3 (en) 2014-11-27
EP2891087B1 (en) 2022-06-08
US20140066885A1 (en) 2014-03-06
CN104756116B (zh) 2018-07-13
US20200353168A1 (en) 2020-11-12
US9364609B2 (en) 2016-06-14
AU2015200826B2 (en) 2016-06-09
KR20150043535A (ko) 2015-04-22
KR102028790B1 (ko) 2019-10-04
AU2013309425B2 (en) 2018-10-18
CA2882027A1 (en) 2014-03-06
US9526834B2 (en) 2016-12-27
AU2015200826A1 (en) 2015-03-12
US20140066892A1 (en) 2014-03-06
CN105999479A (zh) 2016-10-12
EP2905711A1 (en) 2015-08-12
KR20150050562A (ko) 2015-05-08
CN104756116A (zh) 2015-07-01
CA2882027C (en) 2020-09-01

Similar Documents

Publication Publication Date Title
US11986633B2 (en) Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device
JP6039016B2 (ja) インスリン注入デバイスを制御する方法及びシステム
JP6239623B2 (ja) インスリン注入デバイスを制御するシステム及び方法
US9999728B2 (en) Regulating entry into a closed-loop operating mode of an insulin infusion system
US10496797B2 (en) Blood glucose validation for a closed-loop operating mode of an insulin infusion system
US9849239B2 (en) Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system
US9623179B2 (en) Safeguarding techniques for a closed-loop insulin infusion system
US9878096B2 (en) Generation of target glucose values for a closed-loop operating mode of an insulin infusion system
AU2015200834A1 (en) Safeguarding techniques for a closed-loop insulin infusion system
AU2015200829B2 (en) Safeguarding techniques for a closed-loop insulin infusion system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171101

R150 Certificate of patent or registration of utility model

Ref document number: 6239623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250