US20040122353A1 - Relay device for transferring information between a sensor system and a fluid delivery system - Google Patents

Relay device for transferring information between a sensor system and a fluid delivery system Download PDF

Info

Publication number
US20040122353A1
US20040122353A1 US10335256 US33525602A US2004122353A1 US 20040122353 A1 US20040122353 A1 US 20040122353A1 US 10335256 US10335256 US 10335256 US 33525602 A US33525602 A US 33525602A US 2004122353 A1 US2004122353 A1 US 2004122353A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
system
delivery
user
device
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10335256
Inventor
Varaz Shahmirian
Wayne Morgan
Sheldon Moberg
Cary Talbot
Arthur Campbell
Jay Yonemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Minimed Inc
Original Assignee
Medtronic Minimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • G06F19/3456Computer-assisted prescription or delivery of medication, e.g. prescription filling or compliance checking
    • G06F19/3468Computer-assisted delivery of medication via infusion or injection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M2005/1401Functional features
    • A61M2005/1405Patient controlled analgesia [PCA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M2005/14208Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3507Communication with implanted devices, e.g. external control
    • A61M2205/3523Communication with implanted devices, e.g. external control using telemetric means

Abstract

A relay device transfers information between a sensor system, which measures a physiological characteristic level of a user, and a fluid delivery system, which infuses a fluid into a user. The relay device includes a sensor system receiver for receiving communications from the sensor system in a sensor system format. The relay device also includes a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format. The relay device further includes a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system. The sensor system and delivery system formats may utilize different frequencies and/or different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device.

Description

    RELATED APPLICATIONS
  • [0001]
    This application claims priority on U.S. Provisional Patent Application filed Dec. 19, 2002 and entitled “Relay Device for Transferring Information Between a Sensor System and a Fluid Delivery System,” which is herein specifically incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Ambulatory pumps and hospital-based fluid delivery systems are used to deliver fluids into the bodies of patients. For some therapies, sensor measurements of a patient's physiological characteristics are used to calculate fluid dosage requirements. Typically, a sensor monitor is used to collect sensor data from a sensor, calibrate the sensor data to generate sensor measurements, and display the sensor measurements. Next, the patient or a caregiver manually calculates the required fluid dosage based on the displayed sensor measurements. Finally, the patient or caregiver programs the pump or fluid delivery system to adjust the fluid dosage.
  • [0003]
    For example, patients with Type 1 diabetes and some patients with Type 2 diabetes use insulin to control their blood glucose (BG) level. Typically, if a patient's BG level is too high, the patient can inject a “bolus” (dose) of insulin to lower his/her BG level from its present level to a desired target level. Furthermore, the patient may inject a bolus of insulin in anticipation of ingesting carbohydrates, thus heading off a sharp rise in his/her BG level. Presently, a patient or caregiver must measure the patient's blood glucose using a BG monitoring system, such as a continuous glucose measurement system, a test strip meter, a hospital-based measurement system, or an automated intermittent blood glucose measurement system. When the BG monitoring system has generated a BG measurement, the BG measurement is displayed on the BG monitoring system. Next, the patient or caregiver must visually read and then utilize the BG measurement to manually calculate a required insulin bolus (i.e., the amount of insulin to inject). Finally, once the required insulin bolus is calculated, the patient or caregiver must utilize an insulin delivery device (e.g., infusion pump, injection pen, IV meter, or the like) to deliver the insulin bolus into the patient's body.
  • [0004]
    Unfortunately, this process requires the patient or caregiver to handle several pieces of equipment, including the BG monitoring system and the insulin delivery device, which may discourage the patient or caregiver from using the BG measurements to adjust the insulin dosage, and thus, decrease the efficacy of the insulin delivery device. Additionally, if the BG monitoring system and the insulin delivery device are not developed in conjunction with one another, they typically communicate using different frequencies and/or modes of communication, and as a result, cannot communicate directly with one another. Thus, the patient or caregiver must manually calculate the required insulin bolus and program the insulin delivery device accordingly, which requires effort by the patient or caregiver and is subject to calculation errors. Alternatively, the patient or caregiver must manually enter the BG measurement into an electronic computing device with bolus estimation software for calculating the required insulin bolus (e.g., a computer, the Internet, a personal digital assistant (PDA), or an insulin delivery device, such as an infusion pump, injection pen, IV meter, or the like), which also requires effort by the patient or caregiver and is subject to transcription errors. For example, the patient or caregiver may not accurately enter the BG measurement that is displayed on the BG measurement device into the electronic computing device, and thus, the resulting bolus estimate calculation may not be accurate.
  • SUMMARY OF THE INVENTION
  • [0005]
    It is an object of an embodiment of the present invention to provide an improved infusion system including a relay device for transferring information between a sensor system and a fluid delivery system, which obviates for practical purposes, the above mentioned limitations.
  • [0006]
    According to an embodiment of the invention, an infusion system for infusing a fluid into a user includes a sensor system, a relay device, and a delivery system. The sensor system includes a sensor system housing, a sensor coupled to the sensor system housing for producing a signal indicative of a physiological characteristic level of the user, a sensor system processor contained in the sensor system housing for processing the signal indicative of the physiological characteristic level of the user, and a sensor system transmitter contained in the sensor system housing and coupled to the sensor system processor for transmitting one or more communications in a sensor system format. The relay device includes a relay device receiver for receiving the communications from the sensor system in the sensor system format, a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a relay device transmitter for transmitting the converted communications in the delivery system format. The fluid delivery system includes a delivery system housing, a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format, and a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user. Further, the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user.
  • [0007]
    In particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. Additionally, the communications including the data indicative of the physiological characteristic level of the user may be automatically transmitted from the sensor system through the relay device and received by the fluid delivery system. Further, the fluid delivery system may also include a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user. Alternatively, the fluid delivery system may further include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs may cause the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0008]
    In other particular embodiments, the fluid delivery system includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, the fluid delivery system may include a display device contained in the housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0009]
    In still other particular embodiments, the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs may cause the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system. Also, at least a portion of the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0010]
    In yet other particular embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Further, at least a portion of the user interface may be dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0011]
    In still other embodiments, the fluid delivery system includes a user interface for accepting one or more inputs from the user, and the user interface is contained in the delivery system housing and coupled to the delivery system processor. At least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system. In yet other embodiments, the fluid delivery system includes a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system, an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user, and a user interface for accepting one or more inputs from the user. At least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user. In additional embodiments, the fluid delivery system includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user. In further embodiments, the fluid delivery system includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
  • [0012]
    In still additional embodiments, the fluid delivery system includes a delivery system transmitter contained in the delivery system housing and coupled to the delivery system processor for transmitting one or more communications in the delivery system format. The relay device receiver further receives the communications from the fluid delivery system in the delivery system format, the relay device processor processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format, and the relay device transmitter transmits the converted communications in the sensor system format. Also, the sensor system further includes a sensor system receiver coupled to the sensor system processor for receiving the communications from the relay device in the sensor system format.
  • [0013]
    In still further embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs generates a request for the data indicative of the physiological characteristic level of the user from the sensor system, at least one of the communications transmitted from the fluid delivery system through the relay device to the sensor system includes the request, and at least one of the communications including the data indicative of the physiological characteristic level of the user is transmitted from the sensor system through the relay device and received by the delivery system in response to the request. The display device then displays the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Additionally, the user interface may be dedicated for interfacing from the fluid delivery system with the sensor system through the relay device. Also, the requested data is the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0014]
    In yet other embodiments, the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data. The fluid delivery system includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
  • [0015]
    In alternative embodiments, the data indicative of the physiological characteristic level of the user received by the fluid delivery system includes one or more calibrated measurements indicative of the physiological characteristic level of the user. In particular alternative embodiments, the sensor system includes a calibration algorithm executed by the sensor system processor for calibrating the signal indicative of the physiological characteristic level of the user to generate the one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user. In other particular alternative embodiments, the data indicative of the physiological characteristic level of the user received from the sensor system by the relay device is uncalibrated data. The relay device includes a calibration algorithm executed by the relay device processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
  • [0016]
    In additional alternative embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user. In some embodiments, the sensor system includes a display device coupled to the sensor system processor for displaying data to the user, and a user interface coupled to the sensor system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system. In other embodiments, the sensor system includes a closed loop algorithm executed by the sensor system processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  • [0017]
    In further alternative embodiments, at least one of the communications transmitted from the sensor system to the relay device includes the data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user. In particular embodiments, the relay device includes a display device coupled to the relay device processor for displaying data to the user, and a user interface coupled to the relay device processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system. In other particular embodiments, the relay device further includes a closed loop algorithm executed by the relay device processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  • [0018]
    In yet additional embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. In some embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. The communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  • [0019]
    In particular embodiments, the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor. Further, the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices. In other particular embodiments, the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor. Further, the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices. In still other particular embodiments, the relay device processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the relay device processor. Also, the communications transmitted from the sensor system to the relay device include the unique identification code of the relay device processor to substantially avoid interference with other devices. In yet other particular embodiments, the relay device processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the relay device processor. Also, the communications transmitted from the relay device and received by the fluid delivery system include the unique identification code of the relay device processor to substantially avoid interference with other devices.
  • [0020]
    In additional embodiments, the relay device is coupled to the delivery system housing. In other embodiments, the relay device is contained in the delivery system housing. In still other embodiments, the relay device is coupled to the sensor system housing. In further embodiments, the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
  • [0021]
    In another embodiment of the present invention, a relay device transfers information between a sensor system and a fluid delivery system. The sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user. The relay device includes a sensor system receiver for receiving one or more communications from the sensor system in a sensor system format, a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system.
  • [0022]
    In some embodiments, the relay device includes a delivery system receiver for receiving one or more communications from the fluid delivery system in the delivery system format. The processor further processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format. The relay device also includes a sensor system transmitter for transmitting the converted communications in the sensor system format to the sensor system. In other embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. In yet other embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  • [0023]
    In further embodiments, at least one of the communications transmitted from the sensor system to the relay device include data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user. Additionally, the relay device may include a display device coupled to the processor for displaying data to the user, and a user interface coupled to the processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user. Also, at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
  • [0024]
    In still other embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device to the fluid delivery system. In yet other embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device to the fluid delivery system. The communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device to the fluid delivery system.
  • [0025]
    In yet another embodiment of the present invention, a relay device transfers information between a sensor system and a fluid delivery system. The sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user. The relay device includes a sensor system transceiver for transmitting and receiving one or more communications to and from the sensor system. The communications are transmitted and received in a sensor system format. The relay device also includes a delivery system transceiver for transmitting and receiving one or more communications to and from the fluid delivery system. The communications are transmitted and received in a delivery system format. The relay device further includes a processor for processing the communications from the sensor system and the fluid delivery system. The processor converts the communications received from the sensor system in the sensor system format for transmission in the delivery system format to the fluid delivery system, and further converts the communications received from the fluid delivery system in the delivery system format for transmission in the sensor system format to the sensor system.
  • [0026]
    In particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. In other particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  • [0027]
    In additional embodiments, at least one of the communications transmitted from the sensor system to the relay device include data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system include one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user. Also, the relay device may include a display device coupled to the processor for displaying data to the user, and a user interface coupled to the processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user. Additionally, at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
  • [0028]
    In further embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted between the sensor system and the fluid delivery system through the relay device. In additional embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device. The communication protocols may utilize different carrier media and/or information packaging for communications transmitted between the sensor system and the fluid delivery system through the relay device.
  • [0029]
    In still another embodiment of the present invention, an infusion system for infusing a fluid into a user includes a sensor system and a fluid delivery system. The sensor system includes a sensor for producing a signal indicative of a physiological characteristic level of the user, a sensor system processor coupled to the sensor for processing the signal indicative of the physiological characteristic level of the user, and a sensor system transmitter coupled to the sensor system processor for transmitting one or more communications in a sensor system format. The fluid delivery system includes a delivery system housing, a relay device contained in the delivery system housing, a delivery system receiver, and a delivery system processor. The relay device includes a relay device receiver for receiving the communications from the sensor system in the sensor system format, a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format, and a relay device transmitter for transmitting the converted communications in the delivery system format. The delivery system receiver is contained in the delivery system housing and receives the communications from the relay device in the delivery system format. The delivery system processor is also contained in the delivery system housing and is coupled to the delivery system receiver, and processes the communications from the relay device in the delivery system format and controls an amount of the fluid infused into the user. The amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  • [0030]
    In particular embodiments, at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user. Additionally, the communications including the data indicative of the physiological characteristic level of the user may be automatically transmitted from the sensor system through the relay device and received by the fluid delivery system. Further, the fluid delivery system may also include a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
  • [0031]
    In other particular embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0032]
    In still other embodiments, the fluid delivery system includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system. Additionally, the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system. Alternatively, the fluid delivery system may include a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0033]
    In additional embodiments, the fluid delivery system includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user, and a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system. In further embodiments, the fluid delivery system includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user. At least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  • [0034]
    In yet other embodiments, the fluid delivery system includes a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system, an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user, and a user interface for accepting one or more inputs from the user. At least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user. In still further embodiments, the fluid delivery system includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user. In still additional embodiments, the fluid delivery system includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value. In even additional embodiments, the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data, and the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
  • [0035]
    In some embodiments, the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. In other embodiments, the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system. The different communication protocols may utilize different carrier media and/or information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  • [0036]
    In yet further embodiments, the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor. The communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices. In yet additional embodiments, the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor. The communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices. Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, various features of embodiments of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0037]
    A detailed description of embodiments of the invention will be made with reference to the accompanying drawings, wherein like numerals designate corresponding parts in the several figures.
  • [0038]
    [0038]FIG. 1 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump through a relay device in accordance with an embodiment of the present invention.
  • [0039]
    [0039]FIG. 2(a)-2(c) are perspective views of a blood glucose monitoring system in accordance with embodiments of the present invention.
  • [0040]
    [0040]FIG. 3(a) is a perspective view of an external infusion pump in accordance with an embodiment of the present invention.
  • [0041]
    [0041]FIG. 3(b) is a simplified block diagram of an external infusion pump in accordance with an embodiment of the present invention.
  • [0042]
    FIGS. 4(a)-5(f) are block diagrams of a system for transferring information between a blood glucose monitoring system and an infusion pump through a relay device in accordance with embodiments of the present invention.
  • [0043]
    FIGS. 6(a)-6(d) are perspective views of a relay device in accordance with embodiments of the present invention.
  • [0044]
    FIGS. 7(a)-7(c) are perspective views of a relay device placed on a body of a user in accordance with embodiments of the present invention.
  • [0045]
    FIGS. 8(a)-8(c) are perspective views of a relay device placed on an infusion pump in accordance with embodiments of the present invention.
  • [0046]
    [0046]FIG. 8(d) is a cut-away perspective view of an infusion pump with a relay device included in the infusion pump in accordance with another embodiment of the present invention.
  • [0047]
    FIGS. 9(a)-9(e) are block diagrams of a relay device in accordance with embodiments of the present invention.
  • [0048]
    [0048]FIG. 10 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with another embodiment of the present invention.
  • [0049]
    [0049]FIG. 11 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with yet another embodiment of the present invention.
  • [0050]
    [0050]FIG. 12 is a block diagram of a system for transferring information between a blood glucose monitoring system and an infusion pump using a relay device incorporated into the infusion pump in accordance with still another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0051]
    As shown in the drawings for purposes of illustration, the invention is embodied in a relay device for transferring information between a sensor system for measuring a physiological characteristic level of a user's body and a fluid delivery system for delivering fluid into the user's body. The relay device receives information from one system in a first format, converts the information into a second format appropriate for the other system, and then transmits the converted information to the other system. Therefore, the relay device enables communication between the sensor system and the fluid delivery system, even if the systems are not developed in conjunction with one another. For example, sensor data or measurements may be communicated from the sensor system via the relay device to the fluid delivery system, and then utilized to adjust the amount of fluid delivered by the fluid delivery system into the user's body. Thus, the relay device encourages the user or caregiver to utilize the sensor data or measurements in order to adjust the amount of fluid delivered into the user's body by the fluid delivery system. Further, the sensor measurements may be displayed on the fluid delivery system for the user or caregiver to see. Therefore, the relay device allows the user or caregiver to interface with the sensor system (e.g., view the sensor measurements) utilizing a single device, the fluid delivery system. Particular embodiments are directed toward use of ambulatory sensor and fluid delivery systems that are programmed and adjusted primarily by the user or a caregiver, such as the user's parent. Other embodiments are directed toward use of hospital-based sensor and fluid delivery systems that are programmed and adjusted primarily by a caregiver, such as the user's physician or nurse.
  • [0052]
    In preferred embodiments, the sensor system is a blood glucose (BG) monitoring system, which utilizes a sensor placed in a user to automatically measure the user's BG level, either periodically or continuously. In particular embodiments, the sensor may measure additional physiological characteristic levels of the user, such as blood oxygen, temperature, and the like. The sensor may be implanted in and/or through subcutaneous, dermal, sub-dermal, inter-peritoneal, or peritoneal tissue, and may be a sensor in contact with the user's body fluid, such as the user's blood, interstitial fluid, and the like. In preferred embodiments, the fluid delivery system is an insulin delivery device, such as an external insulin infusion pump, which regulates the amount of insulin delivered into the user's body. The relay device receives information from one system in a first format, converts the information into a second format appropriate for the other system, and then transmits the converted information to the other system. For example, the relay device may receive BG data or measurements from the BG monitoring system in a sensor system format (e.g., at a frequency of 131 kilohertz, utilizing radio frequency (RF) carrier media, in packets of 107 bytes), convert such data or measurements into a delivery system format appropriate for the insulin infusion pump (e.g., to a frequency of 916 megahertz, utilizing infrared (IR) carrier media, in packets of 71 bytes), and then transmit such converted data or measurements to the insulin infusion pump. The amount of insulin delivered into the user's body by the infusion pump may then be adjusted, either manually by the user or a caregiver or automatically, in response to the received BG data or measurements. In some embodiments, the BG measurements may also be displayed on the insulin infusion pump.
  • [0053]
    However, in alternative embodiments of the present invention, the sensor system may include other types of sensors, such as optical, enzymatic, fluorescent, or the like. In additional alternative embodiments, the sensor system may measure the user's BG level only when requested by the user, or a BG meter may be utilized to measure the user's BG level based on a sampling of the user's blood. In further alternative embodiments, the sensor system may measure other physiological characteristic levels of the user, such as heart rate, blood oxygen, pH, peroxide, respiratory rate, body temperature, blood pressure, perspiration, brain wave activity, cholesterol level, ketone level, medication concentration, viral load (e.g., HIV), and the like. The sensor system may also include multiple sensors—one or more sensors to measure the user's BG level and one or more sensors to measure such other physiological characteristic levels of the user. In other alternative embodiments, the sensor system may measure the physiological characteristic levels of the user from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like. In still other alternative embodiments, the fluid delivery system may be an implantable infusion pump, an infusion pump that uses a combination of implantable and external components, a pen injector, a disposable pump, an intra venous drip system, or the like. In yet other alternative embodiments, the fluid delivery system may deliver fluids other than insulin, including peptides, proteins, sugars, vitamins, antigens, hormones, steroids, medicaments, drugs, pain killers, anti-cancer agents, anti-coagulants, stimulants, tranquilizers, sedatives, and the like. Particular embodiments are directed towards use in humans; however, alternative embodiments may be used in animals.
  • [0054]
    In preferred embodiments of the present invention, a relay device transfers information between a sensor system for measuring a physiological characteristic level of a user's body and a fluid delivery system for delivering fluid into the user's body. In the embodiment illustrated in FIG. 1, the sensor system is a BG monitoring system 20, which utilizes a sensor that is placed in a user to measure the user's BG level. The sensor may measure additional physiological characteristic levels of the user, such as blood oxygen, temperature, or the like.
  • [0055]
    In particular embodiments, the BG monitoring system 20 is an implantable glucose monitoring system, and is generally of the type described in U.S. Pat. No. 6,368,274, and disclosed in U.S. patent application Ser. No. 10/034,740, filed Dec. 27, 2001 and entitled “Implantable Sensor Flush Sleeve,” and U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Implantable Sensor Method and System,” which are herein incorporated by reference. Referring to FIG. 2(a), the BG monitoring system 20 includes a glucose sensor set 50 and a glucose monitor 54. The sensor set 50 and glucose monitor 54 are implanted in the user's sub-dermal or inter-peritoneal tissue, and are in contact with the user's blood or other body fluid, to measure the user's BG level. For example, the sensor set 50 may be implanted into the central vein of the user's heart, and the glucose monitor 54 may be located in the user's chest cavity. Alternatively, the sensor set 50 may be placed in the user's peritoneum, and the glucose monitor 54 may be located in the user's abdominal cavity. The glucose monitor 54 includes a processor (not shown) for processing data as it is received from the sensor set 50, and a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor, such as a dedicated processor 56 designed specifically to work with the glucose monitor 54, a computer, communication station, or the like. The data processor 56 preferably comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, the BG monitoring system 20 may also be included in a hospital-based system, and the data processor 56 may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed.
  • [0056]
    In other particular embodiments, the BG monitoring system 20 is a telemetered glucose monitoring system, and may generally be of the type described in U.S. patent application Ser. No. 09/377,472, filed Aug. 19, 1999 and entitled “Telemetered Characteristic Monitor System and Method of Using the Same,” which is herein incorporated by reference. The BG monitoring system 20 may also be a vascular glucose monitoring system, and may generally be of the type described in U.S. patent application Ser. No. 10/036,93, filed Dec. 28, 2001 and entitled “Sensing Apparatus and Process,” and U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Multilumen Catheter,” which are herein incorporated by reference. Referring to FIG. 2(b), the BG monitoring system 20′ may include a glucose sensor set 50′ and a glucose monitor 54′. The sensor set 50′ includes a glucose sensor that is placed in and/or through the user's subcutaneous, dermal, sub-dermal, inter-peritoneal, peritoneal, muscle, lymph, or organ tissue, veins, arteries, or the like, and may be in contact with the user's blood or other body fluid, to measure the user's BG level. The sensor set 50′ is connected to the glucose monitor 54′ via a cable 52, and the glucose monitor 54′ includes a processor (not shown) for processing data as it is received from the sensor set 50′ via the cable 52. For example, the sensor set 50′ may be placed in the user's subcutaneous tissue, and the glucose monitor 54′ may be adhered to the user's body. Alternatively, the sensor set 50′ may be inserted into one lumen of a multilumen catheter, which may then be implanted in the central vein of the user's heart and include an extension lead for connecting to the glucose monitor 54′ via the cable 52, and the glucose monitor 54′ may be adhered to the user's body, as shown in FIG. 11. The other lumen(s) of the multilumen catheter may be utilized for sampling other physiological characteristic levels of the user and/or delivering fluids into the user's body, such as protein nutrition, blood products, medication, lipids, and the like. Such a multilumen catheter may generally be of the type described in U.S. Provisional Patent Application filed Sep. 27, 2002 and entitled “Multilumen Catheter,” which is herein incorporated by reference.
  • [0057]
    The glucose monitor 54′ may also include a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor, such as a dedicated processor 56′ designed specifically to work with the glucose monitor 54′ , a computer, communication station, or the like. The data processor 56′ preferably comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, the BG monitoring system 20 may also be included in a hospital-based system, and the data processor 56′ may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. In alternative embodiments, the cable 52 may be omitted, and the sensor set 50′ may be directly connected to the glucose monitor 54′.
  • [0058]
    In yet other particular embodiments, the BG monitoring system 20 may be a continuous glucose monitoring system, and may generally be of the type described in U.S. Pat. No. 6,424,847, which is herein incorporated by reference. Referring to FIG. 2(c), the BG monitoring system 20″ may include a glucose sensor set 50″ and a glucose monitor 5″. The sensor set 50″ includes a glucose sensor that is placed in and/or through the user's subcutaneous, dermal, sub-dermal, inter-peritoneal, peritoneal, muscle, lymph, or organ tissue, veins, arteries, or the like, and may be in contact with the user's blood or other body fluid, to measure the user's BG level. The sensor set 50″ is connected to the glucose monitor 54″ via a cable 52′, and the glucose monitor 54″ includes a processor (not shown) for processing data as it is received from the sensor set 50″ via the cable 52′. The glucose monitor 54″ comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, the BG monitoring system 20 may also be included in a hospital-based system, and the glucose monitor 54″ may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. The glucose monitor 54″ may also include a transmitter and/or receiver (not shown) for transferring the data to and/or from a data processor (not shown), such as a computer, communication station, or the like. In alternative embodiments, the cable 52′ may be omitted, and the sensor set 50″ may be directly connected to the glucose monitor 54″.
  • [0059]
    In alternative embodiments, the BG monitoring system 20 may include other types of sensors, such as optical, enzymatic, fluorescent, or the like. In further alternative embodiments, the sensor system may measure other physiological characteristic levels of the user, such as heart rate, blood oxygen, pH, peroxide, respiratory rate, body temperature, blood pressure, perspiration, brain wave activity, cholesterol level, ketone level, medication concentration, viral load (e.g., HIV), and the like. The sensor system may also include multiple sensors—one or more sensors to measure the user's BG level and one or more sensors to measure such other physiological characteristic levels of the user. For example, the BG monitoring system 20 may include a glucose sensor set 50 inserted in or on the user's body to measure the user's BG level and an oxygen sensor to measure the oxygen level at or near the insertion site of the sensor set 50. The measured oxygen level may then be used to determine the effectiveness of the sensor set 50, the formation of foreign bodies near the sensor set 50, or the like. In other alternative embodiments, the sensor system may measure the physiological characteristic levels of the user from body fluids other than blood, such as interstitial fluid, spinal fluid, saliva, urine, tears, sweat, or the like.
  • [0060]
    In particular embodiments, the BG monitoring system 20 automatically measures the user's BG level on a periodic basis. In other particular embodiments, the BG monitoring system 20 automatically measures the user's BG level on a continuous basis. In alternative embodiments, the BG monitoring system 20 may not automatically measure the user's BG level. For example, the BG monitoring system 20 may include a user interface, such as a keypad 60, which may be utilized by the user to request a BG measurement from the BG monitoring system 20. Alternatively, the BG monitoring system 20 may include a BG meter, which measures the user's BG level based on a sampling of the user's blood.
  • [0061]
    In preferred embodiments, the BG monitoring system 20 includes a transmitter and/or receiver (not shown) for communicating with external devices, such as a remote programmer (not shown) for the BG monitoring system 20, a BG meter (not shown), the relay device 10, the infusion pump 30 via the relay device 10, or the like. For example, the glucose monitor 54 and/or data processor 56 may include the transmitter and/or receiver. The BG monitoring system 20 preferably communicates with such external devices using radio frequency (RF) communication. Alternatively, other modes of communication may be utilized, such as infrared (IR), wired, ultrasonic, optical, or the like.
  • [0062]
    In particular embodiments, the BG monitoring system 20 may also include a display and a user interface. Referring to FIGS. 2(a)-2(b), the data processor 56 includes a display 58 and a keypad 60 with one or more keys. The glucose monitor 54 utilizes the transmitter and/or receiver (not shown) to transfer data to and/or from the data processor 56. Alternatively, referring to FIG. 2(c), the glucose monitor 54″ may include the display 58″ and keypad 60″ with one or more keys. The user may utilize the display 58 and/or keypad 60 to display the user's current BG level, view other BG information recorded or calculated by the glucose monitor 54 and/or data processor 56 (e.g., average BG level, BG trends, graphs of historical BG measurements), view alarms or other messages, program the BG monitoring system 20, enter calibration or other data into the BG monitoring system 20, download information from the BG monitoring system 20, and the like. In particular embodiments, the user may also utilize the display 58 and/or keypad 60 to transmit data, delivery commands, and/or other information to the infusion pump 30 via the relay device 10. In alternative embodiments, the user interface may include one or more buttons, switches, levers, joystick, roller ball, mouse, keyboard, and the like. In further alternative embodiments, the keypad 60 may be omitted, and the display 58 may be used as a touch screen input device. In other alternative embodiments, the display and/or user interface may be omitted from the BG monitoring system 20, and instead included on the relay device 10 and/or infusion pump 30.
  • [0063]
    In preferred embodiments, the BG monitoring system 20 stores information in a memory (not shown) of the BG monitoring system 20 for subsequent review and/or downloading to a storage media. Information stored by the BG monitoring system 20 may include one or more of raw BG data, calibrated BG measurements, time stamps, sensor alarms, sensor settings, calibration data, sensor performance data, sensor errors, sensor system diagnostics, statistics, user information, serial number, and the like. In preferred embodiments, information is transmitted from the BG monitoring system 20 to the infusion pump 30 via the relay device 10, and then downloaded to a storage media from the infusion pump 30. The storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like. In alternative embodiments, information may be downloaded to the storage media directly from the BG monitoring system 20 through an interface, such as a transmitter, a cable, a communication station, or the like. In particular alternative embodiments, information may be downloaded from the data processor 56 to the storage media. In other alternative embodiments, information may be downloaded from the glucose monitor 54 to the storage media. In further alternative embodiments, information may be transmitted from the BG monitoring system 20 to the relay device 10, and then downloaded to the storage media from the relay device 10. In other alternative embodiments, information may be downloaded to the storage media from more than one of the BG monitoring system 20, relay device 10, and infusion pump 30.
  • [0064]
    In preferred embodiments, sensor calibration data is provided to the BG monitoring system 20 by communication with an external device, such as a BG meter or other BG measuring device (not shown). The BG monitoring system 20 preferably includes a transmitter and/or receiver (not shown) for communicating with such external devices. For example, the glucose monitor 54 and/or the data processor 56 may include the transmitter and/or receiver. The user obtains a BG reference reading utilizing a BG meter or other BG measuring device, which then transmits the BG reference reading to the BG monitoring system 20, either directly or via the relay device 10. In alternative embodiments, the user may manually enter sensor calibration data into the BG monitoring system 20. In particular alternative embodiments, the user may utilize the display 58 and/or user interface 60 on the data processor 56, as shown in FIGS. 2(a)-2(b), to manually input the calibration data into the BG monitoring system 20. In other particular alternative embodiments, the user may utilize the display 58″ and/or user interface 60″ on the glucose monitor 54″ , as shown in FIG. 2(c), to manually input the calibration data into the BG monitoring system 20.
  • [0065]
    In the embodiment illustrated in FIGS. 1 and 3(a)-3(b), the fluid delivery system is an external infusion pump 30, which regulates the flow of fluid, preferably medication such as insulin, through flexible tubing 32 and into an infusion set 34 or the like that is adhered to the user's body. Infusion sets 34 that may be used are described in, but not limited to, U.S. Pat. Nos. 4,723,947; 4,755,173; 5,176,662; 5,584,813; and 6,056,718, which are herein incorporated by reference. The infusion pump 30 is generally of the type described in U.S. Pat. Nos. 4,562,751; 4,685,903; 5,080,653; 5,097,122; 5,505,709; and 6,248,093; and disclosed in U.S. patent application Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” which are herein incorporated by reference. In alternative embodiments, the fluid delivery system may be an implantable infusion pump, an infusion pump that uses a combination of implantable and external components, a pen injector, disposable pump, an intra venous drip system, or the like. In still other alternative embodiments, the fluid delivery system may deliver fluids other than insulin, including peptides, proteins, sugars, vitamins, antigens, hormones, steroids, medicaments, drugs, pain killers, anti-cancer agents, anti-coagulants, stimulants, tranquilizers, sedatives, and the like.
  • [0066]
    Referring to FIGS. 3(a)-3(b), the infusion pump 30 comprises a relatively compact, portable housing that may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. However, the infusion pump 30 may also be included in a hospital-based system, and the infusion pump 30 may comprise a housing that may be included in a monitor, placed on an intravenous (IV) pole, or the like near the patient's bed. The infusion pump 30 preferably includes a processor 150 for running programs and controlling the infusion pump 30. The processor 150 is coupled to an internal memory device 154 that stores programs, history data, user defined information and parameters. In preferred embodiments, the memory device 154 is a ROM and DRAM; however, in alternative embodiments, the memory device 154 may include other memory storage devices, such as RAM, EPROM, dynamic storage such as flash memory, energy efficient hard-drive, or the like. The processor 150 is also coupled to a drive mechanism 160 that is connected to a fluid reservoir 162 containing fluid that is delivered through the tubing 32 and into the infusion set 34 adhered to the user's body. The processor 150 may additionally be coupled to a bolus estimator 164, which estimates an appropriate amount of insulin to be delivered to the user based on the user's BG level, the amount of carbohydrates to be consumed, and the like. The bolus estimator 164 may generally be of the type described in U.S. patent application Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” which is herein incorporated by reference.
  • [0067]
    The infusion pump 30 further includes a communication system 152 coupled to the processor 150 for communicating with external devices, such as a remote programmer (not shown) for the infusion pump 30, the BG monitoring system 20 via the relay device 10, the relay device 10, or the like. The communication system 152 may include a transmitter and/or receiver (not shown) for communicating with such external devices. The infusion pump 30 preferably communicates with such external devices using radio frequency (RF) communication. Alternatively, other modes of communication may be utilized, such as infrared (IR), wired, ultrasonic, optical, or the like.
  • [0068]
    In some embodiments, the transmitter and/or receiver (not shown) of the communication system 152 may be capable of communicating with certain external devices utilizing a particular frequency and/or communication protocol, such as the remote programmer (not shown) for the infusion pump 30 or the like. The infusion pump 30 may include another transmitter and/or receiver (not shown) as part of the relay device 10 incorporated in the infusion pump 30 itself (as shown and described below in the embodiment of FIGS. 8(d) and 10-12), which is capable of communicating with other external devices utilizing another particular frequency and/or communication protocol, such as the BG monitoring system 20 or the like. In other embodiments, the transmitter and/or receiver (not shown) of the communication system 152 may be capable of communicating with various external devices utilizing different frequencies and/or communication protocols.
  • [0069]
    The infusion pump 30 also includes a display 100 and/or a user interface 110. In preferred embodiments, the display 100 is a monochromatic liquid crystal display (LCD). In alternative embodiments, the display 100 is a light emitting diode (LED) display, a cathode ray tube (CRT) display, a touch screen, a color LCD, or the like.
  • [0070]
    In preferred embodiments, the user interface is a keypad 110 including one or more keys with selectable functions. The infusion pump 30 is preferably programmed through the keypad 110, or alternatively, by commands received from an external device, such as a remote programmer, the BG monitoring system 20 via the relay device 10, the relay device 10, or the like. The keypad 110 may generally be of the type, and operate in a manner similar to that, disclosed in U.S. patent applications Ser. No. 09/334,858, filed Jun. 16, 1999 and entitled “External Infusion Device with Remote Programming, Bolus Estimator and/or Vibration Alarm Capabilities,” and Ser. No. 09/784,949, filed Feb. 15, 2001 and entitled “Improved Infusion Device Menu Structure and Method of Using the Same,” which are herein incorporated by reference.
  • [0071]
    In the illustrated embodiment, the keypad 110 includes an Up-Arrow key 112, a Down-Arrow key 114, an ACT (activate) key 116, an ESC (escape) key 118, and an Express Bolus key 120 for programming the infusion pump 30. The keypad 110 also includes a dedicated key 122 for interfacing with the BG monitoring system 20 via the relay device 10. In particular embodiments, the user chooses a function and then selects which key will perform that function. For example, while the display 100 is blank, the user may select the Express Bolus key 120 to quickly set a bolus amount, or the ESC key 118 to show a status information screen on the display 100. In other particular embodiments, the user selects one or more keystrokes to perform a function. For example, while the display 100 is blank, the user may first select the ACT key 116 to show a main menu screen, then the Up-Arrow and Down-Arrow keys 112 and 114 to scroll through the menu choices, and then the ACT key 116 again to select a menu option. The user selects the keys 112, 114, 116, 118, 120, and/or 122 on the keypad 110 to perform functions on the infusion pump 30, such as starting or stopping a bolus or basal delivery, accessing historical data or status information, setting a utility (e.g., date, time, serial number, or the like), turning on or off a feature (e.g., light, key lock, temporary operation, or the like), escaping to a home display screen, backing up to a previous screen, deleting or approving an input, scrolling, priming, resetting, and the like. In particular embodiments, the display 100 and/or user interface 110 may also be utilized to input information into and/or display information from the BG monitoring system 20 via the relay device 10, such as viewing sensor measurements received from the BG monitoring system 20 on the display 100 of the infusion pump 30. In alternative embodiments, the keypad 110 may include more or less keys, or have different key arrangements than those illustrated in the figures.
  • [0072]
    In further alternative embodiments, one or more keys on the keypad 110 may be programmable. In particular embodiments, the user may define one or more keystrokes to cause the infusion pump 30 to perform one or more functions. For example, a first user may define key 120 on a first infusion pump 30 to cause the display 100 to show the most recent sensor measurement, while a second user may define key 120 on a second infusion pump 30 to perform an express bolus function. In other alternative embodiments, the user interface may include one or more buttons, switches, levers, joysticks, roller balls, mice, keyboards, and the like. In still other alternative embodiments, the keypad 110 may be omitted, and the display 100 may be used as a touch screen input device.
  • [0073]
    The infusion pump 30 may provide feedback to the user on status or programming changes visibly on the display 100 and/or through lights (not shown) on the infusion pump 30, audibly through a speaker 156, and/or tactilely through a vibrator 158. The infusion pump 30 may also provide the user with a visible alarm via the display 100 and/or lights, an audible alarm via the speaker 156, and/or a vibration alarm via the vibrator 158, such as a warning that is indicative of a low reservoir or low battery, an alarm or warning that is indicative of a sensor measurement received from the BG monitoring system 20 via the relay device 10 that is above or below target glycemic values, or the like. In alternative embodiments, the display 100, keypad 110, lights, speaker 156, and/or vibrator 158 may be omitted from the infusion pump 30, and instead, included on the relay device 10 and/or the BG monitoring system 20. In further alternative embodiments, the display 100, keypad 110, lights, speaker 156, and/or vibrator 158 may be omitted, the infusion pump 30 may be implanted in the user's body, and all programming may be handled through a communication system using wireless modes of communication, such as radio frequency (RF), infrared (IR), and the like.
  • [0074]
    In preferred embodiments, the infusion pump 30 stores information in a memory (not shown) of the infusion pump 30 for subsequent review and/or downloading to a storage media. Information stored by the infusion pump 30 includes one or more of insulin delivery rates, insulin bolus amounts, time stamps, alarms, errors, warnings, utility settings, statistics, profiles, user information, serial number, commands, force measurements, pressure measurements, and the like. In preferred embodiments, information is downloaded directly from the infusion pump 30 to a storage media through an interface, such as a transmitter, cable, communication station, or the like. In particular embodiments, an external communication link (not shown) may be connected via a cable to a serial, USB, or the like port of a computer. The infusion pump 30 may include an RF transmitter or transceiver (not shown), which transmits information to an RF receiver or transceiver in the external communication link for downloading to the computer. In other particular embodiments, information may be downloaded from the infusion pump 30 through a communication station generally of the type disclosed in U.S. Pat. No. 5,376,070, which is herein incorporated by reference. In still other particular embodiments, information may be downloaded from the infusion pump 30 through a BG meter (not shown) as disclosed in U.S. Provisional Patent Application Serial No. 60/412,998, filed Sep. 23, 2002 and entitled “System for Providing Blood Glucose Measurements to Bolus Estimator,” which is herein incorporated by reference. The storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like. In alternative embodiments, information may be transmitted from the infusion pump 30 to the BG monitoring system 20 via the relay device 10, and then downloaded to a storage media from the BG monitoring system 20. In further alternative embodiments, information may be transmitted from the infusion pump 30 to the relay device 10, and then downloaded to the storage media from the relay device 10. In other alternative embodiments, information may be downloaded to the storage media from more than one of the BG monitoring system 20, relay device 10, and infusion pump 30.
  • [0075]
    In the embodiment illustrated in FIG. 1, the relay device 10 transfers information between the BG monitoring system 20 and the infusion pump 30. In preferred embodiments, the relay device 10 comprises a relatively compact, portable housing 200 without a user interface or a display, as illustrated in FIG. 6(a). The relay device 10 may be easily worn on clothing or jewelry, placed in a pocket, concealed under clothing, or the like. In alternative embodiments, the relay device 10′ may include a housing 200′ with a single key 202, as shown in FIG. 6(b). The single key 202 provides a user interface for the user to request new information from the BG monitoring system 20.
  • [0076]
    In further alternative embodiments, the relay device 10″ may include a housing 200″ with a keypad 204, as shown in FIG. 6(c). The keypad 204 may include more than one key, and at least one of the keys may be utilized by the user to send data or commands to the infusion pump 30. In the illustrated embodiment, the keypad 204 includes an Up-Arrow key 206, a Down-Arrow key 208, and an ACT (activate) key 210 for programming the infusion pump 30 from the relay device 10 in a manner similar to that shown and described in the embodiment of FIG. 3(a). The keypad 204 also includes a dedicated key 212 for interfacing with and requesting data from the BG monitoring system 20. However, in alternative embodiments, the keypad 204 may include more or less keys or different key arrangements than those illustrated in FIG. 6(c).
  • [0077]
    In other alternative embodiments, the relay device 10′″ may include a housing 200′″ with a display 214 and a keypad 216, as shown in FIG. 6(d). In particular alternative embodiments, the display 214 may be a monochromatic liquid crystal display (LCD). In other particular alternative embodiments, the display 214 may be a light emitting diode (LED) display, a cathode ray tube (CRT) display, a touch screen, a color LCD, or the like. The keypad 216 may include more than one key, and at least one of the keys may be utilized by the user to send data or commands to the infusion pump 30. In the illustrated embodiment, the keypad 216 includes an Up-Arrow key 218, a Down-Arrow key 220, an ACT (activate) key 222, and an ESC (escape) key 224 for programming the infusion pump 30 from the relay device 10 in a manner similar to that shown and described in the embodiment of FIG. 3(a). The keypad 216 also includes a dedicated key 226 for interfacing with and requesting data from the BG monitoring system 20. However, in alternative embodiments, the keypad 216 may include more or less keys or different key arrangements than those illustrated in FIG. 6(d). In still other alternative embodiments, the relay device 10 may be a computer system (not shown), such as a personal computer (PC), a personal digital assistant (PDA), a central data system (such as is used in hospitals to store or track data, Internet systems, or the like), or the like.
  • [0078]
    In preferred embodiments, the relay device 10 is positioned on the user's body near the BG monitoring system 20. For example, the relay device 10 may be positioned on the user's is body using a necklace 250 to hold the relay device 10 like a pendant (as shown in FIG. 7(a)), using a belt or strap 252 to hold the relay device 10 in place (as shown in FIG. 7(b)), or by placing the relay device 10 in a clothing garment 254 or clipping the relay device 10 in place (as shown in FIG. 7(c)). Positioning the relay device 10 near the BG monitoring system 20 is especially useful to minimize the power required by the transmitter and/or receiver in the BG monitoring system 20 to send and/or receive signals between the BG monitoring system 20 and the relay device 10. Other methods may be used to locate the relay device 10 near the BG monitoring system 20, such as using tape or adhesive to hold the relay device 10 in place, holding the relay device 10 in a hand and bringing the hand near the BG monitoring system 20, or the like.
  • [0079]
    In alternative embodiments, the relay device 10 may be incorporated with the infusion pump 30 to minimize the number of components that the user must handle. For example, the relay device 10 may be incorporated into a clip that is attached to the infusion pump 30 to hold the infusion pump 30 in place on the user's body, as shown in FIG. 8(a). Alternatively, the relay device 10′ may be mounted on a side of the infusion pump 30, as shown in FIG. 8(b). Additionally, the relay device 10″ may be attached to a bottom of the infusion pump 30, as shown in FIG. 8(c). In other alternative embodiments, the relay device 10 may be incorporated with the BG monitoring system 20 in a manner similar to that shown and described in the embodiments of FIGS. 8(a)-8(c). For example, the relay device 10 may be incorporated into a clip that is attached to, or mounted on a side of, or attached to a bottom of, the data processor 56 shown in FIGS. 2(a)-2(b) or the glucose monitor 54″ shown in FIG. 2(c).
  • [0080]
    In further alternative embodiments, the relay device 10 may be incorporated into the infusion pump 30. FIG. 8(d) illustrates a cut-away perspective view of the infusion pump 30 showing the electronic boards and modules that may be included in the infusion pump 30. The infusion pump 30 may include a display module 260, a mother board 262, and an interface board 264. The mother board 262 is the main control unit for the infusion pump 30, and includes the processor and memory. The display module 260 includes the display 100, and in particular embodiments, a backlight for the display 100. The interface board 264 interfaces between different systems in the infusion pump 30, and includes the drive mechanism and power supplies. The infusion pump 30 also includes a communication board 265 and an antenna 268, which enable communication with external devices, such as a remote programmer (not shown) for the infusion pump 30, the BG monitoring system 20, and the like. The communication board 265 includes the communication system as well as the relay device components. During communications with the BG monitoring system 20, the drive mechanism and power supplies on the interface board 264 are temporarily shutdown. Accordingly, the infusion pump 30 further includes a capacitor 266 for providing power to the infusion pump 30 and the communication board 265 during such communications.
  • [0081]
    For example, referring to FIGS. 10-12, the relay device (not shown) may be incorporated into the infusion pump 30. The BG monitoring system 20 may transmit communications to the infusion pump 30 in a sensor system format, the relay device incorporated into the infusion pump 30 may receive such communications and convert them to a delivery system format, and the infusion pump 30 may then process such converted communications. Conversely, the infusion pump 30 may format communications in the delivery system format, the relay device incorporated into the infusion pump 30 may convert such communications to the sensor system format and transmit such converted communications, and the BG monitoring system 20 may receive such communications in the sensor system format. In particular embodiments, the BG monitoring system 20 may communicate with the infusion pump 30 using wireless modes of communication, such as radio frequency (RF), infrared (IR), ultrasonic, sonic, optical, and the like, as shown in FIGS. 10 and 11. In other particular embodiments, the BG monitoring system 20 may communicate with the infusion pump 30 using a wired connection 35, as shown in FIG. 12.
  • [0082]
    In particular embodiments, information may be downloaded directly from the relay device 10 to a storage media through an interface, such as a transmitter, a cable, a communication station, or the like. For example, information stored by the BG monitoring system 20 and/or the infusion pump 30 may be transmitted to the relay device 10, and then downloaded from the relay device 10 to the storage media. The storage media may include one or more of a personal computer (PC), a central server, an electronic memory, a personal digital assistant (PDA), a cell phone, a laptop computer, magnetic memory, silicon memory, a data storage device, and the like. In alternative embodiments, information may be downloaded directly from the BG monitoring system 20 or the infusion pump 30 to a storage media. In further alternative embodiments, information may be downloaded to the storage media from more than one of the BG monitoring system 20, relay device 10, and infusion pump 30.
  • [0083]
    In preferred embodiments, the relay device 10 communicates with the BG monitoring system 20 and the infusion pump 30 using radio frequency (RF) communication. In alternative embodiments, other modes of communication may be used, such as infrared (IR), wired, ultrasonic, sonic, optical, and the like. In further alternative embodiments, more than one mode of communication may be utilized by the relay device 10.
  • [0084]
    In preferred embodiments, the relay device 10 includes an RF mixer 300, a first microcontroller 302, a second microcontroller 304, and an RF transceiver 306, as shown in FIG. 9(a). The RF mixer 300 receives an RF signal from the BG monitoring system 20 and forwards the signal to the first microcontroller 302. The first microcontroller 302 decodes the RF signal received in a first format from the BG monitoring system 20 (e.g., at a frequency of 131 kilohertz), and forwards the decoded signal to the second microcontroller 304. Next, the second microcontroller 304 processes and encodes the signal into a second format for the infusion pump 30 (e.g., at a frequency of 916 megahertz), and forwards the encoded signal to the RF transceiver 306. The RF transceiver 306 then transmits the encoded signal to the infusion pump 30. Conversely, the RF transceiver 306 receives an RF signal from the infusion pump 30 and forwards the signal to the second microcontroller 304. The second microcontroller 304 decodes the RF signal received in the second format from the infusion pump 30, and forwards the decoded signal to the first microcontroller 302. Next, the first microcontroller 302 processes and encodes the signal into the first format for the BG monitoring system 20, and forwards the encoded signal to the RF mixer 300. The RF mixer 300 then transmits the encoded signal to the BG monitoring system 20. Inclusion of the two microcontrollers 302 and 304 allows the relay device 10 to encode and decode signals for the BG monitoring system 20 and the infusion pump 30 simultaneously.
  • [0085]
    In alternative embodiments, the two microcontrollers 302 and 304 shown in FIG. 9(a) may be replaced with a single fast microcontroller 308, as illustrated in FIG. 9(b). The fast microcontroller 308 encodes and decodes signals in appropriate formats respectively for the BG monitoring system 20 and the infusion pump 30 in a manner similar to that of the two microcontrollers 302 and 304 shown in FIG. 9(a). In further alternative embodiments, the relay device 10″ may include an RF mixer 320 and an RF transceiver 326, as illustrated in FIG. 9(c), which are similar to the RF mixer 300 and RF transceiver 306 shown in FIGS. 9(a) and 9(b). The relay device 10″ may also include a field programmable gate array (FPGA) 322, which performs functions similar to the first microcontroller 302 shown in FIG. 9(a), for encoding and decoding signals in an appropriate format for the BG monitoring system 20. The relay device 10″ may further include a microcontroller 322, which is similar to the second microcontroller 304 shown in FIG. 9(a), for encoding and decoding signals in an appropriate format for the infusion pump 30.
  • [0086]
    In other alternative embodiments, the relay device 10′″ may include an application specific integrated circuit (ASIC) 340, which incorporates an RF mixer for transmitting and receiving signals to and from the BG monitoring system 20, as illustrated in FIG. 9(d). The ASIC 340 may also encode and decode information in an appropriate format for the BG monitoring system 20. Additionally, the relay device 10′″ may include a microcontroller 342, which is similar to the second microcontroller 304 shown in FIG. 9(a), for encoding and decoding signals in an appropriate format for the infusion pump 30. The relay device 10′″ may further include an RF transceiver 344, which is similar to the RF transceiver 306 shown in FIG. 9(a), for transmitting and receiving signals to and from the infusion pump 30. In still other alternative embodiments, the microcontroller 342 shown in FIG. 9(d) may be omitted, and the functionality instead may be included in an application specific integrated circuit (ASIC_360, as shown in FIG. 9(e). The ASIC 360 transmits and receives signals to and from the BG monitoring system 20. The ASIC 360 also encodes and decodes signals in appropriate formats respectively for the BG monitoring system 20 and infusion pump 30. The relay device 10″″ may further include an RF transceiver 362, which is similar to the RF transceiver 306 shown in FIG. 9(a), for transmitting and receiving signals to and from the infusion pump 30.
  • [0087]
    Referring to FIG. 1, the relay device 10 receives information from the BG monitoring system 20 in a sensor system format, converts the information into a delivery system format appropriate for the infusion pump 30, and then transmits the converted information in the delivery system format to the infusion pump 30. The relay device 10 may also receive information from the infusion pump 30 in the delivery system format, convert the information into the sensor system format appropriate for the BG monitoring system 20, and then transmit the converted information in the sensor system format to the BG monitoring system 20. In alternative embodiments, communication is in only one direction, either from the BG monitoring system 20 to the infusion pump 30, or from the infusion pump 30 to the BG monitoring system 20.
  • [0088]
    In preferred embodiments, the sensor system and delivery system formats include one or more frequencies, communication protocols, and the like that are used to transfer information between the BG monitoring system 20 and the infusion pump 30. For example, the sensor system format utilized by the BG monitoring system 20 may include a lower frequency, such as 131 kilohertz, resulting in less tissue attenuation at and/or near the insertion site of the BG monitoring sensor set 50. The delivery system format utilized by the infusion pump 30 may include a higher frequency, such as 916 megahertz or 402-405 megahertz, ensuring compliance with federal, state, regulatory, and other requirements for RF communications. However, other frequencies may be utilized by the BG monitoring system 20 and/or infusion pump 30.
  • [0089]
    The communication protocols specify carrier media for communication, such as radio frequency (RF) (including frequency modulated (FM), amplitude modulated (AM), and the like RF), infrared (IR), ultrasonic, audio, light wave, Bluetooth, IRDA, conductive using wires or other direct contacts, and the like. The communication protocols also specify information packaging, which includes how the information is arranged and sent on the carrier media. For example, the information packaging may specify which data components are sent (e.g., the serial number of the relay device 10, BG monitoring system 20, and/or infusion pump 30, a date and time stamp, a sensor measurement, a pump command, and the like). The information packaging may also specify the order in which data components are sent. Further, the information packaging may specify how the information is sent, such as in packets, bits, words, and the like. The information packaging may additionally specify how the information is expressed, such as in decimal, hexadecimal, DC balanced format, and the like.
  • [0090]
    The BG monitoring system 20 utilizes a sensor system communication protocol, and the infusion pump 30 utilizes a delivery system communication protocol. For example, the BG monitoring system 20 uses the sensor system communication protocol to communicate with the relay device 10, and the infusion pump 30 uses the delivery system communication protocol to communicate with the relay device 10. In particular embodiments, the BG monitoring system 20 and infusion pump 30 do not use the same communication protocol; thus, the relay device 10 converts information received from the BG monitoring system 20 into the delivery system communication protocol for communicating to the infusion pump 30, and the relay device 10 converts information received from the infusion pump 30 into the sensor system communication protocol for communicating to the BG monitoring system 20. For example, the relay device 10 may receive BG data or measurements from the BG monitoring system 20 formatted in the sensor system communication protocol utilizing radio frequency carrier media, in packets of 107 bytes, or the like. The relay device 10 converts such data or measurements into the delivery system communication protocol utilizing infrared carrier media, in packets of 71 bytes, or the like, and then transmits such converted data or measurements formatted in the delivery system communication protocol to the infusion pump 30. However, other carrier media or information packaging may be utilized by the BG monitoring system 20 and/or infusion pump 30.7 In preferred embodiments, the relay device 10, BG monitoring system 20, infusion pump 30, and other devices capable of communicating with the relay device 10, BG monitoring system 20, and/or infusion pump 30 (e.g., remote programmer for the BG monitoring system 20, remote programmer for the infusion pump 30, and the like) each have a unique identification (ID) code, such as a serial number, identification number, password, or the like. The ID code may be included in communications transmitted to and received from the relay device 10, BG monitoring system 20, and/or infusion pump 30 in order to ensure security and/or to distinguish information from various sources. In particular embodiments, each packet of information that is transmitted to the relay device 10 may include the ID code for the relay device 10, and the relay device 10 may use the ID code to discern whether the packet of information is intended for the relay device 10. Similarly, each packet of information that is transmitted to the BG monitoring system 20 may include the ID code for the BG monitoring system 20, and the BG monitoring system 20 may use the ID code to discern whether the packet of information is intended for the BG monitoring system 20. Also, each packet of information that is transmitted to the infusion pump 30 may include the ID code for the infusion pump 30, and the infusion pump 30 may use the ID code to discern whether the packet of information is intended for the infusion pump 30. In further particular embodiments, the relay device 10, BG monitoring system 20, infusion pump 30, and other devices capable of communicating with the relay device 10, BG monitoring system 20, and/or infusion pump 30 may know each other's unique ID code. The BG monitoring system 20 and/or the infusion pump 30 may respond to commands and accept information only from devices for which they know such ID codes. For example, the BG monitoring system 20 may communicate with the infusion pump 30 through the relay device 10, and thus, may know the ID codes for the relay device 10 and infusion pump 30. Conversely, the infusion pump 30 may communicate with the BG monitoring system 20 through the relay device 10, and thus, may know the ID codes for the relay device 10 and BG monitoring system 20. The infusion pump 30 may also know the ID code for a remote programmer. In alternative embodiments, the relay device 10, BG monitoring system 20, infusion pump 30, and other devices capable of communicating with the BG monitoring system 20 and/or infusion pump 30 have no ID code.
  • [0091]
    In preferred embodiments, the BG monitoring system 20 is continually synchronized with any device that communicates with the BG monitoring system 20, such as the relay device 10, the infusion pump 30 via the relay device 10, and the like. The BG monitoring system 20 transmits information at fixed intervals (e.g., once every thirty seconds, minute, five minutes, ten minutes, twenty minutes, or the like) for exact time periods (e.g., for time periods of less than one second, one second, one to five seconds, more than five seconds, or the like). The devices that communicate with the BG monitoring system 20 “wake up” at the fixed intervals and “listen” to receive the information from the BG monitoring system 20. This fixed interval communication method allows the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 to supply power to their communication systems on a periodic, rather than continuous, basis. Accordingly, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 are able to save power when not communicating with one another. In alternative embodiments, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 may supply power to their communication systems on a continuous basis, and thus, be capable of continuous communication. In further alternative embodiments, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 may supply power to their communication systems only upon request from the user. For example, the user may select the dedicated key 122 on the infusion pump 30 shown in FIG. 3(a), or alternatively, the dedicated key 212 or 226 on the relay device 10 shown in FIGS. 6(c) and 6(d), to request information from the BG monitoring system 20. The BG monitoring system 20 may periodically supply power to its communication system for a relatively short time period in order to detect whether another device is requesting information, and in response to such a request, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 may supply power to their communication systems and then communicate the requested information. Accordingly, the BG monitoring system 20 and the devices that communicate with the BG monitoring system 20 are able to save power when not communicating with one another.
  • [0092]
    Referring to FIG. 1, the relay device 10 receives information from the BG monitoring system 20, and then transmits the information to the infusion pump 30. The relay device 10 may also receive information from the infusion pump 30, and then transmit the information to the BG monitoring system 20. In preferred embodiments, the infusion pump 30 includes a display 32 and a user interface 34, as shown in FIG. 4(a). For example, the display 32 may be an LCD display 100, and the user interface 34 may be a keypad 10 including one or more keys, as shown in FIGS. 3(a)-3(b). The BG monitoring system 20 sends a sensor signal to the relay device 10, and then the relay device 10 sends the sensor signal to the infusion pump 30. In preferred embodiments, the sensor signal contains uncalibrated sensor data, and the infusion pump 30 calibrates the uncalibrated sensor data to generate sensor measurements, which are shown on the display 32. In particular embodiments, the BG monitoring system automatically sends the sensor data to the infusion pump 30 on a periodic (e.g., once every thirty seconds, minute, five minutes, ten minutes, or the like) or continuous basis, and the infusion pump 30 automatically shows the sensor measurement on the display 32 once the sensor data has been received and calibrated. The user may also utilize the user interface 34 to cause the display 32 to show a sensor measurement. In other particular embodiments, once the infusion pump 30 generates the sensor measurement, the infusion pump 30 may provide an alarm or warning to the user if the sensor measurement is above or below target glycemic values. For example, if the sensor measurement is above a hyperglycemic limit (e.g., 250 mg/dl) or below a hypoglycemic limit (e.g., 70 mg/dl), the infusion pump 30 may provide the user with a visible alarm via the display 100 and/or lights, an audible alarm via the speaker 156, and/or a vibration alarm via the vibrator 158. The infusion pump 30 may also suspend insulin delivery if the sensor measurement is below the hypoglycemic limit, and notify the user to activate a bolus delivery if the sensor measurement is above the hyperglycemic limit. In further particular embodiments, the infusion pump 30 may include the bolus estimator 164, which utilizes the sensor measurement to estimate an appropriate amount of insulin to be delivered to the user based on the user's BG level, the amount of carbohydrates to be consumed, and the like. The calculated bolus estimate may be shown to the user on the display 32, and the user may then utilize the user interface 34 to accept or modify the bolus estimate for infusion into the user. In alternative embodiments, the BG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are included in the sensor signal transmitted from the BG monitoring system 20 to the infusion pump 30 via the relay device 10. In other alternative embodiments, the BG monitoring system 20 sends a sensor signal with uncalibrated sensor data to the relay device 10, the relay device 10 calibrates the uncalibrated sensor data to generate sensor measurements, and the relay device 10 sends the sensor signal with the sensor measurements to the infusion pump 30.
  • [0093]
    In additional alternative embodiments, the infusion pump 30 may include a display 32, and the relay device 10 may include a user interface 14, as shown in FIG. 4(b). For example, the display 32 may be an LCD display 100 (as shown in FIGS. 3(a)-3(b)), and the user interface 14 may be a single key 202 (as shown in FIG. 6(b)), or a keypad 204 or 216 including one or more keys (as shown in FIGS. 6(c) and 6(d)). The user may utilize the user interface 14 on the relay device 10 to request new data from the BG monitoring system 20. When the user interface 14 is activated (e.g., the user presses the single key 202 shown in FIG. 6(b), one or more keys on the keypad 204 shown in FIG. 6(c), or one or more keys on the keypad 216 shown in FIG. 6(d)), the relay device 10 sends a request to the BG monitoring system 20 to transmit the most recent sensor data, as shown in FIG. 4(b). In other alternative embodiments, when the user interface 14 is activated, the relay device 10 sends a signal to the infusion pump 30 to request the most recent sensor data from the BG monitoring system 20, and the infusion pump 30 then sends such a request to the BG monitoring system 20 through the relay device 10, as shown in FIG. 4(c). Referring to FIGS. 4(b) and 4(c), in response to a request for the most recent sensor data, the BG monitoring system 20 sends a sensor signal to the relay device 10, and then the relay device 10 sends the sensor signal to the infusion pump 30, similar to the manner described above with respect to FIG. 4(a). In particular embodiments, the infusion pump 30 may automatically show a sensor measurement on the display 32 once the sensor signal is received by the infusion pump 30. The user may also utilize the user interface 14 on the relay device 10 to cause the display 32 on the infusion pump 30 to show a sensor measurement. The user may also utilize the user interface 14 on the relay device 10 to send commands or data to the infusion pump 30.
  • [0094]
    In further alternative embodiments, the relay device 10 may include a first user interface 14′, and the infusion pump 30 may include a display 32 and a second user interface 34′, as shown in FIG. 4(f). The user may utilize the first user interface 14′ on the relay device 10 to request new data from the BG monitoring system 20. When the first user interface 14′ is activated, the relay device 10 sends a request to the BG monitoring system 20 to transmit the most recent sensor data. In response, the BG monitoring system 20 sends a sensor signal to the relay device 10, and then the relay device 10 sends the sensor signal to the infusion pump 30, similar to the manner described above with respect to FIG. 4(a). In particular embodiments, the infusion pump 30 may automatically show a sensor measurement on the display 32′ once the sensor signal is received by the infusion pump 30. The user may also utilize the first user interface 14′ on the relay device 10 or the second user interface 34′ on the infusion pump 30 to cause the display 32 on the infusion pump 30 to show a sensor measurement. The user may additionally utilize the first user interface 14′ on the relay device 10 to send commands or data to the infusion pump 30. Further, the user may utilize the second user interface 34′ on the infusion pump 30 to perform functions on the infusion pump 30.
  • [0095]
    In other alternative embodiments, the relay device 10 may include a display 12 and a user interface 14, as shown in FIG. 4(d). For example, the display 12 may be an LCD display 214, and the user interface 14 may be a keypad 216 including one or more keys, as illustrated in FIG. 6(d). The BG monitoring system 20 sends a sensor signal with uncalibrated sensor data to the relay device 10, and the relay device 10 calibrates the data to generate sensor measurements, which are shown on the display 12 of the relay device 10. In particular embodiments, the relay device 10 may automatically show a sensor measurement on the display 12 once the sensor data is received and calibrated by the relay device 10. The user may also utilize the user interface 14 to cause the display 12 to show a sensor measurement. The user may further utilize the user interface 14 on the relay device 10 to send commands or data to the infusion pump 30. In particular embodiments, the relay device 10 may also receive data from the infusion pump 30 (not shown), such as the amount of insulin remaining, alarms indicating a low battery or no delivery by the infusion pump 30, and the like. The relay device 10 may then utilize such data to adjust the commands sent to the infusion pump 30 and/or show such data on the display 12 to the user. In alternative embodiments, the BG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are included in the sensor signal transmitted from the BG monitoring system 20 to the relay device 10.
  • [0096]
    In still other alternative embodiments, the BG monitoring system 20 includes a display 22 and a user interface 24, as shown in FIG. 4(e). For example, the display 22 may be an LCD display 58, and the user interface 24 may be a keypad 60 including one or more keys, as shown in FIGS. 2(a)-2(c). The BG monitoring system 20 calibrates the sensor data to generate sensor measurements, which are shown on the display 22 of the BG monitoring system 20. In particular embodiments, the BG monitoring system 20 may automatically show a sensor measurement on the display 22 once the sensor data is calibrated. The user may also utilize the user interface 24 to cause the display 22 to show a sensor measurement. The user may further utilize the user interface 24 on the BG monitoring system 20 to send commands or data through the relay device 10 to the infusion pump 30.
  • [0097]
    In preferred embodiments, the BG monitoring system 20 sends a sensor signal to the relay device 10, and then the relay device 10 sends the sensor signal to the infusion pump 30, as shown in FIG. 4(a). The infusion pump 30 includes a display 32 and a user interface 34, such as the display 100 and user interface 110 shown in FIG. 3(a). In particular embodiments, the BG monitoring system automatically sends the sensor signal to the infusion pump 30 on a periodic (e.g., once every thirty seconds, minute, five minutes, ten minutes, or the like) or continuous basis. In other particular embodiments, the infusion pump 30 periodically sends a command signal to the BG monitoring system 20 via the relay device 10, commanding the BG monitoring system 20 to send the sensor signal to the infusion pump 30, and in response to the command, the BG monitoring system 20 sends the sensor signal to the infusion pump 30. In further particular embodiments, the user interface 110 may be utilized to cause the BG monitoring system 20 to send the sensor signal to the infusion pump 30 via the relay device 10. In preferred embodiments, the infusion pump 30 automatically shows a sensor measurement on the display 32 once the sensor signal is received by the infusion pump 30. The user may also utilize the user interface 110 to cause the display 100 to show a sensor measurement.
  • [0098]
    The user interface 110 on the infusion pump 30 preferably includes a dedicated interface for requesting information from and/or inputting data to the BG monitoring system 20 via the relay device 10. Additionally, in particular embodiments where bidirectional communication is not enabled continuously between the BG monitoring system 20 and the infusion pump 30, utilizing the dedicated interface may initiate bi-directional communication between the infusion pump 30 and the BG monitoring system 20 via the relay device 10. In further particular embodiments, the dedicated interface may be used to cause the display 100 of the infusion pump 30 to show historical data, such as trends of whether sensor measurements are increasing or decreasing, a plot of two or more sensor measurements, a graph of the past n-hours of sensor measurements, and the like. In other embodiments, the infusion pump 30 may automatically show sensor measurements or historical data (e.g., trends, plots, graphs, or the like of sensor measurements) on the display 100 when the display 100 would otherwise be blank.
  • [0099]
    Referring to FIG. 3(a), the dedicated interface on the infusion pump 30 may include a dedicated key 122 for causing the display 100 to show the sensor measurement. In alternative embodiments, the user may select one or more keystrokes to cause the display 100 to show the sensor measurement. For example, the user may select the dedicated key 122 followed by the ACT key 116 to cause the display 100 to show the sensor measurement. In further alternative embodiments, the ability of the infusion pump 30 to communicate with the BG monitoring system 20 via the relay device 10 may be activated by entering the BG monitoring system's 20 serial number or other identifying information into the infusion pump 30. In response, the infusion pump 30 may program certain keys for interfacing with the BG monitoring system 20 via the relay device 10.
  • [0100]
    In other alternative embodiments, the dedicated interface may include a button, switch, lever, handle, touch screen, or the like, or combinations of keys, buttons, switches, levers, handles, touch screens, or the like. Combinations of interfaces include activating more than one interface simultaneously (in parallel), or activating more than one interface in sequence. In still other alternative embodiments, the dedicated interface may be located on another device that communicates with the infusion pump 30, and the sensor measurement may be shown on a display of that device, such as the BG monitoring system 20 (for example, the glucose monitor 54 and/or data processor 56), a remote programmer (not shown) for the infusion pump 30, a personal digital assistant (PDA), a computer, a cell phone, or the like.
  • [0101]
    In preferred embodiments, one or more sensor measurements are stored in the memory 154 of the infusion pump 30. Furthermore, selecting the dedicated key 122 (or other dedicated interface) causes the most recent sensor measurement to be shown on the display 100. When the most recent sensor measurement is already shown on the display 100, selecting the dedicated key 122 causes the next, most recent sensor measurement to be shown on the display 100, and each subsequent selection of the dedicated key 122 causes older and older sensor measurements to be shown on the display 100. In alternative embodiments, the infusion pump 30 may include other user interfaces to display older sensor measurements. In other alternative embodiments, the sensor measurements may be stored in a storage device other than the infusion pump 30, and selecting the dedicated key 122 causes the infusion pump 30 to retrieve the sensor measurement from the storage device and then show it on the display 100.
  • [0102]
    In additional alternative embodiments, the infusion pump 30 periodically sends a command signal to the BG monitoring system 20 via the relay device 10, commanding the BG monitoring system 20 to send sensor data to the infusion pump 30, so that the most recent sensor data is available to be shown on the display 100 of the infusion pump 30. In response to the command from the infusion pump 30, the BG monitoring system 20 sends the sensor data to the infusion pump 30, and the infusion pump 30 calibrates the sensor data to generate a sensor measurement. The sensor measurement is then stored in the memory 154 of the infusion pump 30. When the user desires to see the most recent sensor measurement, the user selects the dedicated key 122 (or other)dedicated interface) to retrieve the sensor measurement from the memory 154 of the infusion pump 30 and show the sensor measurement on the display 100 of the infusion pump 30. In other alternative embodiments, the sensor data is stored in the memory 154 of the infusion pump 30. When the user selects the dedicated key 122 to view the sensor measurement, the sensor data is retrieved from the memory 154 of the infusion pump 30, and then calibrated to generate the sensor measurement. In further alternative embodiments, the BG monitoring system 20 sends calibrated sensor measurements to be stored in the memory 154 of the infusion pump 30. In yet other alternative embodiments, the infusion pump 30 communicates with the BG monitoring system 20 to indicate that the sensor data has been received and/or to echo the sensor data so that the data can be retransmitted if it was received inaccurately.
  • [0103]
    In still other alternative embodiments, the dedicated key 122 (or other dedicated interface) is used to cause the BG monitoring system 20 to send the most recent sensor data, such as one or more raw sensor data points, one or more calibrated sensor measurements, or the like, to the infusion pump 30. Once the sensor data is received, the infusion pump 30 shows the most recent sensor measurement on the display 100. In particular alternative embodiments, the infusion pump 30 indicates to the BG monitoring system 20 the most recent sensor data that the infusion pump 30 has received, and in response, the BG monitoring system 20 sends any additional sensor data that the BG monitoring system 20 has that has not been received by the infusion pump 30.
  • [0104]
    In another embodiment of the present invention, the BG level measured by the BG monitoring system 20 is used in a closed loop algorithm to automatically adjust the delivery of fluid, such as insulin, in the infusion pump 30. A calibration algorithm is used to convert sensor data into sensor measurements, and then the sensor measurements are used in a closed loop algorithm to generate fluid delivery commands to operate the infusion pump 30. In particular embodiments, the calibration algorithm 26 and closed loop algorithm 28 reside with and are executed by the processor of the BG monitoring system 20, as shown in FIG. 5(a). Commands to control the infusion pump 30 are generated at the BG monitoring system 20, and are sent through the relay device 10 to the infusion pump 30.
  • [0105]
    In other particular embodiments, the calibration algorithm 26 resides with and is executed by the processor of the BG monitoring system 20, and the closed loop algorithm 18 resides with and is executed by the processor of the relay device 10, as shown in FIG. 5(b). Calibrated sensor measurements are sent from the BG monitoring system 20 to the relay device 10, and fluid delivery commands are sent from the relay device to the infusion pump 30.
  • [0106]
    In still other particular embodiments, the calibration algorithm 26 resides with and is executed by the processor of the BG monitoring system 20, and the closed loop algorithm 38 resides with and is executed by the processor of the infusion pump 30, as shown in FIG. 5(c). Calibrated sensor measurements are sent from the BG monitoring system 20 through the relay device 10 to the infusion pump 30, and fluid delivery commands are generated at the infusion pump 30.
  • [0107]
    In yet other particular embodiments, the calibration algorithm 16 and the closed loop algorithm 18 both reside with and are executed by the processor of the relay device 10, as shown in FIG. 5(d). Uncalibrated sensor data is sent from the BG monitoring system 20 to the relay device 10, where they are calibrated and used in the closed loop algorithm 18 to generate fluid delivery commands, which are sent to the infusion pump 30.
  • [0108]
    In further particular embodiments, the calibration algorithm 16 resides with and is executed by the processor of the relay device 10, and the closed loop algorithm 38 resides with and is executed by the processor of the infusion pump 30, as shown in FIG. 5(e). Uncalibrated sensor data is sent from the BG monitoring system 20 to the relay device 10, where they are calibrated to generate sensor measurements. Then the sensor measurements are sent to the infusion pump 30 and used in the closed loop algorithm 38 to generate fluid delivery commands.
  • [0109]
    In additional particular embodiments, the calibration algorithm 36 and the closed loop algorithm 38 both reside with and are executed by the processor of the infusion pump 30, as shown in FIG. 5(f). Uncalibrated sensor data is sent from the BG monitoring system 20 through the relay device 10 to the infusion pump 30. Then, at the infusion pump 30, the uncalibrated sensor data is calibrated and used in the closed loop algorithm 38 to generate fluid delivery commands.
  • [0110]
    In alternative embodiments, a semi-closed loop algorithm is used in place of a closed loop algorithm. A semi-closed loop algorithm generates recommended changes to the fluid delivery, which must be approved by the user or a caregiver using the user interface on the infusion pump 30, the BG monitoring system 20, or the relay device 10 before new commands are issued to the infusion pump 30.
  • [0111]
    Although FIGS. 4(a)-5(f) generally show communication flowing from the BG monitoring system 20 to the infusion pump 30, it should be noted that communication signals might be generated by any of the devices. In particular embodiments, a signal may be sent from the infusion pump 30 through the relay device 10 to the BG monitoring system 20. The signals from the infusion pump 30 may include signals to request information from the BG monitoring system 20, verify receipt of information, echo information received, transmit information to be downloaded to the BG monitoring system 20, and the like. In additional alternative embodiments, signals may be initiated at the relay device 10 and sent to the BG monitoring system 20 and/or the infusion pump 30.
  • [0112]
    While the description above refers to particular embodiments of the present invention, it will be understood that many modifications may be made without departing from the spirit thereof. The accompanying claims are intended to cover such modifications as would fall within the true scope and spirit of the present invention.
  • [0113]
    The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims (96)

    What is claimed is:
  1. 1. An infusion system for infusing a fluid into a user, the infusion system comprising:
    a sensor system including:
    a sensor system housing;
    a sensor coupled to the sensor system housing for producing a signal indicative of a physiological characteristic level of the user;
    a sensor system processor contained in the sensor system housing for processing the signal indicative of the physiological characteristic level of the user; and
    a sensor system transmitter contained in the sensor system housing and coupled to the sensor system processor for transmitting one or more communications in a sensor system format;
    a relay device including:
    a relay device receiver for receiving the communications from the sensor system in the sensor system format;
    a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format; and
    a relay device transmitter for transmitting the converted communications in the delivery system format; and
    a fluid delivery system including:
    a delivery system housing;
    a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format; and
    a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user;
    wherein the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  2. 2. The infusion system according to claim 1, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
  3. 3. The infusion system according to claim 2, wherein the communications including the data indicative of the physiological characteristic level of the user are automatically transmitted from the sensor system through the relay device and received by the fluid delivery system.
  4. 4. The infusion system according to claim 3, wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
  5. 5. The infusion system according to claim 3, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  6. 6. The infusion system according to claim 5, wherein at least a portion of the user interface is dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  7. 7. The infusion system according to claim 3, wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  8. 8. The infusion system according to claim 7, wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  9. 9. The infusion system according to claim 7, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  10. 10. The infusion system according to claim 9, wherein at least another one of the inputs causes the display device to display the next most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  11. 11. The infusion system according to claim 9, wherein at least a portion of the user interface is dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  12. 12. The infusion system according to claim 9, wherein at least another one of the inputs causes the display device to display the stored data that is older than the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  13. 13. The infusion system according to claim 2, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  14. 14. The infusion system according to claim 13, wherein at least a portion of the user interface is dedicated for interfacing with the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  15. 15. The infusion system according to claim 2, wherein the fluid delivery system further includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  16. 16. The infusion system according to claim 2, wherein the fluid delivery system further includes:
    a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system;
    an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user; and
    a user interface for accepting one or more inputs from the user, wherein at least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user.
  17. 17. The infusion system according to claim 2, wherein the fluid delivery system further includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user.
  18. 18. The infusion system according to claim 2, wherein the fluid delivery system further includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
  19. 19. The infusion system according to claim 2, wherein the fluid delivery system further includes:
    a delivery system transmitter contained in the delivery system housing and coupled to the delivery system processor for transmitting one or more communications in the delivery system format,
    wherein the relay device receiver further receives the communications from the fluid delivery system in the delivery system format, the relay device processor processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format, and the relay device transmitter transmits the converted communications in the sensor system format, and
    wherein the sensor system further includes a sensor system receiver contained in the sensor system housing and coupled to the sensor system processor for receiving the communications from the relay device in the sensor system format.
  20. 20. The infusion system according to claim 19, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs generates a request for the data indicative of the physiological characteristic level of the user from the sensor system,
    wherein at least one of the communications transmitted from the fluid delivery system through the relay device to the sensor system includes the request,
    wherein at least one of the communications including the data indicative of the physiological characteristic level of the user is transmitted from the sensor system through the relay device and received by the delivery system in response to the request, and
    wherein the display device displays the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  21. 21. The infusion system according to claim 20, wherein at least a portion of the user interface is dedicated for interfacing from the fluid delivery system with the sensor system through the relay device.
  22. 22. The infusion system according to claim 20, wherein the requested data is the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  23. 23. The infusion system according to claim 20, wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  24. 24. The infusion system according to claim 23, wherein at least another one of the inputs causes the display device to display a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  25. 25. The infusion system according to claim 2, wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data, and the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
  26. 26. The infusion system according to claim 2, wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system includes one or more measurements indicative of the physiological characteristic level of the user.
  27. 27. The infusion system according to claim 26, wherein the sensor system further includes a calibration algorithm executed by the sensor system processor for calibrating the signal indicative of the physiological characteristic level of the user to generate the one or more measurements indicative of the physiological characteristic level of the user, and the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
  28. 28. The infusion system according to claim 26, wherein the data indicative of the physiological characteristic level of the user received from the sensor system by the relay device is uncalibrated data, and the relay device further includes a calibration algorithm executed by the relay device processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user, wherein the communications transmitted from the relay device and received by the fluid delivery system include the one or more measurements indicative of the physiological characteristic level of the user.
  29. 29. The infusion system according to claim 2, wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system is downloadable to an external storage device.
  30. 30. The infusion system according to claim 2, wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  31. 31. The infusion system according to claim 1, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user.
  32. 32. The infusion system according to claim 31, wherein the sensor system further includes:
    a display device coupled to the sensor system processor for displaying data to the user; and
    a user interface coupled to the sensor system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  33. 33. The infusion system according to claim 32, wherein at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  34. 34. The infusion system according to claim 31, wherein the sensor system further includes a closed loop algorithm executed by the sensor system processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  35. 35. The infusion system according to claim 1, wherein at least one of the communications transmitted from the sensor system to the relay device includes the data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user.
  36. 36. The infusion system according to claim 35, wherein the relay device further includes:
    a display device coupled to the relay device processor for displaying data to the user; and
    a user interface coupled to the relay device processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  37. 37. The infusion system according to claim 36, wherein at least another one of the inputs generates the one or more commands for programming the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  38. 38. The infusion system according to claim 35, wherein the relay device further includes a closed loop algorithm executed by the relay device processor for automatically generating the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user obtained by the sensor system.
  39. 39. The infusion system according to claim 1, wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  40. 40. The infusion system according to claim 1, wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the device and received by the fluid delivery system.
  41. 41. The infusion system according to claim 40, wherein the different communication protocols utilize different carrier media for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  42. 42. The infusion system according to claim 40, wherein the different communication protocols utilize different information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  43. 43. The infusion system according to claim 1, wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using radio frequency communication.
  44. 44. The infusion system according to claim 1, wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using infrared communication.
  45. 45. The infusion system according to claim 1, wherein the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices.
  46. 46. The infusion system according to claim 1, wherein the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices.
  47. 47. The infusion system according to claim 1, wherein the relay device processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the relay device processor, and further wherein the communications transmitted from the sensor system to the relay device include the unique identification code of the relay device processor to substantially avoid interference with other devices.
  48. 48. The infusion system according to claim 1, wherein the relay device processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the relay device processor, and further wherein the communications transmitted from the relay device and received by the fluid delivery system include the unique identification code of the relay device processor to substantially avoid interference with other devices.
  49. 49. The infusion system according to claim 1, wherein the relay device is coupled to the delivery system housing.
  50. 50. The infusion system according to claim 1, wherein the relay device is contained in the delivery system housing.
  51. 51. The infusion system according to claim 1, wherein the relay device is coupled to the sensor system housing.
  52. 52. The infusion system according to claim 1, wherein the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
  53. 53. A relay device for transferring information between a sensor system and a fluid delivery system, wherein the sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user, the relay device comprising:
    a sensor system receiver for receiving one or more communications from the sensor system in a sensor system format;
    a processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format; and
    a delivery system transmitter for transmitting the converted communications in the delivery system format to the fluid delivery system.
  54. 54. The relay according to claim 53, further comprising:
    a delivery system receiver for receiving one or more communications from the fluid delivery system in the delivery system format, wherein the processor further processes the communications from the fluid delivery system and converts the communications for transmission in the sensor system format; and
    a sensor system transmitter for transmitting the converted communications in the sensor system format to the sensor system.
  55. 55. The relay device according to claim 53, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
  56. 56. The relay device according to claim 53, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  57. 57. The relay device according to claim 53, wherein at least one of the communications transmitted from the sensor system to the relay device includes data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
  58. 58. The relay device according to claim 57, wherein the relay device further includes:
    a display device coupled to the processor for displaying data to the user; and
    a user interface coupled to the processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user.
  59. 59. The relay device according to claim 58, wherein at least another one of the inputs generates the one or more commands for programming the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
  60. 60. The relay device according to claim 53, wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device to the fluid delivery system.
  61. 61. The relay device according to claim 53, wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device to the fluid delivery system.
  62. 62. The relay device according to claim 61, wherein the different communication protocols utilize different carrier media for communications transmitted from the sensor system through the relay device to the fluid delivery system.
  63. 63. The relay device according to claim 61, wherein the different communication protocols utilize different information packaging for communications transmitted from the sensor system through the relay device to the fluid delivery system.
  64. 64. A relay device for transferring information between a sensor system and a fluid delivery system, wherein the sensor system measures a physiological characteristic level of a user, and the fluid delivery system infuses a fluid into the user, the device comprising:
    a sensor system transceiver for transmitting and receiving one or more communications to and from the sensor system, wherein the communications are transmitted and received in a sensor system format;
    a delivery system transceiver for transmitting and receiving one or more communications to and from the fluid delivery system, wherein the communications are transmitted and received in a delivery system format;
    a processor for processing the communications from the sensor system and the fluid delivery system, wherein the processor converts the communications received from the sensor system in the sensor system format for transmission in the delivery system format to the fluid delivery system, and further wherein the processor converts the communications received from the fluid delivery system in the delivery system format for transmission in the sensor system format to the sensor system.
  65. 65. The relay device according to claim 64, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
  66. 66. The relay device according to claim 64, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  67. 67. The relay device according to claim 64, wherein at least one of the communications transmitted from the sensor system to the relay device includes data indicative of the physiological characteristic level of the user, and at least one of the communications transmitted from the relay device and received by the fluid delivery system includes one or more commands for programming an amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
  68. 68. The relay device according to claim 67, wherein the relay device further includes:
    a display device coupled to the processor for displaying data to the user; and
    a user interface coupled to the processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user.
  69. 69. The relay device according to claim 68, wherein at least another one of the inputs generates the one or more commands the for programming amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user.
  70. 70. The relay device according to claim 64, wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted between the sensor system and the fluid delivery system through the relay device.
  71. 71. The relay device according to claim 64, wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted between the sensor system and the fluid delivery system through the relay device.
  72. 72. The relay device according to claim 71, wherein the different communication protocols utilize different carrier media for communications transmitted between the sensor system and the fluid delivery system through the relay device.
  73. 73. The relay device according to claim 71, wherein the different communication protocols utilize different information packaging for communications transmitted between the sensor system and the fluid delivery system through the relay device.
  74. 74. An infusion system for infusing a fluid into a user, the infusion system comprising:
    a sensor system including:
    a sensor for producing a signal indicative of a physiological characteristic level of the user;
    a sensor system processor coupled to the sensor for processing the signal indicative of the physiological characteristic level of the user; and
    a sensor system transmitter coupled to the sensor system processor for transmitting one or more communications in a sensor system format; and
    a fluid delivery system including:
    a delivery system housing;
    a relay device contained in the delivery system housing, the relay device including:
    a relay device receiver for receiving the communications from the sensor system in the sensor system format;
    a relay device processor for processing the communications from the sensor system and converting the communications for transmission in a delivery system format; and
    a relay device transmitter for transmitting the converted communications in the delivery system format;
    a delivery system receiver contained in the delivery system housing for receiving the communications from the relay device in the delivery system format; and
    a delivery system processor contained in the delivery system housing and coupled to the delivery system receiver for processing the communications from the relay device in the delivery system format and controlling an amount of the fluid infused into the user;
    wherein the amount of the fluid infused into the user is determined based upon data indicative of the physiological characteristic level of the user obtained by the sensor system.
  75. 75. The infusion system according to claim 74, wherein at least one of the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include data indicative of the physiological characteristic level of the user.
  76. 76. The infusion system according to claim 75, wherein the communications including the data indicative of the physiological characteristic level of the user are automatically transmitted from the sensor system through the relay device and received by the fluid delivery system.
  77. 77. The infusion system according to claim 76, wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for automatically displaying to the user the data indicative of the physiological characteristic level of the user.
  78. 78. The infusion system according to claim 76, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  79. 79. The infusion system according to claim 76, wherein the fluid delivery system further includes a memory contained in the delivery system housing for storing the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  80. 80. The infusion system according to claim 79, wherein the fluid delivery system further includes a display device contained in the delivery system housing and coupled to the delivery system processor for displaying to the user a historical trend or graph using the stored data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  81. 81. The infusion system according to claim 79, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the most recent data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  82. 82. The infusion system according to claim 75, wherein the fluid delivery system further includes:
    a display device contained in the delivery system housing and coupled to the delivery system processor for displaying data to the user; and
    a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs causes the display device to display the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  83. 83. The infusion system according to claim 75, wherein the fluid delivery system further includes a user interface contained in the delivery system housing and coupled to the delivery system processor for accepting one or more inputs from the user, wherein at least one of the inputs programs the amount of the fluid infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system.
  84. 84. The infusion system according to claim 75, wherein the fluid delivery system further includes:
    a bolus estimator used in conjunction with the delivery system processor for estimating the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system;
    an indication device coupled to the bolus estimator for indicating the estimated amount of fluid to be infused into the user; and
    a user interface for accepting one or more inputs from the user, wherein at least one of the inputs accepts or modifies the estimated amount of the fluid to be infused into the user.
  85. 85. The infusion system according to claim 75, wherein the fluid delivery system further includes a closed loop algorithm executed by the delivery system processor for automatically determining the amount of the fluid to be infused into the user based upon the data indicative of the physiological characteristic level of the user received by the fluid delivery system and causing the fluid delivery system to infuse the determined amount of the fluid into the user.
  86. 86. The infusion system according to claim 75, wherein the fluid delivery system further includes an indication device for indicating when the data indicative of the physiological characteristic level of the user received by the fluid delivery system is above or below a target characteristic value.
  87. 87. The infusion system according to claim 75, wherein the data indicative of the physiological characteristic level of the user received by the fluid delivery system is uncalibrated data, and the fluid delivery system further includes a calibration algorithm executed by the delivery system processor for calibrating the uncalibrated data to generate one or more measurements indicative of the physiological characteristic level of the user.
  88. 88. The infusion system according to claim 74, wherein the sensor system format and the delivery system format utilize different frequencies for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  89. 89. The infusion system according to claim 74, wherein the sensor system format and the delivery system format utilize different communication protocols for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  90. 90. The infusion system according to claim 89, wherein the different communication protocols utilize different carrier media for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  91. 91. The infusion system according to claim 89, wherein the different communication protocols utilize different information packaging for communications transmitted from the sensor system through the relay device and received by the fluid delivery system.
  92. 92. The infusion system according to claim 74, wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using radio frequency communication.
  93. 93. The infusion system according to claim 74, wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system are transmitted using infrared communication.
  94. 94. The infusion system according to claim 74, wherein the delivery system processor has a unique identification code, and the sensor system processor has the capability to learn the unique identification code of the delivery system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the delivery system processor to substantially avoid interference with other devices.
  95. 95. The infusion system according to claim 74, wherein the sensor system processor has a unique identification code, and the delivery system processor has the capability to learn the unique identification code of the sensor system processor, and further wherein the communications transmitted from the sensor system through the relay device and received by the fluid delivery system include the unique identification code of the sensor system processor to substantially avoid interference with other devices.
  96. 96. The infusion system according to claim 74, wherein the sensor system is a glucose monitoring system, and the fluid delivery system is an insulin infusion device.
US10335256 2002-12-19 2002-12-31 Relay device for transferring information between a sensor system and a fluid delivery system Abandoned US20040122353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US43533702 true 2002-12-19 2002-12-19
US10335256 US20040122353A1 (en) 2002-12-19 2002-12-31 Relay device for transferring information between a sensor system and a fluid delivery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10335256 US20040122353A1 (en) 2002-12-19 2002-12-31 Relay device for transferring information between a sensor system and a fluid delivery system
US12769590 US8622954B2 (en) 2002-12-19 2010-04-28 Relay device for transferring information between a sensor system and a fluid delivery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12769590 Continuation US8622954B2 (en) 2002-12-19 2010-04-28 Relay device for transferring information between a sensor system and a fluid delivery system

Publications (1)

Publication Number Publication Date
US20040122353A1 true true US20040122353A1 (en) 2004-06-24

Family

ID=32599688

Family Applications (2)

Application Number Title Priority Date Filing Date
US10335256 Abandoned US20040122353A1 (en) 2002-12-19 2002-12-31 Relay device for transferring information between a sensor system and a fluid delivery system
US12769590 Active 2023-10-14 US8622954B2 (en) 2002-12-19 2010-04-28 Relay device for transferring information between a sensor system and a fluid delivery system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12769590 Active 2023-10-14 US8622954B2 (en) 2002-12-19 2010-04-28 Relay device for transferring information between a sensor system and a fluid delivery system

Country Status (1)

Country Link
US (2) US20040122353A1 (en)

Cited By (280)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040215492A1 (en) * 2003-01-30 2004-10-28 Choi Soo Bong Method for controlling insulin pump through internet
US20050151661A1 (en) * 2003-03-13 2005-07-14 Albarado Jason P. Enclosure system for hot work within the vicinity of flammable or combustible material
US20060010098A1 (en) * 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
US20060226985A1 (en) * 2005-02-08 2006-10-12 Goodnow Timothy T RF tag on test strips, test strip vials and boxes
US20060264835A1 (en) * 2003-10-21 2006-11-23 Novo Nordisk A/S Medical skin mountable device
US20070032891A1 (en) * 2003-05-23 2007-02-08 Choi Soo B Method for controlling insulin pump through internet
US20070052543A1 (en) * 2003-03-13 2007-03-08 Albarado Jason P Enclosure system allowing for hot work within the vicinity of flammable and combustible material
US20070060869A1 (en) * 2005-08-16 2007-03-15 Tolle Mike C V Controller device for an infusion pump
US20070088333A1 (en) * 2005-10-13 2007-04-19 G&L Consulting, Llc Method and system for infusing an osmotic solute into a patient and providing feedback control of the infusing rate
US20070106247A1 (en) * 2005-10-21 2007-05-10 Ceeben Systems, Inc. Method and apparatus for peritoneal hypothermia and/or resuscitation
US20070120695A1 (en) * 2003-03-13 2007-05-31 Albarado Jason P Enclosure system allowing for hot work within the vicinity of flammable and combustible material
US20070142767A1 (en) * 2005-12-12 2007-06-21 Marcel Frikart System with A Portable Patient Device and External Operating Part
US20070253021A1 (en) * 2006-04-28 2007-11-01 Medtronic Minimed, Inc. Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers
US20070255126A1 (en) * 2006-04-28 2007-11-01 Moberg Sheldon B Data communication in networked fluid infusion systems
US20070260174A1 (en) * 2006-05-05 2007-11-08 Searete Llc Detecting a failure to maintain a regimen
US20070258395A1 (en) * 2006-04-28 2007-11-08 Medtronic Minimed, Inc. Wireless data communication protocols for a medical device network
WO2006102412A3 (en) * 2005-03-21 2007-11-22 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
US20070276545A1 (en) * 2006-04-28 2007-11-29 Smirnov Alexei V Adaptive response time closed loop control algorithm
WO2008027967A1 (en) * 2006-08-31 2008-03-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
WO2008032238A2 (en) * 2006-09-13 2008-03-20 Koninklijke Philips Electronics N. V. Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin
US20080125693A1 (en) * 2006-08-31 2008-05-29 Gavin David A Peritoneal dialysis systems and related methods
US20080200802A1 (en) * 2006-12-07 2008-08-21 Philometron, Inc. Platform for detection of tissue content and/or structural changes with closed-loop control in mammalian organisms
US20080214919A1 (en) * 2006-12-26 2008-09-04 Lifescan, Inc. System and method for implementation of glycemic control protocols
US20080221512A1 (en) * 2004-09-09 2008-09-11 Da Silva J Ricardo Patient hydration system with taper down feature
US20080234556A1 (en) * 2007-03-20 2008-09-25 Cardiac Pacemakers, Inc. Method and apparatus for sensing respiratory activities using sensor in lymphatic system
US20080249467A1 (en) * 2007-04-05 2008-10-09 Daniel Rogers Burnett Device and Method for Safe Access to a Body Cavity
WO2008124644A1 (en) * 2007-04-05 2008-10-16 Velomedix, Inc Automated therapy system and method
US20080287870A1 (en) * 2005-10-17 2008-11-20 Nov Nordisk A/S Vented Drug Reservoir Unit
US20080296226A1 (en) * 2007-05-29 2008-12-04 Fresenius Medical Care Holdings, Inc. Solutions, Dialysates, and Related Methods
US20090048501A1 (en) * 2003-07-15 2009-02-19 Therasense, Inc. Glucose measuring device integrated into a holster for a personal area network device
US20090118682A1 (en) * 2005-09-13 2009-05-07 Novo Nordisk A/S Reservoir Device With Inspection Aid For Detection Of Drug Condition
US20090131860A1 (en) * 2005-04-13 2009-05-21 Novo Nordisk A/S Medical Skin Mountable Device And System
US20090157202A1 (en) * 2007-08-10 2009-06-18 Smiths Medical Md Therapy rules for closed loop programming of medical devices
WO2009082741A2 (en) * 2007-12-24 2009-07-02 Medtronic Minimed, Inc. Handling of failure of signal reception of a glucose sensor signal at an external infusion device
US20090227855A1 (en) * 2005-08-16 2009-09-10 Medtronic Minimed, Inc. Controller device for an infusion pump
US20090240120A1 (en) * 2008-02-21 2009-09-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US20090284372A1 (en) * 2003-06-10 2009-11-19 Abbott Diabetes Care Inc. Glucose Measuring Device For Use In Personal Area Network
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US20100049004A1 (en) * 2008-04-21 2010-02-25 Philometron, Inc. Metabolic energy monitoring system
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US20100100048A1 (en) * 2003-10-27 2010-04-22 Novo Nordisk A/S Medical Skin Mountable Device
US20100125241A1 (en) * 2008-11-17 2010-05-20 Disetronic Licensing, Ag Prandial Blood Glucose Excursion Optimization Method Via Computation of Time-Varying Optimal Insulin Profiles and System Thereof
US7727181B2 (en) 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US7736354B2 (en) 2004-09-09 2010-06-15 Plc Medical Systems, Inc. Patient hydration system with hydration state detection
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7758562B2 (en) 2004-09-09 2010-07-20 Plc Medical Systems, Inc. Patient hydration system with a redundant monitoring of hydration fluid infusion
US7758563B2 (en) 2004-09-09 2010-07-20 Plc Medical Systems, Inc. Patient hydration monitoring and maintenance system and method for use with administration of a diuretic
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2010089304A1 (en) * 2009-02-04 2010-08-12 Sanofi-Aventis Deutschland Gmbh Medical device and method for providing information for glycemic control
US20100201196A1 (en) * 2005-08-16 2010-08-12 Medtronic Minimed, Inc. Method and apparatus for predicting end of battery life
US20100204677A1 (en) * 2004-09-09 2010-08-12 Mark Gelfand Patient hydration system and method
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
CN101856525A (en) * 2010-06-07 2010-10-13 包金明;芮成胜 Medical infusion liquid drop speed monitoring method and device
US7822455B2 (en) 2006-02-28 2010-10-26 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US20100274217A1 (en) * 2009-01-28 2010-10-28 Da Silva J Ricardo Fluid replacement device
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US20100280442A1 (en) * 2002-12-19 2010-11-04 Medtronic Minimed, Inc. Replay device for transferring information between a sensor system and a fluid delivery system
US7837667B2 (en) 2004-09-09 2010-11-23 Plc Medical Systems, Inc. Patient hydration system with abnormal condition sensing
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7892197B2 (en) 2007-09-19 2011-02-22 Fresenius Medical Care Holdings, Inc. Automatic prime of an extracorporeal blood circuit
US20110046547A1 (en) * 2002-11-12 2011-02-24 Mantle Ross E Device for the Extravascular Recirculation of Liquid in Body Cavities
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US7922458B2 (en) 2002-10-09 2011-04-12 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US7942844B2 (en) 2006-04-28 2011-05-17 Medtronic Minimed, Inc. Remote monitoring for networked fluid infusion systems
US7948370B2 (en) 2005-10-31 2011-05-24 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US20110137255A1 (en) * 2003-10-27 2011-06-09 Novo Nordisk A/S Medical Skin Mountable Device
US20110152644A1 (en) * 2009-12-18 2011-06-23 Wolfgang Heck Protective container for holding reusable diagnostic components
US20110152770A1 (en) * 2009-07-30 2011-06-23 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US20110184653A1 (en) * 2010-01-22 2011-07-28 Lifescan, Inc. Analyte testing method and system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8047811B2 (en) 2002-10-09 2011-11-01 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US8073008B2 (en) 2006-04-28 2011-12-06 Medtronic Minimed, Inc. Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network
US8075513B2 (en) 2006-10-13 2011-12-13 Plc Medical Systems, Inc. Patient connection system for a balance hydration unit
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8112138B2 (en) 2005-06-03 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US8116840B2 (en) 2003-10-31 2012-02-14 Abbott Diabetes Care Inc. Method of calibrating of an analyte-measurement device, and associated methods, devices and systems
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8135548B2 (en) 2006-10-26 2012-03-13 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8140142B2 (en) 2007-04-14 2012-03-20 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8149117B2 (en) 2007-05-08 2012-04-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8197444B1 (en) 2010-12-22 2012-06-12 Medtronic Minimed, Inc. Monitoring the seating status of a fluid reservoir in a fluid infusion device
US8211016B2 (en) 2006-10-25 2012-07-03 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8252229B2 (en) 2008-04-10 2012-08-28 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US8251904B2 (en) 2005-06-09 2012-08-28 Roche Diagnostics Operations, Inc. Device and method for insulin dosing
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8344847B2 (en) 2009-07-09 2013-01-01 Medtronic Minimed, Inc. Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8386042B2 (en) 2009-11-03 2013-02-26 Medtronic Minimed, Inc. Omnidirectional accelerometer device and medical device incorporating same
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US8439960B2 (en) 2007-07-09 2013-05-14 Velomedix, Inc. Hypothermia devices and methods
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8449524B2 (en) 2007-10-10 2013-05-28 Optiscan Biomedical Corporation Fluid component analysis systems and methods for glucose monitoring and control
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8460243B2 (en) * 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8467972B2 (en) 2009-04-28 2013-06-18 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US8474332B2 (en) 2010-10-20 2013-07-02 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8483967B2 (en) 2009-04-29 2013-07-09 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US8479595B2 (en) 2010-10-20 2013-07-09 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8487758B2 (en) 2009-09-02 2013-07-16 Medtronic Minimed, Inc. Medical device having an intelligent alerting scheme, and related operating methods
US8495918B2 (en) 2010-10-20 2013-07-30 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US8514086B2 (en) 2009-08-31 2013-08-20 Abbott Diabetes Care Inc. Displays for a medical device
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8515517B2 (en) 2006-10-02 2013-08-20 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8523803B1 (en) 2012-03-20 2013-09-03 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
US8545403B2 (en) 2005-12-28 2013-10-01 Abbott Diabetes Care Inc. Medical device insertion
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US8564447B2 (en) 2011-03-18 2013-10-22 Medtronic Minimed, Inc. Battery life indication techniques for an electronic device
US8562565B2 (en) 2010-10-15 2013-10-22 Medtronic Minimed, Inc. Battery shock absorber for a portable medical device
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US8574201B2 (en) 2009-12-22 2013-11-05 Medtronic Minimed, Inc. Syringe piston with check valve seal
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8593109B2 (en) 2006-03-31 2013-11-26 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8603027B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Occlusion detection using pulse-width modulation and medical device incorporating same
US8603026B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
US8603033B2 (en) 2010-10-15 2013-12-10 Medtronic Minimed, Inc. Medical device and related assembly having an offset element for a piezoelectric speaker
US8603032B2 (en) 2010-10-15 2013-12-10 Medtronic Minimed, Inc. Medical device with membrane keypad sealing element, and related manufacturing method
US20130331961A1 (en) * 2012-06-11 2013-12-12 General Electric Company Data exchange system providing flexible and robust handling of units of measure
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8614596B2 (en) 2011-02-28 2013-12-24 Medtronic Minimed, Inc. Systems and methods for initializing a voltage bus and medical devices incorporating same
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
US8617069B2 (en) 2007-06-21 2013-12-31 Abbott Diabetes Care Inc. Health monitor
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US8628510B2 (en) 2010-12-22 2014-01-14 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US20140039383A1 (en) * 2007-10-09 2014-02-06 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8690855B2 (en) * 2010-12-22 2014-04-08 Medtronic Minimed, Inc. Fluid reservoir seating procedure for a fluid infusion device
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8755269B2 (en) 2009-12-23 2014-06-17 Medtronic Minimed, Inc. Ranking and switching of wireless channels in a body area network of medical devices
US8764657B2 (en) 2010-03-24 2014-07-01 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8798934B2 (en) 2009-07-23 2014-08-05 Abbott Diabetes Care Inc. Real time management of data relating to physiological control of glucose levels
US8795252B2 (en) 2008-08-31 2014-08-05 Abbott Diabetes Care Inc. Robust closed loop control and methods
US8808269B2 (en) 2012-08-21 2014-08-19 Medtronic Minimed, Inc. Reservoir plunger position monitoring and medical device incorporating same
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US8864726B2 (en) 2011-02-22 2014-10-21 Medtronic Minimed, Inc. Pressure vented fluid reservoir having a movable septum
US8870818B2 (en) 2012-11-15 2014-10-28 Medtronic Minimed, Inc. Systems and methods for alignment and detection of a consumable component
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8920381B2 (en) 2013-04-12 2014-12-30 Medtronic Minimed, Inc. Infusion set with improved bore configuration
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9018893B2 (en) 2011-03-18 2015-04-28 Medtronic Minimed, Inc. Power control techniques for an electronic device
US9033924B2 (en) 2013-01-18 2015-05-19 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072425B1 (en) * 2014-03-04 2015-07-07 Stuart Bogema Method of providing a proper on-site evidence chain for a combined drug test/DNA preservation protocol
US9101305B2 (en) 2011-03-09 2015-08-11 Medtronic Minimed, Inc. Glucose sensor product and related manufacturing and packaging methods
US20150223732A1 (en) * 2009-11-06 2015-08-13 Crisi Medical Systems, Inc. Medication Injection Site and Data Collection System
US9107994B2 (en) 2013-01-18 2015-08-18 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9259528B2 (en) 2013-08-22 2016-02-16 Medtronic Minimed, Inc. Fluid infusion device with safety coupling
US9308321B2 (en) 2013-02-18 2016-04-12 Medtronic Minimed, Inc. Infusion device having gear assembly initialization
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US9333292B2 (en) 2012-06-26 2016-05-10 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US9364609B2 (en) 2012-08-30 2016-06-14 Medtronic Minimed, Inc. Insulin on board compensation for a closed-loop insulin infusion system
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US9393399B2 (en) 2011-02-22 2016-07-19 Medtronic Minimed, Inc. Sealing assembly for a fluid reservoir of a fluid infusion device
US9399096B2 (en) 2014-02-06 2016-07-26 Medtronic Minimed, Inc. Automatic closed-loop control adjustments and infusion systems incorporating same
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9402949B2 (en) 2013-08-13 2016-08-02 Medtronic Minimed, Inc. Detecting conditions associated with medical device operations using matched filters
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US9433731B2 (en) 2013-07-19 2016-09-06 Medtronic Minimed, Inc. Detecting unintentional motor motion and infusion device incorporating same
US9433718B2 (en) 2013-03-15 2016-09-06 Fresenius Medical Care Holdings, Inc. Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device
US9463309B2 (en) 2011-02-22 2016-10-11 Medtronic Minimed, Inc. Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US9486571B2 (en) 2013-12-26 2016-11-08 Tandem Diabetes Care, Inc. Safety processor for wireless control of a drug delivery device
CN106133731A (en) * 2014-12-04 2016-11-16 美敦力迷你迈德公司 Advance diagnosis of infusion device operating mode viability
US9522223B2 (en) 2013-01-18 2016-12-20 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US9532737B2 (en) 2011-02-28 2017-01-03 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9565718B2 (en) 2013-09-10 2017-02-07 Tandem Diabetes Care, Inc. System and method for detecting and transmitting medical device alarm with a smartphone application
US9566377B2 (en) 2013-03-15 2017-02-14 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination in a fluid cartridge with multiple passageways, using a radio frequency device situated within a magnetic field
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9598210B2 (en) 2007-12-27 2017-03-21 Medtronic Minimed, Inc. Reservoir pressure equalization systems and methods
US9597439B2 (en) 2013-03-15 2017-03-21 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field
US9610401B2 (en) 2012-01-13 2017-04-04 Medtronic Minimed, Inc. Infusion set component with modular fluid channel element
US9610402B2 (en) 2014-03-24 2017-04-04 Medtronic Minimed, Inc. Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device
US9615780B2 (en) 2007-04-14 2017-04-11 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9622670B2 (en) 2010-07-09 2017-04-18 Potrero Medical, Inc. Method and apparatus for pressure measurement
US9623179B2 (en) 2012-08-30 2017-04-18 Medtronic Minimed, Inc. Safeguarding techniques for a closed-loop insulin infusion system
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9662445B2 (en) 2012-08-30 2017-05-30 Medtronic Minimed, Inc. Regulating entry into a closed-loop operating mode of an insulin infusion system
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9681828B2 (en) 2014-05-01 2017-06-20 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for forming such sensors
US9694132B2 (en) 2013-12-19 2017-07-04 Medtronic Minimed, Inc. Insertion device for insertion set
US9713664B2 (en) 2013-03-15 2017-07-25 Fresenius Medical Care Holdings, Inc. Nuclear magnetic resonance module for a dialysis machine
US9737656B2 (en) 2013-12-26 2017-08-22 Tandem Diabetes Care, Inc. Integration of infusion pump with remote electronic device
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9750877B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Predicted time to assess and/or control a glycemic state
US9750878B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Closed-loop control of glucose according to a predicted blood glucose trajectory
US9772386B2 (en) 2013-03-15 2017-09-26 Fresenius Medical Care Holdings, Inc. Dialysis system with sample concentration determination device using magnet and radio frequency coil assemblies
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US9833564B2 (en) 2014-11-25 2017-12-05 Medtronic Minimed, Inc. Fluid conduit assembly with air venting features
US9833563B2 (en) 2014-09-26 2017-12-05 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US9839753B2 (en) 2014-09-26 2017-12-12 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US9839741B2 (en) 2011-02-22 2017-12-12 Medtronic Minimed, Inc. Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir
US9849240B2 (en) 2013-12-12 2017-12-26 Medtronic Minimed, Inc. Data modification for predictive operations and devices incorporating same
US9849239B2 (en) 2012-08-30 2017-12-26 Medtronic Minimed, Inc. Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system
US9861748B2 (en) 2014-02-06 2018-01-09 Medtronic Minimed, Inc. User-configurable closed-loop notifications and infusion systems incorporating same
US9878096B2 (en) 2012-08-30 2018-01-30 Medtronic Minimed, Inc. Generation of target glucose values for a closed-loop operating mode of an insulin infusion system
US9878095B2 (en) 2015-06-22 2018-01-30 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements
US9880528B2 (en) 2013-08-21 2018-01-30 Medtronic Minimed, Inc. Medical devices and related updating methods and systems
US9879668B2 (en) 2015-06-22 2018-01-30 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor
US9889257B2 (en) 2013-08-21 2018-02-13 Medtronic Minimed, Inc. Systems and methods for updating medical devices
US9895490B2 (en) 2010-12-22 2018-02-20 Medtronic Minimed, Inc. Occlusion detection for a fluid infusion device
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9937292B2 (en) 2014-12-09 2018-04-10 Medtronic Minimed, Inc. Systems for filling a fluid infusion device reservoir
US9937293B2 (en) 2004-02-26 2018-04-10 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US9943645B2 (en) 2014-12-04 2018-04-17 Medtronic Minimed, Inc. Methods for operating mode transitions and related infusion devices and systems
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9980670B2 (en) 2002-11-05 2018-05-29 Abbott Diabetes Care Inc. Sensor inserter assembly
US9987422B2 (en) 2015-03-18 2018-06-05 Medtronic Minimed, Inc. Fluid infusion patch pump device with automatic startup feature

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183412B2 (en) *
US3631847A (en) * 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
US4212738A (en) * 1977-03-28 1980-07-15 Akzo N.V. Artificial kidney
US4270532A (en) * 1977-12-28 1981-06-02 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4373527A (en) * 1979-04-27 1983-02-15 The Johns Hopkins University Implantable, programmable medication infusion system
US4395259A (en) * 1980-09-22 1983-07-26 Siemens Aktiengesellschaft Device for the infusion of fluids into the human or animal body
US4433072A (en) * 1978-12-15 1984-02-21 Hospal-Sodip, S.A. Mixtures of polymers for medical use
US4443218A (en) * 1982-09-09 1984-04-17 Infusaid Corporation Programmable implantable infusate pump
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4562751A (en) * 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4671288A (en) * 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US4678408A (en) * 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4731051A (en) * 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4803625A (en) * 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4809697A (en) * 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US4826810A (en) * 1983-12-16 1989-05-02 Aoki Thomas T System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof
US4898578A (en) * 1988-01-26 1990-02-06 Baxter International Inc. Drug infusion system with calculator
US4935105A (en) * 1987-02-24 1990-06-19 Imperial Chemical Industries Plc Methods of operating enzyme electrode sensors
US5003298A (en) * 1986-01-15 1991-03-26 Karel Havel Variable color digital display for emphasizing position of decimal point
US5011468A (en) * 1987-05-29 1991-04-30 Retroperfusion Systems, Inc. Retroperfusion and retroinfusion control apparatus, system and method
US5019974A (en) * 1987-05-01 1991-05-28 Diva Medical Systems Bv Diabetes management system and apparatus
US5078683A (en) * 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
US5080653A (en) * 1990-04-16 1992-01-14 Pacesetter Infusion, Ltd. Infusion pump with dual position syringe locator
US5097122A (en) * 1990-04-16 1992-03-17 Pacesetter Infusion, Ltd. Medication infusion system having optical motion sensor to detect drive mechanism malfunction
US5100380A (en) * 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US5101814A (en) * 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5108819A (en) * 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5284140A (en) * 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
US5299571A (en) * 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5317506A (en) * 1989-01-30 1994-05-31 Abbott Laboratories Infusion fluid management system
US5320725A (en) * 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5411647A (en) * 1992-11-23 1995-05-02 Eli Lilly And Company Techniques to improve the performance of electrochemical sensors
US5417222A (en) * 1994-01-21 1995-05-23 Hewlett-Packard Company Patient monitoring system
US5482473A (en) * 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5485408A (en) * 1992-09-09 1996-01-16 Sims Deltec, Inc. Pump simulation apparatus
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5507288A (en) * 1994-05-05 1996-04-16 Boehringer Mannheim Gmbh Analytical system for monitoring a substance to be analyzed in patient-blood
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5594638A (en) * 1993-12-29 1997-01-14 First Opinion Corporation Computerized medical diagnostic system including re-enter function and sensitivity factors
US5593390A (en) * 1994-03-09 1997-01-14 Visionary Medical Products, Inc. Medication delivery device with a microprocessor and characteristic monitor
US5609060A (en) * 1995-04-28 1997-03-11 Dentsleeve Pty Limited Multiple channel perfused manometry apparatus and a method of operation of such a device
US5626144A (en) * 1994-05-23 1997-05-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5630710A (en) * 1994-03-09 1997-05-20 Baxter International Inc. Ambulatory infusion pump
US5750926A (en) * 1995-08-16 1998-05-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed electrical feedthrough for use with implantable electronic devices
US5764159A (en) * 1994-02-16 1998-06-09 Debiotech S.A. Apparatus for remotely monitoring controllable devices
US5772635A (en) * 1995-05-15 1998-06-30 Alaris Medical Systems, Inc. Automated infusion system with dose rate calculator
US5777060A (en) * 1995-03-27 1998-07-07 Minimed, Inc. Silicon-containing biocompatible membranes
US5779665A (en) * 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US5786439A (en) * 1996-10-24 1998-07-28 Minimed Inc. Hydrophilic, swellable coatings for biosensors
US5861018A (en) * 1996-05-28 1999-01-19 Telecom Medical Inc. Ultrasound transdermal communication system and method
US5868669A (en) * 1993-12-29 1999-02-09 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5871465A (en) * 1994-11-25 1999-02-16 I-Flow Corporation Remotely programmable infusion system
US5879163A (en) * 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5885245A (en) * 1996-08-02 1999-03-23 Sabratek Corporation Medical apparatus with remote virtual input device
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5899855A (en) * 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5904708A (en) * 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US5913310A (en) * 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5917346A (en) * 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
US5918603A (en) * 1994-05-23 1999-07-06 Health Hero Network, Inc. Method for treating medical conditions using a microprocessor-based video game
US6032119A (en) * 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US6043437A (en) * 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
US6081736A (en) * 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6183412B1 (en) * 1997-10-02 2001-02-06 Micromed Technology, Inc. Implantable pump system
US6246992B1 (en) * 1996-10-16 2001-06-12 Health Hero Network, Inc. Multiple patient monitoring system for proactive health management
US6248067B1 (en) * 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6408330B1 (en) * 1997-04-14 2002-06-18 Delahuerga Carlos Remote data collecting and address providing method and apparatus
US20020082665A1 (en) * 1999-07-07 2002-06-27 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6503381B1 (en) * 1997-09-12 2003-01-07 Therasense, Inc. Biosensor
US20030061232A1 (en) * 2001-09-21 2003-03-27 Dun & Bradstreet Inc. Method and system for processing business data
US20030061234A1 (en) * 2001-09-25 2003-03-27 Ali Mohammed Zamshed Application location register routing
US20030078560A1 (en) * 2001-09-07 2003-04-24 Miller Michael E. Method and system for non-vascular sensor implantation
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6560741B1 (en) * 1999-02-24 2003-05-06 Datastrip (Iom) Limited Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US20030088166A1 (en) * 1998-03-04 2003-05-08 Therasense, Inc. Electrochemical analyte sensor
US6579690B1 (en) * 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US6676816B2 (en) * 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US6689265B2 (en) * 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
US20040064133A1 (en) * 2002-09-27 2004-04-01 Medtronic-Minimed Implantable sensor method and system
US20040064156A1 (en) * 2002-09-27 2004-04-01 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
US20040074785A1 (en) * 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them
US6733471B1 (en) * 1998-03-16 2004-05-11 Medtronic, Inc. Hemostatic system and components for extracorporeal circuit
US20040093167A1 (en) * 2002-11-08 2004-05-13 Braig James R. Analyte detection system with software download capabilities
US6746582B2 (en) * 2000-05-12 2004-06-08 Therasense, Inc. Electrodes with multilayer membranes and methods of making the electrodes
US20040111017A1 (en) * 1999-06-18 2004-06-10 Therasense, Inc. Mass transport limited in vivo analyte sensor
US6749740B2 (en) * 1999-11-04 2004-06-15 Therasense, Inc. Small volume in vitro analyte sensor and methods

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2758467C2 (en) 1977-12-28 1985-04-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4559037A (en) 1977-12-28 1985-12-17 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
US4685903A (en) 1984-01-06 1987-08-11 Pacesetter Infusion, Ltd. External infusion pump apparatus
US4550731A (en) 1984-03-07 1985-11-05 Cordis Corporation Acquisition circuit for cardiac pacer
US4542532A (en) 1984-03-09 1985-09-17 Medtronic, Inc. Dual-antenna transceiver
CA1254091A (en) 1984-09-28 1989-05-16 Vladimir Feingold Implantable medication infusion system
US4781798A (en) 1985-04-19 1988-11-01 The Regents Of The University Of California Transparent multi-oxygen sensor array and method of using same
US4703756A (en) 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US5041086A (en) 1987-12-04 1991-08-20 Pacesetter Infusion, Ltd. Clinical configuration of multimode medication infusion system
US5025374A (en) 1987-12-09 1991-06-18 Arch Development Corp. Portable system for choosing pre-operative patient test
GB8811591D0 (en) 1988-05-17 1988-06-22 Newland M Personal medication apparatus
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5264105A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
US5262035A (en) 1989-08-02 1993-11-16 E. Heller And Company Enzyme electrodes
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5165407A (en) 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
CA2050057A1 (en) 1991-03-04 1992-09-05 Adam Heller Interferant eliminating biosensors
US5262305A (en) 1991-03-04 1993-11-16 E. Heller & Company Interferant eliminating biosensors
US5247434A (en) 1991-04-19 1993-09-21 Althin Medical, Inc. Method and apparatus for kidney dialysis
JPH08275927A (en) 1992-02-13 1996-10-22 Nasa Corp:Kk Homestay medical care system and medical device used in this system
US5935099A (en) 1992-09-09 1999-08-10 Sims Deltec, Inc. Drug pump systems and methods
US5376070A (en) 1992-09-29 1994-12-27 Minimed Inc. Data transfer system for an infusion pump
US5960403A (en) 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5371687A (en) 1992-11-20 1994-12-06 Boehringer Mannheim Corporation Glucose test data acquisition and management system
US5357427A (en) 1993-03-15 1994-10-18 Digital Equipment Corporation Remote monitoring of high-risk patients using artificial intelligence
US5350411A (en) 1993-06-28 1994-09-27 Medtronic, Inc. Pacemaker telemetry system
US5368562A (en) 1993-07-30 1994-11-29 Pharmacia Deltec, Inc. Systems and methods for operating ambulatory medical devices such as drug delivery devices
DE4329229A1 (en) 1993-08-25 1995-03-09 Meditech Medizintechnik Gmbh Adaptive controlled pump control, in particular for adaptive patient-controlled analgesia (APCA)
US5791344A (en) 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5543326A (en) 1994-03-04 1996-08-06 Heller; Adam Biosensor including chemically modified enzymes
EP0672427A1 (en) 1994-03-17 1995-09-20 Siemens Elema AB System for infusion of medicine into the body of a patient
US5569186A (en) 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5940801A (en) 1994-04-26 1999-08-17 Health Hero Network, Inc. Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions
US5370622A (en) 1994-04-28 1994-12-06 Minimed Inc. Proctective case for a medication infusion pump
US5582593A (en) 1994-07-21 1996-12-10 Hultman; Barry W. Ambulatory medication delivery system
US5569187A (en) 1994-08-16 1996-10-29 Texas Instruments Incorporated Method and apparatus for wireless chemical supplying
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5685844A (en) 1995-01-06 1997-11-11 Abbott Laboratories Medicinal fluid pump having multiple stored protocols
US5586553A (en) 1995-02-16 1996-12-24 Minimed Inc. Transcutaneous sensor insertion set
US5814015A (en) 1995-02-24 1998-09-29 Harvard Clinical Technology, Inc. Infusion pump for at least one syringe
US5665065A (en) 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US6018289A (en) 1995-06-15 2000-01-25 Sekura; Ronald D. Prescription compliance device and method of using device
US5665222A (en) 1995-10-11 1997-09-09 E. Heller & Company Soybean peroxidase electrochemical sensor
US5972199A (en) 1995-10-11 1999-10-26 E. Heller & Company Electrochemical analyte sensors using thermostable peroxidase
US5788669A (en) 1995-11-22 1998-08-04 Sims Deltec, Inc. Pump tracking system
WO1997021456A1 (en) 1995-12-12 1997-06-19 The University Of Melbourne Field programmable intravenous infusion system
FI960636A (en) 1996-02-12 1997-08-13 Nokia Mobile Phones Ltd A method for monitoring the patient's state of health
FI118509B (en) 1996-02-12 2007-12-14 Nokia Oyj A method and apparatus for predicting a patient's blood glucose concentration
FR2748588B1 (en) 1996-05-07 1998-08-07 Soc Et Tech Set Device comprising at least one neural network for determining the amount of a substance to be administered to a patient, including insulin
US5807336A (en) 1996-08-02 1998-09-15 Sabratek Corporation Apparatus for monitoring and/or controlling a medical device
CA2271710A1 (en) 1996-11-08 1998-05-14 Linda L. Roman System for providing comprehensive health care and support
WO1998024358A3 (en) 1996-12-04 1999-04-29 Enact Health Management System System for downloading and reporting medical information
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
JP3394262B2 (en) 1997-02-06 2003-04-07 イー.ヘラー アンド カンパニー Small volume in vitro analyte sensor
US6009339A (en) 1997-02-27 1999-12-28 Terumo Cardiovascular Systems Corporation Blood parameter measurement device
WO1998042407A1 (en) 1997-03-27 1998-10-01 Medtronic, Inc. Concepts to implement medconnect
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US5997476A (en) 1997-03-28 1999-12-07 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
EP0880936A3 (en) 1997-05-29 1999-03-24 Koji Akai Monitoring physical condition of a patient by telemetry
US5954643A (en) 1997-06-09 1999-09-21 Minimid Inc. Insertion set for a transcutaneous sensor
WO1998059487A1 (en) 1997-06-23 1998-12-30 Enact Health Management Systems Improved system for downloading and reporting medical information
US6130620A (en) 1997-08-11 2000-10-10 Electronic Monitoring Systems, Inc. Remote monitoring system
WO1999010801A1 (en) 1997-08-22 1999-03-04 Apex Inc. Remote computer control system
US6259937B1 (en) 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US5999848A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Daisy chainable sensors and stimulators for implantation in living tissue
US5999849A (en) 1997-09-12 1999-12-07 Alfred E. Mann Foundation Low power rectifier circuit for implantable medical device
US6119028A (en) 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6088608A (en) 1997-10-20 2000-07-11 Alfred E. Mann Foundation Electrochemical sensor and integrity tests therefor
FI107080B (en) 1997-10-27 2001-05-31 Nokia Mobile Phones Ltd Measuring Instruments
US6103033A (en) 1998-03-04 2000-08-15 Therasense, Inc. Process for producing an electrochemical biosensor
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6294281B1 (en) 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
JP4469504B2 (en) 1998-10-08 2010-05-26 メドトロニック ミニメド インコーポレイテッド Remote plasma monitor system
US20040158193A1 (en) 1999-02-10 2004-08-12 Baxter International Inc. Medical apparatus using selective graphical interface
JP2002536103A (en) 1999-02-12 2002-10-29 シグナス, インコーポレイテッド Devices and methods for frequent measurements of analyte present in a biological system
US6895263B2 (en) 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6669663B1 (en) 1999-04-30 2003-12-30 Medtronic, Inc. Closed loop medicament pump
JP2003502090A (en) 1999-06-17 2003-01-21 メドトロニック ミニメド インコーポレイテッド Characteristic monitor system for use with an analyte sensor
US7247138B2 (en) 1999-07-01 2007-07-24 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6513532B2 (en) 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
WO2001028495A3 (en) 1999-10-08 2002-07-11 Healthetech Inc Indirect calorimeter for weight control
DE60011286T2 (en) 1999-11-15 2005-07-14 Therasense, Inc., Alameda Transition metal complex compounds with a bidentate ligands containing an imidazole ring
EP1234265A1 (en) 1999-11-24 2002-08-28 Healthetech, Inc. Health management system with connection to remote computer system
US6623501B2 (en) 2000-04-05 2003-09-23 Therasense, Inc. Reusable ceramic skin-piercing device
US6591125B1 (en) 2000-06-27 2003-07-08 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
WO2002078512A8 (en) 2001-04-02 2004-12-02 Therasense Inc Blood glucose tracking apparatus and methods
US6932894B2 (en) 2001-05-15 2005-08-23 Therasense, Inc. Biosensor membranes composed of polymers containing heterocyclic nitrogens
US6671554B2 (en) 2001-09-07 2003-12-30 Medtronic Minimed, Inc. Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same
US7052591B2 (en) 2001-09-21 2006-05-30 Therasense, Inc. Electrodeposition of redox polymers and co-electrodeposition of enzymes by coordinative crosslinking
US20030212379A1 (en) 2002-02-26 2003-11-13 Bylund Adam David Systems and methods for remotely controlling medication infusion and analyte monitoring
US7138330B2 (en) 2002-09-27 2006-11-21 Medtronic Minimed, Inc. High reliability multilayer circuit substrates and methods for their formation
US20040061232A1 (en) 2002-09-27 2004-04-01 Medtronic Minimed, Inc. Multilayer substrate
CA2501825C (en) 2002-10-09 2009-12-01 Therasense, Inc. Fluid delivery device, system and method
US20040122353A1 (en) 2002-12-19 2004-06-24 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
US7201977B2 (en) 2004-03-23 2007-04-10 Seagate Technology Llc Anti-ferromagnetically coupled granular-continuous magnetic recording media

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183412B2 (en) *
US3631847A (en) * 1966-03-04 1972-01-04 James C Hobbs Method and apparatus for injecting fluid into the vascular system
US4212738A (en) * 1977-03-28 1980-07-15 Akzo N.V. Artificial kidney
US4270532A (en) * 1977-12-28 1981-06-02 Siemens Aktiengesellschaft Device for the pre-programmable infusion of liquids
US4433072A (en) * 1978-12-15 1984-02-21 Hospal-Sodip, S.A. Mixtures of polymers for medical use
US4373527A (en) * 1979-04-27 1983-02-15 The Johns Hopkins University Implantable, programmable medication infusion system
US4373527B1 (en) * 1979-04-27 1995-06-27 Univ Johns Hopkins Implantable programmable medication infusion system
US4731051A (en) * 1979-04-27 1988-03-15 The Johns Hopkins University Programmable control means for providing safe and controlled medication infusion
US4395259A (en) * 1980-09-22 1983-07-26 Siemens Aktiengesellschaft Device for the infusion of fluids into the human or animal body
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4443218A (en) * 1982-09-09 1984-04-17 Infusaid Corporation Programmable implantable infusate pump
US4826810A (en) * 1983-12-16 1989-05-02 Aoki Thomas T System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof
US4562751A (en) * 1984-01-06 1986-01-07 Nason Clyde K Solenoid drive apparatus for an external infusion pump
US4678408A (en) * 1984-01-06 1987-07-07 Pacesetter Infusion, Ltd. Solenoid drive apparatus for an external infusion pump
US5100380A (en) * 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US4671288A (en) * 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US5003298A (en) * 1986-01-15 1991-03-26 Karel Havel Variable color digital display for emphasizing position of decimal point
US4731726A (en) * 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
US4803625A (en) * 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4935105A (en) * 1987-02-24 1990-06-19 Imperial Chemical Industries Plc Methods of operating enzyme electrode sensors
US5019974A (en) * 1987-05-01 1991-05-28 Diva Medical Systems Bv Diabetes management system and apparatus
US5011468A (en) * 1987-05-29 1991-04-30 Retroperfusion Systems, Inc. Retroperfusion and retroinfusion control apparatus, system and method
US4809697A (en) * 1987-10-14 1989-03-07 Siemens-Pacesetter, Inc. Interactive programming and diagnostic system for use with implantable pacemaker
US4898578A (en) * 1988-01-26 1990-02-06 Baxter International Inc. Drug infusion system with calculator
US5643212A (en) * 1989-01-30 1997-07-01 Coutre; James E. Infusion pump management system for suggesting an adapted course of therapy
US5317506A (en) * 1989-01-30 1994-05-31 Abbott Laboratories Infusion fluid management system
US5320725A (en) * 1989-08-02 1994-06-14 E. Heller & Company Electrode and method for the detection of hydrogen peroxide
US5101814A (en) * 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5403700A (en) * 1990-02-14 1995-04-04 Eli Lilly And Company Method of making a thin film electrical component
US5108819A (en) * 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5080653A (en) * 1990-04-16 1992-01-14 Pacesetter Infusion, Ltd. Infusion pump with dual position syringe locator
US5097122A (en) * 1990-04-16 1992-03-17 Pacesetter Infusion, Ltd. Medication infusion system having optical motion sensor to detect drive mechanism malfunction
US5078683A (en) * 1990-05-04 1992-01-07 Block Medical, Inc. Programmable infusion system
US6514718B2 (en) * 1991-03-04 2003-02-04 Therasense, Inc. Subcutaneous glucose electrode
US6881551B2 (en) * 1991-03-04 2005-04-19 Therasense, Inc. Subcutaneous glucose electrode
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5284140A (en) * 1992-02-11 1994-02-08 Eli Lilly And Company Acrylic copolymer membranes for biosensors
US5485408A (en) * 1992-09-09 1996-01-16 Sims Deltec, Inc. Pump simulation apparatus
US5899855A (en) * 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US5411647A (en) * 1992-11-23 1995-05-02 Eli Lilly And Company Techniques to improve the performance of electrochemical sensors
US5299571A (en) * 1993-01-22 1994-04-05 Eli Lilly And Company Apparatus and method for implantation of sensors
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5593852A (en) * 1993-12-02 1997-01-14 Heller; Adam Subcutaneous glucose electrode
US5594638A (en) * 1993-12-29 1997-01-14 First Opinion Corporation Computerized medical diagnostic system including re-enter function and sensitivity factors
US5868669A (en) * 1993-12-29 1999-02-09 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5417222A (en) * 1994-01-21 1995-05-23 Hewlett-Packard Company Patient monitoring system
US5764159A (en) * 1994-02-16 1998-06-09 Debiotech S.A. Apparatus for remotely monitoring controllable devices
US5593390A (en) * 1994-03-09 1997-01-14 Visionary Medical Products, Inc. Medication delivery device with a microprocessor and characteristic monitor
US5630710A (en) * 1994-03-09 1997-05-20 Baxter International Inc. Ambulatory infusion pump
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5507288A (en) * 1994-05-05 1996-04-16 Boehringer Mannheim Gmbh Analytical system for monitoring a substance to be analyzed in patient-blood
US5507288B1 (en) * 1994-05-05 1997-07-08 Boehringer Mannheim Gmbh Analytical system for monitoring a substance to be analyzed in patient-blood
US5482473A (en) * 1994-05-09 1996-01-09 Minimed Inc. Flex circuit connector
US5626144A (en) * 1994-05-23 1997-05-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5918603A (en) * 1994-05-23 1999-07-06 Health Hero Network, Inc. Method for treating medical conditions using a microprocessor-based video game
US5913310A (en) * 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5704366A (en) * 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5871465A (en) * 1994-11-25 1999-02-16 I-Flow Corporation Remotely programmable infusion system
US5777060A (en) * 1995-03-27 1998-07-07 Minimed, Inc. Silicon-containing biocompatible membranes
US5609060A (en) * 1995-04-28 1997-03-11 Dentsleeve Pty Limited Multiple channel perfused manometry apparatus and a method of operation of such a device
US5772635A (en) * 1995-05-15 1998-06-30 Alaris Medical Systems, Inc. Automated infusion system with dose rate calculator
US5750926A (en) * 1995-08-16 1998-05-12 Alfred E. Mann Foundation For Scientific Research Hermetically sealed electrical feedthrough for use with implantable electronic devices
US6689265B2 (en) * 1995-10-11 2004-02-10 Therasense, Inc. Electrochemical analyte sensors using thermostable soybean peroxidase
US5861018A (en) * 1996-05-28 1999-01-19 Telecom Medical Inc. Ultrasound transdermal communication system and method
US5879163A (en) * 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5885245A (en) * 1996-08-02 1999-03-23 Sabratek Corporation Medical apparatus with remote virtual input device
US6246992B1 (en) * 1996-10-16 2001-06-12 Health Hero Network, Inc. Multiple patient monitoring system for proactive health management
US5786439A (en) * 1996-10-24 1998-07-28 Minimed Inc. Hydrophilic, swellable coatings for biosensors
US6043437A (en) * 1996-12-20 2000-03-28 Alfred E. Mann Foundation Alumina insulation for coating implantable components and other microminiature devices
US6032119A (en) * 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5897493A (en) * 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US6408330B1 (en) * 1997-04-14 2002-06-18 Delahuerga Carlos Remote data collecting and address providing method and apparatus
US5779665A (en) * 1997-05-08 1998-07-14 Minimed Inc. Transdermal introducer assembly
US5917346A (en) * 1997-09-12 1999-06-29 Alfred E. Mann Foundation Low power current to frequency converter circuit for use in implantable sensors
US6503381B1 (en) * 1997-09-12 2003-01-07 Therasense, Inc. Biosensor
US6893545B2 (en) * 1997-09-12 2005-05-17 Therasense, Inc. Biosensor
US6183412B1 (en) * 1997-10-02 2001-02-06 Micromed Technology, Inc. Implantable pump system
US6081736A (en) * 1997-10-20 2000-06-27 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems adapted for long term use
US6579690B1 (en) * 1997-12-05 2003-06-17 Therasense, Inc. Blood analyte monitoring through subcutaneous measurement
US20030088166A1 (en) * 1998-03-04 2003-05-08 Therasense, Inc. Electrochemical analyte sensor
US6733471B1 (en) * 1998-03-16 2004-05-11 Medtronic, Inc. Hemostatic system and components for extracorporeal circuit
US5904708A (en) * 1998-03-19 1999-05-18 Medtronic, Inc. System and method for deriving relative physiologic signals
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6565509B1 (en) * 1998-04-30 2003-05-20 Therasense, Inc. Analyte monitoring device and methods of use
US6554798B1 (en) * 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6248067B1 (en) * 1999-02-05 2001-06-19 Minimed Inc. Analyte sensor and holter-type monitor system and method of using the same
US6560741B1 (en) * 1999-02-24 2003-05-06 Datastrip (Iom) Limited Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same
US20040111017A1 (en) * 1999-06-18 2004-06-10 Therasense, Inc. Mass transport limited in vivo analyte sensor
US20020082665A1 (en) * 1999-07-07 2002-06-27 Medtronic, Inc. System and method of communicating between an implantable medical device and a remote computer system or health care provider
US6749740B2 (en) * 1999-11-04 2004-06-15 Therasense, Inc. Small volume in vitro analyte sensor and methods
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6746582B2 (en) * 2000-05-12 2004-06-08 Therasense, Inc. Electrodes with multilayer membranes and methods of making the electrodes
US6676816B2 (en) * 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US20030078560A1 (en) * 2001-09-07 2003-04-24 Miller Michael E. Method and system for non-vascular sensor implantation
US20030061232A1 (en) * 2001-09-21 2003-03-27 Dun & Bradstreet Inc. Method and system for processing business data
US20030061234A1 (en) * 2001-09-25 2003-03-27 Ali Mohammed Zamshed Application location register routing
US20040064156A1 (en) * 2002-09-27 2004-04-01 Medtronic Minimed, Inc. Method and apparatus for enhancing the integrity of an implantable sensor device
US20040064133A1 (en) * 2002-09-27 2004-04-01 Medtronic-Minimed Implantable sensor method and system
US20040074785A1 (en) * 2002-10-18 2004-04-22 Holker James D. Analyte sensors and methods for making them
US20040093167A1 (en) * 2002-11-08 2004-05-13 Braig James R. Analyte detection system with software download capabilities

Cited By (617)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011331B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8357091B2 (en) 1998-04-30 2013-01-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8353829B2 (en) 1998-04-30 2013-01-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346336B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8380273B2 (en) 1998-04-30 2013-02-19 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8391945B2 (en) 1998-04-30 2013-03-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8306598B2 (en) 1998-04-30 2012-11-06 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8275439B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8273022B2 (en) 1998-04-30 2012-09-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8265726B2 (en) 1998-04-30 2012-09-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8260392B2 (en) 1998-04-30 2012-09-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8366614B2 (en) 1998-04-30 2013-02-05 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8409131B2 (en) 1998-04-30 2013-04-02 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8255031B2 (en) 1998-04-30 2012-08-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8235896B2 (en) 1998-04-30 2012-08-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8231532B2 (en) 1998-04-30 2012-07-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8744545B2 (en) 1998-04-30 2014-06-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226558B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8774887B2 (en) 1998-04-30 2014-07-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8738109B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734348B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8840553B2 (en) 1998-04-30 2014-09-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8734346B2 (en) 1998-04-30 2014-05-27 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8880137B2 (en) 1998-04-30 2014-11-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226557B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8226555B2 (en) 1998-04-30 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8224413B2 (en) 1998-04-30 2012-07-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8473021B2 (en) 1998-04-30 2013-06-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8175673B2 (en) 1998-04-30 2012-05-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8672844B2 (en) 1998-04-30 2014-03-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8162829B2 (en) 1998-04-30 2012-04-24 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326714B2 (en) 1998-04-30 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8597189B2 (en) 1998-04-30 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9072477B2 (en) 1998-04-30 2015-07-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066694B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066697B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8372005B2 (en) 1998-04-30 2013-02-12 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9042953B2 (en) 1998-04-30 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8617071B2 (en) 1998-04-30 2013-12-31 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7885699B2 (en) 1998-04-30 2011-02-08 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8670815B2 (en) 1998-04-30 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7869853B1 (en) 1998-04-30 2011-01-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8666469B2 (en) 1998-04-30 2014-03-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8622906B2 (en) 1998-04-30 2014-01-07 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641619B2 (en) 1998-04-30 2014-02-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8660627B2 (en) 1998-04-30 2014-02-25 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9014773B2 (en) 1998-04-30 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8649841B2 (en) 1998-04-30 2014-02-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8177716B2 (en) 1998-04-30 2012-05-15 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9610034B2 (en) 2001-01-02 2017-04-04 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9011332B2 (en) 2001-01-02 2015-04-21 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8668645B2 (en) 2001-01-02 2014-03-11 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9498159B2 (en) 2001-01-02 2016-11-22 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8236242B2 (en) 2001-04-02 2012-08-07 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US9477811B2 (en) 2001-04-02 2016-10-25 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US8765059B2 (en) 2001-04-02 2014-07-01 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US8268243B2 (en) 2001-04-02 2012-09-18 Abbott Diabetes Care Inc. Blood glucose tracking apparatus and methods
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US8343093B2 (en) 2002-10-09 2013-01-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7766864B2 (en) * 2002-10-09 2010-08-03 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7993109B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US8029250B2 (en) 2002-10-09 2011-10-04 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US8029245B2 (en) 2002-10-09 2011-10-04 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US8047811B2 (en) 2002-10-09 2011-11-01 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7727181B2 (en) 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US8047812B2 (en) 2002-10-09 2011-11-01 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US7753873B2 (en) * 2002-10-09 2010-07-13 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7753874B2 (en) * 2002-10-09 2010-07-13 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7922458B2 (en) 2002-10-09 2011-04-12 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US9980670B2 (en) 2002-11-05 2018-05-29 Abbott Diabetes Care Inc. Sensor inserter assembly
US20110046547A1 (en) * 2002-11-12 2011-02-24 Mantle Ross E Device for the Extravascular Recirculation of Liquid in Body Cavities
US8622954B2 (en) 2002-12-19 2014-01-07 Medtronic Minimed, Inc. Relay device for transferring information between a sensor system and a fluid delivery system
US20100280442A1 (en) * 2002-12-19 2010-11-04 Medtronic Minimed, Inc. Replay device for transferring information between a sensor system and a fluid delivery system
US8622903B2 (en) 2002-12-31 2014-01-07 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US8187183B2 (en) 2002-12-31 2012-05-29 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20040215492A1 (en) * 2003-01-30 2004-10-28 Choi Soo Bong Method for controlling insulin pump through internet
US20070052543A1 (en) * 2003-03-13 2007-03-08 Albarado Jason P Enclosure system allowing for hot work within the vicinity of flammable and combustible material
US20050151661A1 (en) * 2003-03-13 2005-07-14 Albarado Jason P. Enclosure system for hot work within the vicinity of flammable or combustible material
US7518484B2 (en) * 2003-03-13 2009-04-14 Alford Safety Services, Inc. Enclosure system allowing for hot work within the vicinity of flammable and combustible material
US7193501B1 (en) 2003-03-13 2007-03-20 Alford Safety Services, Inc. Enclosure system allowing for hot work within the vicinity of flammable and combustible material
US20070120695A1 (en) * 2003-03-13 2007-05-31 Albarado Jason P Enclosure system allowing for hot work within the vicinity of flammable and combustible material
US7091848B2 (en) 2003-03-13 2006-08-15 Alford Safety Services, Inc. Enclosure system for hot work within the vicinity of flammable or combustible material
US8512246B2 (en) 2003-04-28 2013-08-20 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
US7231263B2 (en) * 2003-05-23 2007-06-12 Soo Bong Choi Method for controlling insulin pump through internet
US20070032891A1 (en) * 2003-05-23 2007-02-08 Choi Soo B Method for controlling insulin pump through internet
US20090284372A1 (en) * 2003-06-10 2009-11-19 Abbott Diabetes Care Inc. Glucose Measuring Device For Use In Personal Area Network
US8647269B2 (en) 2003-06-10 2014-02-11 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8512239B2 (en) * 2003-06-10 2013-08-20 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US9730584B2 (en) 2003-06-10 2017-08-15 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8460243B2 (en) * 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20090048501A1 (en) * 2003-07-15 2009-02-19 Therasense, Inc. Glucose measuring device integrated into a holster for a personal area network device
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US8029443B2 (en) 2003-07-15 2011-10-04 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US20060264835A1 (en) * 2003-10-21 2006-11-23 Novo Nordisk A/S Medical skin mountable device
US8062253B2 (en) 2003-10-21 2011-11-22 Novo Nordisk A/S Medical skin mountable device
US20100100048A1 (en) * 2003-10-27 2010-04-22 Novo Nordisk A/S Medical Skin Mountable Device
US20110137255A1 (en) * 2003-10-27 2011-06-09 Novo Nordisk A/S Medical Skin Mountable Device
US9592336B2 (en) 2003-10-27 2017-03-14 Novo Nordisk A/S Medical skin mountable device
US8116840B2 (en) 2003-10-31 2012-02-14 Abbott Diabetes Care Inc. Method of calibrating of an analyte-measurement device, and associated methods, devices and systems
US8219174B2 (en) 2003-10-31 2012-07-10 Abbott Diabetes Care Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8219175B2 (en) 2003-10-31 2012-07-10 Abbott Diabetes Care Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8684930B2 (en) 2003-10-31 2014-04-01 Abbott Diabetes Care Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9937293B2 (en) 2004-02-26 2018-04-10 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20060010098A1 (en) * 2004-06-04 2006-01-12 Goodnow Timothy T Diabetes care host-client architecture and data management system
US7758563B2 (en) 2004-09-09 2010-07-20 Plc Medical Systems, Inc. Patient hydration monitoring and maintenance system and method for use with administration of a diuretic
US8444623B2 (en) 2004-09-09 2013-05-21 Plc Medical Systems, Inc. Patient hydration method
US7758562B2 (en) 2004-09-09 2010-07-20 Plc Medical Systems, Inc. Patient hydration system with a redundant monitoring of hydration fluid infusion
US7736354B2 (en) 2004-09-09 2010-06-15 Plc Medical Systems, Inc. Patient hydration system with hydration state detection
US20080221512A1 (en) * 2004-09-09 2008-09-11 Da Silva J Ricardo Patient hydration system with taper down feature
US7938817B2 (en) 2004-09-09 2011-05-10 Plc Medical Systems, Inc. Patient hydration system and method
US20100234797A1 (en) * 2004-09-09 2010-09-16 Mark Gelfand Patient hydration system with bolus function
US20100280444A1 (en) * 2004-09-09 2010-11-04 Mark Gelfand Patient hydration system with abnormal reading detection
US8007460B2 (en) 2004-09-09 2011-08-30 Plc Medical Systems, Inc. Patient hydration system and method
US7837667B2 (en) 2004-09-09 2010-11-23 Plc Medical Systems, Inc. Patient hydration system with abnormal condition sensing
US9526833B2 (en) 2004-09-09 2016-12-27 Plc Medical Systems, Inc. Patient hydration system with bolus function
US20100280445A1 (en) * 2004-09-09 2010-11-04 Mark Gelfand Patient hydration system with taper down function
US20100204677A1 (en) * 2004-09-09 2010-08-12 Mark Gelfand Patient hydration system and method
US7727222B2 (en) 2004-09-09 2010-06-01 Plc Medical Systems, Inc. Patient hydration system with taper down feature
US20100280443A1 (en) * 2004-09-09 2010-11-04 Mark Gelfand Patient hydration system with redundant monitoring
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8410939B2 (en) 2005-02-08 2013-04-02 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8542122B2 (en) 2005-02-08 2013-09-24 Abbott Diabetes Care Inc. Glucose measurement device and methods using RFID
US9907470B2 (en) 2005-02-08 2018-03-06 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US20100063374A1 (en) * 2005-02-08 2010-03-11 Goodnow Timothy T Analyte meter including an RFID reader
US8390455B2 (en) 2005-02-08 2013-03-05 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8760297B2 (en) 2005-02-08 2014-06-24 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US9060805B2 (en) 2005-02-08 2015-06-23 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US9336423B2 (en) 2005-02-08 2016-05-10 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US8358210B2 (en) 2005-02-08 2013-01-22 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US20060226985A1 (en) * 2005-02-08 2006-10-12 Goodnow Timothy T RF tag on test strips, test strip vials and boxes
US8106780B2 (en) 2005-02-08 2012-01-31 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US8343092B2 (en) 2005-03-21 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US8029459B2 (en) 2005-03-21 2011-10-04 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US8029460B2 (en) 2005-03-21 2011-10-04 Abbott Diabetes Care Inc. Method and system for providing integrated medication infusion and analyte monitoring system
WO2006102412A3 (en) * 2005-03-21 2007-11-22 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
US8298172B2 (en) 2005-04-13 2012-10-30 Novo Nordisk A/S Medical skin mountable device and system
US20090131860A1 (en) * 2005-04-13 2009-05-21 Novo Nordisk A/S Medical Skin Mountable Device And System
US8747363B2 (en) 2005-04-13 2014-06-10 Novo Nordisk A/S Medical skin mountable device and system
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8653977B2 (en) 2005-05-17 2014-02-18 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US8089363B2 (en) 2005-05-17 2012-01-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US9750440B2 (en) 2005-05-17 2017-09-05 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US9332944B2 (en) 2005-05-17 2016-05-10 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7884729B2 (en) 2005-05-17 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US8471714B2 (en) 2005-05-17 2013-06-25 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
US8112138B2 (en) 2005-06-03 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US8251904B2 (en) 2005-06-09 2012-08-28 Roche Diagnostics Operations, Inc. Device and method for insulin dosing
US8663201B2 (en) 2005-08-16 2014-03-04 Medtronic Minimed, Inc. Infusion device
US20070060869A1 (en) * 2005-08-16 2007-03-15 Tolle Mike C V Controller device for an infusion pump
US20100201196A1 (en) * 2005-08-16 2010-08-12 Medtronic Minimed, Inc. Method and apparatus for predicting end of battery life
US20090227855A1 (en) * 2005-08-16 2009-09-10 Medtronic Minimed, Inc. Controller device for an infusion pump
US8106534B2 (en) 2005-08-16 2012-01-31 Medtronic Minimed, Inc. Method and apparatus for predicting end of battery life
US7731657B2 (en) 2005-08-30 2010-06-08 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US8602991B2 (en) 2005-08-30 2013-12-10 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
US20090118682A1 (en) * 2005-09-13 2009-05-07 Novo Nordisk A/S Reservoir Device With Inspection Aid For Detection Of Drug Condition
US8880138B2 (en) 2005-09-30 2014-11-04 Abbott Diabetes Care Inc. Device for channeling fluid and methods of use
US9480421B2 (en) 2005-09-30 2016-11-01 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US9775563B2 (en) 2005-09-30 2017-10-03 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US20070088333A1 (en) * 2005-10-13 2007-04-19 G&L Consulting, Llc Method and system for infusing an osmotic solute into a patient and providing feedback control of the infusing rate
US8394060B2 (en) 2005-10-17 2013-03-12 Novo Nordisk A/S Vented drug reservoir unit
US20110160670A1 (en) * 2005-10-17 2011-06-30 Novo Nordisk A/S Vented drug reservoir unit
US20080287870A1 (en) * 2005-10-17 2008-11-20 Nov Nordisk A/S Vented Drug Reservoir Unit
US20070106247A1 (en) * 2005-10-21 2007-05-10 Ceeben Systems, Inc. Method and apparatus for peritoneal hypothermia and/or resuscitation
US8672884B2 (en) 2005-10-21 2014-03-18 Velomedix, Inc. Method and apparatus for peritoneal hypothermia and/or resuscitation
US8638220B2 (en) 2005-10-31 2014-01-28 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US7948370B2 (en) 2005-10-31 2011-05-24 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US8915850B2 (en) 2005-11-01 2014-12-23 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9326716B2 (en) 2005-11-01 2016-05-03 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9078607B2 (en) 2005-11-01 2015-07-14 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8920319B2 (en) 2005-11-01 2014-12-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9669162B2 (en) 2005-11-04 2017-06-06 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US8585591B2 (en) 2005-11-04 2013-11-19 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US20070142767A1 (en) * 2005-12-12 2007-06-21 Marcel Frikart System with A Portable Patient Device and External Operating Part
US8758240B2 (en) * 2005-12-12 2014-06-24 Roche Diagnostics International Ag System with a portable patient device and external operating part
US8545403B2 (en) 2005-12-28 2013-10-01 Abbott Diabetes Care Inc. Medical device insertion
US9332933B2 (en) 2005-12-28 2016-05-10 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US9795331B2 (en) 2005-12-28 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US7697967B2 (en) 2005-12-28 2010-04-13 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8852101B2 (en) 2005-12-28 2014-10-07 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor insertion
US8734344B2 (en) 2006-01-30 2014-05-27 Abbott Diabetes Care Inc. On-body medical device securement
US7951080B2 (en) 2006-01-30 2011-05-31 Abbott Diabetes Care Inc. On-body medical device securement
US9326727B2 (en) 2006-01-30 2016-05-03 Abbott Diabetes Care Inc. On-body medical device securement
US7736310B2 (en) 2006-01-30 2010-06-15 Abbott Diabetes Care Inc. On-body medical device securement
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
US8029441B2 (en) 2006-02-28 2011-10-04 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US9031630B2 (en) 2006-02-28 2015-05-12 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7822455B2 (en) 2006-02-28 2010-10-26 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US9844329B2 (en) 2006-02-28 2017-12-19 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US8506482B2 (en) 2006-02-28 2013-08-13 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7826879B2 (en) 2006-02-28 2010-11-02 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US9364149B2 (en) 2006-02-28 2016-06-14 Abbott Diabetes Care Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US8543183B2 (en) 2006-03-31 2013-09-24 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US7801582B2 (en) 2006-03-31 2010-09-21 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US8593109B2 (en) 2006-03-31 2013-11-26 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8597575B2 (en) 2006-03-31 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9625413B2 (en) 2006-03-31 2017-04-18 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9380971B2 (en) 2006-03-31 2016-07-05 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9743863B2 (en) 2006-03-31 2017-08-29 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8086292B2 (en) 2006-03-31 2011-12-27 Abbott Diabetes Care Inc. Analyte monitoring and management system and methods therefor
US20070276545A1 (en) * 2006-04-28 2007-11-29 Smirnov Alexei V Adaptive response time closed loop control algorithm
WO2007127897A3 (en) * 2006-04-28 2008-09-18 Advanced Energy Ind Inc Adaptive response time closed loop control algorithm
US20070255126A1 (en) * 2006-04-28 2007-11-01 Moberg Sheldon B Data communication in networked fluid infusion systems
US7942844B2 (en) 2006-04-28 2011-05-17 Medtronic Minimed, Inc. Remote monitoring for networked fluid infusion systems
US20070258395A1 (en) * 2006-04-28 2007-11-08 Medtronic Minimed, Inc. Wireless data communication protocols for a medical device network
US8073008B2 (en) 2006-04-28 2011-12-06 Medtronic Minimed, Inc. Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network
US7603186B2 (en) 2006-04-28 2009-10-13 Advanced Energy Industries, Inc. Adaptive response time closed loop control algorithm
US20070253021A1 (en) * 2006-04-28 2007-11-01 Medtronic Minimed, Inc. Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers
US20070260174A1 (en) * 2006-05-05 2007-11-08 Searete Llc Detecting a failure to maintain a regimen
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US8376945B2 (en) 2006-08-09 2013-02-19 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US9408566B2 (en) 2006-08-09 2016-08-09 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US7653425B2 (en) 2006-08-09 2010-01-26 Abbott Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US9833181B2 (en) 2006-08-09 2017-12-05 Abbot Diabetes Care Inc. Method and system for providing calibration of an analyte sensor in an analyte monitoring system
US8870811B2 (en) 2006-08-31 2014-10-28 Fresenius Medical Care Holdings, Inc. Peritoneal dialysis systems and related methods
WO2008027967A1 (en) * 2006-08-31 2008-03-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US20080097283A1 (en) * 2006-08-31 2008-04-24 Plahey Kulwinder S Data communication system for peritoneal dialysis machine
EP2059277B1 (en) 2006-08-31 2015-08-19 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US8926550B2 (en) * 2006-08-31 2015-01-06 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US20080125693A1 (en) * 2006-08-31 2008-05-29 Gavin David A Peritoneal dialysis systems and related methods
EP2990065A1 (en) * 2006-08-31 2016-03-02 Fresenius Medical Care Holdings, Inc. Data communication system for peritoneal dialysis machine
US8862198B2 (en) 2006-09-10 2014-10-14 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US8333714B2 (en) 2006-09-10 2012-12-18 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
US9808186B2 (en) 2006-09-10 2017-11-07 Abbott Diabetes Care Inc. Method and system for providing an integrated analyte sensor insertion device and data processing unit
WO2008032238A2 (en) * 2006-09-13 2008-03-20 Koninklijke Philips Electronics N. V. Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin
US20090281518A1 (en) * 2006-09-13 2009-11-12 Koninklijke Philips Electronics N.V. Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin
WO2008032238A3 (en) * 2006-09-13 2008-11-06 Paul A J Ackermans Device for automatic adjustment of the dose of melatonin and/or delivery of melatonin
US8515517B2 (en) 2006-10-02 2013-08-20 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US9629578B2 (en) 2006-10-02 2017-04-25 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US9357959B2 (en) 2006-10-02 2016-06-07 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US9839383B2 (en) 2006-10-02 2017-12-12 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8075513B2 (en) 2006-10-13 2011-12-13 Plc Medical Systems, Inc. Patient connection system for a balance hydration unit
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9113828B2 (en) 2006-10-25 2015-08-25 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US9814428B2 (en) 2006-10-25 2017-11-14 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8216137B2 (en) 2006-10-25 2012-07-10 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8211016B2 (en) 2006-10-25 2012-07-03 Abbott Diabetes Care Inc. Method and system for providing analyte monitoring
US8135548B2 (en) 2006-10-26 2012-03-13 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8718958B2 (en) 2006-10-26 2014-05-06 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US9882660B2 (en) 2006-10-26 2018-01-30 Abbott Diabetes Care Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US9064107B2 (en) 2006-10-31 2015-06-23 Abbott Diabetes Care Inc. Infusion devices and methods
US20080200802A1 (en) * 2006-12-07 2008-08-21 Philometron, Inc. Platform for detection of tissue content and/or structural changes with closed-loop control in mammalian organisms
US20080214919A1 (en) * 2006-12-26 2008-09-04 Lifescan, Inc. System and method for implementation of glycemic control protocols
US8676601B2 (en) 2007-02-15 2014-03-18 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8417545B2 (en) 2007-02-15 2013-04-09 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8121857B2 (en) 2007-02-15 2012-02-21 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9801545B2 (en) 2007-03-01 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US20080234556A1 (en) * 2007-03-20 2008-09-25 Cardiac Pacemakers, Inc. Method and apparatus for sensing respiratory activities using sensor in lymphatic system
US20080249467A1 (en) * 2007-04-05 2008-10-09 Daniel Rogers Burnett Device and Method for Safe Access to a Body Cavity
US8100880B2 (en) 2007-04-05 2012-01-24 Velomedix, Inc. Automated therapy system and method
US8480648B2 (en) 2007-04-05 2013-07-09 Velomedix, Inc. Automated therapy system and method
US20080262418A1 (en) * 2007-04-05 2008-10-23 Daniel Rogers Burnett Automated Therapy System and Method
WO2008124644A1 (en) * 2007-04-05 2008-10-16 Velomedix, Inc Automated therapy system and method
US9615780B2 (en) 2007-04-14 2017-04-11 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8698615B2 (en) 2007-04-14 2014-04-15 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US7948369B2 (en) 2007-04-14 2011-05-24 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8427298B2 (en) 2007-04-14 2013-04-23 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage amplification in a medical device
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8937540B2 (en) 2007-04-14 2015-01-20 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8140142B2 (en) 2007-04-14 2012-03-20 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9402584B2 (en) 2007-04-14 2016-08-02 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9743866B2 (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8149103B2 (en) 2007-04-14 2012-04-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage amplification in a medical device
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9314198B2 (en) 2007-05-08 2016-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8362904B2 (en) 2007-05-08 2013-01-29 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9000929B2 (en) 2007-05-08 2015-04-07 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9949678B2 (en) 2007-05-08 2018-04-24 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9177456B2 (en) 2007-05-08 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8149117B2 (en) 2007-05-08 2012-04-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9035767B2 (en) 2007-05-08 2015-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9649057B2 (en) 2007-05-08 2017-05-16 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8593287B2 (en) 2007-05-08 2013-11-26 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9737249B2 (en) 2007-05-14 2017-08-22 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9804150B2 (en) 2007-05-14 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8571808B2 (en) 2007-05-14 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9125548B2 (en) 2007-05-14 2015-09-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8560038B2 (en) 2007-05-14 2013-10-15 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8682615B2 (en) 2007-05-14 2014-03-25 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9801571B2 (en) 2007-05-14 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8444560B2 (en) 2007-05-14 2013-05-21 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9797880B2 (en) 2007-05-14 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9060719B2 (en) 2007-05-14 2015-06-23 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8239166B2 (en) 2007-05-14 2012-08-07 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9483608B2 (en) 2007-05-14 2016-11-01 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8260558B2 (en) 2007-05-14 2012-09-04 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8103471B2 (en) 2007-05-14 2012-01-24 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9558325B2 (en) 2007-05-14 2017-01-31 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8140312B2 (en) 2007-05-14 2012-03-20 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8612163B2 (en) 2007-05-14 2013-12-17 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US8484005B2 (en) 2007-05-14 2013-07-09 Abbott Diabetes Care Inc. Method and system for determining analyte levels
US8182692B2 (en) 2007-05-29 2012-05-22 Fresenius Medical Care Holdings, Inc. Solutions, dialysates, and related methods
US20080296226A1 (en) * 2007-05-29 2008-12-04 Fresenius Medical Care Holdings, Inc. Solutions, Dialysates, and Related Methods
US8613703B2 (en) 2007-05-31 2013-12-24 Abbott Diabetes Care Inc. Insertion devices and methods
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
US8617069B2 (en) 2007-06-21 2013-12-31 Abbott Diabetes Care Inc. Health monitor
US8160900B2 (en) 2007-06-29 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US9913600B2 (en) 2007-06-29 2018-03-13 Abbott Diabetes Care Inc. Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US8439960B2 (en) 2007-07-09 2013-05-14 Velomedix, Inc. Hypothermia devices and methods
US9398872B2 (en) 2007-07-31 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
US7768386B2 (en) 2007-07-31 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090157202A1 (en) * 2007-08-10 2009-06-18 Smiths Medical Md Therapy rules for closed loop programming of medical devices
US9483615B2 (en) 2007-08-10 2016-11-01 Smiths Medical Asd, Inc. Communication of original and updated pump parameters for a medical infusion pump
US7892197B2 (en) 2007-09-19 2011-02-22 Fresenius Medical Care Holdings, Inc. Automatic prime of an extracorporeal blood circuit
US20140128803A1 (en) * 2007-10-09 2014-05-08 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20170076068A1 (en) * 2007-10-09 2017-03-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9452259B2 (en) * 2007-10-09 2016-09-27 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9597453B2 (en) * 2007-10-09 2017-03-21 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9586004B2 (en) * 2007-10-09 2017-03-07 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9572935B2 (en) * 2007-10-09 2017-02-21 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9827372B2 (en) * 2007-10-09 2017-11-28 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9572936B2 (en) * 2007-10-09 2017-02-21 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9463277B2 (en) * 2007-10-09 2016-10-11 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9457146B2 (en) * 2007-10-09 2016-10-04 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140114278A1 (en) * 2007-10-09 2014-04-24 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140039383A1 (en) * 2007-10-09 2014-02-06 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140052095A1 (en) * 2007-10-09 2014-02-20 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140052092A1 (en) * 2007-10-09 2014-02-20 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140052094A1 (en) * 2007-10-09 2014-02-20 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140052091A1 (en) * 2007-10-09 2014-02-20 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US20140052093A1 (en) * 2007-10-09 2014-02-20 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9452258B2 (en) * 2007-10-09 2016-09-27 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US9414782B2 (en) 2007-10-10 2016-08-16 Optiscan Biomedical Corporation Fluid component analysis systems and methods for glucose monitoring and control
US8449524B2 (en) 2007-10-10 2013-05-28 Optiscan Biomedical Corporation Fluid component analysis systems and methods for glucose monitoring and control
US8409093B2 (en) 2007-10-23 2013-04-02 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US9439586B2 (en) 2007-10-23 2016-09-13 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US9332934B2 (en) 2007-10-23 2016-05-10 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US9743865B2 (en) 2007-10-23 2017-08-29 Abbott Diabetes Care Inc. Assessing measures of glycemic variability
US9804148B2 (en) 2007-10-23 2017-10-31 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
WO2009082741A3 (en) * 2007-12-24 2009-11-05 Medtronic Minimed, Inc. Handling of failure of signal reception of a glucose sensor signal at an external infusion device
WO2009082741A2 (en) * 2007-12-24 2009-07-02 Medtronic Minimed, Inc. Handling of failure of signal reception of a glucose sensor signal at an external infusion device
US9598210B2 (en) 2007-12-27 2017-03-21 Medtronic Minimed, Inc. Reservoir pressure equalization systems and methods
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US9770211B2 (en) 2008-01-31 2017-09-26 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US8473022B2 (en) 2008-01-31 2013-06-25 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US9320468B2 (en) 2008-01-31 2016-04-26 Abbott Diabetes Care Inc. Analyte sensor with time lag compensation
US9143569B2 (en) * 2008-02-21 2015-09-22 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US9020572B2 (en) * 2008-02-21 2015-04-28 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US20100331657A1 (en) * 2008-02-21 2010-12-30 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US20090240120A1 (en) * 2008-02-21 2009-09-24 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US9320462B2 (en) 2008-03-28 2016-04-26 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8718739B2 (en) 2008-03-28 2014-05-06 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8346335B2 (en) 2008-03-28 2013-01-01 Abbott Diabetes Care Inc. Analyte sensor calibration management
US9730623B2 (en) 2008-03-28 2017-08-15 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8802006B2 (en) 2008-04-10 2014-08-12 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US8252229B2 (en) 2008-04-10 2012-08-28 Abbott Diabetes Care Inc. Method and system for sterilizing an analyte sensor
US8690769B2 (en) 2008-04-21 2014-04-08 Philometron, Inc. Metabolic energy monitoring system
US20100049004A1 (en) * 2008-04-21 2010-02-25 Philometron, Inc. Metabolic energy monitoring system
US8509107B2 (en) 2008-05-30 2013-08-13 Abbott Diabetes Care Inc. Close proximity communication device and methods
US8737259B2 (en) 2008-05-30 2014-05-27 Abbott Diabetes Care Inc. Close proximity communication device and methods
US9931075B2 (en) 2008-05-30 2018-04-03 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US9541556B2 (en) 2008-05-30 2017-01-10 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8591410B2 (en) 2008-05-30 2013-11-26 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US9831985B2 (en) 2008-05-30 2017-11-28 Abbott Diabetes Care Inc. Close proximity communication device and methods
US9184875B2 (en) 2008-05-30 2015-11-10 Abbott Diabetes Care, Inc. Close proximity communication device and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US9795328B2 (en) 2008-05-30 2017-10-24 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8795252B2 (en) 2008-08-31 2014-08-05 Abbott Diabetes Care Inc. Robust closed loop control and methods
US9572934B2 (en) 2008-08-31 2017-02-21 Abbott DiabetesCare Inc. Robust closed loop control and methods
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
US9610046B2 (en) 2008-08-31 2017-04-04 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US9392969B2 (en) 2008-08-31 2016-07-19 Abbott Diabetes Care Inc. Closed loop control and signal attenuation detection
US9943644B2 (en) 2008-08-31 2018-04-17 Abbott Diabetes Care Inc. Closed loop control with reference measurement and methods thereof
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US9302045B2 (en) 2008-09-12 2016-04-05 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US8744547B2 (en) 2008-09-30 2014-06-03 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US9662056B2 (en) 2008-09-30 2017-05-30 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US8219173B2 (en) 2008-09-30 2012-07-10 Abbott Diabetes Care Inc. Optimizing analyte sensor calibration
US9326707B2 (en) 2008-11-10 2016-05-03 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US9730650B2 (en) 2008-11-10 2017-08-15 Abbott Diabetes Care Inc. Alarm characterization for analyte monitoring devices and systems
US8527208B2 (en) 2008-11-17 2013-09-03 Roche Diagnostics International Ag Prandial blood glucose excursion optimization method via computation of time-varying optimal insulin profiles and system thereof
US20100125241A1 (en) * 2008-11-17 2010-05-20 Disetronic Licensing, Ag Prandial Blood Glucose Excursion Optimization Method Via Computation of Time-Varying Optimal Insulin Profiles and System Thereof
US20100274217A1 (en) * 2009-01-28 2010-10-28 Da Silva J Ricardo Fluid replacement device
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8473220B2 (en) 2009-01-29 2013-06-25 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8676513B2 (en) 2009-01-29 2014-03-18 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8224415B2 (en) 2009-01-29 2012-07-17 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US9066709B2 (en) 2009-01-29 2015-06-30 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8532935B2 (en) 2009-01-29 2013-09-10 Abbott Diabetes Care Inc. Method and device for providing offset model based calibration for analyte sensor
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US9636068B2 (en) 2009-02-03 2017-05-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
WO2010089304A1 (en) * 2009-02-04 2010-08-12 Sanofi-Aventis Deutschland Gmbh Medical device and method for providing information for glycemic control
EP3254616A1 (en) * 2009-02-04 2017-12-13 Sanofi-Aventis Deutschland GmbH Medical device and method for providing information for glycemic control
JP2012516732A (en) * 2009-02-04 2012-07-26 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Medical devices and methods for providing information for glycemic control
US8730058B2 (en) 2009-04-15 2014-05-20 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US8497777B2 (en) 2009-04-15 2013-07-30 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US9178752B2 (en) 2009-04-15 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system having an alert
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US8467972B2 (en) 2009-04-28 2013-06-18 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US8483967B2 (en) 2009-04-29 2013-07-09 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US9949639B2 (en) 2009-04-29 2018-04-24 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9088452B2 (en) 2009-04-29 2015-07-21 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9693688B2 (en) 2009-04-29 2017-07-04 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9310230B2 (en) 2009-04-29 2016-04-12 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
US8344847B2 (en) 2009-07-09 2013-01-01 Medtronic Minimed, Inc. Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device
US9517304B2 (en) 2009-07-09 2016-12-13 Medtronic Minimed, Inc. Coordination of control commands and controller disable messages in a medical device system
US9579454B2 (en) 2009-07-09 2017-02-28 Medtronic Minimed, Inc. Coordination of control commands in a medical device system based on synchronization status between devices
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US8798934B2 (en) 2009-07-23 2014-08-05 Abbott Diabetes Care Inc. Real time management of data relating to physiological control of glucose levels
US8287495B2 (en) 2009-07-30 2012-10-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US20110152824A1 (en) * 2009-07-30 2011-06-23 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US20110152770A1 (en) * 2009-07-30 2011-06-23 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8926561B2 (en) 2009-07-30 2015-01-06 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9211377B2 (en) 2009-07-30 2015-12-15 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
EP3284494A1 (en) * 2009-07-30 2018-02-21 Tandem Diabetes Care, Inc. Portable infusion pump system
US8758323B2 (en) 2009-07-30 2014-06-24 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8298184B2 (en) 2009-07-30 2012-10-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8718965B2 (en) 2009-07-31 2014-05-06 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US8478557B2 (en) 2009-07-31 2013-07-02 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring system calibration accuracy
US9936910B2 (en) 2009-07-31 2018-04-10 Abbott Diabetes Care Inc. Method and apparatus for providing analyte monitoring and therapy management system accuracy
US9549694B2 (en) 2009-08-31 2017-01-24 Abbott Diabetes Care Inc. Displays for a medical device
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US8514086B2 (en) 2009-08-31 2013-08-20 Abbott Diabetes Care Inc. Displays for a medical device
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9814416B2 (en) 2009-08-31 2017-11-14 Abbott Diabetes Care Inc. Displays for a medical device
US9186113B2 (en) 2009-08-31 2015-11-17 Abbott Diabetes Care Inc. Displays for a medical device
US9226714B2 (en) 2009-08-31 2016-01-05 Abbott Diabetes Care Inc. Displays for a medical device
US9968302B2 (en) 2009-08-31 2018-05-15 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US8816862B2 (en) 2009-08-31 2014-08-26 Abbott Diabetes Care Inc. Displays for a medical device
US8487758B2 (en) 2009-09-02 2013-07-16 Medtronic Minimed, Inc. Medical device having an intelligent alerting scheme, and related operating methods
US9750439B2 (en) 2009-09-29 2017-09-05 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US9750444B2 (en) 2009-09-30 2017-09-05 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US9050041B2 (en) 2009-10-30 2015-06-09 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8386042B2 (en) 2009-11-03 2013-02-26 Medtronic Minimed, Inc. Omnidirectional accelerometer device and medical device incorporating same
US20150223732A1 (en) * 2009-11-06 2015-08-13 Crisi Medical Systems, Inc. Medication Injection Site and Data Collection System
US20110152644A1 (en) * 2009-12-18 2011-06-23 Wolfgang Heck Protective container for holding reusable diagnostic components
US8783102B2 (en) * 2009-12-18 2014-07-22 Roche Diagnostics Operations, Inc. Protective container for holding reusable diagnostic components
US9610127B2 (en) 2009-12-18 2017-04-04 Roche Diabetes Care, Inc. Protective container for holding reusable diagnostic components
US8574201B2 (en) 2009-12-22 2013-11-05 Medtronic Minimed, Inc. Syringe piston with check valve seal
US8755269B2 (en) 2009-12-23 2014-06-17 Medtronic Minimed, Inc. Ranking and switching of wireless channels in a body area network of medical devices
US20110184653A1 (en) * 2010-01-22 2011-07-28 Lifescan, Inc. Analyte testing method and system
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US9215992B2 (en) 2010-03-24 2015-12-22 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US9265453B2 (en) 2010-03-24 2016-02-23 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US9687183B2 (en) 2010-03-24 2017-06-27 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US9186098B2 (en) 2010-03-24 2015-11-17 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8764657B2 (en) 2010-03-24 2014-07-01 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
CN101856525A (en) * 2010-06-07 2010-10-13 包金明;芮成胜 Medical infusion liquid drop speed monitoring method and device
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9622670B2 (en) 2010-07-09 2017-04-18 Potrero Medical, Inc. Method and apparatus for pressure measurement
US8562565B2 (en) 2010-10-15 2013-10-22 Medtronic Minimed, Inc. Battery shock absorber for a portable medical device
US8603033B2 (en) 2010-10-15 2013-12-10 Medtronic Minimed, Inc. Medical device and related assembly having an offset element for a piezoelectric speaker
US8603032B2 (en) 2010-10-15 2013-12-10 Medtronic Minimed, Inc. Medical device with membrane keypad sealing element, and related manufacturing method
US8495918B2 (en) 2010-10-20 2013-07-30 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8474332B2 (en) 2010-10-20 2013-07-02 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8479595B2 (en) 2010-10-20 2013-07-09 Medtronic Minimed, Inc. Sensor assembly and medical device incorporating same
US8197444B1 (en) 2010-12-22 2012-06-12 Medtronic Minimed, Inc. Monitoring the seating status of a fluid reservoir in a fluid infusion device
US8690855B2 (en) * 2010-12-22 2014-04-08 Medtronic Minimed, Inc. Fluid reservoir seating procedure for a fluid infusion device
US9770553B2 (en) 2010-12-22 2017-09-26 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
US9895490B2 (en) 2010-12-22 2018-02-20 Medtronic Minimed, Inc. Occlusion detection for a fluid infusion device
US8628510B2 (en) 2010-12-22 2014-01-14 Medtronic Minimed, Inc. Monitoring the operating health of a force sensor in a fluid infusion device
US9555190B2 (en) 2010-12-22 2017-01-31 Medtronic Minimed, Inc. Fluid reservoir seating procedure for a fluid infusion device
US8945068B2 (en) 2011-02-22 2015-02-03 Medtronic Minimed, Inc. Fluid reservoir having a fluid delivery needle for a fluid infusion device
US9339639B2 (en) 2011-02-22 2016-05-17 Medtronic Minimed, Inc. Sealing assembly for a fluid reservoir of a fluid infusion device
US9393399B2 (en) 2011-02-22 2016-07-19 Medtronic Minimed, Inc. Sealing assembly for a fluid reservoir of a fluid infusion device
US9463309B2 (en) 2011-02-22 2016-10-11 Medtronic Minimed, Inc. Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir
US9839741B2 (en) 2011-02-22 2017-12-12 Medtronic Minimed, Inc. Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir
US8900206B2 (en) 2011-02-22 2014-12-02 Medtronic Minimed, Inc. Pressure vented fluid reservoir for a fluid infusion device
US8864726B2 (en) 2011-02-22 2014-10-21 Medtronic Minimed, Inc. Pressure vented fluid reservoir having a movable septum
US9629992B2 (en) 2011-02-22 2017-04-25 Medtronic Minimed, Inc. Fluid infusion device and related sealing assembly for a needleless fluid reservoir
US9533132B2 (en) 2011-02-22 2017-01-03 Medtronic Minimed, Inc. Pressure vented fluid reservoir for a fluid infusion device
US9610431B2 (en) 2011-02-22 2017-04-04 Medtronic Minimed, Inc. Pressure vented fluid reservoir having a movable septum
US8870829B2 (en) 2011-02-22 2014-10-28 Medtronic Minimed, Inc. Fluid infusion device and related sealing assembly for a needleless fluid reservoir
US8614596B2 (en) 2011-02-28 2013-12-24 Medtronic Minimed, Inc. Systems and methods for initializing a voltage bus and medical devices incorporating same
US9532737B2 (en) 2011-02-28 2017-01-03 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9101305B2 (en) 2011-03-09 2015-08-11 Medtronic Minimed, Inc. Glucose sensor product and related manufacturing and packaging methods
US9616165B2 (en) 2011-03-09 2017-04-11 Medtronic Minimed, Inc. Glucose sensor product
US9755452B2 (en) 2011-03-18 2017-09-05 Medtronic Minimed, Inc. Power control techniques for an electronic device
US9018893B2 (en) 2011-03-18 2015-04-28 Medtronic Minimed, Inc. Power control techniques for an electronic device
US8564447B2 (en) 2011-03-18 2013-10-22 Medtronic Minimed, Inc. Battery life indication techniques for an electronic device
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9465420B2 (en) 2011-10-31 2016-10-11 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9913619B2 (en) 2011-10-31 2018-03-13 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9721063B2 (en) 2011-11-23 2017-08-01 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US9743872B2 (en) 2011-11-23 2017-08-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US9289179B2 (en) 2011-11-23 2016-03-22 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9693713B2 (en) 2011-12-11 2017-07-04 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9931066B2 (en) 2011-12-11 2018-04-03 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9610401B2 (en) 2012-01-13 2017-04-04 Medtronic Minimed, Inc. Infusion set component with modular fluid channel element
US8523803B1 (en) 2012-03-20 2013-09-03 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
US8603027B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Occlusion detection using pulse-width modulation and medical device incorporating same
US9379652B2 (en) 2012-03-20 2016-06-28 Medtronic Minimed, Inc. Motor health monitoring and medical device incorporating same
US9379653B2 (en) 2012-03-20 2016-06-28 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
US8603026B2 (en) 2012-03-20 2013-12-10 Medtronic Minimed, Inc. Dynamic pulse-width modulation motor control and medical device incorporating same
US9344024B2 (en) 2012-03-20 2016-05-17 Medtronic Minimed, Inc. Occlusion detection using pulse-width modulation and medical device incorporating same
US9555186B2 (en) 2012-06-05 2017-01-31 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US20130331961A1 (en) * 2012-06-11 2013-12-12 General Electric Company Data exchange system providing flexible and robust handling of units of measure
US9333292B2 (en) 2012-06-26 2016-05-10 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
US9757518B2 (en) 2012-06-26 2017-09-12 Medtronic Minimed, Inc. Mechanically actuated fluid infusion device
US8808269B2 (en) 2012-08-21 2014-08-19 Medtronic Minimed, Inc. Reservoir plunger position monitoring and medical device incorporating same
US9517303B2 (en) 2012-08-21 2016-12-13 Medtronic Minimed, Inc. Reservoir plunger position monitoring and medical device incorporating same
US9364609B2 (en) 2012-08-30 2016-06-14 Medtronic Minimed, Inc. Insulin on board compensation for a closed-loop insulin infusion system
US9662445B2 (en) 2012-08-30 2017-05-30 Medtronic Minimed, Inc. Regulating entry into a closed-loop operating mode of an insulin infusion system
US9623179B2 (en) 2012-08-30 2017-04-18 Medtronic Minimed, Inc. Safeguarding techniques for a closed-loop insulin infusion system
US9526834B2 (en) 2012-08-30 2016-12-27 Medtronic Minimed, Inc. Safeguarding measures for a closed-loop insulin infusion system
US9849239B2 (en) 2012-08-30 2017-12-26 Medtronic Minimed, Inc. Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system
US9878096B2 (en) 2012-08-30 2018-01-30 Medtronic Minimed, Inc. Generation of target glucose values for a closed-loop operating mode of an insulin infusion system
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9801577B2 (en) 2012-10-30 2017-10-31 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9513104B2 (en) 2012-11-15 2016-12-06 Medtronic Minimed, Inc. Systems and methods for alignment and detection of a consumable component
US8870818B2 (en) 2012-11-15 2014-10-28 Medtronic Minimed, Inc. Systems and methods for alignment and detection of a consumable component
US9107994B2 (en) 2013-01-18 2015-08-18 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9522223B2 (en) 2013-01-18 2016-12-20 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9033924B2 (en) 2013-01-18 2015-05-19 Medtronic Minimed, Inc. Systems for fluid reservoir retention
US9308321B2 (en) 2013-02-18 2016-04-12 Medtronic Minimed, Inc. Infusion device having gear assembly initialization
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US9713664B2 (en) 2013-03-15 2017-07-25 Fresenius Medical Care Holdings, Inc. Nuclear magnetic resonance module for a dialysis machine
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
US9566377B2 (en) 2013-03-15 2017-02-14 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination in a fluid cartridge with multiple passageways, using a radio frequency device situated within a magnetic field
US9772386B2 (en) 2013-03-15 2017-09-26 Fresenius Medical Care Holdings, Inc. Dialysis system with sample concentration determination device using magnet and radio frequency coil assemblies
US9597439B2 (en) 2013-03-15 2017-03-21 Fresenius Medical Care Holdings, Inc. Medical fluid sensing and concentration determination using radio frequency energy and a magnetic field
US9433718B2 (en) 2013-03-15 2016-09-06 Fresenius Medical Care Holdings, Inc. Medical fluid system including radio frequency (RF) device within a magnetic assembly, and fluid cartridge body with one of multiple passageways disposed within the RF device, and specially configured cartridge gap accepting a portion of said RF device
US9180243B2 (en) 2013-03-15 2015-11-10 Tandem Diabetes Care, Inc. Detection of infusion pump conditions
US8920381B2 (en) 2013-04-12 2014-12-30 Medtronic Minimed, Inc. Infusion set with improved bore configuration
US9795732B2 (en) 2013-07-19 2017-10-24 Medtronic Minimed, Inc. Detecting unintentional motor motion and infusion device incorporating same
US9433731B2 (en) 2013-07-19 2016-09-06 Medtronic Minimed, Inc. Detecting unintentional motor motion and infusion device incorporating same
US9402949B2 (en) 2013-08-13 2016-08-02 Medtronic Minimed, Inc. Detecting conditions associated with medical device operations using matched filters
US9889257B2 (en) 2013-08-21 2018-02-13 Medtronic Minimed, Inc. Systems and methods for updating medical devices
US9880528B2 (en) 2013-08-21 2018-01-30 Medtronic Minimed, Inc. Medical devices and related updating methods and systems
US9259528B2 (en) 2013-08-22 2016-02-16 Medtronic Minimed, Inc. Fluid infusion device with safety coupling
US9565718B2 (en) 2013-09-10 2017-02-07 Tandem Diabetes Care, Inc. System and method for detecting and transmitting medical device alarm with a smartphone application
US9750878B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Closed-loop control of glucose according to a predicted blood glucose trajectory
US9750877B2 (en) 2013-12-11 2017-09-05 Medtronic Minimed, Inc. Predicted time to assess and/or control a glycemic state
US9849240B2 (en) 2013-12-12 2017-12-26 Medtronic Minimed, Inc. Data modification for predictive operations and devices incorporating same
US9694132B2 (en) 2013-12-19 2017-07-04 Medtronic Minimed, Inc. Insertion device for insertion set
US9737656B2 (en) 2013-12-26 2017-08-22 Tandem Diabetes Care, Inc. Integration of infusion pump with remote electronic device
US9486571B2 (en) 2013-12-26 2016-11-08 Tandem Diabetes Care, Inc. Safety processor for wireless control of a drug delivery device
US9399096B2 (en) 2014-02-06 2016-07-26 Medtronic Minimed, Inc. Automatic closed-loop control adjustments and infusion systems incorporating same
US9861748B2 (en) 2014-02-06 2018-01-09 Medtronic Minimed, Inc. User-configurable closed-loop notifications and infusion systems incorporating same
US9072425B1 (en) * 2014-03-04 2015-07-07 Stuart Bogema Method of providing a proper on-site evidence chain for a combined drug test/DNA preservation protocol
US9610402B2 (en) 2014-03-24 2017-04-04 Medtronic Minimed, Inc. Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device
US9681828B2 (en) 2014-05-01 2017-06-20 Medtronic Minimed, Inc. Physiological characteristic sensors and methods for forming such sensors
US9839753B2 (en) 2014-09-26 2017-12-12 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US9833563B2 (en) 2014-09-26 2017-12-05 Medtronic Minimed, Inc. Systems for managing reservoir chamber pressure
US9833564B2 (en) 2014-11-25 2017-12-05 Medtronic Minimed, Inc. Fluid conduit assembly with air venting features
US9987420B2 (en) 2014-11-26 2018-06-05 Medtronic Minimed, Inc. Systems and methods for fluid infusion device with automatic reservoir fill
US9943645B2 (en) 2014-12-04 2018-04-17 Medtronic Minimed, Inc. Methods for operating mode transitions and related infusion devices and systems
CN106133731A (en) * 2014-12-04 2016-11-16 美敦力迷你迈德公司 Advance diagnosis of infusion device operating mode viability
US9636453B2 (en) * 2014-12-04 2017-05-02 Medtronic Minimed, Inc. Advance diagnosis of infusion device operating mode viability
US9937292B2 (en) 2014-12-09 2018-04-10 Medtronic Minimed, Inc. Systems for filling a fluid infusion device reservoir
US9987422B2 (en) 2015-03-18 2018-06-05 Medtronic Minimed, Inc. Fluid infusion patch pump device with automatic startup feature
US9879668B2 (en) 2015-06-22 2018-01-30 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor
US9993594B2 (en) 2015-06-22 2018-06-12 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors
US9878095B2 (en) 2015-06-22 2018-01-30 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements
US9987425B2 (en) 2015-06-22 2018-06-05 Medtronic Minimed, Inc. Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements
US9987426B2 (en) 2017-01-13 2018-06-05 Medtronic Minimed, Inc. Coordination of control commands in a medical device system based on synchronization status between devices
US9993188B2 (en) 2017-03-31 2018-06-12 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor

Also Published As

Publication number Publication date Type
US8622954B2 (en) 2014-01-07 grant
US20100280442A1 (en) 2010-11-04 application

Similar Documents

Publication Publication Date Title
US5665065A (en) Medication infusion device with blood glucose data input
US7737581B2 (en) Method and apparatus for predicting end of battery life
US20040158193A1 (en) Medical apparatus using selective graphical interface
US20070233051A1 (en) Drug delivery systems and methods
US7935076B2 (en) Activity sensing techniques for an infusion pump system
US20040260233A1 (en) Data collection assembly for patient infusion system
EP1347705B1 (en) Medical apparatus remote control
US20090164190A1 (en) Physiological condition simulation device and method
US7344500B2 (en) Sensing system with auxiliary display
US20060064143A1 (en) Systems and methods for deriving relative physiologic measurements using a backend computing system
US20060064134A1 (en) Systems and methods for deriving relative physiologic measurements
US20110184342A1 (en) Drug delivery device with sensor for closed-loop operation
US20080004601A1 (en) Analyte Monitoring and Therapy Management System and Methods Therefor
US20090105570A1 (en) Analyte monitoring devices and methods therefor
EP1413245B1 (en) Telemetered characteristic monitor system
US6248067B1 (en) Analyte sensor and holter-type monitor system and method of using the same
US20090054745A1 (en) Method and System for Providing Data Management in Integrated Analyte Monitoring and Infusion System
US20060202859A1 (en) Telemetered characteristic monitor system and method of using the same
US20100168660A1 (en) Method and apparatus for determining and delivering a drug bolus
US20050137530A1 (en) Infusion device menu structure and method of using the same
US20060001551A1 (en) Analyte monitoring system with wireless alarm
US20080312584A1 (en) Systems and methods to pair a medical device and a remote controller for such medical device
US20070213657A1 (en) Smart messages and alerts for an infusion delivery and management system
US7779183B2 (en) Communication adapter for ambulant medical or therapeutic devices
US20080201325A1 (en) Method And System For Providing Contextual Based Medication Dosage Determination

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC MINIMED, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHAHMIRIAN, VARAZ;MORGAN, WAYNE A.;MOBERG, SHELDON B.;AND OTHERS;REEL/FRAME:014060/0434;SIGNING DATES FROM 20020417 TO 20030505