JP6238702B2 - ディーゼルエンジン - Google Patents

ディーゼルエンジン Download PDF

Info

Publication number
JP6238702B2
JP6238702B2 JP2013246229A JP2013246229A JP6238702B2 JP 6238702 B2 JP6238702 B2 JP 6238702B2 JP 2013246229 A JP2013246229 A JP 2013246229A JP 2013246229 A JP2013246229 A JP 2013246229A JP 6238702 B2 JP6238702 B2 JP 6238702B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel
diesel engine
protrusion
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013246229A
Other languages
English (en)
Other versions
JP2015105570A (ja
Inventor
脇坂 佳史
佳史 脇坂
冬頭 孝之
孝之 冬頭
服部 義昭
義昭 服部
堀田 義博
義博 堀田
清広 下川
清広 下川
大 中島
大 中島
森 石井
森 石井
正純 川端
正純 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyota Central R&D Labs Inc
Original Assignee
Hino Motors Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyota Central R&D Labs Inc filed Critical Hino Motors Ltd
Priority to JP2013246229A priority Critical patent/JP6238702B2/ja
Publication of JP2015105570A publication Critical patent/JP2015105570A/ja
Application granted granted Critical
Publication of JP6238702B2 publication Critical patent/JP6238702B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Description

本発明は、ディーゼルエンジンに関し、特に、シリンダ内に面するピストン頂面にキャビティが形成されたディーゼルエンジンに関する。
下記特許文献1のディーゼルエンジンでは、燃料をキャビティのリップ部に向かうように噴射し、着火遅れ期間に燃料噴霧をリップ部に到達させてリップ部付近に燃料蒸気を形成し、着火による燃料ガスの膨張流により、その着火位置前方の燃料蒸気をキャビティの周壁面に当ててキャビティの底の方へ誘導する。これによって、縦渦を促進し、ヒートスポットが特定部位で大きくならないようにするとともに、ヒートスポットを早く消滅させ、NOの生成を抑制する一方、縦渦によって燃料ガス中の煤の再燃焼を促進している。
特開2002−364367号公報 米国特許第8459229号明細書 特開2010−48260号公報
特許文献1においては、キャビティ内外に発生するスキッシュ流、逆スキッシュ流、スワール流等の気流に頼って燃料と空気を混合している。本願発明者がシリンダ内の燃焼を可視化する実機実験を行ったところ、キャビティ12b内は全体が火炎に覆われ、空気が十分に使われているものの、図15に示すように、ピストン頂面におけるキャビティ12bより外周側の部分とシリンダヘッド下面との間に形成されるスキッシュエリア22では、燃焼後半においても火炎が到達していない領域、すなわち空気が使われていない領域が多数存在していることがわかった。そのため、気流に頼って燃料と空気を混合するだけでは、シリンダ内の空気を燃焼に有効利用することが困難であり、スモーク排出量を低減することが困難となる。
本発明に係るディーゼルエンジンは、シリンダ内の空気を燃焼に有効利用してスモーク排出量を低減することを目的とする。
本発明に係るディーゼルエンジンは、上述した目的を達成するために以下の手段を採った。
本発明に係るディーゼルエンジンは、シリンダ内に面するピストン頂面にキャビティが形成されたディーゼルエンジンであって、キャビティ内周壁には、シリンダ径方向内側へ突出する複数の突起部がシリンダ周方向に並んで形成され、燃料及び燃料着火後の火炎のいずれかを各突起部に衝突させるように燃料噴射弁の噴孔から燃料を噴射し、各突起部は、衝突した燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側及びシリンダ軸方向両側に振り分け、各突起部においては、シリンダ周方向に第1所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側に振り分けるための第1及び第2ガイド面と、シリンダ軸方向に第2所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ軸方向両側に振り分けるための第3及び第4ガイド面が形成されていることを要旨とする。また、本発明に係るディーゼルエンジンは、シリンダ内に面するピストン頂面にキャビティが形成されたディーゼルエンジンであって、キャビティ内周壁には、シリンダ径方向内側へ突出する複数の突起部がシリンダ周方向に並んで形成され、燃料及び燃料着火後の火炎のいずれかを各突起部に衝突させるように燃料噴射弁の噴孔から燃料を噴射し、各突起部は、衝突した燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側及びシリンダ軸方向両側に振り分け、シリンダ周方向に隣接する突起部間には、突起部でシリンダ周方向両側に振り分けられた燃料及び燃料着火後の火炎のいずれかをスキッシュエリアへ導くための段部が形成されており、各突起部の先端は、段部のシリンダ径方向内側面よりも、シリンダ径方向内側に位置していることを要旨とする。
本発明の一態様では、シリンダ周方向に隣接する突起部間には、突起部でシリンダ周方向両側に振り分けられた燃料及び燃料着火後の火炎のいずれかをスキッシュエリアへ導くための段部が形成されていることが好適である。
本発明の一態様では、突起部と段部とのシリンダ軸方向高さ差のシリンダボア径に対する割合が0.0177より大きく且つ0.0531より小さいことが好適である。
本発明の一態様では、突起部においては、シリンダ周方向に第1所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側に振り分けるための第1及び第2ガイド面と、シリンダ軸方向に第2所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ軸方向両側に振り分けるための第3及び第4ガイド面が形成されていることが好適である。
本発明の一態様では、突起部のシリンダ径方向長さとシリンダボア径の比が0.118より小さいことが好適である。
本発明の一態様では、シリンダ内にスワール流を形成する場合に、噴孔の中心軸が、シリンダ中心軸と突起部の先端を通る平面に対して、スワール上流側に傾斜していることが好適である。
本発明の一態様では、前記平面に対する噴孔の中心軸のスワール上流側への傾斜角度が9°より小さいことが好適である。
本発明の一態様では、突起部が、ピストン頂面における突起部より外周側の部分に対して、シリンダ軸方向下側に窪んでいることが好適である。
本発明の一態様では、ピストン頂面における突起部より外周側の部分と突起部とのシリンダ軸方向高さ差のシリンダボア径に対する割合が0.0295より小さいことが好適である。
本発明によれば、スキッシュエリアにおける燃料や火炎はシリンダ周方向により均一に広がったものとなり、スキッシュエリアにおける空気が燃焼に使用されない領域を大幅に減らすことができる。その結果、シリンダ内の空気を燃焼に有効利用することができ、スモーク排出量を低減することができる。
本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンにおける燃料噴霧や火炎の流れを説明する図である。 本発明の実施形態に係るディーゼルエンジンにおける火炎範囲の一例を示す図である。 キャビティ入口径とシリンダボア径の比DC/DBを変化させた場合にスモーク排出量を測定した実機実験結果を示す図である。 突起部32のシリンダ径方向長さとキャビティ基準径の比(D2−D1)/(2×D0)を変化させた場合にスモーク排出量を測定した実機実験結果を示す図である。 シリンダ中心軸11aと突起部32の先端を通る平面11bに対する噴孔13aの中心軸のスワール上流側への傾斜角度θを変化させた場合にスモーク排出量を測定した実機実験結果を示す図である。 突起部32と段部34とのシリンダ軸方向高さ差のキャビティ基準径に対する割合H1/D0を変化させた場合にスモーク排出量を測定した実機実験結果を示す図である。 本発明の実施形態に係るディーゼルエンジンの他の概略構成を示す図である。 本発明の実施形態に係るディーゼルエンジンの他の概略構成を示す図である。 ピストン頂面12aにおける突起部32より外周側の部分と突起部32とのシリンダ軸方向高さ差のキャビティ基準径に対する割合H/D0を変化させた場合にスモーク排出量を測定した実機実験結果を示す図である。 シリンダ内の燃焼を可視化する実機実験を行った場合における火炎範囲の一例を示す図である。
以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。
図1〜5は、本発明の実施形態に係るディーゼルエンジン(圧縮着火式内燃機関)10の構成例を示す図である。図1は全体構成の概略を示し、図2,3はピストン12の概略構成を示し、図4は図3のA−A断面図を示し、図5は図3のB−B断面図を示す。図1では、1気筒分の構成を示しているが、多気筒の場合も同様の構成である。ディーゼルエンジン10は、例えばピストン−クランク機構を用いて構成可能である。ディーゼルエンジン10では、吸気行程にて吸気ポート14からシリンダ11内に吸気(空気)が吸入され、圧縮行程にてシリンダ11内に吸入された吸気がピストン12により圧縮される。その際には、シリンダ11内にスワール流が形成される。そして、例えばピストン12が圧縮上死点付近に位置するときに燃料(例えば軽油等の液体燃料)をインジェクタ(燃料噴射弁)13からシリンダ11内に直接噴射することで、シリンダ11内の燃料が自着火して燃焼(ディーゼル燃焼)する。燃焼後の排出ガスは、排気行程にて排気ポート15へ排出される。ディーゼルエンジン10においては、排気ポート15と吸気ポート14とを繋ぐ還流通路16が設けられており、燃焼後の排出ガスの一部が還流通路16を通って吸気ポート14(吸気側)へEGRガスとして供給される排気再循環(EGR)が行われる。還流通路16にはEGR制御弁17が設けられており、EGR制御弁17の開度を制御することで、排気ポート15から吸気ポート14への排出ガス(EGRガス)の還流量が制御され、吸気側へ供給され筒内に吸入されるEGRガス量(EGR率)が制御される。ただし、必ずしもEGRを行う必要はなく、還流通路16及びEGR制御弁17を省略することも可能である。また、シリンダ11内への吸気を図示しないターボチャージャー等の過給器で加圧することもできる。なお、シリンダ11内にスワール流を形成するための構成については、公知の構成で実現可能であるため、詳細な説明を省略する。一方、シリンダ11内にスワール流を形成しないことも可能である。
図2〜5に示すように、シリンダ11内に面するピストン12の頂面12aには、キャビティ12bが形成されている。インジェクタ13は、その先端部がキャビティ12bの中央部に臨む状態でシリンダヘッド9に配置されている。インジェクタ13の先端部には、複数の噴孔13aがインジェクタ周方向に沿って均等に形成されている。例えばピストン12が圧縮上死点付近に位置する燃料噴射時期において、各噴孔13aの中心軸の延長線13bがキャビティ12bの内周壁にぶつかるように配置し、燃料及び燃料着火後の火炎のいずれかをキャビティ12bの内周壁に衝突させるようにインジェクタ13の各噴孔13aから燃料を放射状に噴射する。
本実施形態では、キャビティ12bの内周壁には、シリンダ径方向内側へ突出する複数(図2,3の例では8つ)の突起部32がシリンダ周方向に沿って均等に並んで形成されている。各突起部32は、シリンダ径方向の外側から内側に向かうにつれて、ガイド面32−1,32−2間のシリンダ周方向幅、及びガイド面32−3,32−4間のシリンダ軸方向厚さが徐々に減少する形状を呈し、ガイド面32−1,32−2がシリンダ周方向に所定角度θ1を成し、ガイド面32−3,32−4がシリンダ軸方向に所定角度θ2を成す。図2,3の例では、シリンダ中心軸11aを通る平面に対して、ガイド面32−1がシリンダ径方向の内側から外側に向かうにつれてシリンダ周方向一方側(スワール上流側)に傾斜し、ガイド面32−2がシリンダ径方向の内側から外側に向かうにつれてシリンダ周方向他方側(スワール下流側)に傾斜し、シリンダ径方向に対するガイド面32−1,32−2の傾斜角度がθ1/2である。そして、シリンダ中心軸11aと直交する平面に対してガイド面32−3がシリンダ径方向の内側から外側に向かうにつれてシリンダ軸方向下側に傾斜し、ガイド面32−4がシリンダ中心軸と直交する平面と平行でピストン頂面12aの一部を形成する。
インジェクタ13の噴孔13aは突起部32と同数(図2,3の例では8つ)形成されており、燃料及び燃料着火後の火炎のいずれかを各突起部32に衝突させるように、各噴孔13aから燃料を噴射する。各突起部32は、衝突した燃料及び燃料着火後の火炎のいずれかを、図6の矢印A,Bに示すようにガイド面32−1,32−2に従ってシリンダ周方向両側(スワール上流側及び下流側)に振り分けるとともに、図6の矢印C,Dに示すようにガイド面32−3,32−4に従ってシリンダ軸方向両側に振り分ける。シリンダ11内にスワール流を形成する場合に、着火前の燃料噴霧や着火後の火炎を突起部32の先端(最内径位置)に衝突させるためには、燃料噴射時期において噴孔13aの中心軸の延長線13bが突起部32の先端より若干スワール上流側(ガイド面32−1)にぶつかるように、シリンダ中心軸11aと突起部32の先端を通る平面11bに対して、噴孔13aの中心軸をスワール上流側に若干傾斜させることが好ましい。一方、シリンダ11内にスワール流を形成しない場合に、着火前の燃料噴霧や着火後の火炎を突起部32の先端に衝突させるためには、燃料噴射時期において噴孔13aの中心軸の延長線13bが突起部32の先端にぶつかるように、シリンダ中心軸11aと突起部32の先端を通る平面11b内に噴孔13aの中心軸を配置することが好ましい。
さらに、本実施形態では、シリンダ周方向に隣接する突起部32間に段部34が形成されており、シリンダ周方向において突起部32と段部34が交互に配置されている。図2,3の例では、段部34が隣接する突起部32間の中間位置に配置されている。各段部34は突起部32よりシリンダ軸方向下側に窪んでおり、各段部34の上面34−1は突起部32のガイド面32−4(ピストン頂面12a)よりシリンダ軸方向下側に位置し、各段部34の内周面34−2は突起部32の先端(最内径位置)よりシリンダ径方向外側に位置する。突起部32でガイド面32−1,32−2に従ってシリンダ周方向両側(スワール上流側及び下流側)に振り分けられた燃料及び燃料着火後の火炎のいずれかは、図6の矢印E,Fに示すように段部34によりシリンダ軸方向上側へ誘導され、ピストン頂面12aにおけるキャビティ12bより外周側の部分とシリンダヘッド9の下面との間に形成されるスキッシュエリア22へ押し出される。
インジェクタ13の各噴孔13aから噴射された燃料噴霧は、着火前に突起部32に衝突するか、着火後に火炎となって突起部32に衝突する。着火前の燃料噴霧や着火後の火炎が突起部32に衝突することで、燃料噴霧や火炎の流れが、図6の矢印A,Bに示すようにガイド面32−1,32−2に従ってスワール上流側及び下流側に振り分けられるとともに、図6の矢印C,Dに示すようにガイド面32−3,32−4に従ってシリンダ軸方向上側及び下側に振り分けられる。突起部32のガイド面32−3によりシリンダ軸方向下側に振り分けられた燃料噴霧や火炎はキャビティ12b内を流れることで、キャビティ12b内の空気を効率よく利用して燃焼が行われる。一方、突起部32のガイド面32−4によりシリンダ軸方向上側に振り分けられた燃料噴霧や火炎はスキッシュエリア22へ導かれる。そして、突起部32のガイド面32−1,32−2によりスワール上流側及び下流側に振り分けられた燃料噴霧や火炎も、図6の矢印E,Fに示すように段部34によりスキッシュエリア22へ導かれる。
本実施形態によれば、図6の矢印A,B,E,Fに示すようにガイド面32−1,32−2及び段部34によりスキッシュエリア22へ導かれた燃料噴霧や火炎は、図6の矢印Dに示すようにガイド面32−4によりスキッシュエリア22へ導かれた燃料噴霧や火炎に対してシリンダ周方向位置がずれたものとなり、スキッシュエリア22における燃料噴霧や火炎が到達しにくい領域(空気を燃焼に使用しにくい領域)に燃料噴霧や火炎を導くことができる。そのため、スキッシュエリア22における燃料噴霧や火炎はシリンダ周方向により均一に広がったものとなり、例えば図7に示すように、スキッシュエリア22における空気が燃焼に使用されない領域を大幅に減らすことができ、スキッシュエリア22の空気を燃焼に効率よく利用することができる。その結果、空気過剰率同等の条件下において、すなわち過給機仕事量を増大させることなく、スモーク排出量を低減して低エミッション化を実現することができる。さらに、シリンダ周方向に隣接する突起部32間に段部34を設けることで、ガイド面32−1,32−2によりスワール上流側及び下流側に振り分けられた燃料噴霧や火炎を、段部34によりスキッシュエリア22における燃料噴霧や火炎が到達しにくい領域(空気を燃焼に使用しにくい領域)へ効率よく導くことができ、スキッシュエリア22の空気を燃焼にさらに効率よく利用することができる。
なお、特許文献2では、キャビティ壁における燃料が衝突する部分にエッジ部を設け、エッジ部に衝突した燃料の流れを切り替えている。しかし、特許文献2には、エッジ部に衝突した燃料の流れをどの方向に切り替えるか、より具体的には、燃料の流れをシリンダ周方向両側(スワール上流側及び下流側)及びシリンダ軸方向両側に振り分けることについては示されていない。さらに、特許文献2には、シリンダ周方向に隣接するエッジ部間に段部を設けることについても示されていない。
また、段部34が無い場合は、膨張行程において逆スキッシュ流が強くなる。逆スキッシュ流が強くなると、キャビティ12b内からスキッシュエリア22に向かって、気流の強い部分の火炎だけが気流に乗ってシリンダ径方向に遠くまで運ばれることになる。その結果、火炎がシリンダ周方向に不均一に成長し、火炎が到達せずに空気が使用されない領域が残り、燃焼への空気利用率が低下する。これに対して本実施形態では、シリンダ周方向に隣接する突起部32間に段部34を設けることで、膨張行程における逆スキッシュ流を弱めることができ、突起部32で分配された火炎を噴流の速度によってシリンダ径方向により均一に成長させることができる。その結果、噴霧間に火炎が存在しない領域が減少し、燃焼への空気利用率を高めることができる。
なお、圧縮比が一定の条件で突起部32のシリンダ径方向長さ(最外径D2と最内径D1との差の1/2)を変更すると、突起部32のシリンダ径方向長さ(D2−D1)/2が増大するほど、ガイド面32−1,32−2の成す角度θ1が小さくなる。突起部32のシリンダ径方向長さ(D2−D1)/2が長すぎてガイド面32−1,32−2の成す角度θ1が小さすぎると、燃料噴霧や火炎の突起部32への衝突位置がスワール上流側か下流側かによって、燃料噴霧や火炎のスワール上流側及び下流側への配分が大きく変動する。一方、突起部32のシリンダ径方向長さ(D2−D1)/2が短すぎてガイド面32−1,32−2の成す角度θ1が大きすぎると、燃料噴霧や火炎のスワール上流側及び下流側への分配効果が減少する。その結果、突起部32のシリンダ径方向長さ(D2−D1)/2は、スモーク排出量に影響を与えることになる。
また、キャビティ入口径DCとシリンダボア径DBの比DC/DBもスモーク排出量に影響を与える。圧縮比が一定の条件でキャビティ入口径DCとシリンダボア径DBの比DC/DBを変化させた場合にスモーク排出量を測定した実機実験結果を図8に示す。図8に示す実機実験結果から、スモーク排出量が最小となるキャビティ入口径DCとシリンダボア径DBの比DC/DBは、エンジンによらず59%となった。以下、スモーク排出量が最小となるキャビティ入口径(シリンダボア径DBの59%)D0をキャビティ基準径とする。
圧縮比が一定の条件で突起部32のシリンダ径方向長さ(D2−D1)/2とキャビティ基準径D0の比(D2−D1)/(2×D0)を変化させた場合にスモーク排出量を測定した実機実験結果を図9に示す。図9に示す実機実験結果から、突起部32を設けない(突起部32のシリンダ径方向長さが0)構成よりもスモーク排出量を減少させるためには、突起部32のシリンダ径方向長さ(D2−D1)/2とキャビティ基準径D0の比(D2−D1)/(2×D0)を0.2より小さくすることが好ましい。つまり、突起部32のシリンダ径方向長さ(D2−D1)/2とシリンダボア径DBの比(D2−D1)/(2×DB)を0.118より小さくすることが好ましい。さらに、スモーク排出量を最小化するためには、突起部32のシリンダ径方向長さ(D2−D1)/2とキャビティ基準径D0の比(D2−D1)/(2×D0)を0.175(あるいはほぼ0.175)にすることが好ましく、突起部32のシリンダ径方向長さ(D2−D1)/2とシリンダボア径DBの比(D2−D1)/(2×DB)を0.103(あるいはほぼ0.103)にすることが好ましい。
また、ディーゼルエンジンのキャビティ12bとインジェクタ13の諸元を考慮すると、突起部32及び噴孔13aの数は、8〜10の範囲内にあることが好ましい。そして、ガイド面32−1,32−2の成す角度θ1は、100°〜140°の範囲内にあることが好ましい。また、隣接する突起部32間に段部34を設けることを考慮すると、突起部32の最外径D2とキャビティ基準径D0の比D2/D0は、1.1より大きく1.5より小さい範囲内にあることが好ましい。そして、突起部32の先端(最内径)がキャビティ基準径D0よりもシリンダ径方向内側へ突き出る点を考慮すると、突起部32の最内径D1とキャビティ基準径D0の比D1/D0は、0.9より大きく1.0より小さい範囲内にあることが好ましい。
また、噴孔13aの中心軸の配置も、燃料噴霧や火炎の突起部32への衝突位置に影響を与え、その結果、スモーク排出量に影響を与える。さらに、シリンダ11内にスワール流を形成する場合は、噴孔13aから噴射された燃料噴霧がスワール流によってスワール下流側に煽られる。シリンダ中心軸11aと突起部32の先端を通る平面11bに対する噴孔13aの中心軸のスワール上流側への傾斜角度θ(図3参照)を変化させた場合にスモーク排出量を測定した実機実験結果を図10に示す。図10に示す実機実験結果から、突起部32を設けない構成よりもスモーク排出量を減少させるためには、平面11bに対する噴孔13aの中心軸のスワール上流側への傾斜角度θを9°より小さくすることが好ましい。さらに、スモーク排出量を最小化するためには、平面11bに対する噴孔13aの中心軸のスワール上流側への傾斜角度θを5°(あるいはほぼ5°)にすることが好ましい。
なお、平面11bに対する噴孔13aの中心軸のスワール上流側への傾斜角度θについては、噴孔13aから噴射された燃料噴霧が突起部32の先端に到達するまでの時間tの間に、スワール流によってスワール下流側に流される角度として見積もることが可能である。下死点でのスワール比をSR、上死点近傍でのスワールの増加率を補正するスピンアップ係数をC、機関回転数をNe〔rpm〕、噴孔13aから突起部32の先端への燃料噴霧到達時間をt〔ms〕とすると、θとtの関係は以下の(1)式で表される。
θ=t/1000×360/60×SR×C×Ne (1)
ここで、スピンアップ係数Cについては、実機諸元での計算値をもとに、C=1.6とする。また、燃料噴霧到達時間tについては、以下の(2)式による広安の式を用いて算出可能である。広安の式より、燃料噴霧到達時間tはキャビティ基準径D0や噴孔径、燃料噴射圧力、充填効率等の影響を受けることがわかるが、実機諸元を考慮すると、0.07ms<t<0.18msの範囲内に入ることを計算で見積もることが可能である。その結果からも、θを9°より小さくすることが好ましい。
Figure 0006238702
また、隣接する突起部32間の段部34は、突起部32のガイド面32−1,32−2によりスワール上流側及び下流側に振り分けられた燃料噴霧や火炎をスキッシュエリア22へ押し出す役割を果たす。突起部32(ガイド面32−4)と段部34(上面34−1)とのシリンダ軸方向高さ差H1(図5参照)が大きすぎると、スワール上流側及び下流側に振り分けられた燃料噴霧や火炎をスキッシュエリア22へ押し出す作用が弱くなって、キャビティ12b内に燃料噴霧や火炎が溜まりやすくなり、燃焼が悪化しやすくなる。一方、突起部32と段部34とのシリンダ軸方向高さ差H1が小さすぎると、燃料噴霧や火炎をガイド面32−1,32−2によりスワール上流側及び下流側に振り分ける作用が弱くなって、そのままスキッシュエリア22に流出しやすくなる。その結果、突起部32と段部34とのシリンダ軸方向高さ差H1も、スモーク排出量に影響を与える。
圧縮比が一定の条件で突起部32(ガイド面32−4)と段部34(上面34−1)とのシリンダ軸方向高さ差H1のキャビティ基準径D0に対する割合H1/D0を変化させた場合にスモーク排出量を測定した実機実験結果を図11に示す。図11に示す実機実験結果から、突起部32を設けない構成よりもスモーク排出量を減少させるためには、突起部32と段部34とのシリンダ軸方向高さ差H1のキャビティ基準径D0に対する割合H1/D0を0.03(3%)より大きく且つ0.09(9%)より小さくすることが好ましい。つまり、突起部32と段部34とのシリンダ軸方向高さ差H1のシリンダボア径DBに対する割合H1/DBを0.0177(1.77%)より大きく且つ0.0531(5.31%)より小さくすることが好ましい。さらに、スモーク排出量を最小化するためには、突起部32と段部34とのシリンダ軸方向高さ差H1のキャビティ基準径D0に対する割合H1/D0を0.06〜0.075(6%〜7.5%)の範囲内にすることが好ましく、突起部32と段部34とのシリンダ軸方向高さ差H1のシリンダボア径DBに対する割合H1/DBを0.0354〜0.0443(3.54%〜4.43%)の範囲内にすることが好ましい。
また、本実施形態では、例えば図12,13に示すように、各突起部32(ガイド面32−4)が、ピストン頂面12aにおける突起部32(ガイド面32−4)より外周側の部分に対して、シリンダ軸方向下側に窪んでいてもよい。ピストン頂面12aにおける突起部32(ガイド面32−4)より外周側の部分と各突起部32(ガイド面32−4)との間に段差を設けることで、スキッシュ流及び逆スキッシュ流を弱めることができ、燃料噴霧や火炎をキャビティ12b内外(シリンダ軸方向上側及び下側)に最適に分配することができる。突起部32によるシリンダ周方向の分配の最適化と、この段差によるシリンダ軸方向の分配の最適化を組み合わせることで、燃焼室内の燃料と空気の混合を気流に頼らずとも最適化することが可能となり、さらなる低エミッション化を実現することができる。
なお、キャビティ12bの容積は、圧縮比を決定する上で重要な諸元である。圧縮比は、シリンダ内圧力の上限や、低温始動時の燃料の着火性を考慮して決定される値であり、通常の燃焼室の設計では、目標となる圧縮比にあわせてキャビティ12bの容積を調整するのが一般的である。現在のエンジンでは、キャビティ基準径D0はシリンダボア径の59%程度と広径化が進んでおり、それに従ってキャビティ12bの深さも浅くなる傾向にある。図12,13に示す構成において、ピストン頂面12aにおける突起部32(ガイド面32−4)より外周側の部分と突起部32(ガイド面32−4)とのシリンダ軸方向高さ差Hを大きくしすぎると、キャビティ12bの深さがさらに浅くなってキャビティ12b内に縦渦を形成することが困難となり、キャビティ12b内の空気利用率が低下してスモーク排出量が増加する。その結果、ピストン頂面12aにおける突起部32より外周側の部分と突起部32とのシリンダ軸方向高さ差Hも、スモーク排出量に影響を与える。
圧縮比が一定の条件でピストン頂面12aにおける突起部32(ガイド面32−4)より外周側の部分と突起部32(ガイド面32−4)とのシリンダ軸方向高さ差Hのキャビティ基準径D0に対する割合H/D0を変化させた場合にスモーク排出量を測定した実機実験結果を図14に示す。図14に示す実機実験結果から、突起部32を設けない構成よりもスモーク排出量を減少させるためには、シリンダ軸方向高さ差Hのキャビティ基準径D0に対する割合H/D0を0.05(5%)より小さくすることが好ましい。つまり、シリンダ軸方向高さ差Hのシリンダボア径に対する割合H/DBを0.0295(2.95%)より小さくすることが好ましい。さらに、スモーク排出量を最小化するためには、シリンダ軸方向高さ差Hのキャビティ基準径D0に対する割合H/D0を0.03(あるいはほぼ0.03)にすることが好ましく、シリンダ軸方向高さ差Hのシリンダボア径に対する割合H/DBを0.0177(あるいはほぼ0.0177)にすることが好ましい。
以上の実施形態では、シリンダ径方向に対するガイド面32−1,32−2の傾斜角度の大きさが互いに等しいものとしたが、シリンダ径方向に対するガイド面32−1,32−2の傾斜角度の大きさを互いに異ならせることも可能である。例えばシリンダ11内にスワール流を形成する場合は、燃料噴霧や火炎がスワール流によってスワール下流側に煽られるため、シリンダ径方向に対するガイド面32−1の傾斜角度をシリンダ径方向に対するガイド面32−2の傾斜角度より大きくすることも可能である。
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
10 ディーゼルエンジン、11 シリンダ、12 ピストン、12a 頂面、12b キャビティ、13 インジェクタ、13a 噴孔、14 吸気ポート、15 排気ポート、16 還流通路、17 EGR制御弁、22 スキッシュエリア、32 突起部、32−1,32−2,32−3,32−4 ガイド面、34 段部。

Claims (10)

  1. シリンダ内に面するピストン頂面にキャビティが形成されたディーゼルエンジンであって、
    キャビティ内周壁には、シリンダ径方向内側へ突出する複数の突起部がシリンダ周方向に並んで形成され、
    燃料及び燃料着火後の火炎のいずれかを各突起部に衝突させるように燃料噴射弁の噴孔から燃料を噴射し、
    各突起部は、衝突した燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側及びシリンダ軸方向両側に振り分け
    各突起部においては、シリンダ周方向に第1所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側に振り分けるための第1及び第2ガイド面と、シリンダ軸方向に第2所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ軸方向両側に振り分けるための第3及び第4ガイド面が形成されている、ディーゼルエンジン。
  2. シリンダ内に面するピストン頂面にキャビティが形成されたディーゼルエンジンであって、
    キャビティ内周壁には、シリンダ径方向内側へ突出する複数の突起部がシリンダ周方向に並んで形成され、
    燃料及び燃料着火後の火炎のいずれかを各突起部に衝突させるように燃料噴射弁の噴孔から燃料を噴射し、
    各突起部は、衝突した燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側及びシリンダ軸方向両側に振り分け、
    シリンダ周方向に隣接する突起部間には、突起部でシリンダ周方向両側に振り分けられた燃料及び燃料着火後の火炎のいずれかをスキッシュエリアへ導くための段部が形成されており、
    各突起部の先端は、段部のシリンダ径方向内側面よりも、シリンダ径方向内側に位置している、ディーゼルエンジン。
  3. 請求項1に記載のディーゼルエンジンであって、
    シリンダ周方向に隣接する突起部間には、突起部でシリンダ周方向両側に振り分けられた燃料及び燃料着火後の火炎のいずれかをスキッシュエリアへ導くための段部が形成されている、ディーゼルエンジン。
  4. 請求項2または請求項3に記載のディーゼルエンジンであって、
    突起部と段部とのシリンダ軸方向高さ差のシリンダボア径に対する割合が0.0177より大きく且つ0.0531より小さい、ディーゼルエンジン。
  5. 請求項に記載のディーゼルエンジンであって、
    突起部においては、シリンダ周方向に第1所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ周方向両側に振り分けるための第1及び第2ガイド面と、シリンダ軸方向に第2所定角度を成し、燃料及び燃料着火後の火炎のいずれかをシリンダ軸方向両側に振り分けるための第3及び第4ガイド面が形成されている、ディーゼルエンジン。
  6. 請求項1〜のいずれか1に記載のディーゼルエンジンであって、
    突起部のシリンダ径方向長さとシリンダボア径の比が0.118より小さい、ディーゼルエンジン。
  7. 請求項1〜のいずれか1に記載のディーゼルエンジンであって、
    シリンダ内にスワール流を形成する場合に、噴孔の中心軸が、シリンダ中心軸と突起部の先端を通る平面に対して、スワール上流側に傾斜している、ディーゼルエンジン。
  8. 請求項に記載のディーゼルエンジンであって、
    前記平面に対する噴孔の中心軸のスワール上流側への傾斜角度が9°より小さい、ディーゼルエンジン。
  9. 請求項1〜のいずれか1に記載のディーゼルエンジンであって、
    突起部が、ピストン頂面における突起部より外周側の部分に対して、シリンダ軸方向下側に窪んでいる、ディーゼルエンジン。
  10. 請求項に記載のディーゼルエンジンであって、
    ピストン頂面における突起部より外周側の部分と突起部とのシリンダ軸方向高さ差のシリンダボア径に対する割合が0.0295より小さい、ディーゼルエンジン。
JP2013246229A 2013-11-28 2013-11-28 ディーゼルエンジン Expired - Fee Related JP6238702B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246229A JP6238702B2 (ja) 2013-11-28 2013-11-28 ディーゼルエンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246229A JP6238702B2 (ja) 2013-11-28 2013-11-28 ディーゼルエンジン

Publications (2)

Publication Number Publication Date
JP2015105570A JP2015105570A (ja) 2015-06-08
JP6238702B2 true JP6238702B2 (ja) 2017-11-29

Family

ID=53435859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246229A Expired - Fee Related JP6238702B2 (ja) 2013-11-28 2013-11-28 ディーゼルエンジン

Country Status (1)

Country Link
JP (1) JP6238702B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648442B2 (ja) * 2015-08-03 2020-02-14 いすゞ自動車株式会社 内燃機関用のピストン、内燃機関、及び内燃機関用のピストンの設計方法
US20200080468A1 (en) * 2016-11-22 2020-03-12 Mazda Motor Corporation Diesel engine
JP6477750B2 (ja) * 2017-03-10 2019-03-06 マツダ株式会社 ディーゼルエンジン
JP2023166161A (ja) * 2022-05-09 2023-11-21 株式会社豊田自動織機 内燃機関

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599734B2 (ja) * 1978-12-05 1984-03-05 日野自動車株式会社 直接噴射式デイ−ゼルエンジンのピストン
JP4002823B2 (ja) * 2002-12-11 2007-11-07 ヤンマー株式会社 エンジンの燃焼室
JP5953067B2 (ja) * 2012-02-28 2016-07-13 日野自動車株式会社 直接噴射式ディーゼルエンジン、及び直接噴射式ディーゼルエンジン用ピストン

Also Published As

Publication number Publication date
JP2015105570A (ja) 2015-06-08

Similar Documents

Publication Publication Date Title
JP6072284B2 (ja) 副室式ガスエンジン
US7165526B2 (en) Direct injection engine and controller for the same
JP6215943B2 (ja) ディーゼルエンジンの燃焼室構造
KR101996085B1 (ko) 질소 산화물 저감을 위한 직접 분사식 디젤 엔진의 연소실
JP6238702B2 (ja) ディーゼルエンジン
KR20070044068A (ko) 직분식 디젤기관의 연소실 형상
JP2010101243A (ja) ディーゼル内燃機関用のピストン
JP2018193909A (ja) 多段噴射式ディーゼルエンジン、およびこれを備えた機械装置ならびに多段噴射式ディーゼルエンジンの制御方法
RU2490486C2 (ru) Камера сгорания для теплового двигателя с прямым вспрыском и с наддувом
CN105940209A (zh) 用于压燃式内燃机的控制装置
JP5227010B2 (ja) 直接噴射式ディーゼルエンジン用ピストン
WO2018180133A1 (ja) 火花点火式内燃機関
JP5031794B2 (ja) 圧縮着火式内燃機関及びその未燃hc低減方法
RU2472949C2 (ru) Несимметричная камера сгорания для теплового двигателя
JP6519633B2 (ja) エンジンの燃焼室構造
JP2017025929A (ja) ディーゼルエンジンの燃焼室構造
WO2011059059A1 (ja) ディーゼルエンジン
JP2017194004A (ja) ディーゼルエンジンの燃焼室構造
WO2019044647A1 (ja) エンジンの燃焼室構造
US11319866B1 (en) Systems and methods for active pre-chamber ignition
WO2018180132A1 (ja) 火花点火式内燃機関
JP2006118427A (ja) 圧縮着火内燃機関
JP2002364367A (ja) ディーゼルエンジン、ディーゼルエンジンの燃料燃焼方法及びディーゼルエンジンの設計方法
CN102877996B (zh) 内燃发动机
WO2019016862A1 (ja) 筒内直接噴射式内燃機関の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R150 Certificate of patent or registration of utility model

Ref document number: 6238702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees