JP6226555B2 - 騒音低減装置及び騒音低減方法 - Google Patents

騒音低減装置及び騒音低減方法 Download PDF

Info

Publication number
JP6226555B2
JP6226555B2 JP2013102051A JP2013102051A JP6226555B2 JP 6226555 B2 JP6226555 B2 JP 6226555B2 JP 2013102051 A JP2013102051 A JP 2013102051A JP 2013102051 A JP2013102051 A JP 2013102051A JP 6226555 B2 JP6226555 B2 JP 6226555B2
Authority
JP
Japan
Prior art keywords
phase difference
search
noise reduction
vibration
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013102051A
Other languages
English (en)
Other versions
JP2014222311A (ja
Inventor
陽 小林
陽 小林
鈴木 俊太郎
俊太郎 鈴木
智也 大西
智也 大西
哲也 宮崎
哲也 宮崎
孝 東川
孝 東川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
INC Engineering Co Ltd
Original Assignee
IHI Corp
INC Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, INC Engineering Co Ltd filed Critical IHI Corp
Priority to JP2013102051A priority Critical patent/JP6226555B2/ja
Publication of JP2014222311A publication Critical patent/JP2014222311A/ja
Application granted granted Critical
Publication of JP6226555B2 publication Critical patent/JP6226555B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、騒音低減装置及び騒音低減方法に関する。
泥水シールド工事等の工事現場では、泥水中に含まれる土砂等の固形物の分離及び脱水を行うために振動篩装置が用いられる。この振動篩装置は、篩網を一定の振動数で振動させることによって固形物等の篩い分けを行うものであるため、超低周波音(周波数が20Hz以下の音)が含まれる騒音が発生する。上記の工事現場では、複数台の振動篩装置が同時稼働されることが多いため、各々の振動篩装置が発生する騒音が重畳されてうなりが生じてしまい騒音が大きくなる虞がある。
また、工場やプラント等では、例えば流体の冷却を行う冷却塔等の設備機器が用いられる。このような設備機器は、例えば冷却対象の流体や冷媒の循環等を行うためのファン(冷却ファン)を備えているため、ファンが回転することによって超低周波音が含まれる騒音が発生し得る。ここで、設備機器に複数のファンが設けられている場合には、上記の複数台の振動篩装置が同時稼働される場合と同様に、各々のファンが発生する騒音が重畳されてうなりが生じてしまい騒音が大きくなる虞がある。
以下の特許文献1〜3には、複数の振動装置から発生される騒音を低減する技術が開示されている。具体的に、以下の特許文献1〜3には、複数の振動装置を同じ振動数(周波数)で駆動するとともに、複数の振動装置間の振動の位相差が目標位相差(例えば、180[度])となるように制御することで、振動装置の各々が発生する騒音を打ち消す(相殺する)技術が開示されている。尚、以下の特許文献3には、複数の振動装置が発生する騒音の音圧レベルを複数箇所で検出し、この検出した音圧レベルを上記の位相差(複数の振動装置間の振動の位相差)に関連付けることで、所望の方向で音圧レベルが低くなるような最適の位相差を得る点も開示されている。
特開昭59−69548号公報 特許第3371209号公報 特許第2925540号公報
ところで、上述した特許文献1〜3に開示された技術は何れも、複数の振動装置間の振動の位相差が、オペレータによって手動で設定された目標位相差(例えば、180[度])となるように制御するものである。周囲の環境の影響を考慮する必要のない理想的な条件下では、上述した特許文献1〜3に開示された技術のように制御すれば、複数の振動装置から発生する騒音を効果的に低減することができるものと考えられる。
しかしながら、実際には、複数の振動装置の間の距離や周囲の環境の影響(例えば、音の反射等)によって、騒音を効果的に低減し得る最適な目標位相差が180[度]からずれることがあり得る。また、周囲の環境が変化した場合には、最適な目標位相差が動的に変動することもあり得る。このため、上述した特許文献1〜3に開示された技術のように制御したとしても、必ずしも複数の振動装置から発生する騒音を効果的に低減できるとは限らないという問題がある。尚、この問題は、振動装置から発生する騒音を低減する場合のみならず、ファン等の回転装置から発生する騒音を低減する場合も同様に生ずる。
本発明は、上記事情に鑑みてなされたものであり、複数の装置から発生する騒音を周囲の環境等に応じて効果的に低減することが可能な騒音低減装置及び騒音低減方法を提供することを目的とする。
上記課題を解決するために、本発明の騒音低減装置は、周期的な動作を行う複数の対象装置(B1、B2)の動作状態をそれぞれ検出するセンサ(11a、11b)と、該センサの検出結果に基づいて前記対象装置の動作周波数及び前記対象装置間の位相差を制御する制御部(20)とを備える騒音低減装置(1)において、前記対象装置から発せられる騒音の合成音を測定するマイクロフォン(12)と、前記マイクロフォンの測定結果を参照しつつ、近傍探索アルゴリズムを用いて前記制御部により制御される前記位相差を変化させて、前記合成音が最小になる位相差の探索を行う探索部(30)とを備えることを特徴としている。
また、本発明の騒音低減装置は、前記探索部が、前記近傍探索アルゴリズムを用いた探索を、少なくとも前記制御部が前記対象装置の制御を行っている間は継続して行うことを特徴としている。
また、本発明の騒音低減装置は、前記探索部が、前記合成音の音圧が最小になる位相差の探索を行うことを特徴としている。
また、本発明の騒音低減装置は、前記探索部が、前記近傍探索アルゴリズムとして、前記位相差の変化量を固定して探索を行う固定ステップ探索法、前記マイクロフォンの測定結果に応じて前記位相差の変化量を変えながら探索を行う可変ステップ探索法、或いは前記位相差の変化量をランダムに変えながら探索を行う順次ランダム探索法を用いることを特徴としている。
また、本発明の騒音低減装置は、前記マイクロフォンが、無指向性のマイクロフォンであることを特徴としている。
また、本発明の騒音低減装置は、前記対象装置が、前記周期的な動作として振動動作又は回転動作を行うものであることを特徴としている。
本発明の騒音低減方法は、周期的な動作を行う複数の対象装置(B1、B2)から発せられる騒音を低減する騒音低減方法であって、前記対象装置の動作状態をそれぞれ検出する第1ステップと、前記第1ステップの検出結果に基づいて前記対象装置の動作周波数及び前記対象装置間の位相差を制御する第2ステップと、前記対象装置から発せられる騒音の合成音を測定する第3ステップ(S12,S15、S32,S37)と、前記第3ステップの測定結果を参照しつつ、近傍探索アルゴリズムを用いて前記第2ステップで制御される前記位相差を変化させて、前記合成音が最小になる位相差の探索を行う第4ステップ(S13,S14,S16〜S24、S33〜S36,S38〜S41)とを有することを特徴としている。
また、本発明の騒音低減方法は、前記第3,第4ステップが、少なくとも前記第1,第2ステップが行われている間は継続して行われることを特徴としている。
また、本発明の騒音低減方法は、前記第4ステップが、前記合成音の音圧が最小になる位相差の探索を行うステップであることを特徴としている。
また、本発明の騒音低減方法は、前記第4ステップが、前記近傍探索アルゴリズムとして、前記位相差の変化量を固定して探索を行う固定ステップ探索法、前記第3ステップの測定結果に応じて前記位相差の変化量を変えながら探索を行う可変ステップ探索法、或いは前記位相差の変化量をランダムに変えながら探索を行う順次ランダム探索法を用いるステップであることを特徴としている。
本発明によれば、対象装置から発せられる騒音の合成音を測定し、合成音の測定結果を参照しつつ、近傍探索アルゴリズムを用いて制御部により制御される位相差を変化させて、合成音が最小になる位相差の探索を行っており、合成音を最小にし得る位相差が自動的に得られるため、複数の装置から発生する騒音を周囲の環境等に応じて効果的に低減することが可能であるという効果がある。
本発明の一実施形態による騒音低減装置の要部構成を示すブロック図である。 本発明の一実施形態における振動装置間の位相差とマイクロフォンで測定される合成音の振幅との関係を示す図である。 本発明の一実施形態で行われる可変ステップ探索法を用いた位相差の探索方法を示すフローチャートである。 本発明の一実施形態で行われる順次ランダム探索法を用いた位相差の探索方法を示すフローチャートである。
以下、図面を参照して本発明の一実施形態による騒音低減装置及び騒音低減方法について詳細に説明する。図1は、本発明の一実施形態による騒音低減装置の要部構成を示すブロック図である。図1に示す通り、本実施形態の騒音低減装置1は、近接センサ11a,11b(センサ)、マイクロフォン12、コントローラ13、及びインバータ14を備えており、振動装置B1,B2(対象装置)で発生する騒音を低減する。
ここで、振動装置B1,B2は、例えば泥水シールド工事等の工事現場において、泥水中に含まれる土砂等の固形物の分離及び脱水を行うために用いられる振動篩装置である。この振動篩装置は、例えばモータ、偏心シャフト、及び篩網(何れも図示省略)を備えており、モータによって偏心シャフトを回転させて篩網を振動させることにより、固形物等の篩い分けを行う。
振動装置B1は、不図示の駆動装置から出力される駆動パルスD1によって駆動され、振動装置B2は、インバータ14から出力される駆動パルスD2によって駆動される。駆動パルスD1は、一定の周波数(例えば、電源周波数)を有するパルスであり、駆動パルスD2は、コントローラ13の制御によって規定される周波数を有するパルスである。従って、振動装置B1は、一定の周波数(周期)で振動し、振動装置B2は、駆動パルスD2の周波数に応じた周波数(周期)で振動する。但し、振動装置B1,B2の振動周波数は、篩い分けが行われる固形物等の重量に応じて多少変動することがある。
近接センサ11a,11bは、振動装置B1,B2に設けられたモータの回転状態(動作状態)をそれぞれ検出する。具体的に、近接センサ11aは、振動装置B1に設けられているモータの近傍に取り付けられており、モータの特定部位(例えば、回転軸に取り付けられている金属片)の近接状態に応じてレベルが変化するパルス信号S1を出力する。同様に、近接センサ11bは、振動装置B2に設けられているモータの近傍に取り付けられており、モータの特定部位の近接状態に応じてレベルが変化するパルス信号S2を出力する。これらパルス信号S1,S2は、モータの特定部位が近接センサ11a,11bに最近接している状態のときには「H(ハイ)」レベルになり、他の状態のときには「L(ロー)」レベルになる。
マイクロフォン12は、振動装置B1,B2から発せられる騒音の合成音を測定し、その測定結果を示す測定信号S10を出力する。このマイクロフォン12は、例えばあらゆる方向からの音を測定可能な無指向性(全指向性)のものであり、騒音の低減を行いたい場所(騒音を低減すべき場所)に設置される。ここで、マイクロフォン12は、少なくとも低減したい騒音を測定することが可能であれば、任意の周波数特性を有するものを用いることができる。尚、振動装置B1,B2から発せられる騒音に含まれる超低周波音(周波数が20Hz以下の音)を低減する場合には、超低周波音に対する感度が高いものを用いるのが望ましい。
コントローラ13は、振動制御部20(制御部)及び最適位相差探索部30(探索部)を備えており、近接センサ11a,11bからのパルス信号S1,S2及びマイクロフォン12からの測定信号S10を用いて指令信号C1を生成して振動装置B2の振動を制御する。具体的に、コントローラ13は、振動装置B2に設けられているモータに対する速度指令信号を、上記指令信号C1として生成してインバータ14に出力し、振動装置B2の振動周波数(動作周波数)及び振動装置B1,B2間の振動の位相差(位相差)を制御する。
振動制御部20は、周波数位相差検出部21、演算部22、演算部23、位相差制御部24、演算部25、及び周波数制御部26を備えており、上記パルス信号S1,S2及び最適位相差探索部30から出力される目標位相差(Φ)を示す信号に基づいて指令信号C1を生成する。周波数位相差検出部21は、パルス信号S1,S2から振動装置B1,B2の振動周波数(f1,f2)をそれぞれ検出するとともに、振動装置B1,B2間の位相差(θ)を検出する。演算部22は、周波数位相差検出部21で検出された振動装置B1の振動周波数(f1)と振動装置B2の振動周波数(f2)との差分を演算する。
演算部23は、最適位相差探索部30からの目標位相差(Φ)と、周波数位相差検出部21で検出された振動装置B1,B2間の位相差(θ)との差分を演算する。位相差制御部24は、演算部22の演算結果(f1−f2)と演算部23の演算結果(Φ−θ)とを用いて、振動装置B1,B2間の位相差を制御する指令値を生成する。演算部25は、演算部22の演算結果(f1−f2)と位相差制御部24から出力される指令値とを加算する演算を行う。周波数制御部26は、演算部25の演算結果に基づいて振動装置B2の振動周波数を制御する指令信号C1を生成する。
最適位相差探索部30は、マイクロフォン12からの測定信号S10を参照しつつ、近傍探索アルゴリズムを用いて目標位相差(Φ)を変化させて、測定信号S10(マイクロフォン12で測定される合成音)が最小になる位相差の探索を行う。例えば、最適位相差探索部30は、測定信号S10からマイクロフォン12で測定される合成音の音圧を求め、この音圧が最小になる位相差の探索を行う。尚、測定信号S10に含まれる特定の周波数成分(例えば、超低周波音の周波数成分)を抽出するフィルタを最適位相差探索部30に設け、この特定の周波数成分が最小になる位相差の探索を行うようにしても良い。
最適位相差探索部30は、騒音低減装置1の電源が投入されて、振動制御部20が振動装置B2の制御を行っている間は、上記の探索を継続して行う。これは、振動装置B1,B2自体や周囲の環境が変化した場合であっても、その変化に応じて騒音を効果的に低減し得る最適な目標位相差を自動的に求めるためである。これにより、例えば振動装置B1,B2の振動状態の変化(例えば、可動部質量の増大等)に応じて、天気の変化(晴れ、雨、雪等)に応じて、或いは周囲の構造物の変化(新築、取り壊し、倒壊等)に応じて最適な目標位相差が自動的に求められることになる。
ここで、最適位相差探索部30は、近傍探索アルゴリズムとして、「固定ステップ探索法」、「可変ステップ探索法」、「順次ランダム探索法」等を用いる。「固定ステップ探索法」は、位相差の変化量を固定して探索を行う探索法である。「可変ステップ探索法」は、マイクロフォン12からの測定信号S10に応じて位相差の変化量を変えながら探索を行う探索法である。「順次ランダム探索法」は、位相差の変化量をランダムに変えながら探索を行う探索法である。上記の「可変ステップ探索法」及び「順次ランダム探索法」の詳細な説明は後述する。尚、上記の「固定ステップ探索法」は、位相差を一定量ずつ変化させながら測定信号S10が最小となる位相差を探索する単純な探索法であるため、詳細な説明は省略する。
図2は、本発明の一実施形態における振動装置間の位相差とマイクロフォンで測定される合成音の振幅との関係を示す図である。尚、図2においては、横軸に振動装置B1,B2間の位相差をとり、縦軸にマイクロフォン12で測定される合成音の振幅をとってある。図2中における位相差αは、マイクロフォン12で測定される合成音の振幅が最小となる最適位相差であり、周囲の環境の影響を考慮する必要のない理想的な条件下では180[度]である。
図2に示す例において、振動装置B1,B2間の位相差が0〜α[度]の範囲では、位相差が大きくなるにつれてマイクロフォン12で測定される合成音の振幅が単調に減少する。これに対し、振動装置B1,B2間の位相差がα〜360[度]の範囲では、位相差が大きくなるにつれてマイクロフォン12で測定される合成音の振幅が単調に増加する。但し、振動装置B1,B2間の位相差が最適位相差αに近い値では、マイクロフォン12で測定される合成音の振幅が小さくなり、暗騒音(対象とする振動装置B1,B2から発せられる騒音以外の騒音)が支配的になるため合成音の振幅が一定の値になる。
このように、振動装置B1,B2間の位相差とマイクロフォン12で測定される合成音の振幅との関係は、位相差の変化に応じて合成音の振幅がほぼ単調減少又は単調増加する関係にある。このため、最適位相差探索部30は、測定信号S10(マイクロフォン12で測定される合成音)が最小になる位相差の探索を、近傍探索アルゴリズムを用いて効率的に行うようにしている。尚、周囲の環境の影響(例えば、音の反射等)によって、最適位相差α以外の位相差で合成音の振幅が極小となる部分が生じたとしても、近傍探索アルゴリズムを用いた位相差の探索を継続すれば、最終的に最適位相差αを探索することが可能である。
インバータ14は、振動装置B2に対して設けられ、コントローラ13の振動制御部20から出力される指令信号C1に応じた駆動パルスD2を生成して振動装置B2に出力する。つまり、インバータ14は、コントローラ13の制御の下で、振動装置B2の振動周波数及び振動装置B2の位相(振動装置B1,B2間の位相差)の制御に用いられる駆動信号を生成する。
次に、上記構成における騒音低減装置1の動作について説明する。振動装置B1,B2及び騒音低減装置1の電源が投入されると、不図示の駆動装置からの駆動パルスD1が振動装置B1に入力されるとともに、コントローラ13から出力される指令信号C1(初期値)に応じたインバータ14からの駆動パルスD2が振動装置B2に入力される。すると振動装置B1,B2に設けられたモータが回転を開始し、これにより振動装置B1,B2の振動が開始される。
振動装置B1,B2の振動が開始されると、振動装置B1,B2に設けられたモータの回転状態が近接センサ11a,11bによってそれぞれ検出され、近接センサ11a,11bからコントローラ13に対してパルス信号S1,S2が出力される(第1ステップ)。近接センサ11a,11bからのパルス信号S11,S12がコントローラ13に入力されると、コントローラ13内の周波数位相差検出部21で、振動装置B1の振動周波数(f1)及び振動装置B2の振動周波数(f2)が検出されるとともに、振動装置B1,B2間の位相差(θ)が検出される。
周波数位相差検出部21で検出された振動装置B1の振動周波数(f1)及び振動装置B2の振動周波数(f2)は演算部22に出力され、演算部22においてこれらの差分(f1−f2)が演算される。また、周波数位相差検出部21で検出された振動装置B1,B2間の位相差(θ)は演算部23に出力され、演算部23において最適位相差探索部30から出力される目標位相差(Φ)の初期値と振動装置B1,B2間の位相差(θ)との差分が演算される。
演算部22の演算結果(f1−f2)及び演算部23の演算結果(Φ−θ)は位相差制御部24に入力され、位相差制御部24において、これらの演算結果を用いた指令値(振動装置B1,B2間の位相差を制御する指令値)の生成が行われる。位相差制御部24で生成された指令値は演算部25に出力され、演算部25において演算部22の演算結果(f1−f2)と位相差制御部24で生成された指令値とを加算する演算が行われる。演算部25の演算結果は周波数制御部26に出力され、周波数制御部26において、演算部25の演算結果に基づいた指令信号C1の生成が行われる。周波数制御部26で生成された指令信号C1はインバータ14に出力される。
インバータ14は指令信号C1に応じた駆動パルスD2を生成して振動装置B2に出力する。ここで、インバータ14に入力される指令信号C1は、振動装置B2に設けられているモータに対する速度指令信号である。このため、インバータ14で生成された駆動信号B2が振動装置B2に入力されると、振動装置B2に設けられたモータの回転速度が変化する。
コントローラ13に設けられた位相差制御部24は、演算部23の演算結果(Φ−θ)が零になるように位相制御し、周波数制御部26は、演算部22の演算結果(f1−f2)が零なるように周波数制御する(第2ステップ)。このため、以上の動作が繰り返されて、位相差制御部24による位相制御及び周波数制御部26による周波数制御が継続されることによって、振動装置B1,B2は同じ振動周波数で振動するようになり、振動装置B1,B2間の位相差は目標位相差(Φ)にされる。
以上の制御が行われている間、振動装置B1,B2から発せられる騒音の合成音がマイクロフォン12で測定され、マイクロフォン12からコントローラ13内の最適位相差探索部30に対して測定信号S10が出力される。そして、最適位相差探索部30において、マイクロフォン12からの測定信号S10を参照しつつ、近傍探索アルゴリズムを用いて目標位相差(Φ)を変化させて、測定信号S10(マイクロフォン12で測定される合成音)が最小になる位相差を探索する処理が行われる。
ここで、前述した通り、最適位相差探索部30は、近傍探索アルゴリズムとして、「固定ステップ探索法」、「可変ステップ探索法」、「順次ランダム探索法」等を用いる。以下では、最適位相差探索部30で行われる「可変ステップ探索法」を用いた位相差の探索方法、及び「順次ランダム探索法」を用いた位相差の探索方法の詳細について順に説明する。
[可変ステップ探索法]
図3は、本発明の一実施形態で行われる可変ステップ探索法を用いた位相差の探索方法を示すフローチャートである。尚、図3に示す処理は、例えば騒音低減装置1の電源が投入されて、振動制御部20による振動装置B2の制御が開始されると同時に開始される。尚、可変ステップ探索法を用いた位相差の探索では、予め値が設定された位相差の変化量の最小値Δθmin、及び探索を行う上で必要となるパラメータq,n(詳細は後述する)が用いられる。
処理が開始されると、まず探索を行う処理を行う上で必要となる目標位相差(Φ)及び位相差の変化量(Δθ)の初期値を設定する処理が最適位相差探索部30で行われる(ステップS11)。上記目標位相差(Φ)の初期値としては、例えば180[度]が設定され、上記位相差の変化量(Δθ)の初期値としては、例えば予め実験やシミュレーション等を行って求められた値が設定される。尚、以下では、位相差の変化量(Δθ)の初期値をΔθinitと表記する。
初期値の設定が終了すると、次にマイクロフォン12から出力される測定信号S10から、マイクロフォン12で測定される合成音の音圧を算出し、算出した音圧を評価値(V1)とする処理が最適位相差探索部30で行われる。つまり、目標位相差(Φ)が初期値に設定されているときに、マイクロフォン12で測定される合成音の音圧を評価値(V1)として算出する処理が行われる(ステップS12)。
次いで、現在の目標位相差(Φ)に位相差の変化量(Δθ)を加算して、目標位相差(Φ)の値をΔθだけ変化させる処理が最適位相差探索部30で行われる(ステップS13)。かかる処理が行われると、ステップS13で変化させた目標位相差が振動装置B2の制御に反映されるように一定時間待機する処理が最適位相差探索部30で行われる(ステップS14)。ここで、最適位相差探索部30の待機時間は、予め規定された位相差変更周期(例えば、数十秒〜数分程度)である。
続いて、マイクロフォン12から出力される測定信号S10から、マイクロフォン12で測定される合成音の音圧を算出し、算出した音圧を評価値(V2)とする処理が最適位相差探索部30で行われる(ステップS15)。つまり、目標位相差(Φ)の値を初期値からΔθだけ変化させたときに、マイクロフォン12で測定される合成音の音圧を評価値(V2)として算出する処理が行われる。
以上の処理が終了すると、ステップS15で算出された評価値(V2)が、ステップS12で算出された評価値(V1)よりも大きいか否かが最適位相差探索部30で判断される(ステップS16)。評価値(V2)が評価値(V1)よりも大きいと判断した場合(判断結果が「YES」の場合)には、最適位相差探索部30は、位相差の変化量(Δθ)を−1/q倍(qは、値が1以上の任意の数)する処理を行う(ステップS17)。つまり、ステップS13にて目標位相差(Φ)を位相差の変化量(Δθ)だけ変化させたことによって評価値が大きくなったため、位相差の変化量(Δθ)の値を小さくするとともに、位相差の変化量(Δθ)の符号を逆にすることで目標位相差を変化させる方向を逆にする処理を行う。
次に、ステップS17の処理で得られた位相の変化量(Δθ)が、以下の(1)式で示される関係を満たすか否かが最適位相差探索部30で判断される(ステップS18)。
0<Δθ<Δθmin …(1)
ステップS17の処理で得られた位相の変化量(Δθ)が上記の(1)式で示される関係を満たすと判断した場合(判断結果が「YES」の場合)には、最適位相差探索部30は、位相の変化量(Δθ)をθminとする処理を行う(ステップS19)。
これに対し、ステップS17の処理で得られた位相の変化量(Δθ)が、上記(1)式で示される関係を満たさないと判断した場合(判断結果が「NO」の場合)には、以下の(2)式で示される関係を満たすか否かが最適位相差探索部30で判断される(ステップS20)。
−Δθmin<Δθ<0 …(2)
ステップS17の処理で得られた位相の変化量(Δθ)が上記の(2)式で示される関係を満たすと判断した場合(判断結果が「YES」の場合)には、最適位相差探索部30は、位相の変化量(Δθ)を−Δθminとする処理を行う(ステップS21)。
尚、ステップS17の処理で得られた位相の変化量(Δθ)が上記の(2)式で示される関係を満たさないと判断した場合(判断結果が「NO」の場合)には、ステップS19,S21の処理は何れも行われない。つまり、ステップS18〜ステップS21では、ステップS17の処理によって、位相差の変化量(Δθ)の絶対値が最小値Δθminよりも小さくなった場合には、位相差の変化量(Δθ)をΔθmin或いは−Δθminにする処理が行われる。
ステップS19,S21の処理が終了し、或いはステップS20の判断結果が「NO」になると、ステップS12で求められた評価値(V1)をステップS15で求められた評価値(V2)とする処理が最適位相差探索部30で行われる(ステップS22)。つまり、評価値(V1)を直近の評価値(V2)に更新する処理が行われる。以上の処理が終了すると、ステップS13以降の処理が再び最適位相差探索部30で行われる。
他方、ステップS16において、ステップS15で算出された評価値(V2)が、ステップS12で算出された評価値(V1)以下であると判断した場合(判断結果が「NO」の場合)には、最適位相差探索部30は、評価値(V2)が評価値(V1)以下である関係(V1≧V2なる関係)がn回(nは2以上の整数)連続したか否かを判断する(ステップS23)。
V1≧V2なる関係がn回連続したと判断した場合(判断結果が「YES」の場合)には、最適位相差探索部30は、位相の変化量(Δθ)の絶対値を初期値に設定する処理を行う(ステップS24)。具体的には、以下の(3)式で示される演算を行う。尚、以下の(3)式中に示す関数sign()は符号関数である。
Δθ=Δθinit×sign(Δθ) …(3)
つまり、最適位相差探索部30は、符号を変えることなく位相の変化量(Δθ)の値を初期値Δθinitにする処理を行う。
このような処理を行うのは、ステップS17〜S21の処理によって小さくされた位相の変化量(Δθ)の値を元の初期値Δθinitに戻すためである。V1≧V2なる関係がn回連続することは、マイクロフォン12で測定される合成音が徐々に小さくなっていることを意味する。位相の変化量(Δθ)の値が小さくされているとマイクロフォン12で測定される合成音が最小になるまでに長時間を要するため、位相の変化量(Δθ)の値を元の初期値Δθinitに戻すことで時間の短縮を図っている。
ステップS24の処理が終了すると、ステップS12で求められた評価値(V1)をステップS15で求められた評価値(V2)に更新する処理が最適位相差探索部30で行われ(ステップS22)、その後にステップS13以降の処理が再び行われる。これに対し、V1≧V2なる関係がn回連続していない判断した場合(ステップS23の判断結果が「NO」の場合)には、最適位相差探索部30は、ステップS24の処理を行うことなくステップS22の処理を行い、その後にステップS13以降の処理を再び行う。
このように、振動装置B1,B2から発せられる騒音の合成音がマイクロフォン12で測定され(ステップS12,S15:第3ステップ)、マイクロフォン12の測定結果を参照しつつ、可変ステップ探索法を用いて目標位相差(Φ)の位相差を変化させて、合成音が最小になる位相差の探索が行われる(ステップS13,S14,S16〜S24:第4ステップ)。
[順次ランダム探索法]
図4は、本発明の一実施形態で行われる順次ランダム探索法を用いた位相差の探索方法を示すフローチャートである。尚、図4に示す処理は、図3に示す処理と同様に、例えば騒音低減装置1の電源が投入されて、振動制御部20による振動装置B2の制御が開始されると同時に開始される。尚、順次ランダム探索法を用いた位相差の探索では、予め値が設定された位相差の変化量の最大値Δθmaxが用いられる。
処理が開始されると、まず探索を行う処理を行う上で必要となる目標位相差(Φ)の初期値を設定する処理が最適位相差探索部30で行われる(ステップS31)。上記目標位相差(Φ)の初期値としては、例えば180[度]が設定される。初期値の設定が終了すると、次にマイクロフォン12から出力される測定信号S10から、マイクロフォン12で測定される合成音の音圧を算出し、算出した音圧を評価値(V1)とする処理が最適位相差探索部30で行われる。つまり、目標位相差(Φ)が初期値に設定されているときに、マイクロフォン12で測定される合成音の音圧を評価値(V1)として算出する処理が行われる(ステップS32)。
次いで、目標位相差値(Φ)を目標位相差前回値として退避する処理が最適位相差探索部30で行われる(ステップS33)。具体的には、最適位相差探索部30内に設けられたメモリ等の退避領域に、目標位相差値(Φ)を目標位相差前回値として退避する処理が行われる。続いて、[−1,1]の範囲内における一様乱数rを生成し(ステップS34)、目標位相差(Φ)に(r×Δθmax)なる値を加算して目標位相差(Φ)の値を(r×Δθmax)だけ変化させる処理(ステップS35)が最適位相差探索部30で行われる。
以上の処理が行われると、ステップS35で変化させた目標位相差が振動装置B2の制御に反映されるように一定時間待機する処理が最適位相差探索部30で行われる(ステップS36)。ここで、最適位相差探索部30の待機時間は、可変ステップ探索法における待機時間と同様に、予め規定された位相差変更周期(例えば、数十秒〜数分程度)である。
続いて、マイクロフォン12から出力される測定信号S10から、マイクロフォン12で測定される合成音の音圧を算出し、算出した音圧を評価値(V2)とする処理が最適位相差探索部30で行われる(ステップS37)。つまり、目標位相差(Φ)の値を初期値から(r×Δθmax)だけ変化させたときに、マイクロフォン12で測定される合成音の音圧を評価値(V2)として算出する処理が行われる。
以上の処理が終了すると、ステップS37で算出された評価値(V2)が、ステップS32で算出された評価値(V1)よりも大きいか否かが最適位相差探索部30で判断される(ステップS38)。評価値(V2)が評価値(V1)よりも大きいと判断した場合(判断結果が「YES」の場合)には、最適位相差探索部30は、ステップS33で退避した目標位相差前回値を目標位相差に設定する処理を行う(ステップS39)。
つまり、ステップS35にて目標位相差(Φ)を(r×Δθmax)だけ変化させたことによって評価値が大きくなったため、目標位相差(Φ)を元の値に戻す処理が行われる。以上の処理が行われると、ステップS39で設定した目標位相差が振動装置B2の制御に反映されるように一定時間待機する処理が行われ(ステップS40)、ステップS32以降の処理が再び最適位相差探索部30で行われる。
他方、ステップS38において、ステップS37で算出された評価値(V2)が、ステップS32で算出された評価値(V1)以下であると判断した場合(判断結果が「NO」の場合)には、最適位相差探索部30は、ステップS32で求められた評価値(V1)をステップS37で求められた評価値(V2)に更新する処理が最適位相差探索部30で行われ(ステップS41)、その後にステップS32以降の処理が再び行われる。
このように、振動装置B1,B2から発せられる騒音の合成音がマイクロフォン12で測定され(ステップS32,S37:第3ステップ)、マイクロフォン12の測定結果を参照しつつ、順次ランダム探索法を用いて目標位相差(Φ)の位相差を変化させて、合成音が最小になる位相差の探索が行われる(ステップS33〜S36,S38〜S41:第4ステップ)。
以上の通り本実施形態では、複数の振動装置B1,B2から発せられる騒音の合成音をマイクロフォン12で測定し、マイクロフォン12の測定結果を参照しつつ、近傍探索アルゴリズムを用いて振動制御部20により制御される位相差を変化させて、合成音が最小になる位相差の探索を行うようにしている。これにより、合成音を最小にし得る位相差が自動的に得られるため、振動装置B1,B2から発生する騒音を周囲の環境等に応じて効果的に低減することができる。
以上、本発明の一実施形態による騒音低減装置及び騒音低減方法について説明したが、本発明は上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、2つの振動装置B1,B2のうちの振動装置B2のみを制御する例について説明したが、振動装置B1,B2の双方を制御するようにしても良い。
また、上記実施形態では、近接センサ11a,11bによって振動装置B1,B2に設けられたモータの回転状態をそれぞれ検出していたが、エンコーダ(例えば、ロータリーエンコーダ)を用いて振動装置B1,B2に設けられたモータの回転状態を検出するようにしても良い。具体的には、振動装置B1,B2に設けられたモータの回転軸に、回転量に応じた数のパルスを出力するエンコーダをそれぞれ取り付け、これらエンコーダから単位時間当り出力されるパルスの数によって振動装置B1,B2に設けられたモータの回転状態を検出する。
また、上記実施形態では、振動装置B1,B2の振動状態(動作状態)の検出を、振動装置B1,B2に設けられたモータの回転状態を検出することによって行っていたが、篩網の振動を検出することによって、或いは振動装置B1,B2から発せられる音を検出することによって行うようにしても良い。篩網の振動は、例えばモータの回転を検出する場合と同様に近接センサを用いて検出することができ、或いは篩網に変位センサを設けることによって検出することができる。また、振動装置B1,B2から発せられる音は、例えば動作音を測定するマイクロフォンを振動装置B1,B2の各々に対して取り付けることによって検出することができる。
尚、上記実施形態では、複数の振動装置B1,B2(振動動作を行う装置)から発せられる騒音を低減する騒音低減装置1について説明したが、本発明は、複数の回転装置(ファン等の回転動作を行う装置)から発せられる騒音を低減する騒音低減装置に適用することも可能である。つまり、本発明は、周期的な動作を行う複数の対象装置から発せられる騒音を低減する騒音低減装置に適用することが可能である。
1…騒音低減装置、11a,11b…近接センサ、12…マイクロフォン、20…振動制御部、30…最適位相差探索部、B1,B2…振動装置

Claims (8)

  1. 周期的な動作を行う複数の対象装置の動作状態をそれぞれ検出するセンサと、該センサの検出結果に基づいて前記対象装置の動作周波数及び前記対象装置間の位相差を制御する制御部とを備える騒音低減装置において、
    前記対象装置から発せられる騒音の合成音を測定するマイクロフォンと、
    前記マイクロフォンの測定結果を参照しつつ、近傍探索アルゴリズムを用いて前記制御部により制御される前記位相差を変化させて、前記合成音が最小になる位相差の探索を行う探索部と
    を備え
    前記探索部は、前記近傍探索アルゴリズムを用いた探索を、少なくとも前記制御部が前記対象装置の制御を行っている間は継続して行う
    ことを特徴とする騒音低減装置。
  2. 前記探索部は、前記合成音の音圧が最小になる位相差の探索を行うことを特徴とする請求項1記載の騒音低減装置。
  3. 前記探索部は、前記近傍探索アルゴリズムとして、前記位相差の変化量を固定して探索を行う固定ステップ探索法、前記マイクロフォンの測定結果に応じて前記位相差の変化量を変えながら探索を行う可変ステップ探索法、或いは前記位相差の変化量をランダムに変えながら探索を行う順次ランダム探索法を用いることを特徴とする請求項1又は請求項2記載の騒音低減装置。
  4. 前記マイクロフォンは、無指向性のマイクロフォンであることを特徴とする請求項1から請求項3の何れか一項に記載の騒音低減装置。
  5. 前記対象装置は、前記周期的な動作として振動動作又は回転動作を行うものであることを特徴とする請求項1から請求項4の何れか一項に記載の騒音低減装置。
  6. 周期的な動作を行う複数の対象装置から発せられる騒音を低減する騒音低減方法であって、
    前記対象装置の動作状態をそれぞれ検出する第1ステップと、
    前記第1ステップの検出結果に基づいて前記対象装置の動作周波数及び前記対象装置間の位相差を制御する第2ステップと、
    前記対象装置から発せられる騒音の合成音を測定する第3ステップと、
    前記第3ステップの測定結果を参照しつつ、近傍探索アルゴリズムを用いて前記第2ステップで制御される前記位相差を変化させて、前記合成音が最小になる位相差の探索を行う第4ステップと
    を有し、
    前記第3,第4ステップは、少なくとも前記第1,第2ステップが行われている間は継続して行われる
    ことを特徴とする騒音低減方法。
  7. 前記第4ステップは、前記合成音の音圧が最小になる位相差の探索を行うステップであることを特徴とする請求項6記載の騒音低減方法。
  8. 前記第4ステップは、前記近傍探索アルゴリズムとして、前記位相差の変化量を固定して探索を行う固定ステップ探索法、前記第3ステップの測定結果に応じて前記位相差の変化量を変えながら探索を行う可変ステップ探索法、或いは前記位相差の変化量をランダムに変えながら探索を行う順次ランダム探索法を用いるステップであることを特徴とする請求項6又は請求項7記載の騒音低減方法。
JP2013102051A 2013-05-14 2013-05-14 騒音低減装置及び騒音低減方法 Active JP6226555B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102051A JP6226555B2 (ja) 2013-05-14 2013-05-14 騒音低減装置及び騒音低減方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102051A JP6226555B2 (ja) 2013-05-14 2013-05-14 騒音低減装置及び騒音低減方法

Publications (2)

Publication Number Publication Date
JP2014222311A JP2014222311A (ja) 2014-11-27
JP6226555B2 true JP6226555B2 (ja) 2017-11-08

Family

ID=52121855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102051A Active JP6226555B2 (ja) 2013-05-14 2013-05-14 騒音低減装置及び騒音低減方法

Country Status (1)

Country Link
JP (1) JP6226555B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104713408A (zh) * 2015-03-13 2015-06-17 芜湖凯博实业股份有限公司 冷却塔噪声监测系统及其方法
CN113281782A (zh) * 2021-05-08 2021-08-20 北京联合大学 一种基于无人驾驶车的激光雷达雪点滤除方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283799A (ja) * 1991-03-12 1992-10-08 Ricoh Co Ltd 騒音制御システム
JPH05202982A (ja) * 1992-01-23 1993-08-10 Toyota Motor Corp 車両の振動または騒音低減装置
US5453943A (en) * 1994-02-18 1995-09-26 United Technologies Corporation Adaptive synchrophaser for reducing aircraft cabin noise and vibration
JP3515986B2 (ja) * 1994-06-22 2004-04-05 鹿島建設株式会社 複数台の機械装置の騒音低減装置
JP2925540B1 (ja) * 1998-07-28 1999-07-28 株式会社三央 機械装置の騒音低減システム
JP2006349979A (ja) * 2005-06-16 2006-12-28 Mitsubishi Heavy Ind Ltd 騒音低減装置
ES2526399T3 (es) * 2008-09-01 2015-01-12 Mitsubishi Electric Corporation Circuito convertidor y aparato de control de accionamiento de motor equipado con un circuito convertidor, acondicionador de aire, refrigerador, y cocina de calentamiento por inducción

Also Published As

Publication number Publication date
JP2014222311A (ja) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6245730B2 (ja) 騒音低減装置及び騒音低減方法
JP5206994B2 (ja) 電動機制御装置およびそのゲイン調整方法
JP6226555B2 (ja) 騒音低減装置及び騒音低減方法
JP6304461B1 (ja) モータ制御装置
JP2017174180A (ja) サーボ制御装置、サーボ制御方法及びサーボ制御プログラム
Pacas et al. Automatic identification and damping of torsional vibrations in high-dynamic-drives
JP2003134868A (ja) 電動機制御装置の共振周波数検出装置
JP5127767B2 (ja) 駆動制御装置
KR101514147B1 (ko) 상쇄 간섭 효과를 이용한 공작 기계의 채터 진동의 제어 방법 및 그 장치
JP6222808B2 (ja) 騒音低減装置及び騒音低減方法
JP3371209B2 (ja) 振動機器における超低周波振動音防止装置
JP2925540B1 (ja) 機械装置の騒音低減システム
CN113646538A (zh) 用于泵中的振动避免的方法
CN104978954B (zh) 用于补偿机器的噪声的噪声排放的设备和方法
JP7210393B2 (ja) 防音建屋の設計支援方法及び設計支援装置
JP2778843B2 (ja) 能動的制振装置
JP2007143224A (ja) 振動検出装置
JP5992169B2 (ja) 機械設備から発生する低周波音の低減化方法
JP6088327B2 (ja) 振動ふるい機による低周波音低減装置
JP2008260419A (ja) 能動型車室内騒音制御装置
JP2008061470A (ja) 振動検出装置およびそれを備えたモータ制御装置
JP3515986B2 (ja) 複数台の機械装置の騒音低減装置
JP4349275B2 (ja) モーション制御装置の振動周波数検出方法およびその装置
RU2676061C1 (ru) Способ резонансной настройки роторного вибрационного гироскопа
US20230417550A1 (en) Physical Quantity Sensor And Electronic Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171010

R150 Certificate of patent or registration of utility model

Ref document number: 6226555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250