JP2007069229A - Tool for shock-plastic working metal for improving excellent fatigue-strength, and method therefor - Google Patents

Tool for shock-plastic working metal for improving excellent fatigue-strength, and method therefor Download PDF

Info

Publication number
JP2007069229A
JP2007069229A JP2005257657A JP2005257657A JP2007069229A JP 2007069229 A JP2007069229 A JP 2007069229A JP 2005257657 A JP2005257657 A JP 2005257657A JP 2005257657 A JP2005257657 A JP 2005257657A JP 2007069229 A JP2007069229 A JP 2007069229A
Authority
JP
Japan
Prior art keywords
tool
plastic working
shape
impact
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005257657A
Other languages
Japanese (ja)
Other versions
JP2007069229A5 (en
JP4833615B2 (en
Inventor
Koji Seto
厚司 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005257657A priority Critical patent/JP4833615B2/en
Publication of JP2007069229A publication Critical patent/JP2007069229A/en
Publication of JP2007069229A5 publication Critical patent/JP2007069229A5/ja
Application granted granted Critical
Publication of JP4833615B2 publication Critical patent/JP4833615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool for shock-plastic working and a working method with which a fatigue-strength of a corner part existing at the edge part of a metal is improved. <P>SOLUTION: In the enlarged diameter-state tool for shock-plastic working treatment, whose outer diameter is gradually enlarged from a head part 8 toward a tip end part; the tip end part 5 surface is formed as smooth curved surface and the shape of a side surface from the head part 8 to the tip end part 5 surface is formed as the enlarged diameter so as to become an exponential function-shape. At this time, the shape of the side surface 2 from the head part 8 to the tip end surface can be formed as the enlarged diameter so as to become the exponential function-shape, or can be formed so as to optimize the radius of the curvature on the tip end surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車、家電製品、建築構造物、船舶、橋梁、建設機械、各種プラント、ペンストック等で用いられる鉄、アルミニウム、チタン、マグネシウムおよびこれらの合金等の金属からなる構造部材のうち、特にせん断加工等で形成される金属端部の角部の疲労強度を向上させる衝撃塑性加工処理用工具及び方法に関するものである。   The present invention is a structural member made of metal such as iron, aluminum, titanium, magnesium and alloys thereof used in automobiles, home appliances, building structures, ships, bridges, construction machines, various plants, penstocks, etc. The present invention relates to an impact plastic working tool and method for improving the fatigue strength of a corner portion of a metal end formed by shearing or the like.

金属(母材、および溶接や成形等の加工を受けた部分の両者を含む)に、溶接・プレス・切断・打ち抜きなどの加工が施され、その部材に繰返し荷重が作用すると、これらの加工部はその形状に起因する応力集中と引張残留応力の存在により疲労き裂発生の起点となり、疲労強度を低下させる。このような部位の耐久性を向上させることを目的に、これまでショットピーニング、レーザーピーニング、ウォータージェットピーニング、ハンマーピーニング、ニードルピーニング、ワイヤーピーニング、超音波衝撃処理などの衝撃塑性加工方法が用いられている。これらの衝撃塑性加工方法は、金属構造体に塑性変形を与えるエネルギ媒体である工具を被加工物に衝突させることにより塑性変形を付与する。   When metal (including both the base material and the parts subjected to processing such as welding and forming) is subjected to processing such as welding, pressing, cutting, and punching, and these parts are subjected to repeated loads, these processed parts Is the starting point of fatigue cracking due to the concentration of stress due to its shape and the presence of tensile residual stress, and reduces fatigue strength. Impact plastic processing methods such as shot peening, laser peening, water jet peening, hammer peening, needle peening, wire peening, and ultrasonic impact treatment have been used for the purpose of improving the durability of such parts. Yes. These impact plastic working methods impart plastic deformation by causing a tool, which is an energy medium that plastically deforms a metal structure, to collide with a workpiece.

しかし細長い棒状の先端工具を繰り返し衝突させるハンマーピーニング、ニードルピーニング、ワイヤーピーニング、超音波衝撃処理の各方法を用いて、せん断加工等で形成される金属端部の角部を処理する場合、工具の狙い位置が少しずれると衝突後の工具および衝撃塑性加工装置の位置及び反力が不安定になり、安定した処理を継続することが困難となる。また、角部への工具の衝突を維持するために工具先端の位置および装置全体の位置や方向を手動制御することは多大な労力を要する。このため、金属の疲労強度をより向上させるために、効果的な衝撃塑性加工を安定して実行し得る方法や装置を早急に案出する必要があった。   However, when processing corners of metal ends formed by shearing etc. using hammer peening, needle peening, wire peening, and ultrasonic impact treatment, which repeatedly strike a long and narrow bar-shaped tool, If the target position is slightly deviated, the position and reaction force of the tool and the impact plastic working device after the collision become unstable, and it is difficult to continue stable processing. Moreover, it takes much labor to manually control the position of the tool tip and the position and direction of the entire apparatus in order to maintain the collision of the tool with the corner. For this reason, in order to further improve the fatigue strength of the metal, it was necessary to devise a method and an apparatus capable of stably performing effective impact plastic working.

衝撃塑性加工の工具については、金属部材の応力集中を低減させることを目的として超音波衝撃処理の工具先端の形状および概ねの曲率(0.5mm〜3.0mm程度)が特許文献1に開示されている。この特許文献1における開示技術では、深さ方向への塑性変形量が大きければ大きいほど導入される導入される圧縮力も増加するという知見に基づいて、超音波衝撃処理により形成される塑性変形量、疲労向上効果を工具の持つ曲率によって関連付けたものである。   For impact plastic working tools, Patent Document 1 discloses the shape and approximate curvature (about 0.5 mm to 3.0 mm) of the tool tip of ultrasonic impact treatment for the purpose of reducing the stress concentration of the metal member. ing. In the disclosed technique in Patent Document 1, based on the knowledge that the greater the amount of plastic deformation in the depth direction, the greater the introduced compressive force, the amount of plastic deformation formed by ultrasonic impact treatment, The fatigue improvement effect is related by the curvature of the tool.

また杭打ち用工具として杭を横ずれさせることなく打撃させることを目的として先端工具の当接部に枠部を設けた工具が特許文献2に開示されている。この特許文献2の開示技術において、打撃部材は、杭の被打撃側端部に被さるようになっているので、打撃部材を杭に対して横ずれさせることなく打ち付けることができる。   Further, Patent Literature 2 discloses a tool in which a frame portion is provided at a contact portion of a tip tool for the purpose of hitting a pile without causing lateral displacement as a pile driving tool. In the technique disclosed in Patent Document 2, the striking member covers the hitting side end portion of the pile, and therefore the striking member can be hit without being laterally displaced with respect to the pile.

またさらに、複雑な形状の部材を他部材に打ち込むことを目的にして、工具の先端が回転自在に取り付けられた空気圧工具が特許文献3に開示されている。   Furthermore, Patent Document 3 discloses a pneumatic tool in which a tip of a tool is rotatably attached for the purpose of driving a member having a complicated shape into another member.

またさらに、衝撃塑性加工装置では無いが、先端が第一の曲率半径を持つ連続した複数の凸部により形成され、これら複数の凸部先端を結んだ線から第二の曲率半径を形成する表面硬化ローラーバニッシング用工具が、特許文献4に示されている。   Furthermore, although it is not an impact plastic working device, the surface is formed by a plurality of continuous convex portions having a first radius of curvature and a second radius of curvature is formed from a line connecting the plurality of convex portions. A hardening roller burnishing tool is disclosed in Patent Document 4.

またさらに特許文献5および特許文献6では、せん断加工面の疲労強度改善方法が開示されており、特許文献5ではコイニング加工の硬さ上昇量および加工量を規定された方法が、特許文献6ではショットピーニングの投射角度およびバリ高さと幅の比を規定した方法がそれぞれ開示されている。   Furthermore, Patent Document 5 and Patent Document 6 disclose methods for improving the fatigue strength of sheared surfaces, and Patent Document 5 discloses a method in which the amount of increase in hardness and the amount of coining is defined. Methods for defining the shot angle of shot peening and the ratio of burr height to width are disclosed.

またさらに、図15に示すように人力で金属を打撃することを目的としたたがねと呼ばれる工具が市販されている。このたがねは、ハンマー等で打ち付けるための頭部68から先端面65にかけて正面の形状は途中から幅広になるように形成されるとともに、側面の形状は途中から先細となるように形成されている。
特開2003-113418号公報 特開2002-317442号公報 特開平8-150575号公報 特開2003-145420号公報 特開平6-57325号公報 特開2004-83927号公報
Furthermore, as shown in FIG. 15, a tool called chisel for the purpose of hitting a metal manually is commercially available. The chisel is formed so that the front shape from the head 68 to the tip surface 65 for striking with a hammer or the like becomes wider from the middle, and the shape of the side surface is tapered from the middle. Yes.
JP 2003-113418 A JP 2002-317442 A Japanese Unexamined Patent Publication No. 8-150575 Japanese Patent Laid-Open No. 2003-145420 JP-A-6-57325 JP 2004-83927 A

上述した開示技術のうち、特許文献1では溶接止端形状の改善を主目的として、工具先端の曲面の曲率半径が0.5mm〜3.0mm程度であると疲労強度向上効果が高いことが開示されている。しかし、せん断加工等で形成される金属端部の角部の疲労強度向上を図る上で、工具における最適な全体形状に関しては何ら言及されていない。   Among the disclosed technologies described above, Patent Document 1 discloses that the effect of improving the fatigue strength is high when the curvature radius of the curved surface at the tip of the tool is about 0.5 mm to 3.0 mm for the main purpose of improving the weld toe shape. Yes. However, there is no mention of the optimum overall shape of the tool in order to improve the fatigue strength of the corner of the metal end formed by shearing or the like.

また特許文献2では、杭を簡単に素早く打ち込むために当接部および枠部を設けた杭打ち用工具が開示されているのみであり、本願発明において問題としている金属端部の角部の疲労強度向上を図る上での工具の形状の最適化について何ら念頭に置くものではない。   Further, Patent Document 2 only discloses a pile driving tool provided with a contact portion and a frame portion for driving a pile easily and quickly, and fatigue of a corner portion of a metal end which is a problem in the present invention is disclosed. There is nothing to keep in mind about the optimization of the shape of the tool in order to improve the strength.

さらに、特許文献3では、工具先端が回転自在に取り付けられている空気圧工具が開示されているが、金属端部の角部の疲労強度向上を図ることを想定した構成とされていない。同様に特許文献4〜6も本発明の解決すべき課題とは異なり、これに応じた構成につき何ら開示はされていない。   Furthermore, Patent Document 3 discloses a pneumatic tool in which a tool tip is rotatably attached, but is not configured to improve fatigue strength of a corner portion of a metal end portion. Similarly, Patent Documents 4 to 6 are different from the problems to be solved by the present invention, and no configuration is disclosed according to this.

またさらに、図15に示すたがねは、作業者が片手に持ちハンマー等で頭部を叩くための工具であり、その先端は扁平化していることから、これを金属端部の角部に突き当てて打ち付けると、当該角部は不規則な形状に凹む場合が殆どであり、その疲労強度を向上させることは困難であるといえる。   Furthermore, the chisel shown in FIG. 15 is a tool for an operator to hold in one hand and hit the head with a hammer or the like, and since the tip is flattened, this is attached to the corner of the metal end. When striking and striking, the corner is often recessed in an irregular shape, and it can be said that it is difficult to improve the fatigue strength.

このため、せん断加工等で形成される金属端部の角部における疲労強度を向上させるために、効果的な衝撃塑性加工を安定して実行し得る方法や装置が従来より案出されていないのが現状であった。   For this reason, in order to improve the fatigue strength at the corners of the metal edge formed by shearing or the like, no method or apparatus has been devised that can stably perform effective impact plastic working. Was the current situation.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、金属端部に存在する角部の疲労強度を向上させる衝撃塑性加工用工具および加工方法を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and an object of the present invention is to provide an impact plastic working tool and a machining method for improving the fatigue strength of corner portions existing at metal end portions. Is to provide.

上記課題を解決するために、本発明の要旨とするところは、   In order to solve the above problems, the gist of the present invention is as follows.

(1)頭部から先端面に向けて徐々に外径が拡径される拡径状の衝撃塑性加工処理用工具において、上記先端面は滑らかな曲面からなることを特徴とする疲労強度向上に優れた金属の衝撃塑性加工処理用工具、 (1) In an expanded impact plastic working tool whose outer diameter is gradually increased from the head toward the tip surface, the tip surface is formed of a smooth curved surface to improve fatigue strength. Excellent metal impact plastic processing tool,

(2)頭部から先端面に至るまでの側面の形状が指数関数形となるように拡径されてなることを特徴とする上記(1)の疲労強度向上に優れた金属の衝撃塑性加工処理用工具、 (2) Impact metal working process of metal having excellent fatigue strength improvement as described in (1) above, wherein the shape of the side surface from the head to the tip surface is expanded so as to be an exponential function. Tools,

(3)上記(1)又は(2)記載の衝撃塑性加工処理用工具を用いて金属端部の角部を衝撃塑性加工する方法において、前記角部が形成する曲率半径Rとの間で、0.5≦r≦Rを満たすような曲率半径rからなる上記先端面を有する上記衝撃塑性加工処理用工具により衝撃塑性加工することを特徴とする疲労強度向上に優れた金属の衝撃塑性加工処理方法、にある。 (3) In the method of impact plastic working a corner of a metal end using the impact plastic working tool described in (1) or (2) above, between the radius of curvature R formed by the corner, Impact plastic working of metal with excellent fatigue strength, characterized in that impact plastic working is performed by the impact plastic working tool having the tip surface having a radius of curvature r satisfying 0.5 ≦ r ≦ R. Is in the way.

本発明は金属、およびそれが溶接、塑性変形などの加工を受けた部材の端部に存在する角部を、略ラッパ状の工具を用いて衝撃塑性加工処理を行うことにより、角部の形状緩和による応力集中の低減と、圧縮残留応力の付与が可能となって疲労強度をさらに向上させるため、材料、対象部材の種類によらず疲労強度を安定して向上させることが可能であり、その工業的意味は大きい。   According to the present invention, a corner of a metal and an end of a member subjected to processing such as welding and plastic deformation are subjected to impact plastic working using a substantially trumpet-shaped tool, thereby forming the shape of the corner. Since stress concentration can be reduced by relaxation and compressive residual stress can be applied to further improve fatigue strength, it is possible to stably improve fatigue strength regardless of the type of material and target member. Industrial significance is great.

以下、発明を実施するための最良の形態として、疲労強度向上に優れた金属の衝撃塑性加工処理用方法について、図面を参照しながら詳細に説明をする。   Hereinafter, as a best mode for carrying out the invention, a method for impact plastic working of a metal excellent in improving fatigue strength will be described in detail with reference to the drawings.

本発明者は、図6に示すように金属(被処理材)12をせん断加工等で切断した端部における角部9が疲労破壊の起点となりやすく、疲労強度を低下させる現象を衝撃塑性加工方法により解決すべく、工具1(1’)の形状を検討した。通常は図4(a)の縦断面図、図4(b)の側面図に示すように縦断面における側面2が直線3のみからなる円筒形の細長い工具1’が用いられるが、特に角部9が工具先端でうまく処理できるように工具1’の先端や衝撃塑性加工装置7の位置や方向を制御しない場合に、工具が横にそれて装置も振れることになり、安定した処理が困難な状況にあった。   As shown in FIG. 6, the present inventor considered that a phenomenon in which the corner portion 9 at the end portion obtained by cutting the metal (material to be processed) 12 by shearing or the like is likely to be a starting point of fatigue failure, and the fatigue strength is reduced, is a shock plastic working method. Therefore, the shape of the tool 1 (1 ′) was examined. Usually, as shown in the longitudinal sectional view of FIG. 4 (a) and the side view of FIG. 4 (b), a cylindrical elongated tool 1 'in which the side surface 2 in the longitudinal section is composed of only the straight line 3 is used. When the position and direction of the tip of the tool 1 'and the impact plastic working device 7 are not controlled so that 9 can be processed well at the tip of the tool, the tool will move sideways and the device will swing, making stable processing difficult. Was in the situation.

ちなみに、この衝撃塑性加工装置7は、ピストンロッド71の突出端に工具1’が取り付けられ、このピストンロッド71を例えば空気圧の供給等を利用して一定のストロークで高頻度に往復運動させることにより、工具1’を介して角部9に衝撃力を負荷するものである。   Incidentally, the impact plastic working device 7 has a tool 1 ′ attached to the protruding end of the piston rod 71, and reciprocates the piston rod 71 with a constant stroke at a high frequency using, for example, supply of air pressure. The impact force is applied to the corner portion 9 through the tool 1 ′.

また、仮に冶具等で衝撃塑性加工装置7が安定的に固定できた場合でも、工具の先端面の面積が小さいために1回の塑性変形による凹みが狭く、かつ深くなるため、角部を一様に滑らかに処理することが困難であり、図9のように従来工具1’を用いて被処理材12の角部9に衝撃塑性加工処理を行った後の角部9’は図10のように凹凸の顕著な面が形成され、疲労強度の向上は望めなくなることが判明した。しかしながら、工具を単に太径化させ、或いはその形状を複雑化させても、衝撃塑性加工装置7内の振動源からの振動エネルギを十分に被処理材に伝えることができず、十分な塑性変形が得られないという問題があった。特に超音波衝撃処理方法では、伝播する超音波の減衰を極力抑えることが、十分に塑性変形させる上で必要なことから、これら角部の衝撃塑性加工作業の安定性と衝撃塑性加工性を両立する工具形状の検討が必要であった。   Even if the impact plastic working device 7 can be stably fixed with a jig or the like, since the area of the tip surface of the tool is small, the dent caused by one plastic deformation is narrow and deep, so that the corner portion is fixed. As shown in FIG. 9, the corner 9 'after the impact plastic working is performed on the corner 9 of the workpiece 12 using the conventional tool 1' as shown in FIG. In this way, it was found that a surface with unevenness was formed, and improvement in fatigue strength could not be expected. However, even when the diameter of the tool is simply increased or the shape thereof is complicated, the vibration energy from the vibration source in the impact plastic working apparatus 7 cannot be sufficiently transmitted to the workpiece, and sufficient plastic deformation is caused. There was a problem that could not be obtained. In particular, in the ultrasonic shock treatment method, it is necessary to suppress the attenuation of the transmitted ultrasonic wave as much as possible in order to achieve sufficient plastic deformation. Therefore, both the stability of impact plastic working at these corners and the impact plastic workability are compatible. It was necessary to study the tool shape to be used.

これらの相反する現象の解決手段を鋭意検討した結果、本発明者は、図1〜図3に示す形状からなる工具1を発明した。図1(a)〜図3(a)は、工具1の正面形状を示し、図1(b)〜図3(b)は、工具1の側面形状を示す。   As a result of intensive investigations on solutions for these conflicting phenomena, the present inventors have invented the tool 1 having the shape shown in FIGS. 1A to FIG. 3A show the front shape of the tool 1, and FIG. 1B to FIG. 3B show the side shape of the tool 1.

即ち、この工具1は、頭部8から先端面5に向けて徐々に外径が拡径される拡径状の衝撃塑性加工処理用工具である。この工具1は、先端の外径13が頭部8より大きい略ラッパ状の工具であって、かつ先端面5は滑らかな曲面からなる。ちなみに、この図1〜図3においては略ラッパ状の工具を例に挙げているが、これに限定されるものではなく、いかなる拡径状の形で構成されていてもよい。即ち、先端に向けて徐々に拡径されたラッパ状の工具であれば先端面5を滑らかにしつつ、しかも広く構成することが可能となることから、工具が多少横にずれても広い面積で角部を処理することが可能であり、また頭部8から先端面5に至るまでの側面2の形状を直線3および/または曲線4からなる形状にすることで、振動エネルギの減衰や、超音波衝撃処理における超音波の減衰を極力抑えることが可能となる。   That is, the tool 1 is an impact plastic working tool having an enlarged diameter in which the outer diameter is gradually increased from the head 8 toward the distal end surface 5. This tool 1 is a substantially trumpet-shaped tool having a tip outer diameter 13 larger than that of the head 8, and the tip surface 5 is a smooth curved surface. Incidentally, in FIG. 1 to FIG. 3, a substantially trumpet-shaped tool is taken as an example, but the tool is not limited to this, and may be configured in any expanded shape. In other words, a trumpet-shaped tool that gradually increases in diameter toward the tip can be configured to be wide while smoothing the tip surface 5, so that even if the tool is slightly displaced laterally, a large area can be obtained. The corner portion can be processed, and the shape of the side surface 2 from the head 8 to the distal end surface 5 is changed to a shape composed of the straight line 3 and / or the curved line 4, thereby reducing vibration energy and It is possible to suppress the attenuation of ultrasonic waves as much as possible in the sonic impact treatment.

以下の説明において、衝撃塑性加工とは、ハンマーピーニング、ニードルピーニング、ワイヤーピーニング、超音波衝撃処理など、空気圧、超音波振動などをエネルギ源として、10Hz〜50KHzの周波数で先端工具が繰り返し発射され、被処理物に衝突させることにより塑性変形を付与する方法を包含するものである。また超音波衝撃処理とは、超音波発生機から発生された20〜50KHzの超音波振動をピン等の工具を介して対象物に押し当てて、塑性変形により表面形状の改善および残留応力の緩和・再配置等を行う処理である。   In the following description, impact plastic working means hammer peening, needle peening, wire peening, ultrasonic impact treatment, etc., using pneumatic pressure, ultrasonic vibration, etc. as an energy source, the tip tool is repeatedly fired at a frequency of 10 Hz to 50 KHz, It includes a method of imparting plastic deformation by causing it to collide with an object to be processed. Ultrasonic impact treatment means that 20-50 KHz ultrasonic vibration generated from an ultrasonic generator is pressed against an object through a tool such as a pin, and the surface shape is improved and residual stress is reduced by plastic deformation. A process for performing rearrangement or the like.

縦断面の側面2の形状は、図1および図2に示すように直線3と曲線4を組み合わせた場合でも、円錐形のように直線であっても、図3のように曲線4のみであっても、あるいはそれらが滑らかに組み合わされている場合でも差し支え無い。   The shape of the side surface 2 of the longitudinal section is only the curve 4 as shown in FIG. 3, whether it is a combination of the straight line 3 and the curve 4 as shown in FIGS. 1 and 2, or a straight line like a cone. However, even when they are smoothly combined, there is no problem.

なお、図5(a)、(b)に示すように曲線4’が特に指数関数形の場合に、超音波衝撃処理の場合には伝播する超音波の減衰がさらに小さくなる。   As shown in FIGS. 5 (a) and 5 (b), when the curve 4 'is particularly exponential, attenuation of the transmitted ultrasonic wave is further reduced in the case of ultrasonic impact processing.

このように本発明を適用した形状からなる工具1を利用して、例えば図7に示すように角部9に衝撃塑性加工処理を行った場合には図8のように加工後の角部9’は概ね滑らかにすることが可能となり、その結果、応力集中の低減、ならびに残留応力の圧縮化を図ることができ、高い疲労強度を得ることができる。   When the tool 1 having the shape to which the present invention is applied is used and the impact plastic working process is performed on the corner portion 9 as shown in FIG. 7, for example, the corner portion 9 after processing as shown in FIG. 'Can be made generally smooth. As a result, the stress concentration can be reduced, the residual stress can be compressed, and a high fatigue strength can be obtained.

また、先端面5は、振動エネルギの減衰や、超音波衝撃処理における超音波の減衰を極力抑えるため、滑らかな曲面からなることが必要である。   Further, the tip surface 5 needs to be a smooth curved surface in order to suppress vibration energy attenuation and ultrasonic wave attenuation in ultrasonic impact processing as much as possible.

先端面5の曲率半径6は、被処理材12の形状により選択すべきものであるので特に規定するものではないが、例えば図11に示すように被処理材12に曲率半径10がR(mm)の打ち抜き部11があり、その角部9を処理する場合には、工具の先端部の曲率半径6をr(mm)とするとき、
0.5R≦r≦R ・・・(1)
を満足するように工具を選定して衝撃塑性加工処理をすると、図12のような角部9の場合に、処理後の角部9’が図13に示すように連続して滑らかに処理できることを見出した。工具先端部の曲率半径6としてのrが0.5Rより小さいと1回の塑性変形による凹みの幅が狭く、かつ深くなるため、角部を連続して滑らかに処理することが困難となり、r≧0.5Rとすることが好ましい。しかし工具先端部の曲率半径6としてのrが被処理材の打ち抜き部の曲率半径Rよりも大きくなると、曲率をもつ角部のうち工具先端部に接触しない部分が生じるため、角部全般に滑らかに十分な塑性変形を与えることが困難になる。したがってr≦Rとすることが好ましい。
The curvature radius 6 of the front end surface 5 is not particularly specified because it should be selected depending on the shape of the material to be treated 12. For example, as shown in FIG. 11, the radius of curvature 10 is R (mm) on the material to be treated 12. When the corner portion 9 is processed, when the radius of curvature 6 of the tip of the tool is r (mm),
0.5R ≦ r ≦ R (1)
When the tool is selected so as to satisfy the requirements and the impact plastic working is performed, in the case of the corner 9 as shown in FIG. 12, the corner 9 ′ after the treatment can be processed smoothly and smoothly as shown in FIG. I found. If r as the radius of curvature 6 of the tool tip is smaller than 0.5R, the width of the dent by one plastic deformation becomes narrow and deep, and it becomes difficult to process the corner continuously and smoothly, and r ≧ 0.5R is preferable. However, when r as the radius of curvature 6 of the tool tip is larger than the radius of curvature R of the punched portion of the material to be processed, a portion that does not contact the tip of the tool is generated among the corners having the curvature. It is difficult to give sufficient plastic deformation to the surface. Therefore, it is preferable to satisfy r ≦ R.

なお、本発明の工具を衝撃塑性加工装置に取り付けて使用する場合の本数は特に限定するものではないが、打ち抜き部の角部を処理する場合には工具は1本の場合が好ましく、曲率半径の大きい、すなわち角部が直線状の場合には複数本の工具を並列に配置することによりさらに効率的な処理が可能となる。   The number of the tool of the present invention when attached to an impact plastic working device is not particularly limited, but when the corner of the punched portion is processed, the number of tools is preferably one and the radius of curvature is preferred. If the angle is large, that is, the corners are straight, more efficient processing can be performed by arranging a plurality of tools in parallel.

本発明では特に工具の先端面5における外径13の絶対値について規定していないが、かかる外径13が大きいと、金属に十分な塑性変形を与えるために大きな出力の装置を必要とし、操作性や可搬性に支障を来たす。しかし先端面5における外径13が小さいと、塑性変形を与える幅および断面積も小さくなり、処理表面の凹凸が顕著になるため応力集中が生じ、十分な疲労強度向上効果が得られない。したがってこれらの実用的な観点から工具先端の外径13はハンマーピーニングの場合、10mm〜40mm、超音波衝撃処理の場合、5mm〜20mmとすることが好ましい。   In the present invention, the absolute value of the outer diameter 13 at the tip surface 5 of the tool is not particularly defined. However, when the outer diameter 13 is large, a large output device is required to give sufficient plastic deformation to the metal, It interferes with sex and portability. However, if the outer diameter 13 on the tip face 5 is small, the width and cross-sectional area that give plastic deformation also become small, and the unevenness of the treated surface becomes remarkable, so that stress concentration occurs and a sufficient fatigue strength improvement effect cannot be obtained. Therefore, from these practical viewpoints, the outer diameter 13 of the tool tip is preferably 10 mm to 40 mm in the case of hammer peening and 5 mm to 20 mm in the case of ultrasonic impact treatment.

また先端部の曲率半径6については凸型形状でその曲率半径が大きく滑らかなものが好ましい。一つの曲率半径で形成される半球状の先端であっても、複数の曲率半径からなる球殻状の先端であっても差し支え無い。先端部が複数の曲率半径からなる場合には、先端面の中心部分を含む曲率の半径を工具先端部の曲率半径6としてのrとする。   The curvature radius 6 of the tip is preferably a convex shape with a large curvature radius and smoothness. It may be a hemispherical tip formed with one radius of curvature or a spherical shell tip consisting of a plurality of curvature radii. When the tip portion has a plurality of curvature radii, the radius of curvature including the center portion of the tip surface is defined as r as the curvature radius 6 of the tool tip portion.

またさらに工具の材質についても特に規定するものでは無く、金属に塑性加工を与えるのに十分な硬度を有する材質のものであればよく、工具鋼、セラミックスなどでも差し支え無い。   Further, the material of the tool is not particularly specified, and any material having a hardness sufficient to give plastic working to the metal may be used, and tool steel, ceramics, etc. may be used.

本発明に係る衝撃塑性加工処理用方法による衝撃塑性加工処理が適用される対象は特に規定されるものではなく、鉄鋼、アルミニウムおよびその合金、チタニウム、マグネシウムおよびそれらの合金などの金属母材、およびそれらが溶接、せん断加工、塑性加工等により加工されたものであれば、板、管や形材ならびに複雑な形状の部材について、疲労破壊が問題になる箇所に対して適用することが可能である。   The object to which the impact plastic processing by the method for impact plastic processing according to the present invention is applied is not particularly specified, and metal base materials such as steel, aluminum and alloys thereof, titanium, magnesium and alloys thereof, and As long as they are processed by welding, shearing, plastic processing, etc., it is possible to apply to plates, pipes, profiles and members with complex shapes where fatigue failure is a problem. .

本発明に係る衝撃塑性加工処理用工具は、拡径状の略ラッパ状の工具であり、図1〜3および図5に示すように軸対称形であることが望ましいが、図18(a),(b)に示すように横断面が楕円形のものや、図19(a),(b)に示すように横断面が直線と曲線からなる滑らかなものであれば、必ずしも軸対称形でなくても同様の効果が得られることは言うまでもない。   The tool for impact plastic working according to the present invention is an enlarged, substantially trumpet-shaped tool, and preferably has an axial symmetry as shown in FIGS. 1 to 3 and FIG. If the cross section is elliptical as shown in FIGS. 19B and 19B, or if the cross section is smooth as shown in FIGS. Needless to say, the same effect can be obtained without this.

表1に示す強度レベルおよび板厚の熱延鋼板を供試材として、図14に示す打ち抜き角部31を有する板状の試験片30を製作した。
[表1]

Figure 2007069229
A plate-shaped test piece 30 having punched corners 31 shown in FIG. 14 was manufactured using a hot-rolled steel plate having the strength level and thickness shown in Table 1 as a test material.
[Table 1]
Figure 2007069229

この試験片30は、長手方向の長さが250mmで、また幅が90mmで構成され、その厚みは、2.3mm又は3.2mmからなる。この試験片30は、さらに中央部を打ち抜くことにより形成された打ち抜き各部31が形成されている。図14に示すように、打ち抜き角部31の曲率半径Rは、15mmであり、打ち抜き加工のクリアランスは板厚の9%とした。   The test piece 30 has a length in the longitudinal direction of 250 mm and a width of 90 mm, and the thickness is 2.3 mm or 3.2 mm. The test piece 30 is formed with punched portions 31 formed by punching the center portion. As shown in FIG. 14, the radius of curvature R of the punched corner portion 31 was 15 mm, and the punching clearance was 9% of the plate thickness.

この試験片30の打ち抜き角部31に対し、表1に示す工具を用いて衝撃塑性加工処理を施し、更にその効果を検証すべく疲労試験を行った。表1は、工具1の形状として図1、3〜5に示す形状のうち何れを選択したのか示すとともに、工具1の頭部8側の外径、先端面5側の外径、先端面5の曲率半径6をmm単位で示すとともに、更に(1)式に適合する場合を“○”で、(1)式に適合しない場合を“×”で表示している。   The punched corner portion 31 of the test piece 30 was subjected to impact plastic working using the tool shown in Table 1, and a fatigue test was performed to verify the effect. Table 1 shows which one of the shapes shown in FIGS. 1 and 3 to 5 is selected as the shape of the tool 1, the outer diameter on the head 8 side, the outer diameter on the tip surface 5 side, and the tip surface 5 of the tool 1. In addition, the radius of curvature 6 is expressed in mm, and the case where the equation (1) is satisfied is indicated by “◯”, and the case where the equation (1) is not satisfied is indicated by “X”.

衝撃塑性加工処理として、ハンマーピーニングおよび超音波衝撃処理を選び、打ち抜き穴の表裏両面の角部9に適用した。周波数はそれぞれ、100Hz、27kHzとした。本発明の工具の形状は、図1、図3および図5に示す形状のものを用いた。図5の工具1は、頭部8から先端面5に至るまでの側面の形状が指数関数形となるように拡径されてなる曲線形状の工具であり、実施例No.4およびNo.18で用いたハンマーピーニング用の先端工具41を図16に、実施例No.14、28、32で用いた超音波衝撃処理用の先端工具42の形状を図17にそれぞれ示す。図16(a)、17(a)はそれぞれ正面図、また図16(b)、17(b)は、それぞれ側面図である。   As impact plastic working treatment, hammer peening and ultrasonic impact treatment were selected and applied to the corners 9 on both the front and back sides of the punched hole. The frequencies were 100 Hz and 27 kHz, respectively. As the shape of the tool of the present invention, the shape shown in FIGS. 1, 3 and 5 was used. The tool 1 in FIG. 5 is a curved tool that is expanded in diameter so that the shape of the side surface from the head 8 to the tip surface 5 becomes an exponential function, and Examples No. 4 and No. 18 16 shows the tip tool 41 for hammer peening used in FIG. 16, and FIG. 17 shows the shape of the tip tool 42 for ultrasonic impact treatment used in Examples No. 14, 28, and 32. 16 (a) and 17 (a) are front views, and FIGS. 16 (b) and 17 (b) are side views.

この先端工具41は、頭部8側の外径が12mmであり、工具の先端面5側の外径が30mmであり、さらに先端面5の曲率半径rを15mmとしている。さらに、この先端工具41における側面の形状は、図16に示すように、頭部8中央を原点45とし、この原点45からX軸、Y軸を取るとき、直線3は、Y=±2.5mm、さらに0≦x≦17.3mmの範囲にあり、また、曲線4は、Y=±{6+0.5*EXP(X−22.1)}で表される。   The tip tool 41 has an outer diameter on the head 8 side of 12 mm, an outer diameter on the tip surface 5 side of the tool of 30 mm, and a curvature radius r of the tip surface 5 of 15 mm. Further, as shown in FIG. 16, the shape of the side surface of the tip tool 41 is such that when the center of the head 8 is the origin 45 and the X axis and the Y axis are taken from the origin 45, the straight line 3 is Y = ± 2. 5 mm, and 0 ≦ x ≦ 17.3 mm, and the curve 4 is represented by Y = ± {6 + 0.5 * EXP (X-22.1)}.

また、先端工具42は、頭部8側の外径が5mmであり、工具の先端面5側の外径が20mmであり、さらに先端面5の曲率半径rを15mmとしている。さらに、この先端工具43における側面の形状は、図17に示すように、頭部8中央を原点45とし、この原点45からX軸、Y軸を取るとき、直線3は、Y=±2.5mm、さらに0≦x≦17.5mmの範囲にあり、また、曲線4は、Y=±{2.5+0.5*EXP(X−22.3)}で表される。   The tip tool 42 has an outer diameter on the head 8 side of 5 mm, an outer diameter on the tip surface 5 side of the tool of 20 mm, and a curvature radius r of the tip surface 5 of 15 mm. Further, as shown in FIG. 17, the shape of the side surface of the tip tool 43 is such that when the center of the head 8 is the origin 45 and the X and Y axes are taken from the origin 45, the straight line 3 is Y = ± 2. 5 mm, and 0 ≦ x ≦ 17.5 mm, and the curve 4 is expressed by Y = ± {2.5 + 0.5 * EXP (X−22.3)}.

衝撃塑性加工処理時間はいずれも試験片あたり20秒とした。比較のため、図4に示す従来工具による衝撃塑性加工を施した試験片、および衝撃塑性加工を全く施さない試験片も製作して疲労試験を行った。   The impact plastic working time was 20 seconds per specimen. For comparison, a fatigue test was performed by manufacturing a test piece subjected to impact plastic working with a conventional tool shown in FIG. 4 and a test piece not subjected to impact plastic working at all.

疲労試験は応力比(=最小荷重/最大荷重)を0.1とする片振り荷重制御疲労試験により行い、室温・大気中で図14の試験片長手方向に載荷を行った。荷重の制御が困難となる寿命を破断寿命として、破断寿命が200万回となる荷重範囲を鋼板の断面積(=板厚×試験片幅)で除した値を疲労強度として比較した。   The fatigue test was carried out by a one-way load control fatigue test with a stress ratio (= minimum load / maximum load) of 0.1, and loaded in the longitudinal direction of the test piece in FIG. The fatigue life is a value obtained by dividing the load range where the fracture life is 2 million times by the cross-sectional area of the steel sheet (= plate thickness × test specimen width).

各試験片の疲労強度を同じく表1に示す。同じ板厚および強度レベルの材料の試験片で疲労強度を比較した場合、例えば440MPa級鋼の2.3mm厚に着目した場合に、打ち抜きまま(処理無し)のNo.53の疲労強度に対して、従来工具によるハンマーピーニングのNo.37,38では約15%の疲労強度向上効果にとどまるが、本発明の工具を用いた場合のNo.1〜4では従来工具よりさらに20%疲労強度が向上している。   The fatigue strength of each test piece is also shown in Table 1. When comparing fatigue strength with specimens of materials of the same plate thickness and strength level, for example, when focusing on 2.3mm thickness of 440 MPa class steel, the fatigue strength of No. 53 as punched (no treatment) No. 37 and 38 of hammer peening with conventional tools only improve the fatigue strength by about 15%, but No. 1 to 4 when using the tool of the present invention further improves the fatigue strength by 20% compared to conventional tools. ing.

このうち指数関数形状を含む図5の工具No.4は他の本発明工具よりも15MPa以上疲労強度が向上している。またさらに(1)式を満足するNo.1、3,4に限れば25%の疲労強度向上であり、2.3mm厚の440MPa級鋼へのハンマーピーニングについて本発明が疲労強度向上に有効であることがわかる。   Among them, the tool No. 4 in FIG. 5 including the exponential function shape has improved fatigue strength by 15 MPa or more than the other present invention tools. Furthermore, if No. 1, 3 and 4 satisfying the formula (1) are satisfied, the fatigue strength is improved by 25%, and the present invention is effective for improving the fatigue strength of hammer peening to a 440 MPa class steel having a thickness of 2.3 mm. I understand that.

超音波衝撃処理の場合には、従来工具のNo.39〜42は、打ち抜きままのNo.53より20%向上しているが、No.5〜14の本発明の工具を用いると従来工具よりさらに16%疲労強度が向上する。指数関数形状を含む図5の工具No.14は他の本発明工具よりも15MPa以上疲労強度が向上している。またさらに(1)式を満足するNo.6、7、8、10、13、14はいずれも従来工具より25%の疲労強度向上が認められ、2.3mm厚の440MPa級鋼への超音波衝撃処理においても本発明は有効であることがわかる。   In the case of ultrasonic impact treatment, No. 39 to 42 of the conventional tool is 20% better than No. 53 as punched, but when the tool of the present invention of No. 5 to 14 is used, it is more than the conventional tool. Furthermore, 16% fatigue strength is improved. The tool No. 14 in FIG. 5 including the exponential function shape has improved fatigue strength by 15 MPa or more than the other present invention tools. Furthermore, Nos. 6, 7, 8, 10, 13, and 14 satisfying equation (1) all showed 25% improvement in fatigue strength over conventional tools, and ultrasonic impact on 2.3 mm thick 440 MPa grade steel. It can be seen that the present invention is also effective in processing.

次に2.3mm厚の780MPa級鋼について着目すると、打ち抜きままのNo.54の場合、301MPaの疲労強度を示している。これに従来工具によるハンマーピーニングを施すと、No.43,44のように約10%の疲労強度向上が認められる。本発明の場合にはNo.15〜18に示すように従来工具よりもさらに21%の疲労強度向上が認められている。また指数関数形状の工具No.18は他の本発明工具よりも20MPa以上疲労強度が向上している。またさらに(1)式を満たす試験片No.15、17、18に限れば従来工具よりもさらに27%の向上しろが認められ、2.3mm厚の780MPa級鋼へのハンマーピーニングについても本発明の工具および(1)式の方法が有効であることが判明した。   Next, focusing on the 780MPa grade steel with a thickness of 2.3mm, the fatigue strength of 301MPa is shown in the case of No.54 as punched. When hammer peening with conventional tools is applied to this, an improvement of about 10% in fatigue strength is recognized as in No. 43 and 44. In the case of the present invention, as shown in Nos. 15 to 18, a 21% improvement in fatigue strength is recognized over the conventional tool. In addition, the tool No. 18 having an exponential function shape has improved fatigue strength by 20 MPa or more than the other tools of the present invention. Further, if the test pieces No. 15, 17, and 18 satisfying the formula (1) are limited, a margin of 27% improvement over the conventional tool is recognized, and the hammer peening of a 780 MPa class steel having a thickness of 2.3 mm is also possible according to the present invention. The tool and the method of formula (1) have proved effective.

また同じく2.3mm厚の780MPa級鋼への超音波衝撃処理については、従来工具による超音波衝撃処理のNo.45〜48の場合、打ち抜きままよりも22%の疲労強度向上が認められたが、本発明の工具を用いることでNo.19〜28のように従来工具よりもさらに17%疲労強度が向上した。指数関数形状の工具No.28は他の本発明工具よりも20MPa以上疲労強度が向上している。(1)式の方法のNo.20、21、22、24、27、28では従来工具より23%向上しており、2.3mm厚の780MPa級鋼への超音波衝撃処理についても本発明の工具および(1)式の方法が有効であることが判明した。   In addition, regarding ultrasonic shock treatment to 780 MPa class steel of 2.3 mm thickness, in the case of No. 45 to 48 of ultrasonic impact treatment with conventional tools, a 22% improvement in fatigue strength was observed compared to punching, By using the tool of the present invention, the fatigue strength was further improved by 17% as compared with the conventional tools as in Nos. 19 to 28. The tool No. 28 having an exponential function shape has improved fatigue strength by 20 MPa or more than the other tools of the present invention. No. 20, 21, 22, 24, 27, and 28 of the method (1) are 23% better than the conventional tool, and the tool of the present invention is also used for ultrasonic impact treatment on a 780 MPa class steel with a thickness of 2.3 mm. And the method of formula (1) proved to be effective.

さらに3.2mm厚の440MPa級鋼への超音波衝撃処理については、従来工具による処理のNo.49,50の場合、打ち抜きままのNo.55における177MPaの疲労強度よりも27%の疲労強度向上が認められたが、本発明の工具を用いたNo.29〜32では従来工具よりもさらに15%の疲労強度向上効果があった。指数関数形状の工具No.32は他の本発明工具よりも15MPa以上疲労強度が向上しており、またさらに(1)式の方法であるNo.29、31、32では従来工具よりも19%向上している。このように3.2mm厚の440MPa級鋼への超音波衝撃処理についても本発明の工具および(1)式の方法が有効であることが判明した。   Furthermore, with regard to ultrasonic shock treatment to 440MPa class steel with a thickness of 3.2mm, in the case of No. 49 and 50 of the conventional tool treatment, the fatigue strength is improved by 27% compared to the fatigue strength of 177MPa in No. 55 as punched. Although recognized, Nos. 29 to 32 using the tool of the present invention had a further 15% improvement in fatigue strength than the conventional tool. Exponentially shaped tool No. 32 has a fatigue strength of 15 MPa or more higher than that of the other tool of the present invention, and further, No. 29, 31 and 32 of the method (1) are 19% of the conventional tool. It has improved. Thus, it was found that the tool of the present invention and the method of formula (1) are also effective for ultrasonic impact treatment on a 440 MPa class steel having a thickness of 3.2 mm.

またさらに3.2mm厚の780MPa級鋼への超音波衝撃処理については、従来工具による処理のNo.51、52の場合、打ち抜きままのNo.56における296MPaの疲労強度よりも24%の疲労強度向上が認められたが、本発明の工具を用いたNo.33〜36は従来工具よりもさらに19%の疲労強度向上効果が認められる。指数関数形状の工具No.36は他の本発明工具よりも20MPa以上疲労強度が向上している。また(1)式の方法であるNo.33、35、36では従来工具に対する向上しろは23%にもなり、3.2mm厚の780MPa級鋼への超音波衝撃処理についても本発明の工具および(1)式の方法が有効であることが判明した。   Furthermore, with regard to ultrasonic shock treatment to 780 MPa class steel with a thickness of 3.2 mm, in the case of No. 51 and 52 of the conventional tool treatment, the fatigue strength is improved by 24% compared to the fatigue strength of 296 MPa in No. 56 as punched. However, Nos. 33 to 36 using the tool of the present invention have a further 19% improvement in fatigue strength than the conventional tool. The tool No. 36 having an exponential function shape has improved fatigue strength by 20 MPa or more than the other tool of the present invention. In addition, No. 33, 35, and 36, which are the methods of formula (1), have 23% improvement over conventional tools. The ultrasonic shock treatment of 780 MPa class steel with a thickness of 3.2 mm is also possible with the tool of the present invention and ( It was found that the method of 1) is effective.

このように、本発明の工具および方法は、金属のせん断加工端部角部への衝撃塑性加工処理に関して、明確な疲労強度向上効果を示した。   As described above, the tool and method of the present invention showed a clear fatigue strength improvement effect with respect to the impact plastic working treatment of the metal shearing end corner.

本発明の工具の形状例を示す平面図および側面図である。It is the top view and side view which show the example of a shape of the tool of this invention. 本発明の工具の別の形状例を示す平面図および側面図である。It is the top view and side view which show another example of a shape of the tool of this invention. 本発明の工具の別の形状例を示す平面図および側面図である。It is the top view and side view which show another example of a shape of the tool of this invention. 従来の工具の形状を示す平面図および側面図である。It is the top view and side view which show the shape of the conventional tool. 本発明の工具の別の形状例を示す平面図および側面図である。It is the top view and side view which show another example of a shape of the tool of this invention. 被処理材の角部に衝撃塑性加工処理を施す状態を示す図である。It is a figure which shows the state which performs an impact plastic working process to the corner | angular part of a to-be-processed material. 本発明の工具によりせん断加工部端部の角部を衝撃塑性加工処理する状態を示す図である。It is a figure which shows the state which carries out the impact plastic working process of the corner | angular part of a shearing process part edge part with the tool of this invention. 本発明の工具により衝撃塑性加工処理されたせん断加工部端部の角部を示す図である。It is a figure which shows the corner | angular part of the edge part of a shearing process part processed by impact plastic working with the tool of this invention. 従来工具によりせん断加工部端部の角部を衝撃塑性加工処理する状態を示す図である。It is a figure which shows the state which carries out the impact plastic working process of the corner | angular part of a shearing process part edge part with the conventional tool. 従来工具により衝撃塑性加工処理されたせん断加工部端部の角部を示す図である。It is a figure which shows the corner | angular part of the edge part of a shearing process part by which impact plastic processing was carried out with the conventional tool. 打ち抜き部を有する被処理材を示す図である。It is a figure which shows the to-be-processed material which has a punching part. 本発明の工具により打ち抜き部の角部を衝撃塑性加工処理する状態を示す図である。It is a figure which shows the state which carries out the impact plastic working process of the corner | angular part of a punching part with the tool of this invention. 本発明の工具により衝撃塑性加工処理されたせん断加工部端部の角部を示す図である。It is a figure which shows the corner | angular part of the edge part of a shearing process part processed by impact plastic working with the tool of this invention. 本発明の実施例における疲労試験片の形状・寸法を表す平面図である。It is a top view showing the shape and dimension of the fatigue test piece in the Example of this invention. 従来の工具の例を示す正面図及び側面図である。It is the front view and side view which show the example of the conventional tool. 本発明の実施例における工具の形状例を示す上面図および側面図である。It is the top view and side view which show the example of the shape of the tool in the Example of this invention. 本発明の実施例における工具の別の形状例を示す上面図および側面図である。It is the top view and side view which show another example of the shape of the tool in the Example of this invention. 本発明の工具の別の形状例を示す平面図および側面図である。It is the top view and side view which show another example of a shape of the tool of this invention. 本発明の工具の別の形状例を示す平面図および側面図である。It is the top view and side view which show another example of a shape of the tool of this invention.

符号の説明Explanation of symbols

1 工具
2 側面
3 直線
4 曲線
5 先端
6、10 曲率半径
8 頭部
9 角部
11 打ち抜き部
12 被処理材
13 外径
DESCRIPTION OF SYMBOLS 1 Tool 2 Side surface 3 Straight line 4 Curve 5 Tip 6, 10 Radius of curvature 8 Head 9 Corner | angular part 11 Punching part 12 Material 13 Outer diameter

Claims (3)

頭部から先端面に向けて徐々に外径が拡径される拡径状の衝撃塑性加工処理用工具にお いて、
上記先端面は滑らかな曲面からなること
を特徴とする疲労強度向上に優れた金属の衝撃塑性加工処理用工具。
In an expanded impact plastic processing tool whose outer diameter is gradually increased from the head toward the tip,
A metal impact plasticity processing tool excellent in improving fatigue strength, characterized in that the tip surface is a smooth curved surface.
頭部から先端面に至るまでの側面の形状が指数関数形となるように拡径されてなること
を特徴とする請求項1記載の疲労強度向上に優れた金属の衝撃塑性加工処理用工具。
2. The metal tool for impact plasticity processing with excellent fatigue strength improvement according to claim 1, wherein the diameter of the side surface from the head to the tip surface is expanded so as to be an exponential function.
請求項1または2記載の衝撃塑性加工処理用工具を用いて金属端部の角部を衝撃塑性加工する方法において、
前記角部が形成する曲率半径Rとの間で、0.5≦r≦Rを満たすような曲率半径rからなる上記先端面を有する上記衝撃塑性加工処理用工具により衝撃塑性加工すること
を特徴とする疲労強度向上に優れた金属の衝撃塑性加工処理方法。
In the method of impact plastic working the corner of the metal end using the impact plastic working tool according to claim 1 or 2,
The impact plastic working is performed by the impact plastic working tool having the tip surface having the curvature radius r satisfying 0.5 ≦ r ≦ R between the curvature radius R formed by the corner portion. Metal impact plastic working method with excellent fatigue strength improvement.
JP2005257657A 2005-09-06 2005-09-06 Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement Active JP4833615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257657A JP4833615B2 (en) 2005-09-06 2005-09-06 Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257657A JP4833615B2 (en) 2005-09-06 2005-09-06 Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement

Publications (3)

Publication Number Publication Date
JP2007069229A true JP2007069229A (en) 2007-03-22
JP2007069229A5 JP2007069229A5 (en) 2007-12-13
JP4833615B2 JP4833615B2 (en) 2011-12-07

Family

ID=37931141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257657A Active JP4833615B2 (en) 2005-09-06 2005-09-06 Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement

Country Status (1)

Country Link
JP (1) JP4833615B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136515A1 (en) * 2007-04-27 2008-11-13 Nippon Steel Corporation Chamfering device and chamfering method for metallic material
JP2008290229A (en) * 2007-04-27 2008-12-04 Nippon Steel Corp Device and method for chamfering metallic material
JP2013136096A (en) * 2011-11-29 2013-07-11 Jfe Steel Corp Method for suppressing fatigue damage of welded structure and tool for forming impact trace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582730A (en) * 1978-12-18 1980-06-21 Alsthom Atlantique Treating wall made of austenite stainless steel and impact device for same treatment
WO2004046396A1 (en) * 2002-11-18 2004-06-03 Nippon Steel Corporation Method of increasing fatigue strength of cut face of metal by ultrasonic shock treatment and long life metal product
JP2004169065A (en) * 2002-11-18 2004-06-17 Nippon Steel Corp Method for improving strength of cold-worked part with ultrasonic shock treatment and its metallic product
JP2004169103A (en) * 2002-11-19 2004-06-17 Nippon Steel Corp Method for producing wire rod

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582730A (en) * 1978-12-18 1980-06-21 Alsthom Atlantique Treating wall made of austenite stainless steel and impact device for same treatment
WO2004046396A1 (en) * 2002-11-18 2004-06-03 Nippon Steel Corporation Method of increasing fatigue strength of cut face of metal by ultrasonic shock treatment and long life metal product
JP2004169065A (en) * 2002-11-18 2004-06-17 Nippon Steel Corp Method for improving strength of cold-worked part with ultrasonic shock treatment and its metallic product
JP2004169103A (en) * 2002-11-19 2004-06-17 Nippon Steel Corp Method for producing wire rod

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136515A1 (en) * 2007-04-27 2008-11-13 Nippon Steel Corporation Chamfering device and chamfering method for metallic material
JP2008290229A (en) * 2007-04-27 2008-12-04 Nippon Steel Corp Device and method for chamfering metallic material
JP4734370B2 (en) * 2007-04-27 2011-07-27 新日本製鐵株式会社 Metal material chamfering apparatus and chamfering method
KR101158103B1 (en) * 2007-04-27 2012-06-22 신닛뽄세이테쯔 카부시키카이샤 Chamfering device and chamfering method for metallic material
JP2013136096A (en) * 2011-11-29 2013-07-11 Jfe Steel Corp Method for suppressing fatigue damage of welded structure and tool for forming impact trace

Also Published As

Publication number Publication date
JP4833615B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR20130122788A (en) Method for bending sheet metal and product of sheet metal
JP4833615B2 (en) Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement
JP5088035B2 (en) Manufacturing method for welded joints with excellent fatigue resistance
JP2011131260A (en) Method for increasing fatigue strength of weld zone, and weld joint
KR102243326B1 (en) Method of peening lap fillet welded joint and welded structures
JP4261879B2 (en) Method for producing a long-life rotating body with excellent fatigue strength
JP4319828B2 (en) Strength improvement method of cold-worked part by ultrasonic impact treatment and its metal product
Lefebvre et al. Understanding of fatigue strength improvement of steel structures by hammer peening treatment
JP4709697B2 (en) Method for improving fatigue strength of metal lap weld joints
JP5327567B1 (en) Peening method and welded joint
JP4734370B2 (en) Metal material chamfering apparatus and chamfering method
JP2008137073A (en) Method of punching metallic material
KR101158103B1 (en) Chamfering device and chamfering method for metallic material
JP4943393B2 (en) Coining method after punching and coining punch
JP2013233590A (en) Welded joint superior in fatigue characteristic
JP5977077B2 (en) Welding peening method
JP6696604B1 (en) Needle peening method
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP4235176B2 (en) Method for improving fatigue strength of metal cut surface by ultrasonic impact treatment and long-life metal product
JP5831286B2 (en) Ultrasonic impact treatment pin for weld toe and ultrasonic impact treatment method for weld toe
JP3843059B2 (en) Manufacturing method of UOE steel pipe excellent in seam weld strength characteristics and internal pressure fatigue characteristics
JP2008274414A (en) Long rail and manufacturing method therefor
JP2004115856A (en) Method for improving fatigue strength of worked steel end part
JP5252112B1 (en) Peening construction method
JP5955752B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110922

R151 Written notification of patent or utility model registration

Ref document number: 4833615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350