JP2008290229A - Device and method for chamfering metallic material - Google Patents
Device and method for chamfering metallic material Download PDFInfo
- Publication number
- JP2008290229A JP2008290229A JP2008113638A JP2008113638A JP2008290229A JP 2008290229 A JP2008290229 A JP 2008290229A JP 2008113638 A JP2008113638 A JP 2008113638A JP 2008113638 A JP2008113638 A JP 2008113638A JP 2008290229 A JP2008290229 A JP 2008290229A
- Authority
- JP
- Japan
- Prior art keywords
- chamfering
- vibration
- groove
- chamfered
- corner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Milling, Broaching, Filing, Reaming, And Others (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Description
本発明は、金属材料や金属構造部材のコーナー部の面取り装置及び面取り方法に関し、打撃振動により面取りする装置及び方法に関する。 The present invention relates to a chamfering device and a chamfering method for a corner portion of a metal material or a metal structural member, and relates to an apparatus and a method for chamfering by impact vibration.
橋梁、鉄骨あるいは造船用の骨材として使用される鋼板や鋼部材などの金属材料や金属構造部材には、組み立て前あるいは組み立て後に、目的に応じて各種の塗装が施されることが多く、例えば、船殻の組み立ての場合においても、鋼部材には少なくとも防錆用の塗装を施すことが要求される状況と成りつつある。
一方、鋼板や鋼部材の端縁は鋭利なコーナー(角)部となっているため、塗装を施した場合に塗膜がこのコーナー部から剥離し易くなっている。この塗膜の剥離を防止するためにコーナー部に面取りを施し、鋭利なコーナー部を滑らかな曲率を持つ曲面とすることが行われている。この面取りには、グラインダーで研削する方法、曲面形状の切削部を持つ超硬チップ付きカッターで切削する方法などが知られている。
Metal materials and metal structural members such as steel plates and steel members used as bridges, steel frames or ship building aggregates are often subjected to various types of coating before or after assembly, depending on the purpose. Even in the case of assembling the hull, it is becoming a situation that the steel member is required to be coated with at least rust prevention.
On the other hand, since the edge of a steel plate or steel member is a sharp corner (corner), the coating film is easily peeled off from the corner when coating is applied. In order to prevent the peeling of the coating film, the corner portion is chamfered to make the sharp corner portion a curved surface having a smooth curvature. For this chamfering, a method of grinding with a grinder, a method of cutting with a cutter with a carbide tip having a curved cutting part, and the like are known.
また、金属材料の縁部を処理する方法として、特許文献1には、金属薄板を打抜き又は剪断にした後に残るまくれをとるためのまくれ取り装置が提案されている。この装置は金属薄板の縁部を受け入れるように形成したあご部片を有する工具と、この工具を金属薄板の縁部に対向させてハンマー作用するピーニング工具とを有している。このまくれ取り装置は、金属薄板を対象とするものであり、特許文献1の図1、図3に示されるように、あご部片は金属薄板の縁部の表裏面に同時に当接するように形成され、すなわち、縁部において表裏のコーナー部を挟むように構成されている。また、振動装置としてのハンマー作用するピーニング工具は、筒状体の中に軸の周りに回転自在に挿入されたハンマーの底面に設けられた複数の凹くぼみに、筒状体の底に中に入れられた硬球が、電動機によるハンマーの軸方向の回転に伴って出入りすることで軸線方向の振動を発生させ、その振動によりあご部片で金属薄板の板厚方向の表裏面を同時に打撃し、まくれを取るものである。
また、特許文献2には、金属板材の移送路を挟んで水平方向に対向する2個1組のV型ロールを複数組、移送方向に並列に配置し、各ロール組にはロール加圧機構を設けるとともにV型ロールの角度をそれぞれ異ならせたエッジロール加工装置が開示され、金属板を移送しつつ、金属板の両側端面にV型ロールを押付、上下角部に角度の異なる平面的な圧縮加工を段階的に施すエッジロール加工方法が開示されている。
特許文献3には、低周波の上下振動を発生させる振動源と、成形工具と、前記低周波の上下振動を前記成形工具に伝える伝達部と、弾性部材で往復動が可能に保持した伝達部と前記成形工具とを備えた上型と、被加工物を位置決め固定する下型よりなる金型で構成された振動成形加工装置が開示されている。低周波の上下振動により、下型に固定された被加工材に曲げや絞りの等の塑性加工を施すものである。
ところで近年、金属材料の溶接止端部に超音波衝撃処理、ハンマーピーニング処理などの打撃処理を施すことにより、この部位への応力集中と残留応力を同時に低減させ、溶接継手の疲労強度を改善することが知られており、例えば、特許文献4には、金属材料の疲労が問題となる箇所に超音波衝撃処理を行って金属材料の疲労寿命を向上させる方法が提案されており、超音波衝撃処理を施すことによって、溶接止端部が所定の曲率を持つように変形し、応力集中が緩和されることが開示されている。
Further, as a method for treating the edge of a metal material, Patent Literature 1 proposes a turn-up device for taking up the remaining turn after punching or shearing a metal thin plate. The apparatus has a tool having a jaw piece formed to receive the edge of the sheet metal and a peening tool that acts as a hammer against the edge of the sheet metal. This turn-up device is intended for a thin metal plate, and as shown in FIGS. 1 and 3 of Patent Document 1, the jaw pieces are formed so as to simultaneously contact the front and back surfaces of the edge of the thin metal plate. That is, it is configured to sandwich the front and back corners at the edge. Also, the peening tool that acts as a hammer as a vibration device is inserted into the bottom of the cylindrical body in a plurality of concave recesses provided in the bottom surface of the hammer that is rotatably inserted around the shaft in the cylindrical body. The inserted hard ball generates and vibrates in the axial direction by moving in and out with the rotation of the hammer in the axial direction by the electric motor, and at the same time hits the front and back surfaces in the thickness direction of the metal thin plate with the jaw pieces by the vibration, It is something that takes a beard.
Further, in Patent Document 2, a set of two V-shaped rolls facing each other in the horizontal direction across the transfer path of the metal plate material is arranged in parallel in the transfer direction, and each roll set has a roll pressurizing mechanism. And an edge roll processing apparatus in which the angles of the V-shaped rolls are different from each other, and while transferring the metal plate, the V-shaped rolls are pressed against both end surfaces of the metal plate, and the upper and lower corners have different angles. An edge roll processing method that performs compression processing in stages is disclosed.
Patent Document 3 discloses a vibration source that generates a low-frequency vertical vibration, a forming tool, a transmission unit that transmits the low-frequency vertical vibration to the molding tool, and a transmission unit that is reciprocally held by an elastic member. In addition, there is disclosed a vibration molding apparatus including a mold including an upper mold provided with a molding tool and a lower mold for positioning and fixing a workpiece. The workpiece fixed to the lower mold is subjected to plastic working such as bending or drawing by low frequency vertical vibration.
By the way, in recent years, by applying impact treatment such as ultrasonic impact treatment and hammer peening treatment to the weld toe of metal material, stress concentration and residual stress on this part are simultaneously reduced, and the fatigue strength of the welded joint is improved. For example, Patent Document 4 proposes a method for improving the fatigue life of a metal material by applying ultrasonic impact treatment to a location where fatigue of the metal material is a problem. It is disclosed that, by applying the treatment, the weld toe portion is deformed to have a predetermined curvature, and the stress concentration is alleviated.
しかしながら、グラインダーで研削する方法では、面取りする面の曲率半径や面取り幅の調整は、作業者の熟練によるため、これらを一定に保つことが難しく、また、作業に伴う研削屑や粉塵の発生により、作業環境は厳しいものである。また、カッターにより切削する方法では、一定の切削性を維持するためにチップの交換や発生する切削屑の処理のためのコストが必要であり、切削粉塵の発生など作業環境が必ずしも良好とは言えないなどの問題がある。また、特許文献1の装置では、あご部片が金属薄板の縁部の表裏面のコーナー部に同時に当接するように形成されている、すなわち、表裏のコーナー部を挟むように構成されているため、金属薄板の表裏のそれぞれのコーナー部はあご部片の傾斜面としか接触できず、したがって、表裏のそれぞれのコーナー部をなだらかな曲率を持った面に面取りすることはできない。さらに、金属薄板の片面が他の部材と溶接或いは連結され、板厚方向をあご部片で挟めない場合には適用できないという問題がある。また、振動装置は、電動機でハンマー軸を回転させ、この回転に伴ってハンマー軸の底部に設けた凹部へ鋼球が出入りすることにより軸線方向の振動をうるものであり、振動数や振幅にはおのずと限界があり、高い周波数で振動させ、高い仕事率で、まくれを除去することは困難である。
また、特許文献2の装置は、所定幅にスリットされた金属板材を対象としており、金属板材の搬送装置や、V型の角度を変えたロール対を金属板の搬送方向に多段に備える必要があり、設備費用が大きなものとなる。また、形状が複雑な金属板材や構造物などには適用できないという問題がある。
また、特許文献3に記載の成形装置は、電子部品や機械部品などの小型の部品を下型に固定したうえで、上型による振動により、上型と下型との間で曲げや絞り等の塑性加工を行うものであり、金属部材或いは構造部材の面取りを行うものではない。
また、上記特許文献4には、溶接部止端部の形状を改善することは提案されているものの、金属部材のコーナー部の面取りを行うことについては何らの示唆もされていない。
本発明は、このような問題を解決し、金属材料や金属構造部材のコーナー部を、経済的、効率的且つ良好な作業環境下で実行可能な面取り装置を提供することを課題とする。
However, in the grinding method using a grinder, the curvature radius and chamfering width of the surface to be chamfered are adjusted by the skill of the operator, so it is difficult to keep them constant, and due to the generation of grinding debris and dust accompanying the work The working environment is harsh. In addition, the method of cutting with a cutter requires a cost for exchanging chips and processing the generated cutting waste in order to maintain a constant machinability, and it can be said that the working environment such as generation of cutting dust is not necessarily good. There is no problem. Moreover, in the apparatus of patent document 1, since it is formed so that a jaw piece may contact | abut simultaneously on the corner part of the front and back of the edge part of a metal thin plate, ie, it is comprised so that the corner part of front and back may be pinched | interposed. The respective corner portions on the front and back sides of the thin metal plate can only come into contact with the inclined surface of the jaw piece, and therefore, the respective corner portions on the front and back surfaces cannot be chamfered to a surface having a gentle curvature. Furthermore, there is a problem that it cannot be applied when one side of the metal thin plate is welded or connected to another member and the plate thickness direction cannot be sandwiched between jaw pieces. In addition, the vibration device rotates the hammer shaft with an electric motor, and along with this rotation, the steel ball enters and exits into the recess provided at the bottom of the hammer shaft, so that vibration in the axial direction can be obtained. Naturally, there is a limit, and it is difficult to remove the curl with high power and vibration at a high frequency.
Further, the apparatus of Patent Document 2 is intended for a metal plate material slit to a predetermined width, and it is necessary to provide a metal plate material conveying device and roll pairs with different V-shaped angles in multiple stages in the metal plate conveying direction. Yes, equipment costs will be large. In addition, there is a problem that it cannot be applied to a metal plate or structure having a complicated shape.
Further, the molding apparatus described in Patent Document 3 fixes a small part such as an electronic component or a mechanical part to the lower mold, and then bends or squeezes between the upper mold and the lower mold due to vibration by the upper mold. However, the metal member or the structural member is not chamfered.
Moreover, although the said patent document 4 proposes improving the shape of a toe part of a welding part, it does not suggest at all about chamfering the corner part of a metal member.
This invention solves such a problem, and makes it a subject to provide the chamfering apparatus which can perform the corner part of a metal material or a metal structure member in an economical, efficient, and favorable working environment.
本発明は、上記の課題を解決するためになされたものであり、先端部に所定形状の溝を備えた振動端子により、金属材料や金属構造部材のコーナー部を打撃して面取りを行うようにしたものであり、その要旨とするところは、以下のとおりである。
(1)振動装置の振動方向の先端部に、振動方向と直交する方向に延び、且つこの延びる方向と直交する方向の断面が曲率半径Rの底部を有し、先端側に開いた溝を有する面取り用の振動端子と、この振動端子をその軸方向に10Hz〜50kHzの周波数で、かつ0.1〜4kWの仕事率で振動させる振動装置とを有することを特徴とする金属材料の面取り装置。
(2)前記面取り用振動端子の溝の開き角度が90°±10°であることを特徴とする(1)に記載の金属材料の面取り装置。
(3)前記面取り用振動端子の溝の底部の曲率半径Rが0.5〜5mmであることを特徴とする(1)または(2)に記載の金属材料の面取り装置。
(4)前記面取り用振動端子が棒状体であることを特徴とする(1)〜(3)のいずれか1項に記載の金属材料の面取り装置。
(5)前記面取り用振動端子が前記振動装置のピンホルダーに回転自在に軸支された円盤状体であり、前記溝はこの円盤状振動端子の外周に、円盤の直径方向の断面においてその外径方向に開放されるように形成されていることを特徴とする(1)〜(3)のいずれか1項に記載の金属材料の面取り装置。
(6)(1)〜(5)のいずれか1項に記載の面取り装置を用い、振動端子を10Hz〜50kHzの周波数で振動させ、0.1〜4kWの仕事率で金属材料のコーナー部を面取りすることを特徴とする金属材料の面取り方法。
The present invention has been made to solve the above-described problems, and chamfering is performed by hitting a corner portion of a metal material or a metal structure member with a vibration terminal having a groove of a predetermined shape at a tip portion. The gist of this is as follows.
(1) At the tip of the vibration device in the vibration direction, it extends in a direction orthogonal to the vibration direction, and the cross section in the direction orthogonal to the extension direction has a bottom portion with a radius of curvature R, and has a groove opened on the tip side. A metal material chamfering apparatus, comprising: a chamfering vibration terminal; and a vibration device that vibrates the vibration terminal in the axial direction at a frequency of 10 Hz to 50 kHz and with a power of 0.1 to 4 kW.
(2) The metal material chamfering apparatus according to (1), wherein an opening angle of the groove of the chamfering vibration terminal is 90 ° ± 10 °.
(3) The metal material chamfering apparatus according to (1) or (2), wherein a radius of curvature R of a bottom portion of the groove of the chamfering vibration terminal is 0.5 to 5 mm.
(4) The chamfering device for a metal material according to any one of (1) to (3), wherein the chamfering vibration terminal is a rod-shaped body.
(5) The chamfering vibration terminal is a disk-like body rotatably supported by a pin holder of the vibration device, and the groove is formed on the outer periphery of the disk-like vibration terminal and in the cross section in the diameter direction of the disk. The metal material chamfering device according to any one of (1) to (3), wherein the chamfering device is formed so as to be opened in a radial direction.
(6) Using the chamfering device according to any one of (1) to (5), the vibration terminal is vibrated at a frequency of 10 Hz to 50 kHz, and a corner portion of the metal material is formed at a power of 0.1 to 4 kW. A method for chamfering a metal material, characterized by chamfering.
本発明によれば、金属材料や金属構造部材のコーナー部をグラインダーデイスクや切削チップなどの消耗の大きな工具を使用することなく面取りすることができ、グラインダーデイスクや切削チップの交換作業や研削、切削による屑の処理などを必要としない。従って、経済的、効率的に行うことができる。また、研削や切削に伴う粉塵や屑の発生による作業環境の劣化を抑制し、作業環境をより好適なものとすることができる。
また、本発明の面取り装置によれば、コーナーの面取りされた面が、振動端子の曲率をもった底部によって滑らかに形成され、塗装などを施した場合に剥離しにくいものとなる。さらに、本発明の方法による面取りでは面取り処理されたコーナー部の表層の金属結晶組織が微細化されるので、従来の切削により面取りされたコーナー部に比べて、コーナー部からの疲労き裂の発生などを低減することもできる。
また、面取り対象の金属材料や金属構造部材としては、鉄鋼に限らず、ステンレス鋼アルミ合金、チタン合金、マグネシウム合金などにも適用可能である。
According to the present invention, a corner portion of a metal material or a metal structure member can be chamfered without using a tool with high wear such as a grinder disk or a cutting tip, and the grinder disk or cutting tip can be replaced, ground, or cut. There is no need for waste disposal. Therefore, it can be performed economically and efficiently. In addition, it is possible to suppress the deterioration of the work environment due to the generation of dust and debris accompanying grinding and cutting, and to make the work environment more suitable.
Further, according to the chamfering apparatus of the present invention, the chamfered surface of the corner is smoothly formed by the bottom portion having the curvature of the vibration terminal, and is difficult to peel off when painted or the like. Further, in the chamfering according to the method of the present invention, the metal crystal structure of the surface portion of the corner portion that has been chamfered is refined, so that fatigue cracks are generated from the corner portion compared to the corner portion chamfered by conventional cutting. Etc. can also be reduced.
Further, the metal material and metal structure member to be chamfered are not limited to steel, but can be applied to stainless steel aluminum alloy, titanium alloy, magnesium alloy, and the like.
図1は、本発明の面取り装置の1つの例の構成の概要を示す断面模式図である。図1において、面取り装置1は、振動装置2とその振動方向の先端に取り付けられた面取り用の振動端子3(以下、面取りピンとも記す)とから基本的に構成される。この例では、振動装置2は、磁歪コアまたはピエゾ素子からなる発振体4と発振体の周囲に巻かれた発振コイル5を有する発振部6と、発振体の前方(以下、発振体の振動方向の前方、面取り用振動端子、すなわち、面取りピンを取り付ける側を前方、または先端側とする)に接続された導波体7を有する超音波振動装置の例を示している。 FIG. 1 is a schematic cross-sectional view showing an outline of the configuration of one example of the chamfering apparatus of the present invention. In FIG. 1, a chamfering device 1 basically includes a vibration device 2 and a vibration terminal 3 for chamfering (hereinafter also referred to as a chamfering pin) attached to the tip in the vibration direction. In this example, the vibration device 2 includes an oscillating unit 4 having an oscillating body 4 composed of a magnetostrictive core or a piezo element, an oscillating coil 5 wound around the oscillating body, and a front side of the oscillating body (hereinafter referred to as a vibration direction of the oscillating body). 1 shows an example of an ultrasonic vibration device having a waveguide 7 connected to the front, a chamfering vibration terminal, that is, a side to which a chamfering pin is attached is a front or a front end side.
発振部6、導波体7は筒体8に収納されており、導波体7はスプリング9を介して筒体8に保持されている。筒体より前方に突出した導波体7の先端にはピンホルダー10が設けられており、これにより面取りピン3が導波体に振動可能に取り付けられている。すなわち、面取り用振動子は、振動装置の振動方向の先端側(前方側)に取り付けられている。
なお、導波体7と筒体8の周方向の間隙にはシール11が設けられており、冷却装置12から冷却水管13を経て筒体8後端に設けられた給水口14、排水口15から冷却水を筒体内に供給、排出し、振動装置2を冷却するようになっている。また、筒体の後端には、面取り作業用のハンドル16が取り付けられている。
なお、振動装置としては、上述のような超音波振動装置のほかに、空圧振動装置、偏芯モーターなどの加振装置などを用いることができる。
The oscillating portion 6 and the waveguide 7 are accommodated in a cylinder 8, and the waveguide 7 is held by the cylinder 8 via a spring 9. A pin holder 10 is provided at the tip of the waveguide 7 protruding forward from the cylindrical body, whereby the chamfered pin 3 is attached to the waveguide so as to vibrate. That is, the chamfering vibrator is attached to the tip side (front side) of the vibration direction of the vibration device.
A seal 11 is provided in a circumferential gap between the waveguide 7 and the cylinder 8, and a water supply port 14 and a drain 15 provided at the rear end of the cylinder 8 through the cooling water pipe 13 from the cooling device 12. Then, cooling water is supplied to and discharged from the cylinder to cool the vibration device 2. A chamfering handle 16 is attached to the rear end of the cylinder.
In addition to the ultrasonic vibration device as described above, a vibration device such as a pneumatic vibration device or an eccentric motor can be used as the vibration device.
図2(a)〜(d)は、本発明の面取り装置の面取り用振動端子、すなわち面取りピン3の一形態の形状を示す図であり、この図では、円柱状(棒状)のピンの場合を例示している。(a)は斜視図、(b)は溝の延びる方向からの側面図、(c)は(b)と直交する方向からの側面図、(d)は上面図である。 面取りピン3の先端部には、振動方向と直交する方向に直線状に延び、且つこの延びる方向と直交する断面が先端側に開いた溝20が形成されている。 2A to 2D are views showing a shape of one form of the chamfering vibration terminal of the chamfering apparatus of the present invention, that is, the chamfering pin 3. In this figure, in the case of a cylindrical (rod-like) pin Is illustrated. (A) is a perspective view, (b) is a side view from the direction in which a groove extends, (c) is a side view from a direction orthogonal to (b), and (d) is a top view. A groove 20 is formed in the tip portion of the chamfer pin 3 so as to extend linearly in a direction orthogonal to the vibration direction and open in the tip side in a cross section orthogonal to the extending direction.
溝20は、振動方向と直交する方向に延びているが、打撃力を効率的に面取りに供するためには、面取りピンの軸中心Cを通るように設けることが好ましい。
また、溝20は、その延びる方向と直交する断面の形状が開き角度αで先端側、図では上方に、に向かって開放された形(V字状或いは凹形状)となっている。
The groove 20 extends in a direction orthogonal to the vibration direction. However, in order to efficiently use the impact force for chamfering, the groove 20 is preferably provided so as to pass through the axial center C of the chamfering pin.
In addition, the groove 20 has a shape (V-shaped or concave shape) in which the shape of the cross section orthogonal to the extending direction is open toward the tip side at the opening angle α, upward in the drawing.
溝20の側面21は、図6に示されるように、面取りの際に処理対象部材19のコーナー部27を形成する両側面に対して一種のガイドの機能を果たすものであり、この開き角度αは処理対象部材のコーナー部27の角度に応じて調整することが好ましい。
通常の金属部材で形成されるコーナー部の角度は、ほぼ直角であることから、この開き角度αは90゜とすることが好ましい。しかしながら、金属部材の切断や切削方法により、形成されるコーナー部の角度にはばらつきがあるので、90゜〜90゜±10゜とすることがさらに好ましい。80°未満もしくは100゜を超えると、後述するように面取りした面の幅Wcを均一にするのが難くなる。
なお、金属部材のコーナー部の角度が鋭角または鈍角で形成されている場合は、この開き角度αを、その鋭角または鈍角に対応する角度に設定することにより、同様に面取りが可能である。
As shown in FIG. 6, the side surface 21 of the groove 20 serves as a kind of guide for both side surfaces forming the corner portion 27 of the processing target member 19 during chamfering, and this opening angle α Is preferably adjusted according to the angle of the corner 27 of the member to be processed.
Since the angle of the corner portion formed of a normal metal member is substantially a right angle, the opening angle α is preferably 90 °. However, since the angle of the corner portion to be formed varies depending on the cutting or cutting method of the metal member, 90 ° to 90 ° ± 10 ° is more preferable. When the angle is less than 80 ° or exceeds 100 °, it becomes difficult to make the width Wc of the chamfered surface uniform as described later.
In addition, when the angle of the corner part of a metal member is formed with an acute angle or an obtuse angle, it can chamfer similarly by setting this opening angle (alpha) to the angle corresponding to the acute angle or an obtuse angle.
図3は、溝20の開き角度αを示したものであるが、この開き角度は、溝の延びる方向の面に対して対称、すなわち図3に示すようにでは、中心軸を通る線に対して左右にα/2の角度、とすることが好ましい。開き角度が溝の延びる方向の面に対して非対称となると、面取りした面の幅Wcを均一にするのが難しくなる。なお、面取り幅(Wc)は、後述の図6(b)に示すように、コーナー部の延長方向と直交する断面において面取りした面の両端部の距離である。 FIG. 3 shows the opening angle α of the groove 20. This opening angle is symmetric with respect to the surface in the groove extending direction, that is, as shown in FIG. 3, with respect to a line passing through the central axis. The angle is preferably α / 2 to the left and right. If the opening angle is asymmetric with respect to the surface in the groove extending direction, it becomes difficult to make the width Wc of the chamfered surface uniform. The chamfer width (Wc) is a distance between both end portions of the chamfered surface in a cross section orthogonal to the extending direction of the corner portion as shown in FIG.
図2(b)に示すように、溝20の延びる方向と直交する断面の底部22は、曲率半径Rを有している。この曲率半径Rは、面取りした際、処理対象部材19のコーナー部の断面形状にほぼ写される。この曲率半径Rは、処理対象材のコーナー部の面取り形状の所望に応じて選択することができる。
この曲率半径Rが小さすぎると面取りしたコーナー部の面取り幅Wcが狭く、鋭角的なものとなり、面取りの効果が小さくなり、一方、大きすぎると面取り作業によって流動させるべき金属量が多くなって流動した金属により面取りしたコーナー部の周辺に大きな段差(コーナーの伸びる方向と垂直な断面において面取りされたコーナー部(幅Wc)とコーナー部以外の部分との厚さの差)が形成されたり、また処理時間が長くなるなど、好ましくない。
このよう観点から、曲率半径が、0.5mm未満では、面取りの効果が十分ではなく、5mmを超えると、コーナー部近傍に段差が大きく形成され易くなるので、曲率半径は、0.5〜5mm程度とすることが好ましい。より好ましくは、1〜3mmである。
As shown in FIG. 2B, the bottom 22 of the cross section orthogonal to the direction in which the groove 20 extends has a radius of curvature R. This curvature radius R is substantially copied to the cross-sectional shape of the corner portion of the processing target member 19 when chamfering. This radius of curvature R can be selected as desired for the chamfered shape of the corner portion of the material to be processed.
If the radius of curvature R is too small, the chamfered width Wc of the chamfered corner portion becomes narrow and sharp, and the chamfering effect is reduced. On the other hand, if the radius of curvature R is too large, the amount of metal to be flowed by the chamfering operation increases. A large step (a difference in thickness between the chamfered corner (width Wc) and the thickness of the portion other than the corner) in the cross section perpendicular to the direction in which the corner extends is formed around the corner chamfered by the finished metal. It is not preferable because the processing time becomes long.
From this point of view, if the radius of curvature is less than 0.5 mm, the chamfering effect is not sufficient, and if it exceeds 5 mm, a large step is likely to be formed in the vicinity of the corner, so the radius of curvature is 0.5 to 5 mm. It is preferable to set the degree. More preferably, it is 1-3 mm.
図4(a)、(b)は本発明の面取り装置に使用する面取り用振動端子、すなわち面取りピンの他の形態例を示した斜視図である。
図4(a)、(b)はいずれも棒状の面取りピンであり、(a)は角柱棒の振動方向(軸方向)先端部に、(b)は円柱棒の振動方向(軸方向)の先端部に四角状部23を設けこの四角状部の先端に、それぞれ直線状の溝20を形成したものである。これらの面取りピンの場合は、図2の円柱棒の場合と比較して、溝の強度を改善することができる。
4 (a) and 4 (b) are perspective views showing other embodiments of the chamfering vibration terminal used in the chamfering apparatus of the present invention, that is, a chamfering pin.
4 (a) and 4 (b) are rod-shaped chamfered pins, (a) is at the tip of the vibration direction (axial direction) of the prismatic rod, and (b) is the vibration direction (axial direction) of the cylindrical rod. A square portion 23 is provided at the tip portion, and a linear groove 20 is formed at the tip of the square portion. In the case of these chamfered pins, the strength of the groove can be improved as compared with the case of the cylindrical bar in FIG.
溝20の長さ(円柱棒の場合はその直径d(図3(d)参照)、角柱棒又は円柱棒の先端に四角状部を設けた場合は、角柱棒又は四角状部の辺の長さl(図4(a)(b)参照)にほぼ対応する)は、特に定めるものではない。溝が長ければ、コーナー部の長い範囲を一度に面取りできるものの、振動装置から与えられる一定の打撃エネルギーに対してコーナー部の長さ当たり加えられる打撃エネルギーは小さくなるので、所定の曲率半径の面取り形状を得るには時間を要する。しかし、長ければ面取りピンの谷部のコーナー部への当接が安定するので均一な面取り幅Wcを得やすくなる。一方、溝の長さが短くなれば、これとは逆に単位長さ当たりの打撃エネルギーが大きくなるので、所定の曲率半径の面取り形状を短時間で得ることが出来るものの所定の長さを面取りするに要する時間は、上記の場合とほぼ同じと考えられる。なお、短いとコーナー部への当接が不安定となり易いので、均一な面取り幅とするのが難しくなる。振動装置の出力、所要とするコーナー部の曲率半径、面取りピンの大きさなどを勘案して選択することができる。好ましくは、3〜30mmである。 The length of the groove 20 (in the case of a cylindrical rod, its diameter d (see FIG. 3 (d)), and when a square portion is provided at the tip of the prismatic rod or cylindrical rod, the length of the side of the prismatic rod or square portion. The length l (substantially corresponding to FIGS. 4A and 4B) is not particularly defined. If the groove is long, a long range of the corner can be chamfered at a time, but the striking energy applied per corner length is smaller than the constant striking energy given by the vibration device. It takes time to get the shape. However, if the length is longer, the contact of the chamfer pin with the corner of the valley portion becomes stable, so that it becomes easy to obtain a uniform chamfer width Wc. On the other hand, if the groove length is shortened, the impact energy per unit length is increased, so that a chamfered shape having a predetermined radius of curvature can be obtained in a short time, but the predetermined length is chamfered. The time required for this is considered to be substantially the same as in the above case. If the length is short, contact with the corner portion is likely to be unstable, and it becomes difficult to obtain a uniform chamfer width. The selection can be made in consideration of the output of the vibration device, the required radius of curvature of the corner, the size of the chamfer pin, and the like. Preferably, it is 3-30 mm.
また、溝20の深さtは、面取り幅(Wc)を勘案して決めればよいが、この面取り幅は面取りピンの曲率半径Rの大きさ、或いはさらに、開き角度αなどよっても影響されるのでこれらを勘案するとともに、面取りピンの強度の観点から、面取りピンの先端部の軸に垂直な断面(振動方向に垂直な断面)の形状(円柱棒の直径d、角柱棒の幅W)も適宜を勘案して決めればよい。また、面取りピンの軸方向長さhは特に限定するものではなく、ホルダーの長さ、ピンの強度、作業性などを勘案して決めれば良い。 The depth t of the groove 20 may be determined in consideration of the chamfering width (Wc). However, the chamfering width is also affected by the size of the radius of curvature R of the chamfering pin or the opening angle α. Therefore, from the viewpoint of the strength of the chamfered pin, the shape of the cross section perpendicular to the axis of the tip of the chamfered pin (cross section perpendicular to the vibration direction) (the diameter d of the cylindrical rod, the width W of the prismatic rod) is also taken into consideration. It may be determined in consideration of appropriate circumstances. Further, the axial length h of the chamfered pin is not particularly limited, and may be determined in consideration of the length of the holder, the strength of the pin, workability, and the like.
図5は、面取りピン3の他の形態例を示す断面模式図である。この例では、面取りピンが円盤状体であり、この円盤24の外周沿って、直径方向の断面形状が上述の円盤の外径方向(先端側に)に開放された溝20を有している。すなわち、外径方向開放された環状溝が形成された形となっている。円盤体24は、円盤体の中心に設けられた軸孔25に支持軸26が通され、この支持軸26がピンホルダー10に取り付けられることにより、回転自在に支持されている。
この形態例では、面取りピンを振動方向に振動させつつ回転させることができるので、振動させつつ処理対象材のコーナー部に沿って押し転がすことによって面取りピンを移動させ、面取り作業を極めて効率的に進めることができる。なお、この場合の溝の形状(溝の開き角度、溝の底部の曲率半径など)は上述の棒状のピンなどの場合と同様に設定すれば良い。
FIG. 5 is a schematic cross-sectional view showing another example of the chamfered pin 3. In this example, the chamfer pin is a disk-like body, and has a groove 20 having a diametrical cross-sectional shape opened along the outer periphery of the disk (on the tip side) along the outer periphery of the disk 24. . That is, an annular groove opened in the outer diameter direction is formed. The disk body 24 is supported rotatably by passing a support shaft 26 through a shaft hole 25 provided at the center of the disk body and attaching the support shaft 26 to the pin holder 10.
In this embodiment, the chamfering pin can be rotated while vibrating in the vibration direction. Therefore, the chamfering pin is moved along the corner portion of the material to be processed while being vibrated to move the chamfering pin extremely efficiently. Can proceed. In this case, the shape of the groove (groove opening angle, radius of curvature of the bottom of the groove, etc.) may be set in the same manner as in the case of the rod-shaped pin described above.
面取りピンの材質は、特に限定するものではないが、少なくとも処理対象材のコーナー部を打撃してこれを変形させるに硬さ(強度)を備えたものであることが必要である。例えば、HRC硬さが62以上のSKH材などの工具用炭素鋼もしくは、WC(炭化タングステン)などの超硬材が好ましい。
また、面取りピンの溝の表面は、コーナー部との摩擦による摩耗も大きいので、表面被覆処理、表面硬化処理などの表面処理を施すことも好ましい。
The material of the chamfering pin is not particularly limited, but it is necessary that the chamfering pin has hardness (strength) in order to hit at least the corner portion of the processing target material and deform it. For example, carbon steel for tools such as SKH material having an HRC hardness of 62 or more, or super hard material such as WC (tungsten carbide) is preferable.
In addition, since the surface of the groove of the chamfered pin is greatly worn by friction with the corner portion, it is preferable to perform surface treatment such as surface coating treatment or surface hardening treatment.
図6は、本発明の面取り装置を用いて、コーナー部を面取りする状況を示す斜視図である。図1及び図6参照してその動作を説明する。
図1において、電源、制御ユニット17からケーブル18を介して振動装置2の発振コイル5に供給され電流により、発振体4が振動し、軸方向(振動方向、図1参照)の振動が導波体に伝えられる。この振動が導波体の先端に伝えられ、先端に取り付けられている面取りピン3が軸方向(振動装置の振動方向)に振動する。
FIG. 6 is a perspective view showing a situation where the corner portion is chamfered using the chamfering apparatus of the present invention. The operation will be described with reference to FIGS.
In FIG. 1, the oscillator 4 is vibrated by the current supplied from the power source / control unit 17 to the oscillation coil 5 of the vibration device 2 via the cable 18, and the vibration in the axial direction (vibration direction, see FIG. 1) is guided. It is conveyed to the body. This vibration is transmitted to the tip of the waveguide, and the chamfer pin 3 attached to the tip vibrates in the axial direction (vibration direction of the vibration device).
面取りピン3は上述のように溝20が形成されているので、図6に示すように処理対象とする金属部材19のコーナー部27に、面取りピン3の溝を、溝の延びる方向がコーナー部の長手方向と同じになるように当接させ、振動させながらコーナー部27の長手方行に沿って移動させる。上記振動によって面取りピンがコーナー部27を打撃し、この部分の金属を側方に流動させることによって面取りが行われる。 Since the groove 20 is formed in the chamfered pin 3 as described above, the groove of the chamfered pin 3 is formed in the corner portion 27 of the metal member 19 to be processed as shown in FIG. It is made to contact | abut so that it may become the same as the longitudinal direction of this, and it moves along the longitudinal direction of the corner part 27, vibrating. The chamfering pin strikes the corner portion 27 by the vibration, and the chamfering is performed by causing the metal in this portion to flow laterally.
面取りピンの溝の底部は所定の曲率半径を有しているので、コーナー部はこの曲率半径にほぼ倣った曲率半径を有するコーナー部28に面取りされる。また、溝の両側面が、処理対象材のコーナー部の両側面にそれぞれ当接し、溝の底部の中心がコーナーの頂部にほぼ対向するようにガイドし、また、開き角度が溝の延びる方向の面に対して左右対称であるため、これらによってコーナー部に沿ってほぼ均等幅の面取りがなされる。 Since the bottom portion of the groove of the chamfer pin has a predetermined radius of curvature, the corner portion is chamfered by a corner portion 28 having a radius of curvature substantially following this radius of curvature. Further, both side surfaces of the groove are in contact with both side surfaces of the corner portion of the material to be processed, the center of the bottom portion of the groove is guided substantially opposite to the top portion of the corner, and the opening angle is in the direction in which the groove extends. Since these are symmetrical with respect to the surface, they are chamfered with a substantially uniform width along the corner portion.
本発明の面取り装置を用いて、上記のように操作して面取りする際においては、振動装置2により面取り用振動端子3を周波数10Hz〜50kHzで振動させ、0.01〜4kWの仕事率で施すことが好ましい。すなわち、周波数10Hz〜50kHzで振動させ、0.01〜4kWの仕事率で振動打撃による面取りを施すことによって、コーナー部の金属が塑性流動し、コーナー部が面取りされると同時に、コーナー部近傍の表面が加工発熱し、この加工発熱が散逸しない断熱状態で繰返しの面取り打撃を与えるので、熱間鍛造と同じような作用をコーナー部に及ぼす結果、コーナー部近傍の結晶組織が微細化される。 When chamfering is performed using the chamfering apparatus of the present invention as described above, the chamfering vibration terminal 3 is vibrated at a frequency of 10 Hz to 50 kHz by the vibration device 2 and applied at a power of 0.01 to 4 kW. It is preferable. That is, by vibrating at a frequency of 10 Hz to 50 kHz and chamfering by vibration hammering at a power of 0.01 to 4 kW, the metal in the corner portion is plastically flowed and the corner portion is chamfered at the same time as the corner portion. Since the surface generates heat during processing and repeatedly chamfers the surface in a heat-insulating state where the heat generated does not dissipate, the same effect as in hot forging is exerted on the corner, resulting in a refined crystal structure near the corner.
面取り用振動端子3の振動周波数を10Hz以上とするのは、10Hz未満では打撃による面取り際に断熱効果が得られないからであり、また、周波数を50kHz以下とするのは工業的に適用できる超音波の周波数が一般に50kHz以下であるからである。
また、振動端子3の仕事率を0.01kW以上とするのは、0.01kW未満では面取りに要する時間が長くかかり過ぎるからであり、4kW以下とするのは、これを超える仕事率で面取り処理をしても時間短縮の効果が飽和し経済性が低下するからである。
The reason why the vibration frequency of the chamfering vibration terminal 3 is 10 Hz or more is that if it is less than 10 Hz, a heat insulating effect cannot be obtained when chamfering by striking, and the frequency of 50 kHz or less can be applied industrially. This is because the frequency of the sound wave is generally 50 kHz or less.
Further, the reason why the power of the vibration terminal 3 is 0.01 kW or more is that if it is less than 0.01 kW, it takes too much time for chamfering, and the reason that it is 4 kW or less is that the chamfering process is performed with a power exceeding this. This is because the effect of shortening the time is saturated and the economy is lowered.
以下、実施例によってさらに具体的に本発明を説明する。
図1に示した面取り装置を用い、断面がほぼ正方形(コーナー部の角度は、約90゜)で強度レベルが400〜600MPaと異なる5種類の鋼部材試料1〜5の3つのコーナー部を面取りした。その際、面取りピンは、HRC62のSKH材製で、直径4.8mm、長さ35mmの円柱棒状、先端部の溝の開き角度は90゜とし、溝の底部の曲率半径を図7(a)〜(c)に示すように1R〜3Rと変えたものを使用した。上記鋼部材試料の3つのコーナー部を、それぞれ溝の底部の曲率半径が異なる上記図7(a)〜(c)に示した面取りピンで面取りし、比較のため、1つのコーナー部は、面取り前のコーナー部の状況のまま未処理部として残した。面取り処理の条件(使用した面取りピンの底部の曲率半径)と処理したコーナー部位との対応関係を図8(a)、(b)に示す。
なお、面取り装置の振動装置の振動数は27kHz、仕事率は1.2kWとした。
鋼部材試料の面取りした後のコーナー部、および面取り前のコーナー部(未処理部)の曲率半径を測定した。
鋼部材試料の種類、鋼部材試料の面取り前、および各面取りピンで面取りした後のコーナー部の曲率半径を表1に示す。
また、鋼部材試料2の面取り後の断面マクロ組織写真を図9に、ミクロ組織写真を図10(a)、(b)、図11(c)、(d)に示す。
なお、マクロ写真およびミクロ写真において、鋼部材試料2の断面における面取り処理の条件(使用した面取りピンの溝の底部の曲率半径)およびコーナーの未処理部とコーナー部位との対応関係は、図8(b)に対応しており、図10(a)は、未処理部のミクロ組織写真である。
Hereinafter, the present invention will be described more specifically with reference to examples.
The chamfering apparatus shown in FIG. 1 is used to chamfer three corner portions of five types of steel member samples 1 to 5 having a substantially square cross section (the angle of the corner portion is about 90 °) and different strength levels from 400 to 600 MPa. did. At that time, the chamfering pin is made of SKH material of HRC62, is a cylindrical bar shape with a diameter of 4.8 mm and a length of 35 mm, the opening angle of the groove at the tip is 90 °, and the radius of curvature of the bottom of the groove is shown in FIG. What was changed into 1R-3R as shown in-(c) was used. The three corner portions of the steel member sample are chamfered by the chamfering pins shown in FIGS. 7A to 7C having different curvature radii at the bottom of the groove, and one corner portion is chamfered for comparison. The untreated part was left as it was in the previous corner. FIGS. 8A and 8B show the correspondence between the chamfering condition (the radius of curvature of the bottom of the used chamfering pin) and the processed corner part.
The frequency of the vibration device of the chamfering device was 27 kHz, and the power was 1.2 kW.
The curvature radius of the corner part after chamfering of the steel member sample and the corner part (untreated part) before chamfering were measured.
Table 1 shows the types of steel member samples, the radius of curvature of the corner portions before chamfering the steel member samples, and after chamfering with each chamfering pin.
Moreover, the cross-sectional macro structure photograph after chamfering of the steel member sample 2 is shown in FIG. 9, and the micro structure photographs are shown in FIGS. 10 (a), 10 (b), 11 (c), and 11 (d).
In the macro and micro photographs, the conditions of the chamfering treatment in the cross section of the steel member sample 2 (the curvature radius of the bottom of the groove of the used chamfering pin) and the correspondence between the untreated part of the corner and the corner part are shown in FIG. Corresponding to (b), FIG. 10 (a) is a microstructure photograph of an unprocessed part.
表1から判るように、コーナー部には、面取り前(未処理部)に比べて、極めて大きな曲率半径となっており、確実に面取りされている。そしてこの面取りされたコーナー部の断面には、面取りピンの溝の底部の曲率半Rにほぼ倣った曲率半径を有する曲面が形成されている。従って、面取りピンの曲率半径を適宜選択することにより、所望の曲率半径に面取りされたコーナー部を得ることが可能である。
図9において、面取りされたコーナー部の断面形状を未処理部と比較すれば明らかなように、それぞれきわめて滑らかなほぼ1mm(1R)、2mm(2R)、3mm(3R)の曲率半径を有する面取りされたコーナー部が形成されている。
また、図10(a)と,図10(b)、図11(c)、(d)とを比較すれば明らかなように、本発明の面取り装置により面取りしたコーナー部は、いずれも表層の結晶組織が微細化されていることが判る。このように滑らかな形状であり、且つ結晶組織が微細化された面取り部は、従来の研削や切削などの従来の面取り方法では得られないものであり、本発明の面取り装置により、優れた面取り部を得ることができる。
As can be seen from Table 1, the corner portion has an extremely large radius of curvature compared with that before chamfering (untreated portion), and is reliably chamfered. In the cross section of the chamfered corner portion, a curved surface having a curvature radius substantially following the curvature half R of the bottom portion of the groove of the chamfer pin is formed. Therefore, it is possible to obtain a corner portion chamfered to a desired curvature radius by appropriately selecting the curvature radius of the chamfer pin.
In FIG. 9, the chamfered chamfers each having a very smooth radius of curvature of approximately 1 mm (1R), 2 mm (2R), and 3 mm (3R), as is apparent when comparing the cross-sectional shape of the chamfered corner portion with the untreated portion. The formed corner portion is formed.
Further, as is clear from comparison between FIG. 10 (a), FIG. 10 (b), FIG. 11 (c), and (d), the corner portions chamfered by the chamfering device of the present invention are all surface layers. It can be seen that the crystal structure is refined. Such a chamfered portion having a smooth shape and a refined crystal structure cannot be obtained by a conventional chamfering method such as conventional grinding or cutting, and the chamfering device of the present invention provides excellent chamfering. Part can be obtained.
1 面取り装置
2 振動装置
3 振動端子(面取りピン)
4 発振体
5 発振コイル
6 発振部
7 導波体
8 筒体
9 スプリング
10 ピンホルダー
11 シール
12 冷却装置
13 冷却水管
14 給水口
15 排水口
16 ハンドル
17 電源・制御装置
18 電源ケーブル
19 処理対象材(金属部材)
20 溝
21 溝の側面
22 溝の底部
23 面取りピンの四角状部
24 円盤
25 軸孔
26 支持軸
27 コーナー部
28 面取り後のコーナー部
C 棒状振動端子の軸中心
α 溝の開き角度
h 棒状ピンの軸方向長さ
l 角柱棒ピンの辺の長さ
t 溝の深さ
w 角柱棒ピンの辺の幅
Wc 面取り幅
1 Chamfering device 2 Vibrating device 3 Vibration terminal (Chamfering pin)
DESCRIPTION OF SYMBOLS 4 Oscillator 5 Oscillation coil 6 Oscillator 7 Oscillator 7 Tube 9 Spring 10 Pin holder 11 Seal 12 Cooling device 13 Cooling water pipe 14 Water supply port 15 Drainage port 16 Handle 17 Power supply / control device 18 Power supply cable 19 Material to be processed ( Metal parts)
20 groove 21 side surface of groove 22 bottom portion of groove 23 square portion of chamfering pin 24 disk 25 shaft hole 26 support shaft 27 corner portion 28 corner portion after chamfering C axis center of rod-shaped vibration terminal α groove opening angle h of rod-shaped pin Axial length l Side length of square pole pin t Groove depth w Side width of square pole pin Wc Chamfering width
Claims (6)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008113638A JP4734370B2 (en) | 2007-04-27 | 2008-04-24 | Metal material chamfering apparatus and chamfering method |
CN2008800137971A CN101668598B (en) | 2007-04-27 | 2008-04-25 | Chamfering device and chamfering method for metallic material |
TW97115256A TW200900174A (en) | 2007-04-27 | 2008-04-25 | Chamfering device and chamfering method for metallic material |
KR1020097019468A KR101158103B1 (en) | 2007-04-27 | 2008-04-25 | Chamfering device and chamfering method for metallic material |
PCT/JP2008/058446 WO2008136515A1 (en) | 2007-04-27 | 2008-04-25 | Chamfering device and chamfering method for metallic material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007119226 | 2007-04-27 | ||
JP2007119226 | 2007-04-27 | ||
JP2008113638A JP4734370B2 (en) | 2007-04-27 | 2008-04-24 | Metal material chamfering apparatus and chamfering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008290229A true JP2008290229A (en) | 2008-12-04 |
JP4734370B2 JP4734370B2 (en) | 2011-07-27 |
Family
ID=40165481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008113638A Expired - Fee Related JP4734370B2 (en) | 2007-04-27 | 2008-04-24 | Metal material chamfering apparatus and chamfering method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4734370B2 (en) |
TW (1) | TW200900174A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021109283A (en) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | Impact treatment terminal and impact treatment method using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108747407A (en) * | 2018-08-28 | 2018-11-06 | 深圳市顺盈联科技有限公司 | The device and method of edge of a knife cavetto after a kind of ferritic stainless steel slitting |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4959768A (en) * | 1972-09-27 | 1974-06-10 | ||
JPS56156421A (en) * | 1980-04-07 | 1981-12-03 | Bendix Corp | Fuel controller |
JPH07100747A (en) * | 1993-10-05 | 1995-04-18 | Setsubi Giken Kk | Chamfering device for cut member |
JP2004169063A (en) * | 2002-11-18 | 2004-06-17 | Nippon Steel Corp | Rotator having excellent fatigue strength and long service life and its production method |
JP2004322144A (en) * | 2003-04-24 | 2004-11-18 | Seiko Epson Corp | Press machine, face pressing die, pressing method, metal plate and recording device |
JP2007069229A (en) * | 2005-09-06 | 2007-03-22 | Nippon Steel Corp | Tool for shock-plastic working metal for improving excellent fatigue-strength, and method therefor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56156421U (en) * | 1980-04-22 | 1981-11-21 |
-
2008
- 2008-04-24 JP JP2008113638A patent/JP4734370B2/en not_active Expired - Fee Related
- 2008-04-25 TW TW97115256A patent/TW200900174A/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4959768A (en) * | 1972-09-27 | 1974-06-10 | ||
JPS56156421A (en) * | 1980-04-07 | 1981-12-03 | Bendix Corp | Fuel controller |
JPH07100747A (en) * | 1993-10-05 | 1995-04-18 | Setsubi Giken Kk | Chamfering device for cut member |
JP2004169063A (en) * | 2002-11-18 | 2004-06-17 | Nippon Steel Corp | Rotator having excellent fatigue strength and long service life and its production method |
JP2004322144A (en) * | 2003-04-24 | 2004-11-18 | Seiko Epson Corp | Press machine, face pressing die, pressing method, metal plate and recording device |
JP2007069229A (en) * | 2005-09-06 | 2007-03-22 | Nippon Steel Corp | Tool for shock-plastic working metal for improving excellent fatigue-strength, and method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021109283A (en) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | Impact treatment terminal and impact treatment method using the same |
JP7453508B2 (en) | 2020-01-10 | 2024-03-21 | 日本製鉄株式会社 | Impact processing terminal and impact processing method using the same |
Also Published As
Publication number | Publication date |
---|---|
TWI360447B (en) | 2012-03-21 |
JP4734370B2 (en) | 2011-07-27 |
TW200900174A (en) | 2009-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7431779B2 (en) | Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces | |
EP2303508B1 (en) | The bearing processing system using an ultrasonic nano crystal surface modifier and processing method using the same | |
CN105127668B (en) | A kind of multi-party station ultrasonic wave roll processing device | |
WO2010013618A1 (en) | Enlargement processing method for workpiece | |
CA2491743A1 (en) | Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces | |
JP2009022977A (en) | Ultrasonic welding apparatus, and manufacturing method of lithium ion secondary battery using the same | |
KR101158103B1 (en) | Chamfering device and chamfering method for metallic material | |
CN105779756B (en) | Angle of spot hole enhanced processing method | |
JP4734370B2 (en) | Metal material chamfering apparatus and chamfering method | |
CN101220406A (en) | Executing agency and processing method for half wave length ultrasonic surface rolling process | |
CN103273256B (en) | A kind of metal surface ultrasound frosting treatment method | |
JP2009023032A (en) | Workpiece holding device for cutting internal circumference of cylindrical portion | |
Niehoff et al. | Non-thermal laser stretch-forming | |
WO2004046397A1 (en) | Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength | |
JP2009034696A (en) | Butt welded joint excellent in fatigue characteristics, and its manufacturing method | |
JP4833615B2 (en) | Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement | |
KR200418336Y1 (en) | The structure of the tool horn and anvil of the ultrasonic welder | |
JP2004197173A (en) | Surface treating method for material of cutter, and apparatus therefor | |
JP2004169103A (en) | Method for producing wire rod | |
RU2375465C1 (en) | Method of surface hardening | |
JP7453508B2 (en) | Impact processing terminal and impact processing method using the same | |
JP4500994B2 (en) | Cutting tool and cutting device | |
JP5831286B2 (en) | Ultrasonic impact treatment pin for weld toe and ultrasonic impact treatment method for weld toe | |
JP2006505393A (en) | Ultrasonic device and manufacturing method thereof | |
RU2465148C1 (en) | Ultrasound reaming head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100309 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20100309 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20100603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100608 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4734370 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |