JP6226814B2 - Manufacturing method of welded structure - Google Patents

Manufacturing method of welded structure Download PDF

Info

Publication number
JP6226814B2
JP6226814B2 JP2014106351A JP2014106351A JP6226814B2 JP 6226814 B2 JP6226814 B2 JP 6226814B2 JP 2014106351 A JP2014106351 A JP 2014106351A JP 2014106351 A JP2014106351 A JP 2014106351A JP 6226814 B2 JP6226814 B2 JP 6226814B2
Authority
JP
Japan
Prior art keywords
welding
vibration
weld
width direction
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014106351A
Other languages
Japanese (ja)
Other versions
JP2015221451A (en
Inventor
伸志 佐藤
伸志 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Kobe Steel Ltd
Original Assignee
Kobelco Construction Machinery Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Construction Machinery Co Ltd, Kobe Steel Ltd filed Critical Kobelco Construction Machinery Co Ltd
Priority to JP2014106351A priority Critical patent/JP6226814B2/en
Publication of JP2015221451A publication Critical patent/JP2015221451A/en
Application granted granted Critical
Publication of JP6226814B2 publication Critical patent/JP6226814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、第1部材と、予め設定された溶接線方向に沿って第1部材に溶接された第2部材とを有する溶接構造物の製造方法に関するものである。   The present invention relates to a method for manufacturing a welded structure having a first member and a second member welded to the first member along a preset welding line direction.

従来から、溶接構造物における第1部材と第2部材との溶接部においては、溶接止端部における応力集中及び溶接による引張残留応力の存在等によって溶接部の疲労強度が低下することが知られている。   Conventionally, it is known that in a welded portion of a welded structure between a first member and a second member, the fatigue strength of the welded portion decreases due to the stress concentration at the weld toe and the presence of tensile residual stress due to welding. ing.

溶接構造物の疲労強度を向上するための方法として、例えば、特許文献1に記載の方法が知られている。   As a method for improving the fatigue strength of a welded structure, for example, a method described in Patent Document 1 is known.

特許文献1に記載の方法では、リブが当該リブを取り囲む周方向(溶接線方向)に沿って溶接された母材に対してハンマーピーニングによる打撃を与える。   In the method described in Patent Document 1, the rib is hit by hammer peening on a base material welded along a circumferential direction (welding line direction) surrounding the rib.

具体的に、平坦な先端部を有するチッパーを振動させるとともに、このチッパーの先端部を母材表面に対し垂直方向に衝突させる。この状態で、チッパーを溶接止端部の近傍位置から溶接線方向と直交する溶接幅方向の外側に漸次移動させる。   Specifically, a chipper having a flat tip is vibrated, and the tip of the chipper is collided in a direction perpendicular to the base material surface. In this state, the chipper is gradually moved from the position in the vicinity of the weld toe portion to the outside in the weld width direction orthogonal to the weld line direction.

このようにチッパーの平坦面を母材表面に垂直に衝突させることによりチッパーによる打撃力を母材に対し垂直方向に伝えるとともに、この状態でチッパーを溶接幅方向の外側に移動させることにより当該移動範囲内において前記打撃力を母材に与える。   In this way, the chipper's flat surface collides perpendicularly with the base metal surface, so that the hitting force by the chipper is transmitted to the base material in the vertical direction, and in this state, the chipper is moved outward in the welding width direction. Within the range, the striking force is applied to the base material.

これにより、母材における溶接幅方向の所定範囲内に圧縮残留応力が導入され、母材の疲労強度を向上することができる。   Thereby, the compressive residual stress is introduced within a predetermined range in the weld width direction of the base material, and the fatigue strength of the base material can be improved.

特開2011−131260号公報JP 2011-131260 A

しかしながら、特許文献1は、母材に対し、溶接幅方向の所定範囲内に圧縮残留応力を導入するための方法を開示するものの、溶接線方向に沿って母材の疲労強度を向上するための方法を開示していない。   However, Patent Document 1 discloses a method for introducing compressive residual stress into a predetermined range in the weld width direction with respect to the base material, but for improving the fatigue strength of the base material along the weld line direction. The method is not disclosed.

本発明の目的は、溶接線方向及びこれと直交する溶接幅方向に溶接部の疲労強度を向上することができる溶接構造物の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the welded structure which can improve the fatigue strength of a weld part in a weld line direction and the weld width direction orthogonal to this.

上記課題を解決するために、本発明は、第1部材と前記第1部材に溶接された第2部材とを有する溶接構造物の製造方法であって、予め設定された溶接線方向に沿って第1部材に対して第2部材を溶接する溶接工程と、平坦な先端面を有する振動部材を前記先端面と直交する振動方向に振動させた状態で、前記振動部材の先端面を前記第1部材の表面に対して前記振動方向と平行する方向に衝突させる打撃工程とを含み、前記打撃工程では、前記溶接線方向と直交する溶接幅方向で前記第1部材における溶接止端部の外側に設定された往復範囲内で前記振動部材を前記溶接幅方向に往復運動させながら、前記振動部材を前記溶接線方向に移動させる、溶接構造物の製造方法を提供する。   In order to solve the above-described problems, the present invention is a method for manufacturing a welded structure having a first member and a second member welded to the first member, along a preset welding line direction. A welding step of welding the second member to the first member, and a vibration member having a flat tip surface is vibrated in a vibration direction orthogonal to the tip surface, and the tip surface of the vibration member is moved to the first member. A striking step of colliding with the surface of the member in a direction parallel to the vibration direction. In the striking step, the welding width direction perpendicular to the welding line direction is outside the weld toe portion of the first member. A method for manufacturing a welded structure is provided in which the vibration member is moved in the weld line direction while the vibration member is reciprocated in the welding width direction within a set reciprocating range.

本発明によれば、振動部材を溶接幅方向に往復運動させながら溶接線方向に移動させることにより、振動部材の振動による打撃力を第1部材における溶接線方向及び溶接幅方向の所定の範囲に亘って与えることができる。   According to the present invention, the striking force due to the vibration of the vibration member is moved to a predetermined range in the welding line direction and the welding width direction of the first member by moving the vibration member in the welding line direction while reciprocating in the welding width direction. Can be given over.

したがって、溶接線方向及び溶接幅方向に第1部材における溶接部の疲労強度を向上することができる。   Therefore, the fatigue strength of the welded portion in the first member can be improved in the weld line direction and the weld width direction.

ここで、第2部材が第1部材に溶接されることにより、第1部材の溶接止端部に対する境界部分には、特に高い引張残留応力が存在する。   Here, when the second member is welded to the first member, a particularly high tensile residual stress exists at the boundary portion of the first member with respect to the weld toe.

そこで、前記溶接構造物の製造方法において、前記往復範囲は、前記第1部材の前記溶接止端部に対する境界部分に位置する内側折り返し線と前記溶接幅方向における前記内側折り返し線の外側に位置する外側折り返し線との間に設定されていることが好ましい。   Therefore, in the method for manufacturing a welded structure, the reciprocating range is located outside the inner fold line located at a boundary portion of the first member with respect to the weld toe end and the inner fold line in the weld width direction. It is preferably set between the outer folding line.

この態様によれば、上述のように高い引張残留応力が存在する第1部材の溶接止端部に対する境界部分に対して圧縮残留応力を与えることができるため、より効果的に第1部材の疲労強度を向上することができる。   According to this aspect, since the compressive residual stress can be applied to the boundary portion with respect to the weld toe portion of the first member where the high tensile residual stress exists as described above, the fatigue of the first member is more effectively achieved. Strength can be improved.

ここで、溶接時に第1部材に生じる引張残留応力は、溶接止端部から溶接幅方向の外側に離れるに従い小さくなる。   Here, the tensile residual stress generated in the first member during welding decreases as the distance from the weld toe portion increases to the outside in the weld width direction.

そこで、前記溶接構造物の製造方法において、前記第2部材の溶接により前記第1部材に生じる前記溶接幅方向の引張残留応力の分布に関する応力情報を準備する準備工程をさらに含み、前記往復範囲の外側折り返し線は、前記応力情報において前記第1部材における引張残留応力が予め設定された基準応力となる位置又はこれよりも前記溶接幅方向の外側に設定されていることが好ましい。   Therefore, the manufacturing method of the welded structure further includes a preparation step of preparing stress information regarding the distribution of the tensile residual stress in the weld width direction generated in the first member by welding of the second member, It is preferable that the outer fold line is set at a position where the tensile residual stress in the first member becomes a preset reference stress in the stress information or on the outer side in the weld width direction than this.

この態様によれば、第1部材において引張残留応力が予め設定された基準応力以上となる範囲に対して振動部材により圧縮残留応力を与えることができるため、溶接により第1部材に生じる引張残留応力を基準応力以下に抑えることができる。   According to this aspect, since the compressive residual stress can be applied by the vibrating member to a range where the tensile residual stress in the first member is equal to or greater than the preset reference stress, the tensile residual stress generated in the first member by welding Can be suppressed below the reference stress.

なお、前記基準応力を、例えば、第2部材の溶接前における第1部材の引張残留応力の値に設定すれば、溶接により引張残留応力が生じた第1部材の全範囲に対して疲労強度向上を図ることができる。   For example, if the reference stress is set to the value of the tensile residual stress of the first member before welding of the second member, the fatigue strength is improved with respect to the entire range of the first member in which the tensile residual stress is generated by welding. Can be achieved.

前記溶接構造物の製造方法において、前記振動部材の往復運動の周期をfとし、前記振動部材の前記溶接線方向の移動速度をvとし、前記振動部材の先端面の前記溶接線方向と平行する方向の最大長さをAとした場合に、前記打撃工程では、v/f<Aを満たすように前記振動部材を往復運動させることが好ましい。   In the manufacturing method of the welded structure, the period of the reciprocating motion of the vibration member is set as f, the moving speed of the vibration member in the welding line direction is set as v, and is parallel to the weld line direction of the tip surface of the vibration member. When the maximum length in the direction is A, it is preferable that the vibrating member is reciprocated so as to satisfy v / f <A in the striking step.

この態様によれば、振動部材が溶接幅方向に1往復する間における振動部材の往路の軌跡と復路の軌跡とが溶接線方向に互いに重なるため、振動部材による打撃を第1部材の表面に対して溶接線方向に万遍なく与えることができる。   According to this aspect, the trajectory of the forward path and the trajectory of the return path of the vibration member overlap each other in the weld line direction while the vibration member reciprocates once in the welding width direction. Can be applied evenly in the direction of the weld line.

ここで、振動部材の1回の衝突により圧縮残留応力が生じる第1部材上の範囲は、振動部材の先端面の外周縁から外側に所定の幅を有するとともに振動部材の先端面を全周に亘り取り囲む範囲(以下、この範囲を有効範囲という)である。   Here, the range on the first member in which the compressive residual stress is generated by a single collision of the vibration member has a predetermined width from the outer peripheral edge of the front end surface of the vibration member to the outer side and the front end surface of the vibration member around the entire periphery. It is a range that surrounds (hereinafter, this range is referred to as an effective range).

そこで、前記溶接構造物の製造方法において、前記振動部材の先端面の前記溶接幅方向と平行する方向の最大幅は、前記溶接幅方向と平行する方向における前記往復範囲の幅の1/2以下であることが好ましい。   Therefore, in the method for manufacturing a welded structure, the maximum width in the direction parallel to the weld width direction of the tip surface of the vibration member is ½ or less of the width of the reciprocating range in the direction parallel to the weld width direction. It is preferable that

この態様によれば、振動部材の往路の移動時及び復路の移動時においてそれぞれ有効範囲が連続して形成されるため、第1部材に対して圧縮残留応力を溶接幅方向に連続して導入することができる。   According to this aspect, since the effective ranges are continuously formed when the vibration member moves in the forward path and when the vibration path moves, the compressive residual stress is continuously introduced into the first member in the welding width direction. be able to.

前記溶接構造物の製造方法において、前記振動部材の先端面は、直径が1.5mm以上4mm以下である円形の平面形状を有することが好ましい。   In the method for manufacturing a welded structure, the distal end surface of the vibration member preferably has a circular planar shape having a diameter of 1.5 mm or more and 4 mm or less.

この態様によれば、第1部材に対してより効果的に圧縮残留応力を与えることができ、これにより第1部材の疲労強度を確実に向上することができる。   According to this aspect, compressive residual stress can be more effectively applied to the first member, and thereby the fatigue strength of the first member can be reliably improved.

具体的に、振動部材の先端面の直径が1.5mm未満である場合には、振動部材の摩耗の進行が速く、安定して打撃工程を行うことができない。   Specifically, when the diameter of the distal end surface of the vibration member is less than 1.5 mm, the wear of the vibration member progresses rapidly and the striking process cannot be performed stably.

一方、振動部材の先端面の直径が4mmを超えると、振動部材から第1部材に対する力が分散してしまい、第1部材に対して圧縮残留応力を十分に導入することができない。   On the other hand, if the diameter of the tip surface of the vibration member exceeds 4 mm, the force from the vibration member to the first member is dispersed, and the compressive residual stress cannot be sufficiently introduced to the first member.

本発明によれば、溶接線方向及びこれと直交する溶接幅方向に溶接部の疲労強度を向上することができる。   According to the present invention, the fatigue strength of the welded portion can be improved in the weld line direction and the weld width direction orthogonal thereto.

本発明に係る溶接構造物の製造方法を説明するための側面図であり、溶接構造物の断面を示す。It is a side view for demonstrating the manufacturing method of the welded structure which concerns on this invention, and shows the cross section of a welded structure. 溶接構造物における溶接幅方向の残留応力の分布を示すグラフである。It is a graph which shows distribution of the residual stress of the weld width direction in a welded structure. 振動部材の衝突により第1部材上に圧縮残留応力が生じる有効範囲を示す平面図である。It is a top view which shows the effective range which a compression residual stress produces on a 1st member by the collision of a vibration member. 往復範囲において有効範囲が連続しない場合の例を示す平面図である。It is a top view which shows an example in case an effective range does not continue in a reciprocating range. 振動部材の条件を変えて溶接構造物に対して行われた疲労試験の結果を示すグラフである。It is a graph which shows the result of the fatigue test performed with respect to the welded structure by changing the conditions of a vibration member. 往復範囲の条件を変えて溶接構造物に対して行われた疲労試験の結果を示すグラフである。It is a graph which shows the result of the fatigue test performed with respect to the welded structure by changing the conditions of a reciprocating range.

以下添付図面を参照しながら、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The following embodiments are examples embodying the present invention, and are not of a nature that limits the technical scope of the present invention.

図1を参照して、本発明の実施形態に係る溶接構造物1は、第1部材2と、第1部材2に溶接された第2部材3とを備えている。なお、符号4は、第1部材2と第2部材3との間に位置する溶接金属であり、符号4aは、溶接止端部である。   With reference to FIG. 1, a welded structure 1 according to an embodiment of the present invention includes a first member 2 and a second member 3 welded to the first member 2. In addition, the code | symbol 4 is the weld metal located between the 1st member 2 and the 2nd member 3, and the code | symbol 4a is a welding toe part.

第1部材2及び第2部材3は、図1の紙面と直交する溶接線方向D1に沿って互いに溶接されている。なお、溶接線方向D1と直交する方向(図1の左右方向)を溶接幅方向D2として以下説明する。   The first member 2 and the second member 3 are welded to each other along a weld line direction D1 orthogonal to the paper surface of FIG. In addition, the direction (left-right direction of FIG. 1) orthogonal to the welding line direction D1 is demonstrated below as the welding width direction D2.

第1部材2の溶接部には、超音波ピーニング装置の振動部材5によって圧縮残留応力が導入され、これにより、当該第1部材2の溶接部の疲労強度が向上している。   Compressive residual stress is introduced into the welded portion of the first member 2 by the vibration member 5 of the ultrasonic peening apparatus, thereby improving the fatigue strength of the welded portion of the first member 2.

つまり、第1部材2と第2部材3とが溶接された後、振動部材5による圧縮残留応力が導入される前の段階において、第1部材2には溶接時の熱の影響により図2に示すような引張残留応力の分布が存在し、当該第1部材2の疲労強度が低下している。   That is, after the first member 2 and the second member 3 are welded, before the compressive residual stress by the vibration member 5 is introduced, the first member 2 is affected by the influence of heat during welding as shown in FIG. As shown, there is a distribution of tensile residual stress, and the fatigue strength of the first member 2 is reduced.

具体的に、第1部材2における引張残留応力は、図1及び図2に示すように、溶接止端部4aにおける境界部分において最も高く、溶接止端部4aから溶接幅方向D2の外側に離れるに従い小さくなり、位置P1において0となる。一方、第1部材2における位置P1の溶接幅方向D2の外側の範囲には圧縮残留応力が存在する。この圧縮残留応力は、位置P1を始点として溶接止端部4aから離れるに従い大きくなってピークとなり、ピークを始点として溶接止端部4aから離れるに従い小さくなって0となる。   Specifically, as shown in FIGS. 1 and 2, the tensile residual stress in the first member 2 is highest at the boundary portion in the weld toe portion 4a, and is separated from the weld toe portion 4a to the outside in the welding width direction D2. And becomes 0 at the position P1. On the other hand, a compressive residual stress exists in a range outside the weld width direction D2 of the position P1 in the first member 2. This compressive residual stress increases and peaks as the distance from the weld toe 4a starts from the position P1, and decreases to 0 as the distance from the weld toe 4a starts from the peak.

そして、第1部材2において引張残留応力が存在する範囲には、超音波ピーニング装置の振動部材5により圧縮残留応力が導入されている。具体的に、第1部材の溶接止端部4aに対する境界部分に位置する内側折り返し線E1と、溶接幅方向D2における内側折り返し線E1の外側に位置する外側折り返し線E2との間の範囲E(以下、往復範囲Eともいう。)内に圧縮残留応力が導入されている。つまり、外側折り返し線E2は、図2において引張残留応力が予め設定された基準応力(本実施形態では0)となる位置に設定されている。   And in the range in which the tensile residual stress exists in the 1st member 2, the compressive residual stress is introduce | transduced by the vibration member 5 of the ultrasonic peening apparatus. Specifically, a range E () between the inner fold line E1 located at the boundary portion of the first member with respect to the weld toe 4a and the outer fold line E2 located outside the inner fold line E1 in the welding width direction D2. Hereinafter, compressive residual stress is introduced into the reciprocating range E). That is, the outer fold line E2 is set at a position where the tensile residual stress in FIG. 2 becomes a preset reference stress (0 in this embodiment).

超音波ピーニング装置は、溶接線方向D1及び溶接幅方向D2と直交する振動方向D3に沿って振動部材5を振動可能な振動発生器(図示せず)を備えている。振動部材5は、振動方向D3と直交する平坦な先端面5aを有する。振動方向D3に振動する振動部材5の先端面5aを振動方向D3と平行する方向に第1部材2の表面に衝突させることにより、当該第1部材2に対して圧縮残留応力を導入することができる。   The ultrasonic peening apparatus includes a vibration generator (not shown) that can vibrate the vibration member 5 along a vibration direction D3 orthogonal to the welding line direction D1 and the welding width direction D2. The vibration member 5 has a flat front end surface 5a orthogonal to the vibration direction D3. By causing the front end surface 5a of the vibration member 5 that vibrates in the vibration direction D3 to collide with the surface of the first member 2 in a direction parallel to the vibration direction D3, compressive residual stress can be introduced into the first member 2. it can.

振動部材5の先端面5aは円形である。図3に示すように、振動部材5の先端面5aの1回の衝突により圧縮残留応力が生じる第1部材2上の範囲は、振動部材5の先端面5aの外周縁(図3の直径Aの縁)から外側に所定の幅を有するとともに先端面5aを全周に亘って取り囲む範囲R1(以下、有効範囲R1という。)である。   The front end surface 5a of the vibration member 5 is circular. As shown in FIG. 3, the range on the first member 2 where the compressive residual stress is generated by one collision of the tip surface 5a of the vibration member 5 is the outer periphery (diameter A in FIG. 3) of the tip surface 5a of the vibration member 5. A range R1 (hereinafter, referred to as an effective range R1) that has a predetermined width from the edge of the outer periphery and surrounds the entire end surface 5a.

そこで、溶接幅方向D2と平行する方向における先端面5aの最大幅、つまり、直径Aは、溶接幅方向D2と平行する方向における往復範囲Eの幅の1/2以下に設定されている。これにより、振動部材5を内側折り返し線E1から外側折り返し線E2まで、又はその逆に移動する際に、有効範囲R1が連続して形成され、第1部材2に対して圧縮残留応力を溶接幅方向に連続して導入することができる。   Therefore, the maximum width of the distal end surface 5a in the direction parallel to the welding width direction D2, that is, the diameter A is set to ½ or less of the width of the reciprocating range E in the direction parallel to the welding width direction D2. Thereby, when the vibration member 5 is moved from the inner folding line E1 to the outer folding line E2 or vice versa, an effective range R1 is continuously formed, and the compressive residual stress is applied to the first member 2 by the welding width. It can be introduced continuously in the direction.

一方、図4に示すように、先端面5aの直径寸法を往復範囲の1/2よりも大きく設定した場合、第1部材2の非重複範囲R2において圧縮残留応力を導入することができない。   On the other hand, as shown in FIG. 4, when the diameter dimension of the tip surface 5 a is set to be larger than ½ of the reciprocating range, the compressive residual stress cannot be introduced in the non-overlapping range R <b> 2 of the first member 2.

以下、前記溶接構造物1の製造方法について説明する。   Hereinafter, the manufacturing method of the said welded structure 1 is demonstrated.

まず、予め設定された溶接条件で第2部材を溶接した場合に第1部材2に生じる溶接幅方向の引張残留応力の分布に関する情報、例えば、図2に示す応力分布に関する情報を準備する(準備工程)。この情報は、例えば、第2部材3の溶接後であってピーニングを行う前の第1部材2の応力を計測すること、又は前記溶接条件によるシミュレーション結果等によって得ることができる。   First, information on the distribution of tensile residual stress in the welding width direction generated in the first member 2 when the second member is welded under preset welding conditions, for example, information on the stress distribution shown in FIG. 2 is prepared (preparation). Process). This information can be obtained, for example, by measuring the stress of the first member 2 after welding of the second member 3 and before peening, or by a simulation result based on the welding conditions.

また、溶接線方向D1に沿って第1部材2に対して第2部材3を溶接する(溶接工程)。なお、準備工程及び溶接工程の順序は特に限定されない。   Moreover, the 2nd member 3 is welded with respect to the 1st member 2 along the welding line direction D1 (welding process). In addition, the order of a preparation process and a welding process is not specifically limited.

準備工程及び溶接工程の後、振動部材5を振動方向D3に沿って振動させた状態で、振動部材5の先端面5aを第1部材2の表面に対して振動方向D3と平行する方向に衝突させる(打撃工程)。   After the preparation process and the welding process, the front end surface 5a of the vibration member 5 collides with the surface of the first member 2 in a direction parallel to the vibration direction D3 in a state where the vibration member 5 is vibrated along the vibration direction D3. (Blowing process)

この打撃工程では、振動部材5の先端面5aが第1部材2の表面と略平行となるように振動部材5と第1部材2とを位置決めした状態で、振動部材5を第1部材2に衝突させる。   In this striking step, the vibration member 5 is moved to the first member 2 in a state where the vibration member 5 and the first member 2 are positioned so that the front end surface 5 a of the vibration member 5 is substantially parallel to the surface of the first member 2. Collide.

また、打撃工程では、溶接幅方向D2で第1部材2における溶接止端部4aの外側に設定された往復範囲E内で振動部材を溶接幅方向D2に往復運動させながら、振動部材5を溶接線方向D1に移動させる。   Further, in the striking step, the vibration member 5 is welded while the vibration member is reciprocated in the welding width direction D2 within the reciprocation range E set outside the weld toe 4a of the first member 2 in the welding width direction D2. Move in the line direction D1.

具体的に、打撃工程では、v/f<Aを満たすように前記振動部材を往復運動させる。ここで、fは振動部材5の往復運動の周期であり、vは振動部材5の溶接線方向D1の移動速度であり、Aは振動部材5の先端面5aの溶接線方向D1と平行する方向の最大長さ(直径)である。   Specifically, in the striking step, the vibrating member is reciprocated so as to satisfy v / f <A. Here, f is the period of the reciprocating motion of the vibration member 5, v is the moving speed of the vibration member 5 in the weld line direction D1, and A is the direction parallel to the weld line direction D1 of the tip surface 5a of the vibration member 5. Is the maximum length (diameter).

これにより、振動部材5が溶接幅方向に1往復する間における振動部材5の往路の軌跡と復路の軌跡とが溶接線方向D1に互いに重なるため、振動部材5による打撃を第1部材2の表面に対して溶接線方向D1に万遍なく与えることができる。   As a result, the trajectory of the forward path and the trajectory of the return path of the vibration member 5 overlap each other in the welding line direction D1 while the vibration member 5 reciprocates once in the welding width direction. However, the welding line direction D1 can be applied uniformly.

以下、上述した製造方法により製造された溶接構造物に対して行われた疲労試験(200万回繰り返し強度試験)の結果について説明する。   Hereinafter, the result of the fatigue test (2 million times repeated strength test) performed on the welded structure manufactured by the above-described manufacturing method will be described.

疲労試験の条件は次の通りである。ただし、この試験条件は一例であり、これに限定されない。   The conditions of the fatigue test are as follows. However, this test condition is an example and is not limited thereto.

第1部材2及び第2部材3として鋼材(SM490A)が用いられている。溶接方法としてMAG(metal active gas welding)溶接が採用されている。第1部材2及び第2部材3に用いられる鋼材に合わせて50kg級の溶接材料が用いられている。   Steel materials (SM490A) are used as the first member 2 and the second member 3. MAG (metal active gas welding) welding is adopted as a welding method. A 50 kg class welding material is used in accordance with the steel material used for the first member 2 and the second member 3.

このような条件で第2部材3が溶接された第1部材2において、溶接止端部4aを始点として溶接幅方向に10mmの範囲内に引張残留応力が存在していることが確認されている。そのため、この範囲が前記往復範囲Eに設定されている。   In the first member 2 to which the second member 3 is welded under such conditions, it has been confirmed that a tensile residual stress exists within a range of 10 mm in the weld width direction starting from the weld toe portion 4a. . Therefore, this range is set to the reciprocating range E.

図5に示す試験結果には、ピーニングなし(打撃工程なし)の比較例、及び、振動部材の先端面が球面である比較例が含まれている。   The test results shown in FIG. 5 include a comparative example without peening (no striking process) and a comparative example in which the tip surface of the vibration member is a spherical surface.

振動部材の先端面が球面である場合、振動部材5の先端面5aが平坦面である実施例と比較して応力振幅(疲労強度)が低い。これは、球面を第1部材2の表面に衝突させると、第1部材2の表面に凹凸が形成され、第1部材2において疲労強度向上の効果にばらつきが生じるためである。これに対し、振動部材5の先端面5aが平坦面である場合には、上記のような凹凸が形成されるのを抑制することができ、第1部材2に対して万遍なく疲労強度を向上することができる。   When the tip surface of the vibration member is a spherical surface, the stress amplitude (fatigue strength) is lower than in the embodiment in which the tip surface 5a of the vibration member 5 is a flat surface. This is because when the spherical surface collides with the surface of the first member 2, irregularities are formed on the surface of the first member 2, and the effect of improving the fatigue strength of the first member 2 varies. On the other hand, when the distal end surface 5a of the vibration member 5 is a flat surface, it is possible to suppress the formation of the unevenness as described above, and the fatigue strength is uniformly applied to the first member 2. Can be improved.

具体的に、振動部材の先端面が球面である場合、ピーニングなしの比較例に対して約36%疲労強度が向上しているのに対し、平坦な先端面5aの直径が1.5mm以上4mm以下の場合、ピーニングなしの比較例に対し倍以上(約218%)の疲労強度が得られている。   Specifically, when the tip surface of the vibration member is spherical, the fatigue strength is improved by about 36% compared to the comparative example without peening, whereas the diameter of the flat tip surface 5a is 1.5 mm or more and 4 mm. In the following cases, the fatigue strength is more than doubled (about 218%) compared to the comparative example without peening.

一方、平坦な先端面5aの直径が5mmの場合、直径が4mmの場合と比較して疲労強度が低い。これは、振動部材5の先端面5aの直径が4mmを超えると、振動部材5から第1部材2に対する力が分散してしまい、第1部材2に対して圧縮残留応力を十分に導入することができないためであると考えられる。   On the other hand, when the diameter of the flat front end surface 5a is 5 mm, the fatigue strength is lower than when the diameter is 4 mm. This is because if the diameter of the tip surface 5 a of the vibration member 5 exceeds 4 mm, the force from the vibration member 5 to the first member 2 is dispersed, and sufficient compressive residual stress is introduced into the first member 2. This is thought to be because it is impossible.

また、平坦な先端面5aの直径が1.5mm未満の場合には、振動部材5の摩耗の進行が速く、安定して打撃工程を行うことができないことが確認されている。   Moreover, when the diameter of the flat front end surface 5a is less than 1.5 mm, it has been confirmed that the wear of the vibration member 5 proceeds rapidly and the hitting process cannot be performed stably.

次に、図6を参照して、上述した製造方法により製造された溶接構造物1に対して行われた疲労試験(200万回疲労強度試験)の結果を説明する。なお、図6には、往復範囲Eの条件の異なる複数の実施例が示されている。また、図6には、振動部材5の先端面5aの直径が3mmに設定されている場合の試験結果が示されている。   Next, with reference to FIG. 6, the result of the fatigue test (2 million times fatigue strength test) performed with respect to the welded structure 1 manufactured with the manufacturing method mentioned above is demonstrated. FIG. 6 shows a plurality of embodiments with different conditions for the round-trip range E. Further, FIG. 6 shows a test result when the diameter of the distal end surface 5a of the vibration member 5 is set to 3 mm.

なお、先端面5aの直径及び往復範囲E以外の試験条件は、図5に示す疲労試験における試験条件と同様である。引張残留応力が存在する範囲も溶接止端部4aを始点として溶接幅方向に10mmの範囲で同様である。   The test conditions other than the diameter of the tip surface 5a and the reciprocating range E are the same as the test conditions in the fatigue test shown in FIG. The range in which the tensile residual stress exists is the same in the range of 10 mm in the weld width direction starting from the weld toe 4a.

図6には、溶接止端部4a(内側折り返し線E1)から2mm、4mm、10mm、及び15mmの往復範囲Eをそれぞれ設定した場合における試験結果が示されている。   FIG. 6 shows test results when the reciprocating ranges E of 2 mm, 4 mm, 10 mm, and 15 mm are set from the weld toe portion 4a (inner fold line E1), respectively.

引張残留応力が存在する範囲の全てを含む10mm及び15mmの往復範囲Eが設定されている場合と比較して、2mm及び4mmの往復範囲Eが設定されている場合には応力振幅(疲労強度)が低いことが分かる。   Stress amplitude (fatigue strength) when the reciprocating range E of 2 mm and 4 mm is set as compared to the case where the reciprocating range E of 10 mm and 15 mm including all of the range where the tensile residual stress exists is set. Is low.

また、引張残留応力が存在する範囲を超える15mmの往復範囲Eが設定されている場合と、引張残留応力が存在する範囲と同じ10mmの往復範囲Eが設定されている場合との間で、疲労強度の違いは認められない。   Further, fatigue occurs between the case where the reciprocating range E of 15 mm exceeding the range where the tensile residual stress exists is set and the case where the same reciprocating range E of 10 mm as the range where the tensile residual stress exists is set. There is no difference in strength.

したがって、少なくとも引張残留応力が存在する範囲を往復範囲Eに設定することにより最大の疲労強度向上効果が得られることが分かる。   Therefore, it can be seen that the maximum fatigue strength improvement effect can be obtained by setting the range where at least the tensile residual stress exists to the reciprocating range E.

以上説明したように、振動部材5を溶接幅方向D2に往復運動させながら溶接線方向D1に移動させることにより、振動部材5の振動による打撃力を第1部材2における溶接線方向D1及び溶接幅方向D2の所定の範囲に亘って与えることができる。   As described above, by moving the vibration member 5 in the welding line direction D1 while reciprocating in the welding width direction D2, the striking force due to the vibration of the vibration member 5 is changed to the welding line direction D1 and the welding width in the first member 2. It can be given over a predetermined range in the direction D2.

したがって、溶接線方向D1及び溶接幅方向D2に第1部材2における溶接部の疲労強度を向上することができる。   Therefore, the fatigue strength of the welded portion in the first member 2 can be improved in the weld line direction D1 and the weld width direction D2.

また、前記実施形態によれば、以下の効果を奏することができる。   Moreover, according to the said embodiment, there can exist the following effects.

前記実施形態によれば、高い引張残留応力が存在する第1部材2の溶接止端部4aに対する境界部分に対して圧縮残留応力を与えることができるため、より効果的に第1部材2の疲労強度を向上することができる。   According to the embodiment, since the compressive residual stress can be applied to the boundary portion with respect to the weld toe portion 4a of the first member 2 where a high tensile residual stress exists, the fatigue of the first member 2 is more effectively achieved. Strength can be improved.

前記実施形態によれば、第1部材2において引張残留応力が予め設定された基準応力(0)以上となる範囲に対して振動部材5により圧縮残留応力を与えることができるため、溶接により第1部材2に生じる引張残留応力を基準応力以下に抑えることができる。   According to the embodiment, since the compressive residual stress can be applied by the vibrating member 5 to a range in which the tensile residual stress in the first member 2 is equal to or higher than the preset reference stress (0), the first member 2 is welded. The tensile residual stress generated in the member 2 can be suppressed below the reference stress.

なお、前記基準応力を、例えば、第2部材3の溶接前における第1部材2の引張残留応力の値に設定すれば、溶接により引張残留応力が生じた第1部材2の全範囲に対して疲労強度向上を図ることができる。   In addition, if the said reference stress is set to the value of the tensile residual stress of the 1st member 2 before welding of the 2nd member 3, for example, with respect to the whole range of the 1st member 2 which the tensile residual stress produced by welding The fatigue strength can be improved.

また、往復範囲Eの外側折り返し線E2は、引張残留応力が基準応力となる位置(図2の位置P1)よりも溶接幅方向D2の外側に設定することもできる。このようにすれば、より確実に第1部材2における引張残留応力を基準応力以下に抑えることができる。   Further, the outer fold line E2 of the reciprocating range E can be set outside the welding width direction D2 from the position where the tensile residual stress becomes the reference stress (position P1 in FIG. 2). In this way, the tensile residual stress in the first member 2 can be suppressed to a reference stress or less more reliably.

前記実施形態によれば、振動部材5が溶接幅方向D2に1往復する間における振動部材5の往路の軌跡と復路の軌跡とが溶接線方向D1に互いに重なるため、振動部材5による打撃を第1部材2の表面に対して溶接線方向D1に万遍なく与えることができる。   According to the embodiment, since the trajectory of the forward path and the trajectory of the return path of the vibration member 5 overlap each other in the welding line direction D1 while the vibration member 5 reciprocates once in the welding width direction D2, the impact of the vibration member 5 is reduced. It is possible to uniformly apply the welding line direction D1 to the surface of the one member 2.

前記実施形態によれば、振動部材5の往路の移動時及び復路の移動時においてそれぞれ有効範囲R1が連続して形成されるため、第1部材2に対して圧縮残留応力を溶接幅方向D2に連続して導入することができる。   According to the embodiment, since the effective range R1 is continuously formed when the vibration member 5 moves in the forward path and when the vibration path 5 moves, the compressive residual stress is applied to the first member 2 in the welding width direction D2. It can be introduced continuously.

前記実施形態によれば、振動部材5の先端面5aの直径が1.5mm以上4mm以下である円形の平面形状を有するため、第1部材2に対してより効果的に圧縮残留応力を与えることができ、これにより第1部材2の疲労強度を確実に向上することができる。   According to the embodiment, since the tip surface 5a of the vibration member 5 has a circular planar shape with a diameter of 1.5 mm or more and 4 mm or less, the compressive residual stress is more effectively applied to the first member 2. Thus, the fatigue strength of the first member 2 can be reliably improved.

具体的に、振動部材5の先端面5aの直径が1.5mm未満である場合には、振動部材5の摩耗の進行が速く、安定して打撃工程を行うことができない。   Specifically, when the diameter of the distal end surface 5a of the vibration member 5 is less than 1.5 mm, the wear of the vibration member 5 progresses rapidly and the striking process cannot be performed stably.

一方、振動部材5の先端面5aの直径が4mmを超えると、振動部材5から第1部材2に対する力が分散してしまい、第1部材2に対して圧縮残留応力を十分に導入することができない。   On the other hand, if the diameter of the distal end surface 5 a of the vibration member 5 exceeds 4 mm, the force from the vibration member 5 to the first member 2 is dispersed, and sufficient compressive residual stress can be introduced into the first member 2. Can not.

なお、振動部材5の先端面5aの形状は、円形に限定されない。例えば、振動部材5の先端面5aを多角形や楕円形にすることもできる。   In addition, the shape of the front end surface 5a of the vibration member 5 is not limited to a circle. For example, the front end surface 5a of the vibration member 5 can be polygonal or elliptical.

D1 溶接線方向
D2 溶接幅方向
D3 振動方向
E 往復範囲
E1 内側折り返し線
E2 外側折り返し線
R1 有効範囲
1 溶接構造物
2 第1部材
3 第2部材
4a 溶接止端部
5 振動部材
5a 先端面
D1 Welding line direction D2 Welding width direction D3 Vibration direction E Reciprocating range E1 Inner folding line E2 Outer folding line R1 Effective range 1 Welded structure 2 First member 3 Second member 4a Weld toe 5 Vibration member 5a Tip surface

Claims (6)

第1部材と前記第1部材に溶接された第2部材とを有する溶接構造物の製造方法であって、
予め設定された溶接線方向に沿って第1部材に対して第2部材を溶接する溶接工程と、
平坦な先端面を有する振動部材を前記先端面と直交する振動方向に振動させた状態で、前記振動部材の先端面を前記第1部材の表面に対して前記振動方向と平行する方向に衝突させる打撃工程とを含み、
前記打撃工程では、前記溶接線方向と直交する溶接幅方向で前記第1部材における溶接止端部の外側に設定された往復範囲内で前記振動部材を前記溶接幅方向に往復運動させながら、前記振動部材を前記溶接線方向に移動させる、溶接構造物の製造方法。
A method for manufacturing a welded structure having a first member and a second member welded to the first member,
A welding step of welding the second member to the first member along a preset welding line direction;
In a state where a vibration member having a flat front end surface is vibrated in a vibration direction orthogonal to the front end surface, the front end surface of the vibration member collides with the surface of the first member in a direction parallel to the vibration direction. A striking process,
In the striking step, while reciprocating the vibrating member in the welding width direction within the reciprocating range set outside the weld toe portion in the first member in the welding width direction orthogonal to the welding line direction, A method for manufacturing a welded structure, wherein the vibration member is moved in the weld line direction.
前記往復範囲は、前記第1部材の前記溶接止端部に対する境界部分に位置する内側折り返し線と前記溶接幅方向における前記内側折り返し線の外側に位置する外側折り返し線との間に設定されている、請求項1に記載の溶接構造物の製造方法。   The reciprocating range is set between an inner folding line positioned at a boundary portion of the first member with respect to the weld toe and an outer folding line positioned outside the inner folding line in the welding width direction. The manufacturing method of the welded structure of Claim 1. 前記第2部材の溶接により前記第1部材に生じる前記溶接幅方向の引張残留応力の分布に関する応力情報を準備する準備工程をさらに含み、
前記往復範囲の外側折り返し線は、前記応力情報において前記第1部材における引張残留応力が予め設定された基準応力となる位置又はこれよりも前記溶接幅方向の外側に設定されている、請求項2に記載の溶接構造物の製造方法。
A preparatory step of preparing stress information related to a distribution of tensile residual stress in the weld width direction generated in the first member by welding of the second member;
The outer fold line of the reciprocating range is set at a position where the tensile residual stress in the first member becomes a preset reference stress in the stress information or outside the weld width direction than this. The manufacturing method of the welded structure as described in 1 ..
前記振動部材の往復運動の周期をfとし、前記振動部材の前記溶接線方向の移動速度をvとし、前記振動部材の先端面の前記溶接線方向と平行する方向の最大長さをAとした場合に、前記打撃工程では、v/f<Aを満たすように前記振動部材を往復運動させる、請求項1〜3の何れか1項に記載の溶接構造物の製造方法。   The period of the reciprocating motion of the vibration member is f, the moving speed of the vibration member in the weld line direction is v, and the maximum length of the vibration member in the direction parallel to the weld line direction is A. In this case, in the striking step, the vibration member is reciprocated so as to satisfy v / f <A. The method for manufacturing a welded structure according to any one of claims 1 to 3. 前記振動部材の先端面の前記溶接幅方向と平行する方向の最大幅は、前記溶接幅方向と平行する方向における前記往復範囲の幅の1/2以下である、請求項1〜4の何れか1項に記載の溶接構造物の製造方法。   5. The maximum width in the direction parallel to the welding width direction of the distal end surface of the vibration member is one half or less of the width of the reciprocating range in the direction parallel to the welding width direction. 2. A method for manufacturing a welded structure according to item 1. 前記振動部材の先端面は、直径が1.5mm以上4mm以下である円形の平面形状を有する、請求項1〜5の何れか1項に記載の溶接構造物の製造方法。   The method for manufacturing a welded structure according to any one of claims 1 to 5, wherein a tip surface of the vibration member has a circular planar shape having a diameter of 1.5 mm or more and 4 mm or less.
JP2014106351A 2014-05-22 2014-05-22 Manufacturing method of welded structure Active JP6226814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106351A JP6226814B2 (en) 2014-05-22 2014-05-22 Manufacturing method of welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106351A JP6226814B2 (en) 2014-05-22 2014-05-22 Manufacturing method of welded structure

Publications (2)

Publication Number Publication Date
JP2015221451A JP2015221451A (en) 2015-12-10
JP6226814B2 true JP6226814B2 (en) 2017-11-08

Family

ID=54784793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106351A Active JP6226814B2 (en) 2014-05-22 2014-05-22 Manufacturing method of welded structure

Country Status (1)

Country Link
JP (1) JP6226814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694894B (en) 2015-09-28 2020-06-01 日商東京威力科創股份有限公司 Substrate processing method and substrate processing device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050145306A1 (en) * 1998-09-03 2005-07-07 Uit, L.L.C. Company Welded joints with new properties and provision of such properties by ultrasonic impact treatment
JP2005298879A (en) * 2004-04-09 2005-10-27 Nippon Steel Corp Method for producing metal product having fine crystallized surface layer part
JP4374306B2 (en) * 2004-10-08 2009-12-02 新日本製鐵株式会社 Connecting rods with excellent fatigue characteristics and methods for improving the fatigue characteristics
JP4987816B2 (en) * 2008-07-28 2012-07-25 新日本製鐵株式会社 Automatic impact processing method and automatic impact processing apparatus for improving the fatigue characteristics of welded joints
JP4895407B2 (en) * 2009-12-24 2012-03-14 Jfeエンジニアリング株式会社 Peening method and welded joint using it
JP2011131260A (en) * 2009-12-25 2011-07-07 Jfe Steel Corp Method for increasing fatigue strength of weld zone, and weld joint
JP5898498B2 (en) * 2011-01-31 2016-04-06 Jfeスチール株式会社 Method for improving fatigue strength of welded part and welded joint
JP2014014831A (en) * 2012-07-09 2014-01-30 Jfe Steel Corp Fatigue strength improving method of weld zone and welded joint
JP2014176870A (en) * 2013-03-14 2014-09-25 Graduate School For The Creation Of New Photonics Industries Laser peening device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI694894B (en) 2015-09-28 2020-06-01 日商東京威力科創股份有限公司 Substrate processing method and substrate processing device

Also Published As

Publication number Publication date
JP2015221451A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5085743B2 (en) Out-of-plane gusset welded joint and manufacturing method thereof
JP5072885B2 (en) How to set shot peening conditions
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
JP2014014831A (en) Fatigue strength improving method of weld zone and welded joint
JP6226814B2 (en) Manufacturing method of welded structure
JP2009034721A (en) Manufacturing method of welded joint excellent in fatigue resistance and its manufacturing apparatus
KR102243326B1 (en) Method of peening lap fillet welded joint and welded structures
KR101577261B1 (en) Method for preventing fatigue damage in welded structures, tool for forming impact area, and welded structure
JP5844551B2 (en) Manufacturing method of welded joint
JP6495569B2 (en) Tool for forming impact marks
JP2017094396A (en) Ultrasonic impact treatment method
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP5898498B2 (en) Method for improving fatigue strength of welded part and welded joint
JP5327567B1 (en) Peening method and welded joint
JP5977077B2 (en) Welding peening method
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP6051817B2 (en) Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure
JP2013136094A (en) Weld structure of steel
JP2007069229A (en) Tool for shock-plastic working metal for improving excellent fatigue-strength, and method therefor
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP2015047629A (en) Anvil for ultrasonic welding
JP6339760B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP5831286B2 (en) Ultrasonic impact treatment pin for weld toe and ultrasonic impact treatment method for weld toe
JP5776393B2 (en) Method for improving fatigue performance of welded structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161220

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6226814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250