JP6224225B2 - 非水電解質二次電池、組電池および電池パック - Google Patents

非水電解質二次電池、組電池および電池パック Download PDF

Info

Publication number
JP6224225B2
JP6224225B2 JP2016508389A JP2016508389A JP6224225B2 JP 6224225 B2 JP6224225 B2 JP 6224225B2 JP 2016508389 A JP2016508389 A JP 2016508389A JP 2016508389 A JP2016508389 A JP 2016508389A JP 6224225 B2 JP6224225 B2 JP 6224225B2
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
nonaqueous electrolyte
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016508389A
Other languages
English (en)
Other versions
JPWO2015140952A1 (ja
Inventor
義之 五十崎
義之 五十崎
高見 則雄
則雄 高見
松野 真輔
真輔 松野
康宏 原田
康宏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2015140952A1 publication Critical patent/JPWO2015140952A1/ja
Application granted granted Critical
Publication of JP6224225B2 publication Critical patent/JP6224225B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/238Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Description

本発明の実施形態は、非水電解質二次電池、組電池および電池パックに関する。
近年、リチウムイオンが負極と正極を移動することにより充放電が行われる非水電解質二次電池は、高エネルギー密度電池として盛んに研究開発が進められている。このような非水電解質二次電池は、環境問題の観点から、特に電気自動車や、エンジンとモーターを併用するハイブリッド自動車等の大型用電源として期待されている。また、自動車用途に限らず、大型電源としての非水電解質二次電池は着目されている。
非水電解質二次電池の一例としては、リチウムイオン二次電池が挙げられるが、ほとんどのリチウムイオン二次電池は、正極にコバルト酸リチウム(LiCoO)あるいはマンガン酸リチウム(LiMn)等が用いられ、負極にグラファイト系材料が用いられている。このような組み合わせの非水電解質二次電池は、多くの場合、電圧が3Vから4.2Vの間で使用され、電池の平均動作電圧は3.7V程度になる。この非水電解質二次電池を大型用電源として活用するためには、複数個を直列接続し、用途に応じて、電圧を数百Vかそれ以上に高める必要がある。
リチウムイオン二次電池は、高いエネルギー密度を有する半面、その安全性が問題視されている。リチウムイオン二次電池には、安全性を高めるために、種々の工夫が施され、改良が施されている。しかし、リチウムイオン二次電池は、特に過充電時に、負極において、グラファイト系材料表面で金属リチウムが析出しやすい。また、過充電時に、正極において、コバルト酸リチウムから酸素が放出されやすくなる。この酸素は、熱暴走を引き起こす要因となっている。
近年、炭素質物に比べてリチウム吸蔵放出電位が高いリチウムチタン複合酸化物が注目されている。リチウムチタン複合酸化物は、リチウム吸蔵放出電位では原理的に金属リチウムが析出せず、急速充電や低温性能に優れ、かつ安全性に優れるという長所がある。
しかしながら、リチウムチタン複合酸化物は、そのリチウム吸蔵・放出電位が高いという特徴のため、正極と負極の組み合わせで決まるセルの電圧は低くなり、2V程度となる。したがって、リチウムチタン複合酸化物を負極に用いたセルにおいて、従来のリチウムイオン二次電池と同じ電圧にするには、従来のリチウムイオン二次電池の1.5倍のセルを直列に接続する必要がある。そのため、複数のセルを直列に接続するための部品点数の増大、コスト増加を招いている。
ところで、重ね合わされた封止用フィルムの接着面同士の間に、複数の蓄電ユニットが相互に離隔し、かつ一列に配列された状態で封止された蓄電モジュールが知られている。その封止用フィルムには、接着面側からみて、複数の凹部が蓄電ユニットをそれぞれ収容するために形成されている。また、複数の凹部は、第1の凹部群と、第2の凹部群とを備えている。第1の凹部群は、第1の蓄電ユニット群を収容するために一列に配列され、一列に配列された複数個の蓄電ユニットのうちの奇数番目の蓄電ユニットからなる。第2の凹部群は、第2の蓄電ユニット群を収容するために一列に配列され、一列に配列された複数個の蓄電ユニットのうちの偶数番目の蓄電ユニットからなる。封止用フィルムの接着面同士を重ね合わせる前の状態において、第1の凹部群と第1の凹部群同士を離隔させる間隔の形成範囲と、第2の凹部群と第2の凹部群同士を離隔させる間隔の形成範囲とが、重ならないようになっている。複数の蓄電ユニットは、それぞれが正極と負極を備えた電池構造体である。複数の電池構造体は、配列方向に沿って電気的に直列接続されている。
また、電力を貯蔵、放出する複数の蓄電要素と、その複数の蓄電要素を、隣り合った蓄電要素同士が隔離された状態で密封して一体をなすケースと、を有する蓄電素子モジュールが知られている。ケースは、積層した状態のフィルムの間に複数の蓄電要素を配した状態で、積層したフィルムの蓄電要素の外周部にあたる部分を封止して形成されている。さらに、積層した状態のフィルムは、一枚のフィルムが折り曲げられてなる。
また、正極板と負極板との間にセパレータを介在しつつ積層した電極群を、金属層の少なくとも内側に樹脂層を設けたラミネートフィルムで外装し、このラミネートフィルムを、電極群を収納する収納部の周囲で封止することにより、電極群とともに電解液を密封して電池構造部を構成した積層型電池が知られている。ラミネートフィルムに収納部を複数設けるとともに、それぞれの収納部に電極群と電解液を収納して周囲を個々に封止することによって、複数の電池構造部を構成している。また、隣接する電池構造部間でラミネートフィルムの封止部分を共有している。また、複数の電池構造部間の封止部分でラミネートフィルムを折り畳み、この折り畳んだ封止部分の両側の電池構造部相互を重ね合わせている。
特開2006−79909号公報 特開2004−71302号公報 特開2004−55153号公報
本発明が解決しようとする課題は、従来のリチウムイオン二次電池と電圧互換性がある非水電解質二次電池、組電池および電池パックを提供することである。
実施形態の非水電解質二次電池は、第1の電極群および第2の電極群と、非水電解質と、外装材と、正極リードと、負極リードと、接続リードとを持つ。
第1の電極群および第2の電極群は、正極と負極とセパレータとが積層されてなる。
正極は、LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表されるオリビン構造を有する鉄含有リン化合物を含む。
負極は、チタンを含有する酸化物を含む。
セパレータは、正極と負極との間に介在される。
外装材は、第1の電極群、第2の電極群および非水電解質を封入する。
正極リードは、第1の電極群の正極に接続され、外装材の外部に延出される。
負極リードは、第2の電極群の負極に接続され、外装材の外部に延出される。
接続リードは、第1の電極群の負極と第2の電極群の正極とを接続する。
外装材、第1の電極群を収容する第1の収納部と、第2の電極群を収容する第2の収納部と、第1の収納部と第2の収納部とを接続する接続部と、第1の電極群を収容する第1の凹部および第1の凹部を覆う第1の蓋部と、第2の電極群を収容する第2の凹および第2の凹部を覆う第2の蓋部と持つ
第1の蓋部と第2の蓋部は一体をなしている。
第1の実施形態の非水電解質二次電池を示す平面模式図である。 第1の実施形態の非水電解質二次電池を示す断面模式図である。 第1の実施形態の非水電解質二次電池の外装材を示す平面模式図である。 第1の実施形態の非水電解質二次電池の電極群を示す斜視図である。 図3のα部を示す拡大断面模式図である。 第1の実施形態の非水電解質二次電池を示す平面模式図である。 第1の実施形態の非水電解質二次電池を示す断面模式図である。 第1の実施形態の非水電解質二次電池を示す平面模式図である。 第1の実施形態の非水電解質二次電池を示す断面模式図である。 第1の実施形態の非水電解質二次電池を示す平面模式図である。 第1の実施形態の非水電解質二次電池を示す断面模式図である。 第1の実施形態の非水電解質二次電池を示す模式図である。 第1の実施形態の非水電解質二次電池を示す模式図である。 第2の実施形態の非水電解質二次電池を示す平面模式図である。 第2の実施形態の非水電解質二次電池を示す断面模式図である。 第2の実施形態の非水電解質二次電池を示す平面模式図である。 第2の実施形態の非水電解質二次電池を示す断面模式図である。 第2の実施形態の非水電解質二次電池を示す平面模式図である。 第2の実施形態の非水電解質二次電池を示す断面模式図である。 第3の実施形態の非水電解質二次電池を示す平面模式図である。 第3の実施形態の非水電解質二次電池を示す平面模式図である。 第4の実施形態の非水電解質二次電池を示す平面模式図である。 第4の実施形態の非水電解質二次電池を示す断面模式図である。 第4の実施形態の非水電解質二次電池の外装材を示す平面模式図である。 第4の実施形態の非水電解質二次電池の外装材を示す平面模式図である。 第4の実施形態の非水電解質二次電池の外装材を示す側面模式図である。 第4の実施形態の非水電解質二次電池を示す平面模式図である。 第5の実施形態の組電池を示す側面模式図である。 第5の実施形態の組電池を示す平面模式図である。 第6の実施形態の組電池を示す側面模式図である。 第6の実施形態の組電池を示す平面模式図である。 第7の実施形態の組電池を示す側面模式図である。 第7の実施形態の組電池を示す側面模式図である。 第8の実施形態の組電池を示す断面模式図である。 第9の実施形態の組電池を示す平面模式図である。 第9の実施形態の組電池を示す側面模式図である。 第9の実施形態の組電池を示す断面模式図である。 第9の実施形態の組電池を示す断面模式図である。 第10の実施形態の組電池を示す平面模式図である。 第10の実施形態の組電池を示す断面模式図である。 第10の実施形態の組電池を示す斜視図である。 第11の実施形態の組電池を示す平面模式図である。 第11の実施形態の組電池を示す断面模式図である。 第11の実施形態の組電池の連結部材を示す平面模式図である。 第11の実施形態の組電池の連結部材を示す側面模式図である。 第12の実施形態の電池パックを示す模式図である。
以下、実施形態を、図面を参照して説明する。
(第1の実施形態)
以下、第1の実施形態について図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照しながら説明する。
第1の実施形態の非水電解質二次電池1は、図1A、図1Bに示すように、第1の電極群2と、第2の電極群3と、第1の電極群2の正極に接続された正極リード4と、第2の電極群3の負極に接続された負極リード5と、第1の電極群2と第2の電極群3を直列に接続する接続リード6と、第1の電極群2、第2の電極群3、正極リード4、負極リード5および接続リード6を収納する外装材7と、が備えられている。
外装材7としては、ラミネートフィルムが用いられる。
非水電解質二次電池1の種類は、角形に限定されず、扁平型(薄型)等の様々な種類にすることができる。
第1の電極群2および第2の電極群3は、例えば、図3、4に示すように、扁平形状の捲回型構造を備えており、正極31と、負極32と、正極31および負極32を隔離するセパレータ33とが重ね合わされ、渦巻き状に捲回されて構成されている。また、図示略の非水電解質が第1の電極群2および第2の電極群3に保持されている。
また、第1の電極群2および第2の電極群3は、その最外周に負極32が位置している。そして、この負極32の内周側に、セパレータ33、正極31、セパレータ33、負極32、セパレータ33、正極31、セパレータ33がこの順で位置している。
また、第1の電極群2と第2の電極群3の形状は、扁平形状に限られず、例えば、円筒型、積層形状等にすることができる。
図4に示すように、正極31には、帯状の正極集電体31aと、正極集電体31aの両面に形成された正極層31bとが備えられている。また、負極32には、帯状の負極集電体32aと、負極集電体32aの両面に形成された負極層32bとが備えられている。負極32の最外周に位置する部分では、負極集電体32aの片面のみに負極層32bが形成されている。
このような第1の電極群2および第2の電極群3は、帯状の正極31と帯状の負極32とをその間にセパレータ33を介在させて積層して電極群アセンブリを形成し、続いて、この電極群アセンブリを渦巻状に捲回し、その後扁平形状にプレスすることによって得られる。
正極集電体31aの幅方向一方側には、正極層31bが形成されない正極材料無担持部31cが形成され、また、負極集電体32aの幅方向一方側には、負極層32bが形成されない負極材料無担持部32cが形成されている。そして、正極31および負極32が捲回されたときに、第1の電極群2および第2の電極群3の捲回軸の軸方向一方側に正極材料無担持部31cが突出するように配置され、また、第1の電極群2および第2の電極群3の捲回軸の軸方向他方側に、負極材料無担持部32cが突出するように配置されている。
図3に示すように、正極材料無担持部31cには、正極集電タブ34が取り付けられている。正極集電タブ34は、渦巻き状に捲回された正極集電体31aの端部である正極材料無担持部31cを束ねる部材であるとともに、集電機能を有する部材である。この正極集電タブ34に、正極リード4や接続リード6が電気的に接続されている。同様に、負極材料無担持部32cには、負極集電タブ35が取り付けられている。負極集電タブ35は、渦巻き状に捲回された負極集電体32aの端部である負極材料無担持部32cを束ねる部材であるとともに、集電機能を有する部材である。この負極集電タブ35に、負極リード5や接続リード6が電気的に接続されている。また、正極集電タブ34と負極集電タブ35とは、互いに同一直線上に存在しないように配置されている。例えば、正極集電タブ34は、正極集電体31aの幅方向の他方側に配置されている。一方、負極集電タブ35は、負極集電体32aの幅方向の一方側に配置されている。
図1A、図1Bに示すように、正極リード4と負極リード5とは、第1の電極群2と第2の電極群3から互いに反対の向きに延出している。
正極材料無担持部31cと正極集電タブ34、および、負極材料無担持部32cと負極集電タブ35、ならびに、正極集電タブ34と正極リード4または接続リード6、負極集電タブ35と負極リード5または接続リード6との溶接にあたっては、例えば、超音波溶接等の方法を採用することができる。
さらに、図3に示すように、第1の電極群2および第2の電極群3には絶縁テープ36が巻かれている。絶縁テープ36は、第1の電極群2および第2の電極群3の捲回軸の両端を除く位置に巻き付けられている。このように、絶縁テープ36は、正極材料無担持部31c、負極材料無担持部32c、正極集電タブ34および負極集電タブ35を除く位置に巻き付けられている。
なお、第1の電極群2および第2の電極群3の形状は、本実施形態で説明するような構造に限らず、他の様々な形状の電極群を採用することができる。
例えば、積層型電極群の場合には、袋状のセパレータに正極あるいは負極を収納し、それぞれ互い違いに積層して電極群としてもよいし、あるいは、帯状のセパレータを九十九折にしながら、正極と負極を互い違いに挟み込んだ構成としてもよい。
また、第1の電極群2および第2の電極群3を構成する正極集電体31a、正極層31b、負極集電体32a、負極層32bおよびセパレータ33については後ほど詳しく説明する。
外装材7は、図1Aおよび図2に示すように、平面形状が略矩形状である第1筐体部21と、この第1筐体部21に主面が対向する矩形板形状の第2筐体部22とから構成されている。図2に示す例では、外装材7が折り曲げ部23を介して折り曲げ可能となっており、第1筐体部21と第2筐体部22とが折り曲げ部23を介して連結されている。なお、本実施形態では、第1筐体部21と第2筐体部22とが連結されず、別個の部材であってもよい。
また、図1Aおよび図2に示す外装材7は、第1の電極群2を収納する第1の収納部8Aと、第2の電極群3を収納する第2の収納部8Bと、第1の収納部8Aと第2の収納部8Bとを接続する接続部8Cと、第1の収納部8Aおよび第2の収納部8Bを密封する封止部9とが設けられている。また、外装材7は、第1の電極群2が収納された第1の部位7Aと、第2の電極群3が収納された第2の部位7Bとから構成されている。
これら第1の収納部8A、第2の収納部8B、接続部8Cおよび封止部9は、第1筐体部21と第2筐体部22とが一体となることによって形成される。
以下、第1筐体部21および第2筐体部22について説明する。
第1筐体部21と第2筐体部22からなる外装材7は、ラミネートフィルムから構成される。ラミネートフィルムは、金属層と、その金属層を被覆する樹脂層とからなる多層フィルムである。
第1筐体部21は、ラミネートフィルムに対して深絞り加工あるいはプレス加工を施すことによって形成されてなる。第1筐体部21は、矩形状の凹部とされた収納部21Aおよび収納部21Bと、収納部21Aおよび収納部21Bを区画する4辺からラミネートフィルムの外周に向けて突出するように設けられた板状の延出部21Cとが備えられている。また、第1筐体部21を構成するラミネートフィルムの外周縁部(延出部21C)のうち、折り曲げ部23を除いた部分が封止部21Dとなっている。
第2筐体部22は、ラミネートフィルムからなり、外装材7としたときに第1筐体部21に対向して配置される。この第2筐体部22は、第1筐体部21の収納部21Aと対向する板状の蓋部22Aと、第1筐体部21の収納部21Bと対向する板状の蓋部22Bと、蓋部22Aおよび蓋部22Bを区画する4辺からラミネートフィルムの外周に向けて突出するように設けられた板状の延出部22Cとが備えられている。また、第2筐体部22を構成するラミネートフィルムの外周縁部(延出部22C)のうち、折り曲げ部23を除いた部分が封止部22Dとなっている。
外装材7は、第1筐体部21および第2筐体部22を対向するように重ね合わせ、封止部21Dと封止部22Dを重ねて、融着して、第1筐体部21と第2筐体部22を一体にすることで形成される。そして、収納部21Aと蓋部22Aが一体になって第1の収納部8Aが構成される。また、収納部21Bと蓋部22Bが一体になって第2の収納部8Bが構成される。また、第1筐体部21および第2筐体部22の外周縁部のうち、第1の収納部8Aと第2の収納部8Bを接続する部分を熱融着することで、第1の収納部8Aと第2の収納部8Bを接続する接続部8Cが形成される。さらに、第1筐体部21および第2筐体部22の外周縁部である封止部21Dと封止部22Dを熱融着することで、第1の収納部8Aおよび第2の収納部8Bを封止する封止部9が形成される。
また、接続部8Cは、第1の収納部8Aと第2の収納部8Bを一括して封止する共通の封止部である。
正極リード4は、その表面の少なくとも封止部9を通過する部分が、熱可塑性樹脂層10で被覆されていることが好ましい。このような構成にすると、熱可塑性樹脂層10が正極リード4と熱接合により密着するとともに、熱可塑性樹脂層10が外装材7と熱接合により密着するので、外装材7内に収納した非水電解質が浸透して漏液するのを防止できる。また、熱可塑性樹脂層10によって、外装材7と、正極リード4とが絶縁されるので、正極リード4と外装材7との接触による短絡を防止することができる。
熱可塑性樹脂層10の厚さ(正極リード4の片面当たり)は、40μm〜200μmであることが好ましく、60μm〜100μmであることがより好ましい。
負極リード5は、その表面の少なくとも封止部9を通過する部分が、熱可塑性樹脂層11で被覆されていることが好ましい。このような構成にすると、熱可塑性樹脂層11が負極リード5と熱接合により密着するとともに、熱可塑性樹脂層11が外装材7と熱接合により密着するので、外装材7内に収納した非水電解質が浸透して漏液するのを防止できる。また、熱可塑性樹脂層11によって、外装材7と、負極リード5とが絶縁されるので、負極リード5と外装材7との接触による短絡を防止することができる。
熱可塑性樹脂層11の厚さ(負極リード5の片面当たり)は、40μm〜200μmであることが好ましく、60μm〜100μmであることがより好ましい。
接続リード6は、その表面の少なくとも接続部8Cを通過する部分が、熱可塑性樹脂層12で被覆されていることが好ましい。このような構成にすると、熱可塑性樹脂層12が接続リード6と熱接合により密着するとともに、熱可塑性樹脂層12が外装材7と熱接合により密着するので、外装材7内に収納した非水電解質が浸透して漏液するのを防止できる。また、熱可塑性樹脂層12によって、外装材7と、接続リード6とが絶縁されるので、接続リード6と外装材7との接触による短絡を防止することができる。
熱可塑性樹脂層12の厚さ(接続リード6の片面当たり)は、40μm〜200μmであることが好ましく、60μm〜100μmであることがより好ましい。
以下、本実施形態の非水電解質二次電池1の構成部材である正極リード4、負極リード5、接続リード6、外装材7、熱可塑性樹脂層10,11,12、正極31、負極32、セパレータ33、非水電解質(図示略)について詳細に説明する。
(1)正極
正極31は、正極集電体31aと、この正極集電体31aの片面または両面に形成され、正極活物質、導電剤および結着剤を含む正極層31bとを備える。導電剤および結着剤は、任意成分である。
正極活物質としては、LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表され、かつオリビン構造を有する鉄含有のリン化合物を用いることができる。
上記の中でも好ましい正極活物質としては、リチウムリン酸鉄(LiFePO)等が挙げられる。
LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表され、かつオリビン構造を有する鉄含有のリン化合物を正極活物質として含む正極は、高温貯蔵時に表面に皮膜が成長し難く、貯蔵時の抵抗上昇が小さく、高温環境下での貯蔵性能を向上させることが可能である。
yは0.2以下であることにより、非水電解質二次電池1の電圧の4V以上5V以下の範囲における急峻な変化が緩和され、電池容量バランスのズレに伴う容量低下が抑制され、優れたサイクル寿命性能が得られる。yは0.05以上0.15以下にすることが好ましい。これにより、非水電解質二次電池1の電圧の4.5V以上5V以下の範囲における上昇がさらに緩やかとなり、電池容量バランスのズレに伴う過充電状態がなくなり、非水電解質の酸化分解によるガス発生の影響が抑制され、サイクル寿命性能が向上する。
LiFe1−yMnPOで表され、かつオリビン構造を有する鉄含有のリン化合物は、合成時にリチウムを含んでも、その後の充電過程でリチウム量xが0になる場合がある。
リン化合物粒子の平均一次粒子径(直径)は500nm以下であることが好ましく、50nm〜200nmであることがより好ましい。リン化合物粒子の平均一次粒子径が、この範囲であることにより、活物質の電子伝導抵抗とリチウムイオンの拡散抵抗の影響が小さくなり、出力性能が改善される。また、一次粒子が凝集した二次粒子であってもよい。二次粒子の平均粒径は10μm以下であることが好ましい。
リン化合物粒子の粒子表面の少なくとも一部が炭素含有層で被覆されていることが好ましい。炭素含有層は、平均厚さが10nm以下であるか、平均粒径が10nm以下の炭素材料粒子から形成されていることが好ましい。
炭素含有層の含有量は、正極活物質の0.001質量%〜3質量%であることが好ましい。これにより、正極抵抗、および、正極と非水電解質の界面抵抗を小さくして出力性能を向上することができる。
導電剤は、正極活物質の集電性能を高めて、正極活物質と正極集電体31aとの接触抵抗を抑える。
導電剤としては、例えば、アセチレンブラック、カーボンブラック、人工黒鉛、天然黒鉛、導電性ポリマー炭素繊維等が挙げられる。導電剤の種類は、1種類または2種類以上にすることができる。正極31には、導電剤としては、繊維径1μm以下の炭素繊維を含むことが好ましい。繊維径1μm以下の炭素繊維を含むことにより、正極31の電子伝導抵抗を、繊維径の細い炭素繊維のネットワークにより改善できて正極抵抗を効果的に軽減することができる。特に、繊維径が1μm以下の気相成長の炭素繊維が好ましい。この炭素繊維を用いることにより、正極31内部の電子伝導のネットワークが向上して、正極31の出力性能を大幅に向上することができる。
結着剤は、分散された正極活物質の間隙を埋め、正極活物質と導電剤を結着させ、また、正極活物質と正極集電体31aとを結着させる。
結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴムを含む材料が挙げられる。また、結着剤としては、上記材料に関し、少なくとも1つを他の置換基で置換した変性ポリフッ化ビニリデン、フッ化ビニリデン−6フッ化プロピレンの共重合体、ポリフッ化ビニリデン−テトラフルオロエチレン−6フッ化プロピレンの3元共重合体等を用いることができる。
結着剤の種類は、1種類または2種類以上にすることができる。
また、結着剤を分散させるための有機溶媒としては、例えば、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)等が用いられる。
正極層31bにおいて、正極活物質、導電剤および結着剤の配合比は、正極活物質が80質量%以上95質量%以下、導電剤が3質量%以上19質量%以下、結着剤が1質量%以上7質量%以下の範囲にすることが好ましい。
導電剤を、3質量%以上とすることにより、正極活物質の集電性能を高めて、正極活物質と正極集電体31aとの接触抵抗を抑えることができる。また、導電剤を、19質量%以下とすることにより、高温保存下における導電剤表面での非水電解質の分解を低減することができる。
結着剤を、1質量%以上とすることにより、十分な電極強度が得られる。また、結着剤を、7質量%以下とすることにより、電極の絶縁体の配合量を減少させ、内部抵抗を減少できる。
正極集電体31aとしては、例えば、好ましくは厚さ20μm以下、より好ましくは15μm以下のアルミニウム箔、または、Mg、Ti、Zn、Mn、Fe、Cu、Si等の元素を含むアルミニウム合金箔であることが好ましい。また、正極集電体31aとしては、ステンレス箔、チタン箔等を用いることもできる。
上記のアルミニウム箔を正極集電体31aに用いる場合には、アルミニウム箔の純度が99%以上であることが好ましい。
また、上記のアルミニウム合金箔を正極集電体31aに用いる場合には、Fe、Cu等の遷移金属の含有量を1%質量以下に抑制することが好ましい。
正極31は、例えば、正極活物質、導電剤および結着剤を用い、汎用の溶媒に懸濁してスラリーを調製し、このスラリーを正極集電体31aに塗布した後に乾燥させ、その後、プレスを施す方法によって作製できる。また、正極31は、正極活物質、導電剤および結着剤をペレット状に形成して正極層31bとし、これを正極集電体31a上に配置、形成することによって作製してもよい。正極層31bのBET法による比表面積は、負極の場合と同様に測定され、0.1m/g〜2m/gの範囲であることが好ましい。
(2)負極
負極32は、負極集電体32aと、この負極集電体32aの片面または両面に形成され、負極活物質、導電剤および結着剤を含む負極層32bとを備える。導電剤および結着剤は任意成分である。
負極活物質としては、チタンを含有する酸化物が用いられる。
チタンを含有する酸化物を負極活物質として含む負極は、リチウム金属の電極電位に対するリチウム吸蔵放出電位が2.5V(vs.Li/Li)〜1V(vs.Li/Li)であることが好ましく、2V(vs.Li/Li)〜1.3V(vs.Li/Li)であることがより好ましい。この負極電位範囲であると、高容量と優れた寿命性能を有する組電池が得られる。負極活物質の種類は、1種類または2種類以上にすることができる。
チタンを含有する酸化物としては、例えば、チタン酸化物、リチウムチタン酸化物、ニオブチタン酸化物が挙げられる。
チタン酸化物は、一般式LiTiO(0≦a≦2)で表すことができる。この場合、充電前の組成式はTiOである。チタン酸化物としては、例えば、単斜晶構造(ブロンズ構造(B))のチタン酸化物、ルチル構造のチタン酸化物、アナターゼ構造のチタン酸化物等が挙げられる。単斜晶構造(ブロンズ構造(B))のTiO(B)が好ましく、熱処理温度が300℃〜600℃の低結晶性であることが好ましい。
リチウムチタン酸化物としては、例えば、スピネル構造を有する酸化物(例えば、一般式Li4/3+aTi5/3(0≦a≦2))、ラムスデライド構造を有する酸化物(例えば、一般式Li2+aTi(0≦a≦1))Li1+bTi(0≦b≦1)、Li1.1+bTi1.8(0≦b≦1)、Li1.07+bTi1.86(0≦b≦1)、Nb、Mo,W,P、V、Sn、Cu、NiおよびFeからなる群から選択される少なくとも1種の元素を含有するリチウムチタン含有複合酸化物等が挙げられる。
ニオブチタン酸化物としては、例えば、一般式LiNbTiO(0≦c≦5、1≦d≦4)で表される酸化物等が挙げられる。
チタンを含有する酸化物は、ラムスデライト構造を有するリチウムチタン酸化物、スピネル構造を有するリチウムチタン酸化物、単斜晶構造を有するチタン酸化物およびニオブチタン酸化物からなる群から選択される少なくとも1種を含むことが好ましい。また、負極にラムスデライト構造を有するリチウムチタン酸化物、単斜晶構造を有するチタン酸化物およびニオブチタン酸化物からなる群から選択される少なくとも1種を含むことにより、電池の電圧曲線が適度に傾きをもつことができるため、電圧監視のみで容易に電池充電状態(SOC)を測定することができる。また、電池パックにおいても電池間のバラツキの影響が小さく、電圧監視のみで制御することが可能となる。
負極活物質の一次粒子の平均粒径は、0.001μm〜1μmの範囲であることが好ましい。また、粒子形状は、粒状、繊維状のいずれの形態でも良好な性能が得られる。繊維状の場合は、繊維径が0.1μm以下であることが好ましい。
負極活物質は、その平均粒径が1μm以下で、かつN吸着によるBET法での比表面積が3m/g〜200m/gの範囲であることが好ましい。これにより、負極32の非水電解質との親和性をさらに高くすることができる。
負極32の多孔度(集電体を除く)は、20%〜50%であることが好ましく、25%〜40%であることがより好ましい。これにより、負極32と非水電解質との親和性に優れ、かつ高密度な負極32を得ることができる。
負極集電体32aは、アルミニウム箔またはアルミニウム合金箔であることが好ましい。
アルミニウム箔およびアルミニウム合金箔の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99.99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素等の元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロム等の遷移金属の含有量は100ppm以下にすることが好ましい。
導電剤は、負極活物質の集電性能を高め、負極活物質と負極集電体32aとの接触抵抗を抑える。
導電剤としては、例えば、アセチレンブラック、カーボンブラック、コークス(熱処理温度が800℃〜2000℃の平均粒子径が10μm以下であることが好ましい)、炭素繊維、黒鉛、TiO、TiC、TiN等の金属化合物粉末、Al,Ni,Cu、Fe等の金属粉末等を1種もしくは混合して用いることができる。繊維径が1μm以下の炭素繊維を用いることにより、電極抵抗の低減とサイクル寿命性能が向上する。
結着剤は、分散された負極活物質の間隙を埋めて、負極活物質と導電剤を結着させ、また、負極活物質と負極集電体32aとを結着させる。
結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、アクリル系ゴム、スチレンブタジェンゴム、コアシェルバインダー、ポリイミド等が挙げられる。結着剤の種類は、1種類または2種類以上にすることができる。
負極層32bにおいて、負極活物質、導電剤および結着剤の配合比は、負極活物質が80質量%以上95質量%以下、導電剤が1質量%以上18質量%以下、結着剤が2質量%以上7質量%以下であることが好ましい。
導電剤を1質量%以上とすることにより、負極層32bの集電性能を向上させ、非水電解質二次電池1の大電流特性を向上させることができる。
また、結着剤を2質量%以上とすることにより、負極層32bと負極集電体32aの結着性を高め、サイクル特性を向上させることができる。
一方、導電剤を18質量%以下とし、結着剤を7質量%以下にすることが、高容量化を図る観点から好ましい。
負極32は、例えば、負極活物質、導電剤および結着剤を汎用の溶媒に懸濁してスラリーを調製し、このスラリーを負極集電体32aに塗布した後に乾燥し、その後、プレスを施すことにより作製される。また、負極32は、負極活物質、導電剤および結着剤をペレット状に形成して負極層32bとし、これを負極集電体32a上に配置、形成することによって作製されてもよい。
(3)セパレータ
セパレータ33は、正極31と負極32の間に配置されている。
セパレータ33としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等のオレフィン系多孔質膜、セルロース繊維製セパレータ等が用いられる。
セパレータ33の形態は、不織布、フィルム、紙等が挙げられる。セパレータ33の気孔率は、50%以上が好ましく、62%〜80%がより好ましい。気孔率が60%以上のセルロース繊維製セパレータは、非水電解質の含浸性に優れ、低温から高温まで高い出力性能を発揮することができる。
セパレータ33を構成する繊維の径は、10μm以下であることが好ましく、3μm以下であることがより好ましい。セパレータ33を構成する繊維の径を10μm以下にすることで、非水電解質とセパレータ33との親和性が向上して電池抵抗を小さくすることができる。
セパレータ33は、厚さが5μm〜50μmであることが好ましい。また、セパレータ33は、密度が0.2g/cm〜0.9g/cmであることがより好ましい。セパレータ33の厚さおよび密度がこの範囲内であると、機械的強度と電池抵抗の軽減とのバランスを取ることができ、高出力で内部短絡し難い電池を提供することができる。また、高温環境下での熱収縮が少なく良好な高温貯蔵性能を発揮することができる。セパレータ33の厚さのさらに好ましい範囲は、10μm〜30μmである。
また、セパレータ33としては、厚さが5μm〜50μm、気孔率が50%以上である、セルロースまたはポリオレフィンを含む不織布や多孔質膜を用いることができる。
(4)非水電解質
非水電解質としては、電解質を有機溶媒に溶解することにより調製される液状の有機電解質、液状の有機溶媒と高分子材料を複合化したゲル状の有機電解質、または、リチウム塩電解質と高分子材料を複合化した固体非水電解質が挙げられる。また、リチウムイオンを含有した常温溶融塩(イオン性融体)を非水電解質として用いてもよい。高分子材料としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキサイド(PEO)等が挙げられる。
非水電解質は、液状もしくはゲル状で、沸点が100℃以上で、有機電解質または常温溶融塩を含有することが好ましい。
液状の有機電解質は、電解質を0.5mol/L〜2.5mol/Lの濃度で有機溶媒に溶解することにより、調製される。これにより、低温環境下においても高出力を取り出すことができる。有機電解質における電解質の濃度のより好ましい範囲は、1.5mol/L〜2.5mol/Lの範囲である。
電解質としては、例えば、LiBF、LiPF、LiAsF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、Li(CFSOC、LiB[(OCO)等が挙げられる。電解質の種類は、1種類または2種類以上にすることができる。これらの中でも、四フッ化ホウ酸リチウム(LiBF)を含むことが好ましい。これにより、有機溶媒の化学的安定性が高まり、負極上の皮膜抵抗を小さくすることができ、低温性能とサイクル寿命性能を大幅に向上することができる。
有機溶媒としては、例えば、プロピレンカーボネート(PC)やエチレンカーボネート(EC)等の環状カーボネート、ジエチルカーボネート(DEC)やジメチルカーボネート(DMC)あるいはメチルエチルカーボネート(MEC)等の鎖状カーボネート、ジメトキシエタン(DME)やジエトエタン(DEE)等の鎖状エーテル、テトラヒドロフラン(THF)、ジオキソラン(DOX)等の環状エーテル、γ−ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)等が挙げられる。これらの有機溶媒は、単独または2種以上の混合物の形態で用いることができる。プロピレンカーボネート(PC)、エチレンカーボネート(EC)およびγ-ブチロラクトン(GBL)からなる群から選択される少なくとも1種を含有させることにより、沸点が200℃以上となるため、熱安定性を向上することができる。特に、γ-ブチロラクトン(GBL)を含む非水溶媒は、高濃度のリチウム塩を溶解させることが可能となるため、低温環境下での出力性能を向上することができる。
また、常温溶融塩(イオン性融体)は、リチウムイオン、有機物カチオンおよび有機物アニオンから構成されることが好ましい。また、常温溶融塩は、室温以下で液体状であることが好ましい。
以下、常温溶融塩を含む電解質について説明する。
常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電池が通常作動すると想定される温度範囲をいう。電池が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては60℃程度であり、下限は−40℃程度、場合によっては−20℃程度である。この温度範囲の中でも、−20℃以上、60℃以下の範囲が適している。
リチウムイオンを含有した常温溶融塩には、リチウムイオンと有機物カチオンとアニオンから構成されるイオン性融体を用いることが好ましい。また、このイオン性融体は、室温以下でも液状であることが好ましい。
有機物カチオンとしては、下記の式(1)に示す骨格を有するアルキルイミダゾリウムイオン、四級アンモニウムイオンが挙げられる。
Figure 0006224225
アルキルイミダソリウムイオンとしては、ジアルキルイミダゾリウムイオン、トリアルキルイミダゾリウムイオン、テトラアルキルイミダゾリウムイオン等が好ましい。ジアルキルイミダゾリウムイオンとしては、1−メチル−3−エチルイミダゾリウムイオン(MEI)、トリアルキルイミダゾリウムイオンとしては、1,2−ジエチル−3−プロピルイミダゾリウムイオン(DMPI)、テトラアルキルイミダゾリウムイオンとしては、1,2−ジエチル−3,4(5)−ジメチルイミダゾリウムイオンが好ましい。
四級アンモニムイオンとしては、テトラアルキルアンモニウムイオンや環状アンモニウムイオン等が好ましい。テトラアルキルアモニウムイオンとしては、ジメチルエチルメトキシエチルアンモニウムイオン、ジメチルエチルメトキシメチルアンモニウムイオン、ジメチルエチルエトキシエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオンが好ましい。
アルキルイミダゾリウムイオンまたは四級アンモニウムイオン(特にテトラアルキルアンモニウムイオン)を用いることにより、常温溶融塩の融点を100℃以下、より好ましくは20℃以下にすることができる。さらに、常温溶融塩と負極32との反応性を低くすることができる。
リチウムイオンの濃度は、20mol%以下であることが好ましく、1mol%〜10mol%であることがより好ましい。リチウムイオンの濃度を、前記の範囲内にすることにより、20℃以下の低温においても、液状の常温溶融塩を容易に形成できる。また、常温以下でも常温溶融塩の粘度を低くすることができ、イオン伝導度を高くすることができる。
アニオンとしては、BF 、PF 、AsF 、ClO 、CFSO 、CFCOO、CHCOO、CO 2−、(FSO、N(CFSO 、N(CSO 、(CFSO等から選択される少なくとも1種のアニオンを共存させることが好ましい。複数のアニオンを共存させることにより、融点が20℃以下の常温溶融塩を容易に形成できる。より好ましいアニオンとしては、BF 、(FSO、CFSO 、CFCOO、CHCOO、CO 2−、N(CFSO 、N(CSO 、(CFSOが挙げられる。これらアニオンによって0℃以下の常温溶融塩の形成がより容易になる。
(5)外装材
外装材7としては、ラミネートフィルムが用いられる。
このような外装材7の各電極群が収容される部位の形状としては、扁平型(薄型)、角型等から適宜選択できる。
このような外装材7としては、電池寸法に応じて、例えば、携帯用電子機器等に積載される小型電池用外装材、二輪乃至四輪の自動車等に搭載される大型電池用外装材等が含まれる。
このラミネートフィルムからなる外装材7を用いる場合、樹脂層間に金属層を介在した多層フィルムが用いられる。
金属層を構成する材料としては、例えば、ステンレス箔、アルミニウム箔、アルミニウム合金箔等が用いられる。これらの中でも、軽量化の観点から、アルミニウム箔またはアルミニウム合金箔が好ましい。アルミニウム箔またはアルミニウム合金箔を用いることにより、電池の重量を減少させることができる。
樹脂層は、金属層を補強する。樹脂層を構成する材料としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、またはポリエチレンテレフタレート(PET)等の高分子化合物が用いられる。
外装材7を構成するラミネートフィルムの厚さは、0.5mm以下であることが好ましく、0.2mm以下であることがより好ましい。ラミネートフィルムは、熱融着することにより所望の形状に成形することができる。
また、外装材7は、アルミニウム、アルミニウム合金、鉄、ステンレス、ニッケルめっき鉄、ステンレス等の金属の薄板から構成することもできる。
金属の薄板の厚さは、0.5mm以下であることが好ましく、0.3mm以下であることがより好ましい。
(6)電極リード
正極31に電気的に接続される正極リード4としては、例えば、アルミニウム、チタンおよびそれらを基にした合金、ステンレス等からなるリードを用いることができる。
負極32に電気的に接続される負極リード5としては、例えば、ニッケル、銅およびそれらを基にした合金等からなるリードを用いることができる。
正極31および負極32に電気的に接続される接続リード6としては、例えば、アルミニウムまたはアルミニウム合金からなるリードを用いることができる。
負極電位が、金属リチウムに対して1Vよりも貴な場合、例えば、負極活物質としてリチウムチタン酸化物を用いた場合等は、負極リード5の材料としては、アルミニウムまたはアルミニウム合金を用いることができる。この場合、正極リード4および負極リード5ともに、アルミニウムまたはアルミニウム合金を用いることが、軽量かつ電気抵抗を小さく抑えることが可能となる点から好ましい。
正極リード4および負極リード5は、機械的特性の観点では、それに接続される正極集電体31aまたは負極集電体32aの強度を大きく超えて高強度でない方が、接続部分の応力集中が緩和される点から好ましい。正極リード4および負極リード5と各集電体との接続手段として、好ましい方法の1つである超音波溶接を適用した場合、正極リード4または負極リード5のヤング率が小さい方が、強固な溶接を容易に行うことが可能となる。
例えば、焼鈍処理した純アルミ(JIS1000番台)は、正極リード4または負極リード5の材料として好ましい。
正極リード4の厚さは、0.1mm〜1mmであることが好ましく、0.2mm〜0.5mmであることがより好ましい。
負極リード5の厚さは、0.1mm〜1mmであることが好ましく、0.2mm〜0.5mmであることがより好ましい。
(7)熱可塑性樹脂層
熱可塑性樹脂層10,11,12は、1種類の樹脂から形成されていても、2種類以上の樹脂から形成されていてもよい。
熱可塑性樹脂層10,11,12を形成する熱可塑性樹脂の融点は、120℃以上であることが好ましく、140℃〜250℃であることがより好ましい。
熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。特に、融点が150℃以上のポリプロピレンは、熱融着部(封止部9)の封止強度を向上することができるため好ましい。
第1の実施形態の非水電解質二次電池1は、LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表されるオリビン構造を有する鉄含有のリン化合物を含む正極31、および、チタンを含有する酸化物を含む負極32を備えた第1の電極群2と第2の電極群3が電気的に直列に接続されており、4V以上5V以下の範囲の充電最大電圧で3.6V程度の平均放電電圧を有するため、従来のリチウムイオン電池と電圧互換性を有することができる。このため、従来のリチウムイオン電池で用いられる過電流保護、過充電防止、過放電防止のための保護回路を互換可能である。
また、第1の実施形態の非水電解質二次電池1は、例えば、共通の封止部である接続部8Cを通る中心線c1に沿って、第1の収納部8A(第1の部位7A)と、第2の収納部8B(第2の部位7B)とが重なるように、外装材7が折り曲げ可能である。
以下、図1A、図1B、図2、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照しながら、非水電解質二次電池1の折り曲げの形態について説明する。
図5A、図5Bに示す非水電解質二次電池1の折り曲げの形態の第1の例では、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する凹部からなる収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが重ねられている。本実施形態の場合、接着固定層41を介して重ねられている。この接着固定層41により、第1の部位7Aと第2の部位7Bとが接着固定されている。
接着固定層41を構成する接着材としては、例えば、両面テープが挙げられる。
また、図3に示すように、正極集電タブ34と負極集電タブ35とは、互いに同一直線上に存在しないように配置されているので、第1の部位7Aと第2の部位7Bとを重ねた場合、図5Aに示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置することができる。
このように、第1の例では、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池1を折り曲げることにより、非水電解質二次電池1を小型化することができ、非水電解質二次電池1を自動車等に搭載するときの空間的な自由度が向上する。
図6A、図6Bに示す非水電解質二次電池1の折り曲げの形態の第2の例では、第1の電極群2を収容する凹部からなる収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する凹部からなる収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、放熱部材42を介して重ねられている。また、第1の部位7Aと放熱部材42との間、および、第2の部位7Bと放熱部材42との間には、図示略の接着固定層が設けられている。この接着固定層により、第1の部位7Aと放熱部材42、および、第2の部位7Bと放熱部材42とが接着固定されている。
放熱部材42は、第1の部位7Aと第2の部位7Bの間に介在した状態で、例えば、第1の部位7Aと第2の部位7Bの両側面側(図6B)において、紙面と垂直な方向の両側)に突出するように設けられている。非水電解質二次電池1の充放電時に発生した熱は、放熱部材42を伝わって、前記の突出している部分から放出される。
放熱部材42としては、例えば、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等からなる金属板等の熱伝導性が良好な材料が用いられる。
接着固定層を構成する接着材としては、例えば、両面テープが挙げられる。
また、図6Bに示すように、第1の部位7Aと第2の部位7Bとを重ねた場合、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置することができる。
このように、第2の例では、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池1を折り曲げることにより、非水電解質二次電池1を小型化することができ、非水電解質二次電池1を自動車等に搭載するときの空間的な自由度が向上する。また、第1の部位7Aと第2の部位7Bとの間に、放熱部材42が介在しているので、非水電解質二次電池1の充放電時に発生した熱を効率的に放出することができる。
図7A、図7Bに示す非水電解質二次電池1の折り曲げの形態の第3の例では、非水電解質二次電池1を折り曲げた状態で、金属製の容器(外装缶)43内に収納されている。
容器43としては、例えば、アルミニウム、アルミニウム合金、鉄、ニッケルめっき鉄、ステンレス等からなる容器が用いられる。
また、図7Aに示すように、第1の部位7Aと第2の部位7Bとを重ねた場合、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置することができる。
このように、第3の例では、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池1を折り曲げた状態で、金属製の容器43内に収納することにより、非水電解質二次電池1を小型化することができ、非水電解質二次電池1を自動車等に搭載するときの空間的な自由度が向上する。また、外部からの衝撃等により非水電解質二次電池1が破損することを防止できる。
図8に示す非水電解質二次電池1の折り曲げの形態の第4の例では、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの底面21aと、第2の電極群2を収容する凹部からなる収納部21Bの底面21aとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが重ねられている。この場合、図示略の接着固定層を介して重ねられていることが好ましい。接着固定層により、第1の部位7Aと第2の部位7Bとが接着固定されている。
接着固定層を構成する接着材としては、例えば、両面テープが挙げられる。
また、第1の部位7Aと第2の部位7Bとを重ねた場合、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置することができる。
このように、第4の例では、収納部21Aの底面21aと収納部21Bの底面21aとが対向するように、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池1を折り曲げることにより、外装材7の折り曲げ部分(接続リード6が内在する部分)の曲げ半径を大きくすることができ、その折り曲げ部分の変形量を小さくすることができるので、外装材7の破損や非水電解質の漏出を抑制することができる。
図9に示す非水電解質二次電池1の折り曲げの形態の第5の例では、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの底面21aと、第2の電極群2を収容する凹部からなる収納部21Bの底面21aとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、放熱部材44を介して重ねられている。また、第1の部位7Aと放熱部材44との間、および、第2の部位7Bと放熱部材44との間には、図示略の接着固定層が設けられている。この接着固定層により、第1の部位7Aと放熱部材44、および、第2の部位7Bと放熱部材44とが接着固定されている。
放熱部材44は、第1の部位7Aと第2の部位7Bとの間に介在した状態で、例えば、第1の部位7Aと第2の部位7Bの長さ方向の両側(図9において、紙面の左右方向の両側)に突出するように設けられている。非水電解質二次電池1の充放電時に発生した熱は、放熱部材44を伝わって、前記の突出している部分から放出される。
放熱部材44としては、例えば、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等からなる金属板等の熱伝導性が良好な材料が用いられる。
接着固定層を構成する接着材としては、例えば、両面テープが挙げられる。
また、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置することができる。
このように、第5の例では、収納部21Aの底面21aと収納部21Bの底面21aとが対向するように、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池1を折り曲げることにより、外装材7の折り曲げ部分(接続リード6が内在する部分)の曲げ半径を大きくすることができ、その折り曲げ部分の変形量を小さくすることができるので、外装材7の破損や非水電解質の漏出を抑制することができる。また、第1の部位7Aと第2の部位7Bとの間に、放熱部材44が介在しているので、非水電解質二次電池1の充放電時に発生した熱を効率的に放出することができる。
(第2の実施形態)
以下、第2の実施形態について、図10A、図10B、図11A、図11B、図12Aおよび図12Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図10A、図10B、図11A、図11B、図12Aおよび図12Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9等に示した符号を引用して説明することがある。
第2の実施形態の非水電解質二次電池50は、図10A、図10Bに示すように、第1の電極群2と、第2の電極群3と、第1の電極群2の正極に接続された正極リード4と、第2の電極群3の負極に接続された負極リード5と、第1の電極群2と第2の電極群3を直列に接続する接続リード6と、第1の電極群2、第2の電極群3、正極リード4、負極リード5および接続リード6を収納する外装材7と、が備えられている。
非水電解質二次電池50の種類は、角形に限定されず、扁平型(薄型)等の様々な種類にすることができる。
第2の実施形態の非水電解質二次電池50では、接続部8Cに、第1の収納部8Aを封止する第1の封止部9Aと、第2の収納部8Bを封止する第2の封止部9Bと、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51と、が設けられている。接続リード6のうち、未封止部51に内在する部分は、外装材7に接着固定されていない。
また、接続リード6は、その表面の少なくとも第1の封止部9Aと第2の封止部9Bを通過する部分が、熱可塑性樹脂層52,53で被覆されていることが好ましい。このような構成にすると、熱可塑性樹脂層52,53が接続リード6と熱接合により密着するとともに、熱可塑性樹脂層52,53が外装材7と熱接合により密着するので、外装材7内に収納した非水電解質が浸透して漏液するのを防止できる。また、熱可塑性樹脂層52,53によって、外装材7と、接続リード6とが絶縁されるので、接続リード6と外装材7との接触による短絡を防止することができる。
熱可塑性樹脂層52,53は、熱可塑性樹脂層10,11と同様の樹脂から形成される。
第2の実施形態の非水電解質二次電池50は、LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表されるオリビン構造を有する鉄含有のリン化合物を含む正極31、および、チタンを含有する酸化物を含む負極32を備えた第1の電極群2と第2の電極群3が電気的に直列に接続されており、4V以上5V以下の範囲の充電最大電圧で3.6V程度の平均放電電圧を有するため、従来のリチウムイオン電池と電圧互換性を有することができる。このため、従来のリチウムイオン電池で用いられる過電流保護、過充電防止、過放電防止のための保護回路を互換可能である。
また、第2の実施形態の非水電解質二次電池50は、例えば、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51を通る中心線c2に沿って、第1の収納部8A(第1の部位7A)と、第2の収納部8B(第2の部位7B)とが重なるように、外装材7が折り曲げ可能である。
以下、図10A、図10B、図11A、図11B、図12Aおよび図12Bを参照しながら、非水電解質二次電池50の折り曲げの形態について説明する。
図11A、図11Bに示す非水電解質二次電池50の折り曲げの形態の第1の例では、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する凹部からなる収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、接着固定層41を介して重ねられている。この接着固定層41により、第1の部位7Aと第2の部位7Bとが接着固定されている。
また、第1の部位7Aと第2の部位7Bとを重ねた場合、図11Aに示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置されている。
このように、第1の例では、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池50を折り曲げることにより、非水電解質二次電池50を小型化することができ、非水電解質二次電池50を自動車等に搭載するときの空間的な自由度が向上する。また、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51において外装材7を折り曲げるので、折り曲げたときに外側になる外装材7に応力が生じ難くなり、外装材7の破損や非水電解質の漏出を抑制することができる。
なお、この例では、第1の部位7Aと第2の部位7Bとが、接着固定層41を介して重ねられている場合を例示したが、本実施形態はこれに限定されない。本実施形態では、第1の実施形態と同様に、第1の部位7Aと第2の部位7Bとが、放熱部材を介して重ねられていてもよい。
図12A、図12Bに示す非水電解質二次電池50の折り曲げの形態の第2の例では、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの底面21aと、第2の電極群2を収容する凹部からなる収納部21Bの底面21aとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが重ねられている。本実施形態の場合、接着固定層41を介して重ねられている。接着固定層41により、第1の部位7Aと第2の部位7Bとが接着固定されている。
また、第1の部位7Aと第2の部位7Bとを重ねた場合、図12Aに示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置されている。
このように、第2の例では、収納部21Aの底面21aと収納部21Bの底面21aとが対向するように、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池50を折り曲げることにより、外装材7の折り曲げ部分(接続リード6が内在する部分)の曲げ半径を大きくすることができ、その折り曲げ部分の変形量を小さくすることができるので、外装材7の破損や非水電解質の漏出を抑制することができる。また、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51において外装材7を折り曲げるので、折り曲げたときに外側になる外装材7に応力が生じ難くなり、外装材7の破損や非水電解質の漏出を抑制する効果をより高めることができる。
なお、この例では、第1の部位7Aと第2の部位7Bとが、接着固定層41を介して重ねられている場合を例示したが、本実施形態はこれに限定されない。本実施形態では、第1の実施形態と同様に、第1の部位7Aと第2の部位7Bとが、放熱部材を介して重ねられていてもよい。
(第3の実施形態)
以下、第3の実施形態について、図13A、図13Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成、および、第2の実施形態において図10A、図10B、図11A、図11B、図12Aおよび図12Bを参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図13A、図13Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8、図9、図10A、図10B、図11A、図11B、図12Aおよび図12Bに示した符号を引用して説明することがある。
第3の実施形態の非水電解質二次電池60は、図13A、図13Bに示すように、第1の電極群2と、第2の電極群3と、第1の電極群2の正極に接続された正極リード4と、第2の電極群3の負極に接続された負極リード5と、第1の電極群2と第2の電極群3を直列に接続する接続リード6と、第1の電極群2、第2の電極群3、正極リード4、負極リード5および接続リード6を収納する外装材7と、が備えられている。
非水電解質二次電池60の種類は、角形に限定されず、扁平型(薄型)等の様々な種類にすることができる。
第3の実施形態の非水電解質二次電池60では、接続部8Cに、第1の収容部8Aを封止する第1の封止部9Aと、第2の収容部8Bを封止する第2の封止部9Bと、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51と、が設けられている。接続リード6のうち、未封止部51に内在する部分は、外装材7に接着固定されていない。
また、未封止部51に、接続リード6を露出させる開口部61が設けられている。開口部61の大きさは、特に限定されないが、非水電解質二次電池60の充放電時に発生した熱を、接続リード6から効率的に放出するために、接続リード6の大部分が露出する大きさであることが好ましい。
第3の実施形態の非水電解質二次電池60は、LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表されるオリビン構造を有する鉄含有のリン化合物を含む正極31、および、チタンを含有する酸化物を含む負極32を備えた第1の電極群2と第2の電極群3が電気的に直列に接続されており、4V以上5V以下の範囲の充電最大電圧を有するため優れている。
また、第3の実施形態の非水電解質二次電池60は、例えば、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51を通る中心線c3に沿って、第1の収納部8A(第1の部位7A)と、第2の収納部8B(第2の部位7B)とが重なるように、外装材7が折り曲げ可能である。
非水電解質二次電池60は、第2の実施形態の非水電解質二次電池50と同様に折り曲げ可能である。
第1の部位7Aと第2の部位7Bとを重ねた場合、図13Aに示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置されている。
第3の実施形態では、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池60を折り曲げることにより、非水電解質二次電池60を小型化することができ、非水電解質二次電池60を自動車等に搭載するときの空間的な自由度が向上する。また、第1の封止部9Aと第2の封止部9Bとの間に設けられた未封止部51において外装材7を折り曲げるので、折り曲げたときに外側になる外装材7に応力が生じ難くなり、外装材7の破損や非水電解質の漏出を抑制することができる。さらに、未封止部51に、接続リード6を露出させる開口部61を設けることにより、非水電解質二次電池60の充放電時に発生した熱を、接続リード6から効率的に放出することができる。
(第4の実施形態)
以下、第4の実施形態について、図14A、図14B、図15A、図15B、図15Cおよび図16を参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図14A、図14B、図15A、図15B、図15Cおよび図16において図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9等に示した符号を引用して説明することがある。
第4の実施形態の非水電解質二次電池70は、図14A、図14Bに示すように、第1の電極群2と、第2の電極群3と、第1の電極群2の正極に接続された正極リード4と、第2の電極群3の負極に接続された負極リード5と、第1の電極群2と第2の電極群3を直列に接続する接続リード6と、第1の電極群2、第2の電極群3、正極リード4、負極リード5および接続リード6を収納する外装材71と、が備えられている。
外装材71としては、金属製容器が用いられる。
非水電解質二次電池70の種類は、角形に限定されず、扁平型(薄型)等の様々な種類にすることができる。
外装材71は、図15A、図15Bに示すように、平面形状が略矩形状である第1筐体部81と、この第1筐体部81に主面が対向する平面形状が略矩形状である第2筐体部82とから構成されている。図15A、図15Bに示す例では、第1筐体部81と第2筐体部82とが連結されず、別個の部材である。なお、本実施形態では、外装材71が、第1筐体部81と第2筐体部82とが折り曲げ部を介して連結されてなり、折り曲げ部を介して折り曲げ可能となっていてもよい。
また、図14A、図14B、図15Aおよび図15Bに示す外装材71は、第1の電極群2を収納する第1の収納部72Aと、第2の電極群3を収納する第2の収納部72Bと、第1の収納部72Aおよび第2の収納部72Bを密封する封止部73と、第1の収納部72Aに連通して、第1の電極群2の端子部および正極リード4を収納する端子収納部74Aと、第2の収納部72Bに連通して、第2の電極群3の端子部および負極リード5を収納する端子収納部74Bと、第1の収納部72Aおよび第2の収納部72Bに連通して、第1の電極群2の端子部、第2の電極群3の端子部および接続リード6を収納する端子収納部74Cと、第1の収納部72Aと第2の収納部72Bとを接続する接続部78と、第1の収納部72Aおよび第2の収納部72Bを密封する封止部73とが設けられている。また、外装材71は、第1の電極群2が収納された第1の部位71Aと、第2の電極群3が収納された第2の部位71Bとから構成されている。
これら第1の収納部72A、第2の収納部72B、接続部78および封止部73は、第1筐体部81と第2筐体部82とが一体となることによって形成される。
以下、第1筐体部81および第2筐体部82について説明する。
外装材71を構成する第1筐体部81および第2筐体部82は、アルミニウム、アルミニウム合金、鉄、ニッケルめっき鉄、ステンレス等の金属の薄板から構成される。
金属の薄板の厚さは、0.5mm以下であることが好ましく、0.3mm以下であることがより好ましい。
第1筐体部81は、金属の薄板に対して深絞り加工あるいはプレス加工を施すことによって形成されてなる。第1筐体部81は、矩形状の凹部とされた収納部81Aおよび収納部81Bと、収納部81Aおよび収納部81Bを区画する4辺から金属の薄板の外周に向けて突出するように設けられた板状の延出部81Cとが備えられている。また、第1筐体部81を構成する金属の薄板の外周縁部(延出部81C)が封止部81Dとなっている。
第1筐体部81は、金属の薄板を略矩形状に加工されてなる板状の部材、金属の薄板を膨出形成させて収納部を形成してなる板状の部材である。
第2筐体部82は、金属の薄板に対して深絞り加工あるいはプレス加工を施すことによって形成されてなる。第2筐体部82は、外装材71としたときに第1筐体部81に対向して配置される。この第2筐体部82には、第1筐体部81の収納部81Aと対向し、矩形状の凹部とされた収納部82Aと、第1筐体部81の収納部81Bと対向し、矩形状の凹部とされた収納部82Bと、収納部82Aおよび収納部82Bを区画する4辺から金属の薄板の外周に向けて突出するように設けられた板状の延出部82Cと、延出部82Cに設けられ、収納部81Aに連通して端子収納部74Aを形成する収納部82D、収納部81Bに連通して端子収納部74Bを形成する収納部82E、並びに、収納部81Aおよび収納部81Bに連通して端子収納部74Cを形成する収納部82Fと、が備えられている。また、第2筐体部82を構成する金属の薄板の外周縁部(延出部82C)が封止部82Gとなっている。
第2筐体部82は、金属の薄板を略矩形状に加工されてなる板状の部材、金属の薄板を膨出形成させて、収納部を形成してなる板状の部材である。
外装材71は、第1筐体部81および第2筐体部82を対向するように重ね合わせ、封止部81Dと封止部82Gを重ねて、溶接して、第1筐体部81と第2筐体部82を一体にすることで形成される。そして、収納部81Aと収納部82Aが一体になって第1の収納部72Aが構成される。また、収納部81Bと収納部82Bが一体になって第2の収納部72Bが構成される。また、第1筐体部81および第2筐体部82の外周縁部のうち、第1の収納部72Aと第2の収納部72Bを接続する部分を溶接することで、第1の収納部72Aと第2の収納部72Bを接続する接続部78が形成される。さらに、第1筐体部81および第2筐体部82の外周縁部である封止部81Dと封止部82Gを溶接することで、第1の収納部72Aおよび第2の収納部72Bを封止する封止部73が形成される。
封止部73は、第1筐体部81を構成する金属の薄板と、第2筐体部82を構成する金属の薄板とをシーム溶接して形成される。
また、接続部78は、第1の収納部72Aと第2の収納部72Bを一括して封止する共通の封止部である。
正極リード4は、その表面の少なくとも封止部73を通過する部分が、絶縁性樹脂層75で被覆されていることが好ましい。また、負極リード5は、その表面の少なくとも封止部73を通過する部分が、絶縁性樹脂層76で被覆されていることが好ましい。また、接続リード6は、その表面の少なくとも接続部78を通過する部分が、絶縁性樹脂層77で被覆されていることが好ましい。絶縁性樹脂層75,76,77によって、外装材71と、正極リード4、負極リード5および接続リード6とが絶縁される。また、正極リード4と絶縁性樹脂層75とは、相互に接着されていてもよく、熱融着されていてもよく、圧着されていてもよく、本実施形態の作用を得ることができれば配置されるだけでもよい。同様に、負極リード5と絶縁性樹脂層76とは、相互に接着されていてもよく、熱融着されていてもよく、圧着されていてもよく、本実施形態の作用を得ることができれば配置されるだけでもよい。同様に、接続リード6と絶縁性樹脂層77とは、相互に接着されていてもよく、熱融着されていてもよく、圧着されていてもよく、本実施形態の作用を得ることができれば配置されるだけでもよい。
絶縁性樹脂層75,76,77の厚さ(正極リード4、負極リード5、接続リード6の片面当たり)は、40μm〜200μmであることが好ましく、60μm〜100μmであることがより好ましい。
絶縁性樹脂層75,76,77を構成する絶縁性樹脂としては、特に限定されないが、例えば、熱可塑性樹脂が用いられる。熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。
第4の実施形態の非水電解質二次電池70は、LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表されるオリビン構造を有する鉄含有のリン化合物を含む正極31、および、チタンを含有する酸化物を含む負極32を備えた第1の電極群2と第2の電極群3が電気的に直列に接続されており、4V以上5V以下の範囲の充電最大電圧で3.6V程度の平均放電電圧を有するため、従来のリチウムイオン電池と電圧互換性を有することができる。このため、従来のリチウムイオン電池で用いられる過電流保護、過充電防止、過放電防止のための保護回路を互換可能である。
また、第4の実施形態の非水電解質二次電池70は、例えば、共通の封止部である接続部78を通る中心線c4に沿って、第1の収納部72A(第1の部位71A)と、第2の収納部72B(第2の部位71B)とが重なるように、外装材71が折り曲げ可能である。
非水電解質二次電池70は、第1の実施形態の非水電解質二次電池1と同様に折り曲げ可能である。
第1の部位71Aと第2の部位71Bとを重ねた場合、図16に示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置されている。
第4の実施形態では、第1の部位71Aと第2の部位71Bとを重ねて、非水電解質二次電池70を折り曲げることにより、非水電解質二次電池70を小型化することができ、非水電解質二次電池70を自動車等に搭載するときの空間的な自由度が向上する。
なお、第4の実施形態の非水電解質二次電池70では、外装材71を構成する金属の薄板の厚さをより薄くするとともに、外装材71の折り曲げ部分(接続リード6が内在する部分)の曲げ半径を大きくすることにより、折り曲げ可能としている。
(第5の実施形態)
以下、第5の実施形態について、図17A、図17Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図17A、図17Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9等に示した符号を引用して説明することがある。
第5の実施形態の組電池80は、例えば、第1の実施形態の非水電解質二次電池1からなる4つの非水電解質二次電池90が備えられている。
第5の実施形態の組電池80は、4つの非水電解質二次電池90と、これらの非水電解質二次電池90を直列に接続するバスバー91と、第1の部位7Aと第2の部位7Bの間に介在する放熱部材92とが備えられている。
本実施形態では、第1の電極群2を収容する収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、放熱部材92を介して重ねられていている。また、4つの非水電解質二次電池90は、隣接して1列に配置されている。
放熱部材92は、4つの非水電解質二次電池90をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に介在した状態で、例えば、4つの非水電解質二次電池90のうち一方の端に配置される非水電解質二次電池90(90A)から、組電池80の長手方向(図17Bにおいて、紙面の左右方向)に突出し、かつ、4つの非水電解質二次電池90のうち他方の端に配置される非水電解質二次電池90(90B)から、組電池80の長手方向(図17Bにおいて、紙面の左右方向)に突出するように設けられている。
隣り合う非水電解質二次電池90,90間では、一方の非水電解質二次電池90の負極リード5と、他方の非水電解質二次電池90の正極リード4とが、バスバー91を介して接続されている。
バスバー91は、金属製の部材であり、導電性を有する。
放熱部材92としては、例えば、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等からなる金属板等の熱伝導性が良好な材料が用いられる。
本実施形態の組電池80は、4つの非水電解質二次電池90が隣接して配置され、これらの非水電解質二次電池90が直列に接続され、4つの非水電解質二次電池90をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に、放熱部材92が介在しているので、非水電解質二次電池90の充放電時に発生した熱を効率的に放出することができる。
なお、本実施形態では、非水電解質二次電池90が第1の実施形態の非水電解質二次電池1からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池90が、第2の実施形態の非水電解質二次電池50、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
(第6の実施形態)
以下、第6の実施形態について、図18A、図18Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図18A、図18Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9等に示した符号を引用して説明することがある。
第6の実施形態の組電池100は、例えば、第1の実施形態の非水電解質二次電池1からなる4つの非水電解質二次電池110が備えられている。
第6の実施形態の組電池100は、4つの非水電解質二次電池110と、これらの非水電解質二次電池110を直列に接続するバスバー111と、第1の部位7Aと第2の部位7Bの間に介在する放熱部材112とが備えられている。
本実施形態では、第1の電極群2を収容する収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、放熱部材112を介して重ねられていている。また、4つの非水電解質二次電池110は、間隔を置いて1列に配置されている。
放熱部材112は、4つの非水電解質二次電池110をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に介在した状態で、例えば、4つの非水電解質二次電池110のうち一方の端に配置される非水電解質二次電池110(110A)から、組電池100の長手方向(図18Bにおいて、紙面の左右方向)に突出し、かつ、4つの非水電解質二次電池110のうち他方の端に配置される非水電解質二次電池110(110B)から、組電池100の長手方向(図18Bにおいて、紙面の左右方向)に突出するように設けられている。
また、放熱部材112は、隣り合う非水電解質二次電池110,110間で露出している。
隣り合う非水電解質二次電池110,110間では、一方の非水電解質二次電池110の負極リード5と、他方の非水電解質二次電池110の正極リード4とが、バスバー111を介して接続されている。
バスバー111は、金属製の部材であり、導電性を有する。
放熱部材112としては、例えば、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等からなる金属板等の熱伝導性が良好な材料が用いられる。
本実施形態の組電池100は、4つの非水電解質二次電池110が間隔を置いて1列に配置され、これらの非水電解質二次電池110が直列に接続され、4つの非水電解質二次電池110をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に、放熱部材112が介在しているので、非水電解質二次電池110の充放電時に発生した熱を効率的に放出することができる。また、本実施形態の組電池100では、その両端から放熱部材112が突出し、かつ、隣り合う非水電解質二次電池110,110間で放熱部材112が露出しているので、より効率的に熱を放出することができる。
なお、本実施形態では、非水電解質二次電池110が第1の実施形態の非水電解質二次電池1からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池110が、第2の実施形態の非水電解質二次電池50、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
(第7の実施形態)
以下、第7の実施形態について、図19A、図19Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図19A、図19Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9等に示した符号を引用して説明することがある。
第7の実施形態の組電池120は、例えば、第1の実施形態の非水電解質二次電池1からなる5つの非水電解質二次電池130が備えられている。
第7の実施形態の組電池120は、5つの非水電解質二次電池130と、これらの非水電解質二次電池130を直列に接続するバスバー131と、第1の部位7Aと第2の部位7Bの間に介在する放熱部材132とが備えられている。
放熱部材132は、基部133と、基部133の一面133aに垂直に設けられた、5つの放熱部134とが備えられている。放熱部134は、基部133の一面133aにおいて、間隔を置いて並列に配置されている。
放熱部材132としては、例えば、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等の熱伝導性が良好な材料からなる部材が用いられる。
本実施形態では、第1の電極群2を収容する収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、放熱部材132の放熱部134を介して重ねられていている。
放熱部材132は、5つの非水電解質二次電池130をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に介在した状態で、非水電解質二次電池130の一方の端(図19Aにおいて、紙面の左側)から、放熱部134が突出し、非水電解質二次電池130の他方の端(図19Aにおいて、紙面の右側)に基部133が接するように設けられている。
また、全ての非水電解質二次電池130は、放熱部材132の放熱部134に対して、正極リード4と負極リード5が同じ向きになるように配置されている。すなわち、図19Aに示すように、放熱部材132の放熱部134の上側に負極リード5が配置され、放熱部材132の放熱部134の下側に正極リード4が配置されるように、放熱部材132の放熱部134に対して、全ての非水電解質二次電池130が配置されている。
隣り合う非水電解質二次電池130,130間では、一方の非水電解質二次電池130の正極リード4と、他方の非水電解質二次電池130の負極リード5とが、バスバー131を介して接続されている。
バスバー131は、金属製の部材であり、導電性を有する。
本実施形態の組電池120は、5つの非水電解質二次電池130が隣接して配置され、これらの非水電解質二次電池130が直列に接続され、5つの非水電解質二次電池130をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に、放熱部材132の放熱部134が介在しているので、非水電解質二次電池130の充放電時に発生した熱を効率的に放出することができる。また、全ての放熱部134は、基部133の一面133aに設けられているので、基部133を冷却することにより、全ての放熱部134、ひいては、全ての非水電解質二次電池130を冷却することができる。
なお、本実施形態では、非水電解質二次電池130が第1の実施形態の非水電解質二次電池1からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池130が、第2の実施形態の非水電解質二次電池50、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
(第8の実施形態)
以下、第8の実施形態について、図20を参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図20において図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9等に示した符号を引用して説明することがある。
第8の実施形態の組電池140は、例えば、第1の実施形態の非水電解質二次電池1からなる5つの非水電解質二次電池150が備えられている。
第8の実施形態の組電池140は、5つの非水電解質二次電池150と、これらの非水電解質二次電池150を直列に接続するバスバー151と、第1の部位7Aと第2の部位7Bの間に介在する放熱部材152とが備えられている。
放熱部材152は、基部153と、基部153の一面153aに垂直に設けられた、5つの放熱部154とが備えられている。放熱部154は、基部153の一面153aにおいて、間隔を置いて並列に配置されている。
放熱部材152としては、例えば、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等の熱伝導性が良好な材料からなる部材が用いられる。
本実施形態では、第1の電極群2を収容する収納部21Aの開口部を覆う蓋部22Aと、第2の電極群2を収容する収納部21Bの開口部を覆う蓋部22Bとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、放熱部材152の放熱部154を介して重ねられていている。
放熱部材152は、5つの非水電解質二次電池150をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に介在した状態で、非水電解質二次電池150の一方の端(図20において、紙面の左側)から、放熱部154が突出し、非水電解質二次電池150の他方の端(図20において、紙面の右側)に基部153が接するように設けられている。
また、非水電解質二次電池150は、放熱部材152の放熱部154に対して、正極リード4と負極リード5の向きが交互に変わるように配置されている。本実施形態では、図20に示すように、放熱部材152の一方の端に設けられた放熱部154Aの上側に負極リード5が配置され、放熱部154Aの下側に正極リード4が配置されるように、放熱部材152の放熱部154Aに対して、非水電解質二次電池150が配置されている。また、図20に示すように、放熱部154Aと隣り合う放熱部154Bの上側に正極リード4が配置され、放熱部154Bの下側に正極リード4が配置されるように、放熱部材152の放熱部154Bに対して、非水電解質二次電池150が配置されている。以下、同様にして、放熱部材152の放熱部154に対して、正極リード4と負極リード5の向きが交互に変わるように配置されている。
隣り合う非水電解質二次電池150,150間では、一方の非水電解質二次電池150の正極リード4と、他方の非水電解質二次電池150の負極リード5とが、バスバー151を介して接続されている。
バスバー151は、金属製の部材であり、導電性を有する。
本実施形態の組電池140は、5つの非水電解質二次電池150が隣接して配置され、これらの非水電解質二次電池150が直列に接続され、5つの非水電解質二次電池150をそれぞれ構成する第1の部位7Aと第2の部位7Bの間に、放熱部材152の放熱部154が介在しているので、非水電解質二次電池150の充放電時に発生した熱を効率的に放出することができる。また、全ての放熱部154は、基部153の一面153aに設けられているので、基部153を冷却することにより、全ての放熱部154、ひいては、全ての非水電解質二次電池150を冷却することができる。
なお、本実施形態では、非水電解質二次電池150が第1の実施形態の非水電解質二次電池1からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池130が、第2の実施形態の非水電解質二次電池50、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
(第9の実施形態)
以下、第9の実施形態について、図21、図22、図23Aおよび図23Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成、および、第2の実施形態において図10A、図10B、図11A、図11B、図12Aおよび図12Bを参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図21、図22、図23Aおよび図23Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8、図9、図10A、図10B、図11A、図11B、図12Aおよび図12Bに示した符号を引用して説明することがある。
第9の実施形態の組電池160は、例えば、第2の実施形態の非水電解質二次電池50からなる2つの非水電解質二次電池170と、これらを直列に接続する、非水電解質二次電池50の第1の部位7Aまたは第2の部位7Bと同様の構成の非水電解質二次電池180とが備えられている。
本実施形態では、第1の電極群2を収容する収納部21Aの底面21aと、第2の電極群2を収容する収納部21Bの底面21aとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが重ねられている。
具体的には、図22、図23Aおよび図23Bに示すように、第1の部位7Aと第2の部位7Bが九十九折りにされて、第1の部位7Aと第2の部位7Bとが重ねられている。
図22では、第1の部位7Aと第2の部位7Bの間の外装材7の折り曲げ部の曲げ半径が小さい場合を示している。また、図23A、図23Bでは、第1の部位7Aと第2の部位7Bの間の外装材7の折り曲げ部の曲げ半径が大きい場合を示している。
図23Aは、第1の部位7Aと第2の部位7Bとが重ねられているものであり、対向する部材間には空間部を有しているように示しているが、必要により接着固定されてもよい。また、図23Bは、対向する部材間に放熱部材23a,23bを介して重ねられている。この場合、図示略の接着固定層を介して重ねられていることが好ましい。接着固定層により、第1の部位7Aと第2の部位7Bとが接着固定されている。
本実施形態の組電池160は、非水電解質二次電池170と非水電解質二次電池180とをそれぞれ構成する第1の部位7Aと第2の部位7Bが九十九折りにされて、第1の部位7Aと第2の部位7Bとが重ねられているので、小型化することができ、自動車等に搭載するときの空間的な自由度が向上する。
なお、本実施形態では、非水電解質二次電池170が第2の実施形態の非水電解質二次電池50からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池170が、第1の実施形態の非水電解質二次電池1、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
(第10の実施形態)
以下、第10の実施形態について、図24A、図24Bおよび図25を参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成、および、第2の実施形態において図10A、図10B、図11A、図11B、図12Aおよび図12Bを参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図24A、図24Bおよび図25において図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8、図9、図10A、図10B、図11A、図11B、図12Aおよび図12Bに示した符号を引用して説明することがある。
第10の実施形態の組電池190は、例えば、第2の実施形態の非水電解質二次電池50からなる2つの非水電解質二次電池200と、これらの非水電解質二次電池200を直列に接続するバスバー201と、2つの非水電解質二次電池200を連結する連結部材202とが備えられている。
本実施形態では、非水電解質二次電池200において、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの底面21aと、第2の電極群2を収容する凹部からなる収納部21Bの底面21aとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、接着固定層41を介して重ねられている。接着固定層41により、第1の部位7Aと第2の部位7Bとが接着固定されている。
また、第1の部位7Aと第2の部位7Bとを重ねた場合、図24Aに示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置されている。
このように、本実施形態では、収納部21Aの底面21aと収納部21Bの底面21aとが対向するように、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池200を折り曲げることにより、外装材7の折り曲げ部分(接続リード6が内在する部分)の曲げ半径が大きくなる。この外装材7の折り曲げ部分によって形成される空間に連結部材202が挿通され、この連結部材202を共有して、2つの非水電解質二次電池200が連結されている。
連結部材202としては、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等からなる金属製の円柱状の部材が用いられる。
隣り合う非水電解質二次電池200,200間では、一方の非水電解質二次電池200の負極リード5と、他方の非水電解質二次電池200の正極リード4とが、バスバー201を介して接続されている。
バスバー201は、金属製の部材であり、導電性を有する。
本実施形態の組電池190は、連結部材202を共有して、隣接して配置された2つの非水電解質二次電池200が連結され、これらの非水電解質二次電池200が直列に接続されているので、小型化することができ、自動車等に搭載するときの空間的な自由度が向上する。また、非水電解質二次電池200の充放電時に発生した熱を、連結部材202から効率的に放出することができる。
なお、本実施形態では、非水電解質二次電池200が第2の実施形態の非水電解質二次電池50からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池200が、第1の実施形態の非水電解質二次電池1、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
また、本実施形態では、第1の部位7Aと第2の部位7Bとが、接着固定層41を介して重ねられている場合を例示したが、本実施形態はこれに限定されない。本実施形態では、第1の部位7Aと第2の部位7Bとが、放熱部材を介して重ねられていてもよい。
(第11の実施形態)
以下、第11の実施形態について、図26A、図26B、図27Aおよび図27Bを参照しながら説明する。
以下の説明では、第1の実施形態において図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8および図9を参照して説明した構成と同様の構成、および、第2の実施形態において図10A、図10B、図11A、図11B、図12Aおよび図12Bを参照して説明した構成と同様の構成については、同じ符号を付するとともに、その詳細な説明を省略する。また、本実施形態を説明する図26A、図26B、図27Aおよび図27Bにおいて図示されていない構成についても、適宜、図1A、図1B、図2〜図4、図5A、図5B、図6A、図6B、図7A、図7B、図8、図9、図10A、図10B、図11A、図11B、図12Aおよび図12Bに示した符号を引用して説明することがある。
第11の実施形態の組電池210は、例えば、第2の実施形態の非水電解質二次電池50からなる2つの非水電解質二次電池220と、これらの非水電解質二次電池220を直列に接続するバスバー221と、2つの非水電解質二次電池220を連結する連結部材222とが備えられている。
本実施形態では、非水電解質二次電池220において、外装材7に形成された、第1の電極群2を収容する凹部からなる収納部21Aの底面21aと、第2の電極群2を収容する凹部からなる収納部21Bの底面21aとが対向するように、第1の部位7A(第1の収納部8A)と、第2の部位7B(第2の収納部8B)とが、連結部材222の放熱部222Bを介して重ねられている。
連結部材222は、図27A、図27Bに示すように、例えば、円柱状の連結部222Aと、連結部222Aの外周面222aに垂直に設けられた放熱部222Bとが備えられている。
また、第1の部位7Aと第2の部位7Bとを重ねた場合、図26Aに示すように、正極集電タブ34に接続される正極リード4と、負極集電タブ35に接続される負極リード5とが重ならないように互い違いに配置されている。
このように、本実施形態では、収納部21Aの底面21aと収納部21Bの底面21aとが対向するように、第1の部位7Aと第2の部位7Bとを重ねて、非水電解質二次電池200を折り曲げることにより、外装材7の折り曲げ部分(接続リード6が内在する部分)の曲げ半径が大きくなる。この外装材7の折り曲げ部分によって形成される空間に連結部材222の連結部222Aが挿通され、この連結部222Aを共有して、2つの非水電解質二次電池220が連結されている。
連結部材222としては、銅、アルミニウム、アルミニウム合金、鉄、ステンレス等からなる金属製の部材が用いられる。
隣り合う非水電解質二次電池220,220間では、一方の非水電解質二次電池220の負極リード5と、他方の非水電解質二次電池220の正極リード4とが、バスバー201を介して接続されている。
バスバー201は、金属製の部材であり、導電性を有する。
本実施形態の組電池210は、連結部材222を共有して、隣接して配置された2つの非水電解質二次電池220が連結され、これらの非水電解質二次電池220が直列に接続されているので、小型化することができ、自動車等に搭載するときの空間的な自由度が向上する。また、第1の部位7Aと第2の部位7Bとが、連結部材222の放熱部222Bを介して重ねられているので、非水電解質二次電池220の充放電時に発生した熱を、連結部材222から効率的に放出することができる。
なお、本実施形態では、非水電解質二次電池220が第2の実施形態の非水電解質二次電池50からなる場合を例示したが、本実施形態はこれに限定されない。本実施形態では、非水電解質二次電池22が、第1の実施形態の非水電解質二次電池1、第3の実施形態の非水電解質二次電池60または第4の実施形態の非水電解質二次電池70のいずれかであってもよい。
(第12の実施形態)
以下、第12の実施形態について、図28を参照しながら説明する。
第12の実施形態の電池パックは、第1〜第4の実施形態の非水電解質二次電池(すなわち、単電池)を少なくとも1つ以上有する。電池パックに複数の単電池が含まれる場合、各単電池は、電気的に直列、並列、あるいは、直列と並列に接続して配置される。
第12の実施形態の電池パック230において、単電池231としては、例えば、第1の実施形態の非水電解質二次電池1が用いられている。
複数の単電池231は、外部に延出した図示略の負極端子および図示略の正極端子が同じ向きに揃えられるように積層され、粘着テープで締結することによって組電池232を構成している。これらの単電池231は、図28に示すように、互いに電気的に直列に接続されている。
プリント配線基板233は、負極端子および正極端子が延出する単電池231側面と対向して配置されている。図28に示すように、プリント配線基板233には、サーミスタ234、保護回路235および外部機器への通電用端子236が搭載されている。なお、組電池232と対向する図示略の保護回路基板の面には、組電池232の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
正極側リード237は、組電池232の最下層に位置する正極端子に接続され、その先端はプリント配線基板233の正極側コネクタ238に挿入されて電気的に接続されている。負極側リード239は、組電池232の最上層に位置する負極端子に接続され、その先端は、プリント配線基板233の負極側コネクタ240に挿入されて電気的に接続されている。これらの正極側コネクタ238、負極側コネクタ240は、プリント配線基板233に形成された配線241、242を通じて保護回路235に接続されている。
サーミスタ234は、単電池231の温度を検出するために用いられ、単電池231の近傍に設けられるとともに、その検出信号は保護回路235に送信される。保護回路235は、所定の条件で保護回路235と外部機器への通電用端子236との間のプラス側配線243aおよびマイナス側配線243bを遮断できる。ここで、上記の所定の条件とは、例えば、サーミスタ234の検出温度が所定温度以上になったときである。さらに、所定の条件とは、単電池231の過充電、過放電、過電流等を検出したときである。このような過充電等の検出は、個々の単電池231もしくは単電池231全体について行われる。なお、個々の単電池231における過充電等を検出する場合には、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池231中に参照極として用いるリチウム電極が挿入される。本実施形態では、単電池231それぞれに電圧検出のための配線244を接続し、これら配線244を通して検出信号が保護回路235に送信される。
また、正極端子および負極端子が突出する側面を除く組電池231の三側面には、ゴムもしくは樹脂からなる図示略の保護シートがそれぞれ配置されている。
組電池231は、各保護シートおよびプリント配線基板233とともに、図示略の収納容器内に収納される。すなわち、収納容器の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シートが配置され、短辺方向の保護シートとは反対側の内側面にプリント配線基板233が配置される。組電池231は、保護シートおよびプリント配線基板233で囲まれた空間内に位置する。また、収納容器の上面に、図示略の蓋が取り付けられている。
なお、組電池231の固定には、粘着テープに代えて熱収縮テープを用いてもよい。この場合、組電池232の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
また、図28においては、単電池231を直列接続した形態を示したが、電池容量を増大させるためには、単電池231を並列に接続しても、または、直列接続と並列接続とを組み合わせた構成としてもよい。また、組み上がった電池パックを、さらに直列、並列に接続することも可能である。
(第13の実施形態)
第13の実施形態について説明する。
第13の実施形態によれば、第5〜第11の実施形態の組電池を少なくとも1組か、第12の実施形態の電池パックを少なくとも1個含む自動車が提供される。自動車の例には、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等が含まれる。
第13の実施形態の自動車は、エンジンルームに、例えば、第5の実施形態の組電池80が搭載されている。なお、第5の実施形態の組電池80の代りに、第12の実施形態の電池パック230を搭載することも可能である。高温環境下となる自動車のエンジンルームに組電池または電池パックを設置することにより、電池パックとモーター、インバータ等の電動駆動系装置までの距離が短くなり、出入力のロスが低減し、燃費効率が向上する。
第13の実施形態の自動車によれば、第5〜第11の実施形態の組電池または第12の実施形態の電池パックを含むため、従来のリチウムイオン二次電池と電圧互換性があり、空間的な自由度が向上した自動車を提供することができる。
(実施例1)
以下の手順により、図1A、図1B、図2〜図4、図5Aおよび図5Bに示す非水電解質二次電池1と同様の非水電解質二次電池を作製した。
<電極群2、電極群3の作製>
(正極の作製)
正極活物質として、平均粒径が5nmの炭素微粒子が表面に付着(付着量1質量%)した、一次粒子の平均粒径が0.1μmのオリビン構造のリン酸鉄リチウム(LiFePO)粒子を用意した。
このリン酸鉄リチウム(LiFePO)粒子に、導電剤としての黒鉛粉末と、結着剤としてのPVdFとを、質量比で90:5:5となるように配合して、n−メチルピロリドン(NMP)溶媒に分散させ、ボールミルを用いて、スラリーを調製した。
得られたスラリーを、厚さ12μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥し、加熱プレス工程を経て、片面の正極材料層の厚さが30μm、電極密度が2.2g/cmの正極を作製した。
これにより、正極集電体と、その両面に担持された正極材料層と、正極材料無担持部とを含む帯状の正極を作製した。
(負極の作製)
負極活物質として、リチウム金属の電極電位に対するリチウム吸蔵放出電位が2Vから1.3V(vs.Li/Li)のスピネル構造で、一次粒子の平均粒径が0.6μmのチタン酸リチウム(LiTi12)粒子を用意した。
このチタン酸リチウム(LiTi12)粒子に、導電剤として平均粒径が6μmの黒鉛粉末と、結着剤としてPVdFとを、質量比で90:8:2となるように配合して、n−メチルピロリドン(NMP)溶媒に分散させ、ボールミルを用いて、スラリーを調製した。
得られたスラリーを、厚さ12μmのアルミニウム箔からなる負極集電体の両面に塗布し、乾燥し、加熱プレス工程を経て、片面の負極材料層の厚さが20μm、電極密度が2.2g/cmの負極を作製した。
これにより、負極集電体と、その両面に担持された負極材料層と、負極材料無担持部とを含む帯状の負極を作製した。
(電極群2、3の作製)
厚さ15μm、気孔率65%、平均繊維径1μmの再生セルロース繊維からなるセパレータを用意した。
次に、帯状の正極3と帯状の負極4とを、その間にセパレータ5を介在させて積層して電極群アセンブリを形成した。この際、正極材料無担持部および負極材料無担持部が、電極群アセンブリから、互いに反対の向きに延出するようにした。
続いて、この電極群アセンブリを渦巻状に捲回した後、電極群アセンブリから捲芯を取り出し、扁平形状にプレスした。
次に、正極材料無担持部の一部を正極集電タブで挟み込んだ。この状態で、正極材料無担持部と正極集電タブとを超音波溶接した。同様に、負極材料無担持部の一部を負極集電タブで挟み込み、この状態で、負極材料無担持部と負極集電タブとを超音波溶接した。
次に、電極群アセンブリの正極材料無担持部、正極集電タブ、負極材料無担持部及び負極集電タブを除いた部分を、絶縁テープで被覆した。
これにより、図3に示すような、扁平形状で捲回型の電極群2および電極郡3を得た。
<電極群2、3と電極リード(正極リードおよび負極リード)との接続>
次に、熱可塑性樹脂層10を備えたアルミニウム板からなる正極リード(電極リード)および負極リード(電極リード)を用意した。そして、用意した電極リード(正極リード)を、電極群2の正極集電タブに超音波溶接した。同様に、用意した電極リード(負極リード)を、電極群3の負極集電タブに超音波溶接した。この際、電極群2の正極リードと、電極群3の負極リードが、互いに同一直線上に存在しないように配置した。
次いで、熱可塑性樹脂層を備えたアルミニウム板からなる接続リード6を用意した。そして、用意した接続リード6の一端を電極群2の負極集電タブに、他端を電極群3の正極集電タブに超音波溶接した。
<非水電解質二次電池1の作製>
次に、図2に示すような、外装材7を用意した。外装材7は、Al層と、そのAl層を被覆する樹脂層からなるAlラミネートフィルムであり、第1筐体部21および第2筐体部22とから構成されている。外装材7には、深絞り加工により、矩形状の凹部とされた収納部21Aおよび収納部21Bとが形成されている。
次に、外装材7における第1筐体部21の収納部21A内に、上記手順で作製した電極群2を配置した。
次に、外装材7における第1筐体部21の収納部21B内に、上記手順で作製した電極群3を配置した。
次に、外装材7の第1筐体部21と第2筐体部22とを、絶縁性樹脂層を介して対向させた。これにより、電極群2および電極群3を、第1筐体部21の収納部21Aおよび収納部21Bと、第2筐体部22のうち、この収納部21Aおよび21Bと対向する収納部22Aおよび22Bとで構成される電極群収納部内に収容した。
次に、第2筐体部22を折り曲げ部23で折り返し、第1筐体部21と第2筐体部22が対向するように重ね合わせ、電極群2の電極リード(正極リード)、電極群3の電極リード(負極リード)および接続リード6を、熱可塑性樹脂層10を介して挟み込み、固定した。
次に、第1筐体部21および第2筐体部22の外周縁部のうち、第1の収納部7Aと第2の収納部7Bを接続する部分を加熱し、熱融着した。これにより、接続リード6は、熱可塑性樹脂層を介して、熱シールされた。
また、第1筐体部21および第2筐体部22の外周縁部である封止部21Dと封止部22Dのうち、折り返し部と並行に隣接する各筐体部21,22の辺を除いて、加熱し、熱融着した。
これにより、電極群2の電極リード(正極リード)および電極群3の電極リード(負極リード)を、熱可塑性樹脂層を介して熱シールした。
このようにして、電極群2および電極群3を外装材内に収納し、80℃で24時間、真空乾燥した。
<非水電解質の調製>
有機溶媒としてプロピレンカーボネート(PC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:2)に、電解質としての六フッ化リン酸リチウム(LiPF)を1.2mol/Lの濃度で溶解することにより、液状の非水電解質を調製した。
<非水電解質の注入および非水電解質電池の完成>
外装材7の、第1筐体部21および第2筐体部22の外周縁部である封止部21Dと封止部22のうち熱融着していない部分を介して、上記手順で得られた液状の非水電解質を注入した。
最後に、外装材7の、第1筐体部21および第2筐体部22の外周縁部である封止部21Dと封止部22のうち、熱融着していない部分を熱融着することにより、実施例1の容量10Ahの非水電解質二次電池1を得た。
(実施例2)
実施例1で作製した非水電解質二次電池1について、図5A、図5Bに示すように、第1の部位7Aと第2の部位7Bが重なるように、非水電解質二次電池1を折り曲げた。この際、第1の部位7Aと第2の部位7Bとの間を両面テープよりなる接着固定層41により接着固定した。
(実施例3)
実施例1で作製した非水電解質二次電池1について、図6に示すように、第1の部位7Aと第2の部位7Bが重なるように、非水電解質二次電池1を折り曲げた。この際、第1の部位7Aと第2の部位7Bとの間に、放熱部材42を配置し、接着固定した。
(実施例4)
図13A、図13Bに示す、第3の実施の形態の非水電解質二次電池60を作製した。接続部に開口部を設け、接続リード6を開口部から露出させたこと以外は、実施例3と同様に、非水電解質二次電池60を作製した。
「平均放電電圧の測定」
実施例1〜実施例4の非水電解質二次電池について、25℃にて、10A(1C)の定電流で4.2Vまで充電を行った後、10A(1C)の電流値で3.0Vまで放電した時の平均放電電圧を測定した。
結果を表1に示した通り、実施例1〜実施例4の平均放電電圧は、それぞれ、3.62V、3.61V、3.61V、3.62Vであった。従って、負極に炭素材料を用いた従来のリチウムイオン電池と電圧互換性を有することが確認できた。このため、従来のリチウムイオン電池で用いられる過電流保護、過充電防止、過放電防止のための保護回路を互換可能である。
Figure 0006224225
「セルの放熱性の評価」
次に、実施例2〜実施例4の非水電解質二次電池について、25℃にて、10A(1C)の定電流で4.2Vまで充電を行った後、100A(10C)の電流値で3.0Vまで放電した。その時のセル表面温度の上昇を調べた。
その結果、セル温度の上昇は、実施例2、実施例3、実施例4の順に大きく、実施例2<実施例3<実施例4の順で発生した熱を効率的に放出することができることが確認できた。
また、非水電解質二次電池を折り曲げた構造の実施例2〜実施例4では、非水電解質二次電池の長手方向の長さが半分となり、非水電解質二次電池を自動車に搭載するときの空間的な自由度が向上することが確認できた。
(実施例5)
実施例2で作製した非水電解質二次電池1を、アルミニウムからなる外装缶に収納することにより、図7に示す非水電解質二次電池1の折り曲げ形態の第3の例に示した非水電解質二次電池を作製した。
次に、作製した非水電解質二次電池50個を、高さ1.2mの高さから落下させる落下試験を実施した後、電池の破損状況を調べた。
その結果、破損した電池は皆無であり、いずれも電池として機能することが確認できた。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1,50,60,70,90,110,130,150,170,180,200,220・・・非水電解質二次電池、2・・・第1の電極群、3・・・第2の電極群、4・・・正極リード、5・・・負極リード、6・・・接続リード、7,71・・・外装材、7A,71A・・・第1の部位、7B,71B・・・第2の部位、8A,72A・・・第1の収納部、8B,72B・・・第2の収納部、8C,78・・・接続部、9,21D,22D,73,82G・・・封止部、9A・・・第1の封止部、9B・・・第2の封止部、10,11,12,52,53・・・熱可塑性樹脂層、21,81・・・第1筐体部、21A,21B,81A,81B,82D,82E,82F・・・収納部、21C,22C,81C,82C・・・延出部、22,82・・・第2筐体部、22A,22B・・・蓋部、23・・・折り曲げ部、31・・・正極、32・・・負極、33・・・セパレータ、34・・・正極集電タブ、35・・・負極集電タブ、36・・・絶縁テープ、41・・・接着固定層、42,44,92,112,132,152・・・放熱部材、43・・・容器、51・・・未封止部、61・・・開口部、74A,74B,74C・・・端子収納部、75,75,77・・・絶縁性樹脂層、80,100,120,140,160,190,210,232・・・組電池、91,111,131,151,201,221・・・バスバー、133,153・・・基部、134,154,222B・・・放熱部、202,222・・・連結部材、222A・・・連結部、230・・・電池パック、231・・・単電池、233・・・プリント配線基板、234・・・サーミスタ、235・・・保護回路、236・・・通電用端子、237・・・正極側リード、238・・・正極側コネクタ、239・・・負極側リード、240・・・負極側コネクタ、241,242・・・配線、243a・・・プラス側配線、243b・・・マイナス側配線、244・・・配線。

Claims (13)

  1. LiFe1−yMnPO(Aは、V、Mg、Ni、Al、Sn、ZrおよびNbからなる群から選択される少なくとも1種、0≦x≦1.1、0≦y≦0.2、0≦z≦0.2)で表されるオリビン構造を有する鉄含有リン化合物を含む正極、チタンを含有する酸化物を含む負極および前記正極と前記負極との間に介在するセパレータを積層してなる第1の電極群および第2の電極群と、
    非水電解質と、
    前記第1の電極群、前記第2の電極群および前記非水電解質を封入した外装材と、
    前記第1の電極群の正極に接続され、前記外装材の外部に延出した正極リードと、前記第2の電極群の負極に接続され、前記外装材の外部に延出した負極リードと、
    前記第1の電極群の負極と前記第2の電極群の正極とを接続する接続リードと、を備え、
    前記外装材、前記第1の電極群を収容する第1の収納部と、前記第2の電極群を収容する第2の収納部と、前記第1の収納部と前記第2の収納部とを接続する接続部と、前記第1の電極群を収容する第1の凹部および該第1の凹部を覆う第1の蓋部と、前記第2の電極群を収容する第2の凹および該第2の凹部を覆う第2の蓋部と、を備え
    前記第1の蓋部と前記第2の蓋部は一体をなしている非水電解質二次電池。
  2. 前記第1の収納部と前記第2の収納部の間の前記接続部を含む部位は折り曲げ可能である請求項1に記載の非水電解質二次電池。
  3. 前記第1の凹部と前記第1の蓋部が対向するように重ね合わせられて前記第1の収納部が構成され、前記第2の凹部と前記第2の蓋部が対向するように重ね合わせられて前記第2の収納部が構成された請求項1に記載の非水電解質二次電池。
  4. 前記接続部に、前記第1の収納部を封止する第1の封止部と、前記第2の収納部を封止する第2の封止部と、第1の封止部と前記第2の封止部との間に設けられた未封止部と、が設けられた請求項1に記載の非水電解質二次電池。
  5. 前記未封止部に、前記接続リードを露出させる開口部が設けられた請求項4に記載の非水電解質二次電池。
  6. 前記第1の蓋部と、前記第2の蓋部とが対向するように、前記第1の収納部と前記第2の収納部とが重ねられた請求項1〜5のいずれか1項に記載の非水電解質二次電池。
  7. 前記第1の凹部の底面と前記第2の凹部の底面とが対向するように、前記第1の収納部と前記第2の収納部とが重ねられた請求項1〜5のいずれか1項に記載の非水電解質二次電池。
  8. 前記第1の収納部と前記第2の収納部とが、放熱部材を介して重ねられた請求項1〜7のいずれか1項に記載の非水電解質二次電池。
  9. 前記チタンを含有する酸化物は、ラムスデライト構造を有するリチウムチタン酸化物、スピネル構造を有するリチウムチタン酸化物、単斜晶構造を有するチタン酸化物およびニオブチタン酸化物からなる群から選択される少なくとも1種を含む請求項1〜8のいずれか1項に記載の非水電解質二次電池。
  10. 前記外装材は、金属層と、該金属層を被覆する樹脂層とからなる多層フィルムである請求項1〜9のいずれか1項に記載の非水電解質二次電池。
  11. 4V以上5V以下の範囲の充電最大電圧で3.6〜3.62Vの平均放電電圧を有する請求項1〜10のいずれか1項に記載の非水電解質二次電池。
  12. 前記第1の収納部と前記第2の収納部とが重なるように、前記外装材を折り曲げたとき、前記第1の収納部と前記第2の収納部の間の前記外装材によって形成される空間に挿通される連結部材を備え、該連結部材を共有して、請求項1〜11のいずれか1項に記載の非水電解質二次電池が複数個連結されてなる組電池。
  13. 請求項1〜11のいずれか1項に記載の非水電解質二次電池、または請求項12に記載の組電池を有する電池パック。
JP2016508389A 2014-03-19 2014-03-19 非水電解質二次電池、組電池および電池パック Active JP6224225B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057473 WO2015140952A1 (ja) 2014-03-19 2014-03-19 非水電解質二次電池、組電池および電池パック

Publications (2)

Publication Number Publication Date
JPWO2015140952A1 JPWO2015140952A1 (ja) 2017-04-06
JP6224225B2 true JP6224225B2 (ja) 2017-11-01

Family

ID=54143959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508389A Active JP6224225B2 (ja) 2014-03-19 2014-03-19 非水電解質二次電池、組電池および電池パック

Country Status (5)

Country Link
US (1) US20170025723A1 (ja)
EP (1) EP3121881A4 (ja)
JP (1) JP6224225B2 (ja)
CN (1) CN106063003B (ja)
WO (1) WO2015140952A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315269B2 (ja) * 2014-08-22 2018-04-25 株式会社デンソー 密閉型電池モジュール及びその製造方法
DE102015220434A1 (de) * 2015-10-20 2017-04-20 Robert Bosch Gmbh Temperiereinrichtung einer elektrischen Energiespeichereinheit
DE102015014509A1 (de) * 2015-11-11 2017-05-11 Bergische Universität Wuppertal Elektro-Antriebssystem
DE102016210142A1 (de) * 2016-06-08 2017-12-14 Bayerische Motoren Werke Aktiengesellschaft Speichermodul mit Heizmitteln
KR101935229B1 (ko) * 2016-09-28 2019-01-04 (주)그리너지 리튬 이차 전지
DE102016118752A1 (de) * 2016-10-04 2018-04-05 Johnson Controls Advanced Power Solutions Gmbh Energiespeichermodul und verfahren zum herstellen hiervon
DE102016225175A1 (de) * 2016-12-15 2018-06-21 Robert Bosch Gmbh Umhüllung für ein Batteriemodul
DE102016225160A1 (de) 2016-12-15 2018-06-21 Robert Bosch Gmbh Pouchfolie für ein Batteriezellsystem
DE102016225192A1 (de) * 2016-12-15 2018-06-21 Robert Bosch Gmbh Wärmeverteiler für eine Batterie
DE102016225184A1 (de) 2016-12-15 2018-06-21 Robert Bosch Gmbh Batteriemodul mit Batteriezellsystem und Umhüllung
DE102017200993B4 (de) 2017-01-23 2021-02-25 Audi Ag Verfahren zum Herstellen einer Batterie, Batterie und Kraftfahrzeug
KR102201167B1 (ko) 2017-04-06 2021-01-11 주식회사 엘지화학 수납부들 간의 연결부위에 만입부가 형성된 구조의 전지셀
US10698445B1 (en) * 2018-12-14 2020-06-30 Dell Products L.P. Information handling system multi-cell cantilevered battery
KR20200074741A (ko) * 2018-12-17 2020-06-25 삼성전자주식회사 접힘 가능한 배터리 및 그것을 포함하는 전자 장치
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
KR20210013931A (ko) * 2019-07-29 2021-02-08 삼성에스디아이 주식회사 이차 전지
CN210744060U (zh) * 2019-11-19 2020-06-12 宁德时代新能源科技股份有限公司 软包电池模组、电池包以及使用软包电池模组作为电源的设备
CN110828717B (zh) * 2020-01-13 2020-07-10 比亚迪股份有限公司 一种电池、电池模组、电池包和电动车
KR20210154612A (ko) * 2020-06-12 2021-12-21 주식회사 엘지에너지솔루션 전지셀, 배터리 팩, 및 전자 디바이스
CN112467188A (zh) * 2020-11-30 2021-03-09 远景动力技术(江苏)有限公司 电池模组的装配方法
JP7225193B2 (ja) * 2020-12-25 2023-02-20 プライムプラネットエナジー&ソリューションズ株式会社 電池モジュールおよびその製造方法
CN113270660B (zh) * 2021-05-25 2022-07-01 赣州知星科技合伙企业(有限合伙) 一种电动汽车废旧电池智能报废回收系统及其回收工艺
CN114023969A (zh) * 2021-11-03 2022-02-08 合肥国轩高科动力能源有限公司 一种3d爬山虎型高性能导电剂及其制备方法、应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251617A (ja) * 2004-03-05 2005-09-15 Nissan Motor Co Ltd 二次電池及び組電池
JP4213687B2 (ja) * 2005-07-07 2009-01-21 株式会社東芝 非水電解質電池及び電池パック
JP5002925B2 (ja) * 2005-08-12 2012-08-15 ソニー株式会社 二次電池
JP2008130360A (ja) * 2006-11-21 2008-06-05 Sony Corp 非水電解液二次電池
US9039789B2 (en) * 2010-12-08 2015-05-26 Mie Industry And Enterprise Support Center Method for manufacturing lithium secondary battery, method for manufacturing stacked battery, and method for manufacturing composite body
JP2012164476A (ja) * 2011-02-04 2012-08-30 Hitachi Maxell Energy Ltd ラミネート形電池およびそれを備えた積層型電池
JP5871302B2 (ja) * 2011-08-03 2016-03-01 昭和電工株式会社 二次電池用負極および二次電池
US8986872B2 (en) * 2012-02-15 2015-03-24 GM Global Technology Operations LLC Battery design

Also Published As

Publication number Publication date
EP3121881A4 (en) 2017-11-08
JPWO2015140952A1 (ja) 2017-04-06
CN106063003A (zh) 2016-10-26
EP3121881A1 (en) 2017-01-25
WO2015140952A1 (ja) 2015-09-24
CN106063003B (zh) 2019-02-19
US20170025723A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6224225B2 (ja) 非水電解質二次電池、組電池および電池パック
JP6892492B2 (ja) 二次電池、電池パック及び車両
CN108630995B (zh) 二次电池、电池包以及车辆
US10153477B2 (en) Lithium-ion secondary battery and method of producing the same
CN107204454B (zh) 电极、非水电解质电池、电池包及车辆
US10199636B2 (en) Electrode, nonaqueous electrolyte battery, battery pack, automobile, and vehicle
JP6870914B2 (ja) 非水電解質電池、電池パック及び車両
US9515298B2 (en) Nonaqueous electrolyte battery and battery pack
JP6214985B2 (ja) 組電池、電池パック及び自動車
JP2013008493A (ja) 非水電解質電池及び電池パック
US10978691B2 (en) Electrode group, secondary battery, battery pack, and vehicle
KR20170032456A (ko) 비수 전해질 전지 및 전지 팩
KR20180106808A (ko) 이차 전지용 전극, 이차 전지, 전지 팩 및 차량
WO2017007015A1 (ja) 非水電解質電池及び電池パック
US10777820B2 (en) Non-aqueous electrolyte battery and battery pack
US20200091560A1 (en) Battery, battery pack, and vehicle
US11901503B2 (en) Composite electrolyte, secondary battery, battery pack, and vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171004

R151 Written notification of patent or utility model registration

Ref document number: 6224225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151