JP6222929B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment Download PDF

Info

Publication number
JP6222929B2
JP6222929B2 JP2013004166A JP2013004166A JP6222929B2 JP 6222929 B2 JP6222929 B2 JP 6222929B2 JP 2013004166 A JP2013004166 A JP 2013004166A JP 2013004166 A JP2013004166 A JP 2013004166A JP 6222929 B2 JP6222929 B2 JP 6222929B2
Authority
JP
Japan
Prior art keywords
vapor deposition
vacuum
diffusion
container
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013004166A
Other languages
Japanese (ja)
Other versions
JP2014136804A (en
Inventor
松本 祐司
祐司 松本
英志 藤本
英志 藤本
恵美子 藤本
恵美子 藤本
博之 大工
博之 大工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013004166A priority Critical patent/JP6222929B2/en
Priority to CN201310721942.4A priority patent/CN103924195A/en
Priority to CN201320858786.1U priority patent/CN203768445U/en
Priority to KR1020130163500A priority patent/KR102180359B1/en
Priority to TW103101449A priority patent/TWI596224B/en
Publication of JP2014136804A publication Critical patent/JP2014136804A/en
Application granted granted Critical
Publication of JP6222929B2 publication Critical patent/JP6222929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Description

本発明は、例えばガラス基板の表面に金属材料、有機材料などの蒸着材料を負圧下で蒸着させるための真空蒸着装置に関するものである。   The present invention relates to a vacuum deposition apparatus for depositing a deposition material such as a metal material or an organic material under a negative pressure on the surface of a glass substrate, for example.

例えば、有機EL材料を用いたパネルディスプレイは、有機材料などの蒸着材料がガラス基板などの被蒸着部材に蒸着されることにより形成されている。通常、蒸着材料を蒸発容器で加熱して蒸発させ、この蒸発した蒸着材料である蒸発材料が、真空容器内に導かれるとともに当該真空容器内に配置された被蒸着部材(基板)の表面に放出されて、蒸着が行われている。   For example, a panel display using an organic EL material is formed by evaporating an evaporation material such as an organic material on an evaporation target member such as a glass substrate. Normally, the evaporation material is heated and evaporated in an evaporation container, and the evaporation material, which is the evaporated evaporation material, is introduced into the vacuum container and released to the surface of a member to be evaporated (substrate) disposed in the vacuum container. The vapor deposition is performed.

このような蒸着装置として、一端側が原料供給源に接続されるとともに他端側で複数に分岐した供給管を、蒸発材料を放出する多数の開口が形成された供給端に接続し、上記供給管の分岐した部分に流量制御手段が設けられた構成が開示されている(例えば、特許文献1参照)。この構成は、厚さの均一な蒸着膜を得ようとするものである。   As such a vapor deposition apparatus, one end side is connected to a raw material supply source, and a supply pipe branched into a plurality at the other end side is connected to a supply end in which a large number of openings for discharging the evaporation material are formed, and the supply pipe A configuration in which a flow rate control means is provided at the branched portion is disclosed (for example, see Patent Document 1). This configuration is intended to obtain a deposited film having a uniform thickness.

特開2007−332458号公報JP 2007-332458 A

しかしながら、上記特許文献1に開示された蒸着装置は、供給管または導入管に分岐部を有するものであり、これが原因としてコンダクタンスが低下していた。このため、従来の上記蒸着装置では、蒸着材料の加熱においてコンダクタンスの低下分を考慮する必要があり、蒸着材料の加熱温度を高く設定しなければならなかった。したがって、従来の上記蒸着装置では、特に、分解温度が比較的低い蒸着材料、つまり加熱により劣化しやすい蒸着材料の真空蒸着に適しないという問題があった。   However, the vapor deposition apparatus disclosed in Patent Document 1 has a branch portion in a supply pipe or an introduction pipe, and this causes a decrease in conductance. For this reason, in the conventional vapor deposition apparatus, it is necessary to consider a decrease in conductance in heating the vapor deposition material, and the heating temperature of the vapor deposition material has to be set high. Therefore, the conventional vapor deposition apparatus has a problem that it is not particularly suitable for vacuum vapor deposition of a vapor deposition material having a relatively low decomposition temperature, that is, a vapor deposition material that is easily deteriorated by heating.

そこで、本発明は、蒸着材料の加熱においてコンダクタンスの低下分を考慮する必要がなく、蒸着材料の加熱温度を低く設定できる真空蒸着装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a vacuum vapor deposition apparatus that can set the heating temperature of the vapor deposition material to be low without considering the decrease in conductance in the heating of the vapor deposition material.

上記課題を解決するため、本発明の請求項1に係る真空蒸着装置は、それぞれ蒸着材料を蒸発させて蒸発材料とする複数のるつぼと、これらるつぼの下流開口それぞれ接続されたバルブと、これらバルブから導入管を通じて蒸発材料を導入するとともに導入された蒸発材料を拡散させる拡散容器と、この拡散容器の内部で拡散された蒸発材料を基板に向けて放出する複数の放出孔とを備え、上記基板に真空下で蒸着を行う真空蒸着装置であって、
上記導入管の全てが分岐部を有しておらず
蒸着レートが0.1Å/sec以上10Å/sec以下であり、
拡散容器の内部空間厚さ(D)が1m以下およびノズル間最大距離(L)が5m以下で、
且つ、拡散容器の内部空間厚さ(D)とノズル間最大距離(L)との関係が、以下の式(2)〜(3)
100×D≦80×L+244 ・・・(2)
100×D≦−0.25×L+4.75 ・・・(3)
のいずれかを満たすものである。
  In order to solve the above problems, a vacuum vapor deposition apparatus according to claim 1 of the present invention includes a plurality of crucibles each of which vaporizes a vapor deposition material to obtain an evaporation material, and downstream of these crucibles.OpeningInEachA connected valve, a diffusion container for introducing the evaporation material from the valves through the introduction pipe and diffusing the introduced evaporation material, and a plurality of the discharge materials for releasing the evaporation material diffused in the diffusion container toward the substrate A vacuum deposition apparatus comprising a discharge hole and performing deposition on the substrate under vacuum,
  All of the above introduction pipes do not have a branch,
  The deposition rate is 0.1 Å / sec or more and 10 Å / sec or less,
  The internal space thickness (D) of the diffusion container is 1 m or less and the maximum distance between nozzles (L) is 5 m or less,
  In addition, the relationship between the internal space thickness (D) of the diffusion container and the maximum distance (L) between the nozzles is expressed by the following equation:(2)~ (3)
100 × D ≦ 80 × L + 244 (2)
  100 × D ≦ −0.25 × L + 4.75 (3)
One of the above is satisfied.

上記真空蒸着装置によると、導入管でコンダクタンスが殆ど低下しないので、蒸着材料の加熱においてコンダクタンスの低下分を考慮する必要がなく、蒸着材料の加熱温度を低く設定できる。このため、特に、分解温度が比較的低い蒸着材料、つまり加熱により劣化しやすい蒸着材料の真空蒸着に対して有効である。   According to the vacuum vapor deposition apparatus, since the conductance hardly decreases in the introduction pipe, it is not necessary to consider the decrease in conductance in heating the vapor deposition material, and the heating temperature of the vapor deposition material can be set low. For this reason, it is particularly effective for vacuum deposition of a vapor deposition material having a relatively low decomposition temperature, that is, a vapor deposition material that is easily deteriorated by heating.

本発明の実施の形態1に係る真空蒸着装置の全体断面図であり、(a)は正面断面図、(b)は(a)のA−A断面図である。It is whole sectional drawing of the vacuum evaporation system which concerns on Embodiment 1 of this invention, (a) is front sectional drawing, (b) is AA sectional drawing of (a). 同真空蒸着装置のシミュレーションで用いた拡散容器における内部空間のモデルを示す模式図である。It is a schematic diagram which shows the model of the internal space in the diffusion container used by simulation of the same vacuum evaporation system. 同シミュレーションの結果を示すグラフであり、(a)は放出孔のピッチLtが小さい場合のグラフ、(b)は放出孔のピッチLtが大きい場合のグラフである。It is a graph which shows the result of the simulation, (a) is a graph when the pitch Lt of discharge holes is small, (b) is a graph when the pitch Lt of discharge holes is large. 同シミュレーションの結果として、式(1)を満たす範囲を示すグラフである。It is a graph which shows the range which satisfy | fills Formula (1) as a result of the simulation. 同シミュレーションの結果として、式(1)〜(3)を満たす範囲を示すグラフである。It is a graph which shows the range which satisfy | fills Formula (1)-(3) as a result of the simulation. 本発明の実施の形態2に係る真空蒸着装置の全体断面図であり、(a)は正面断面図、(b)は側面断面図である。It is whole sectional drawing of the vacuum evaporation system which concerns on Embodiment 2 of this invention, (a) is front sectional drawing, (b) is side sectional drawing. 従来の真空蒸着装置の全体断面図である。It is whole sectional drawing of the conventional vacuum evaporation system.

[実施の形態1]
以下、本発明の実施の形態1に係る真空蒸着装置を、図面に基づき説明する。
図1(a)に示すように、この真空蒸着装置1は、蒸着材料(例えばAlq3)Aを蒸発させる複数[図1(a)では2つ]のるつぼ2と、蒸発した蒸着材料Aである蒸発材料をるつぼ2からそれぞれ導入する複数本[図1(a)では2本]の導入管11と、これら導入管11で導入された蒸発材料を内部に配置された基板Kに導いて所定の真空度(負圧)で蒸着させる真空容器3と、この真空容器3の内部を所定の真空度(負圧)にする真空ポンプ(図示省略)とを具備する。また、この真空容器3には、導入管11で導入された蒸発材料を拡散させる拡散容器(マニホールドともいう)21と、下側に基板Kを固定した状態で保持する基板ホルダー31と、この基板ホルダー31の近傍で基板Kに対する蒸着レートを計測する水晶振動式膜厚計(QCMともいう)41とが配置されている。さらに、上記拡散容器21の基板対向面には、図1(a)および(b)に示すように、拡散させた蒸発容器を放出する放出孔23が前後左右に多数形成されるとともに、各放出孔23にノズル25が取り付けられている。なお、以下では、拡散容器21から見たるつぼ2の方向(図1上の左右方向)を左右方向という。
[Embodiment 1]
Hereinafter, the vacuum evaporation system concerning Embodiment 1 of the present invention is explained based on a drawing.
As shown in FIG. 1A, this vacuum vapor deposition apparatus 1 includes a plurality of [two in FIG. 1A] crucibles 2 for evaporating a vapor deposition material (for example, Alq3) A, and an evaporated vapor deposition material A. A plurality of [two in FIG. 1 (a)] introducing pipes 11 for introducing the evaporating material from the crucible 2, and the evaporating material introduced through these introducing pipes 11 are guided to a substrate K disposed inside, and are given a predetermined amount. A vacuum vessel 3 for vapor deposition at a vacuum level (negative pressure), and a vacuum pump (not shown) for setting the inside of the vacuum vessel 3 to a predetermined vacuum level (negative pressure) are provided. The vacuum vessel 3 includes a diffusion container (also referred to as a manifold) 21 for diffusing the evaporation material introduced through the introduction pipe 11, a substrate holder 31 for holding the substrate K in a fixed state, and the substrate. A quartz vibration type film thickness meter (also referred to as QCM) 41 for measuring a deposition rate with respect to the substrate K is disposed in the vicinity of the holder 31. Further, as shown in FIGS. 1 (a) and 1 (b), a large number of discharge holes 23 for discharging the diffused evaporation container are formed in the front, rear, left and right on the surface of the diffusion container 21 facing the substrate. A nozzle 25 is attached to the hole 23. Hereinafter, the direction of the crucible 2 as viewed from the diffusion container 21 (the left-right direction in FIG. 1) is referred to as the left-right direction.

上記各るつぼ2の下流開口には、蒸発材料の流量を制御するバルブ51がそれぞれ接続されている。また、上記導入管11は、真空容器3外の各バルブ51と真空容器3内の拡散容器21とを接続し、真空容器3の側壁3sを貫通して配置されている。さらに、上記拡散容器21は、蒸発材料を拡散させるための内部空間22が形成された直方体形状である。また、基板ホルダー31に保持された基板Kには、基板Kに生成させる蒸着膜を所望の範囲にするメタルマスクMが設けられる。   Valves 51 for controlling the flow rate of the evaporating material are respectively connected to the downstream openings of the crucibles 2. The introduction pipe 11 connects each valve 51 outside the vacuum vessel 3 to the diffusion vessel 21 in the vacuum vessel 3 and is disposed through the side wall 3 s of the vacuum vessel 3. Further, the diffusion container 21 has a rectangular parallelepiped shape in which an internal space 22 for diffusing the evaporation material is formed. Further, the substrate K held by the substrate holder 31 is provided with a metal mask M that makes the vapor deposition film generated on the substrate K a desired range.

次に、本発明の要旨である導入管11および拡散容器21の詳細について説明する。
上記導入管11は、全長にわたって内径が一定の管である。したがって、上記導入管11は、導入する蒸発材料のコンダクタンスを低下させにくい構造である。
Next, details of the introduction tube 11 and the diffusion container 21 which are the gist of the present invention will be described.
The introduction tube 11 is a tube having a constant inner diameter over the entire length. Therefore, the introduction pipe 11 has a structure that hardly reduces the conductance of the evaporation material to be introduced.

上記拡散容器21は、その左右側面に、上記導入管11の内部と上記内部空間22とを連通する導入口24がそれぞれ形成されている。このため、上記拡散容器21は、導入口24から蒸発材料を導入し、導入された蒸発材料を上記内部空間22で拡散し、拡散させた蒸発材料を上記ノズル25から基板Kに向けて放出するように構成されている。この内部空間22も直方体形状であり、最も大きな面積を有する2面が基板対向面およびその反対面である。   The diffusion container 21 is formed with introduction ports 24 on the left and right side surfaces thereof for communicating the inside of the introduction pipe 11 and the internal space 22. Therefore, the diffusion container 21 introduces the evaporation material from the introduction port 24, diffuses the introduced evaporation material in the internal space 22, and discharges the diffused evaporation material from the nozzle 25 toward the substrate K. It is configured as follows. The internal space 22 has a rectangular parallelepiped shape, and the two surfaces having the largest area are the substrate facing surface and the opposite surface.

上記拡散容器21は、拡散容器21の内部空間22の厚さをD、ノズル25のノズル間最大距離をLとすると、
100×D≧−1.22×L+25L−0.51・・・(1)
を満たすものである。
The diffusion container 21 is configured such that the thickness of the inner space 22 of the diffusion container 21 is D, and the maximum distance between nozzles of the nozzle 25 is L.
100 × D ≧ −1.22 × L 2 + 25L−0.51 (1)
It satisfies.

加えて、蒸着レートが0.1Å/sec以上10Å/sec以下であり、拡散容器21の内部空間22の厚さ(D)が1m以下で且つ、ノズル25のノズル間最大距離(L)が5m以下で、
100×D≦80×L+244 ・・・(2)
100×D≦−0.25×L+4.75 ・・・(3)
を満たすものである。
In addition, the deposition rate is 0.1 Å / sec or more and 10 Å / sec or less, the thickness (D) of the internal space 22 of the diffusion container 21 is 1 m or less, and the maximum distance (L) between nozzles of the nozzle 25 is 5 m. Below,
100 × D ≦ 80 × L + 244 (2)
100 × D ≦ −0.25 × L + 4.75 (3)
It satisfies.

ところで、図示しないが、るつぼ2には蒸着材料Aを加熱して蒸発させるためのヒータ(例えばシースヒータである)が設けられている。また、バルブ51、導入管11、拡散容器21およびノズル25には、図示しないが、内部を通過する蒸発材料が冷却されて付着するのを防ぐためのヒータ(例えばシースヒータである)がそれぞれ設けられている。   Although not shown, the crucible 2 is provided with a heater (for example, a sheath heater) for heating and evaporating the vapor deposition material A. The valve 51, the introduction pipe 11, the diffusion container 21, and the nozzle 25 are each provided with a heater (for example, a sheath heater) for preventing the evaporation material passing through the inside from being cooled and attached. ing.

以下、上記真空蒸着装置1の作用について説明する。
まず、各るつぼ2に蒸着材料Aを投入し、真空容器3の内部を真空ポンプで所定の真空度(負圧)にしておく。そして、全てのバルブ51を閉じて、るつぼ2、バルブ51、導入管11、拡散容器21およびノズル25をヒータで加熱する。るつぼ2内の蒸着材料Aが加熱されると、この蒸着材料Aが蒸発する。その後、1つのバルブ51を開けることで、そのるつぼ2からの蒸発した蒸着材料A(つまり蒸発材料)は、コンダクタンスが殆ど低下することなくバルブ51および導入管11を通過し、拡散容器21に導入される。そして、蒸発材料は、拡散容器21の内部空間22で拡散し、ノズル25から基板Kに向けて放出される。放出された蒸発材料により蒸着が行われ、基板Kに蒸着膜を生成していく。また、基板Kの近傍で蒸着レートが水晶振動式膜厚計41により計測され、蒸着レートが所望の値になるように、バルブ51により蒸発材料の流量を適宜制御する。所望の厚さの蒸着膜が生成されると、上記バルブ51を閉じるとともに他の1つのバルブ51を開け、同様にして、上記蒸着膜に重ねて他の蒸着膜を生成していく。
Hereinafter, the operation of the vacuum deposition apparatus 1 will be described.
First, the vapor deposition material A is put into each crucible 2, and the inside of the vacuum vessel 3 is set to a predetermined degree of vacuum (negative pressure) with a vacuum pump. Then, all the valves 51 are closed, and the crucible 2, the valve 51, the introduction pipe 11, the diffusion container 21, and the nozzle 25 are heated with a heater. When the vapor deposition material A in the crucible 2 is heated, the vapor deposition material A evaporates. Thereafter, by opening one valve 51, the evaporated deposition material A (that is, the evaporation material) from the crucible 2 passes through the valve 51 and the introduction pipe 11 with almost no decrease in conductance, and is introduced into the diffusion container 21. Is done. Then, the evaporation material diffuses in the internal space 22 of the diffusion container 21 and is discharged from the nozzle 25 toward the substrate K. Vapor deposition is performed by the released evaporation material, and a vapor deposition film is generated on the substrate K. Further, the vapor deposition rate is measured in the vicinity of the substrate K by the quartz vibration type film thickness meter 41, and the flow rate of the evaporation material is appropriately controlled by the valve 51 so that the vapor deposition rate becomes a desired value. When the vapor deposition film having a desired thickness is generated, the valve 51 is closed and the other one valve 51 is opened. Similarly, another vapor deposition film is formed on the vapor deposition film.

ここで、蒸着レート、内部空間22の厚さ(D)およびノズル25のノズル間最大距離(L)が上記の通りであるから、内部空間22の蒸発材料は、蒸着膜の膜厚均一性が±3%以内となるようにノズル25から放出される。   Here, since the vapor deposition rate, the thickness (D) of the internal space 22 and the maximum distance (L) between the nozzles of the nozzle 25 are as described above, the evaporation material of the internal space 22 has a uniform film thickness of the vapor deposition film. It is discharged from the nozzle 25 so as to be within ± 3%.

このように、上記実施の形態1に係る真空蒸着装置1によると、導入管11でコンダクタンスが殆ど低下しないので、蒸着材料Aの加熱においてコンダクタンスの低下分を考慮する必要がなく、蒸着材料Aの加熱温度を低く設定できる。このため、特に、分解温度が比較的低い蒸着材料、つまり加熱により劣化しやすい蒸着材料の真空蒸着に対して有効である。   As described above, according to the vacuum vapor deposition apparatus 1 according to the first embodiment, the conductance hardly decreases in the introduction pipe 11, so it is not necessary to consider the decrease in conductance in the heating of the vapor deposition material A. The heating temperature can be set low. For this reason, it is particularly effective for vacuum deposition of a vapor deposition material having a relatively low decomposition temperature, that is, a vapor deposition material that is easily deteriorated by heating.

また、蒸着膜の膜厚均一性を±3%以内とすることができる。
[シミュレーション]
以下、上記実施の形態1における式(1)〜(3)を導出するに至ったシミュレーションについて説明する。
Further, the film thickness uniformity of the deposited film can be within ± 3%.
[simulation]
Hereinafter, the simulation that led to deriving the equations (1) to (3) in the first embodiment will be described.

このシミュレーションでは、図2に示すように、上記実施の形態1に係る内部空間22(直方体形状)を近似したものとして、直径がDtである円柱形状の内部空間とした。また、このシミュレーションでは、放出孔23tを左右方向に2つとし、これら放出孔23tのピッチをLtとした。   In this simulation, as shown in FIG. 2, a cylindrical internal space having a diameter of Dt is used as an approximation of the internal space 22 (cuboid shape) according to the first embodiment. In this simulation, two discharge holes 23t are provided in the left-right direction, and the pitch of these discharge holes 23t is Lt.

上記のような内部空間22tおよび放出孔23tが形成された拡散容器21tにおいて、導入する蒸発材料の流量レートQ、内部空間22tの直径Dt、および放出孔23のピッチLtを様々に変化させた場合の、放出孔23tから放出される蒸発材料の流量比q1/q2を算出した。   When the flow rate Q of the evaporation material to be introduced, the diameter Dt of the internal space 22t, and the pitch Lt of the discharge holes 23 are varied in the diffusion container 21t in which the internal space 22t and the discharge holes 23t are formed as described above. The flow rate ratio q1 / q2 of the evaporation material discharged from the discharge hole 23t was calculated.

図3(a)にはLtを小さな値に設定した結果を示し、図3(b)にはLtを大きな値に設定した結果を示す。図3(a)に示すように、Ltが小さな値の場合、Dtが小さければ蒸着レート(流量レートQに基づく)が比較的低い領域で流量比が安定し、Dtが大きければ蒸着レート(流量レートQに基づく)が比較的高い領域で流量比が安定する。また、図3(b)に示すように、Ltが大きな値の場合も同様に、Dtが小さければ蒸着レート(流量レートQに基づく)が比較的低い領域で流量比が安定し、Dtが大きければ蒸着レート(流量レートQに基づく)が比較的高い領域で流量比が安定する。なぜなら、Dtが小さければ、蒸発材料の蒸着レートが所定値以下で、その蒸発材料は分子流となる一方、Dtが大きければ、蒸発材料の蒸着レートが他の所定値以上で、その蒸発材料は粘性流となるからである。これに対して、Dtが小さく蒸着レートが上記所定値を超える場合、または、Dtが大きく蒸着レートが上記他の所定値未満の場合、蒸発材料は分子流と粘性流とが混在した状態となるので、蒸着レートを変動させると流量比も大きく変動する。上記シミュレーション結果から、蒸着レートに関係なく流量比が0.94以上となるDtとLtとの関係式が得られた。この関係式が上記式(1)となる。この上記式(1)が満たされるDt−Ltの範囲を図4のハッチングに示す。なお、流量比が0.94以上であれば、蒸着膜の膜厚均一性が±3%以内となる。 FIG. 3A shows the result of setting Lt to a small value, and FIG. 3B shows the result of setting Lt to a large value. As shown in FIG. 3 (a), when Lt is a small value, Dt (based on the flow rate rate Q) is less if the deposition rate is the flow rate ratio is stabilized at a relatively low region, the larger the Dt evaporation rate (flow rate The flow ratio is stable in a region where the rate Q is relatively high. Similarly, as shown in FIG. 3B, when Lt is large, similarly, if Dt is small, the flow rate ratio is stabilized and Dt is large in a region where the deposition rate ( based on the flow rate Q) is relatively low. If the deposition rate ( based on the flow rate Q) is relatively high, the flow rate ratio is stabilized. This is because, the smaller the Dt, the evaporation rate of the evaporation material is equal to or less than a predetermined value, while the evaporation material comprising a molecular flow, the greater the Dt, at a deposition rate of the evaporation material is other than the predetermined value, the evaporation material This is because it becomes a viscous flow. On the other hand, when Dt is small and the vapor deposition rate exceeds the predetermined value, or when Dt is large and the vapor deposition rate is less than the other predetermined value, the evaporation material is in a state in which molecular flow and viscous flow are mixed. Therefore, when the deposition rate is changed, the flow rate ratio is also greatly changed. From the above simulation results, a relational expression between Dt and Lt was obtained in which the flow rate ratio was 0.94 or more regardless of the deposition rate. This relational expression is the above expression (1). The range of Dt−Lt that satisfies the above equation (1) is shown by hatching in FIG. If the flow rate ratio is 0.94 or more, the film thickness uniformity of the deposited film is within ± 3%.

さらに、上記シミュレーション結果から、蒸着レートが0.1Å/sec以上10Å/sec以下の範囲内において流量比が0.94以上となるDtとLtとの関係式が得られた。この関係式が、拡散容器21の内部空間22の厚さ(D)が1m以下およびノズル25のノズル間最大距離(L)が5m以下の条件で、上記式(2)および(3)となる。 Furthermore, from the above simulation results, a relational expression between Dt and Lt was obtained in which the flow rate ratio was 0.94 or more within the range of the deposition rate of 0.1 Å / sec to 10 Å / sec. This relational expression becomes the above expressions (2) and (3) under the condition that the thickness (D) of the internal space 22 of the diffusion container 21 is 1 m or less and the maximum distance (L) between the nozzles 25 is 5 m or less. .

したがって、蒸着レートが0.1Å/sec以上10Å/sec以下であり、内部空間22の厚さ(D)が1m以下およびノズル25のノズル間最大距離(L)が5m以下の条件で、上記(1),(2)または(3)のいずれかを満たせば、流量比が0.94以上、すなわち、蒸着膜の膜厚均一性が±3%以内となるように蒸発材料から放出される。これらが満たされるDt−Ltの範囲を図5のハッチングに示す。   Therefore, the above conditions are satisfied under the conditions that the vapor deposition rate is 0.1 Å / sec or more and 10 Å / sec or less, the thickness (D) of the internal space 22 is 1 m or less, and the maximum distance (L) between the nozzles 25 is 5 m or less. If any one of (1), (2) and (3) is satisfied, the material is discharged from the evaporation material so that the flow rate ratio is 0.94 or more, that is, the film thickness uniformity of the deposited film is within ± 3%. The range of Dt−Lt in which these are satisfied is shown by hatching in FIG.

なお、上記シミュレーションの値は、蒸発分子の平均自由行程と分散容器の壁面間距離とにより略決定されるものであるから、内部空間22tが円柱形状の拡散容器21tに限られず、直方体形状など他の形状の拡散容器にも適用できる。   Note that the value of the above simulation is substantially determined by the mean free path of the evaporated molecules and the distance between the wall surfaces of the dispersion container. Therefore, the internal space 22t is not limited to the cylindrical diffusion container 21t, and the like such as a rectangular parallelepiped shape. It can be applied to a diffusion container having a shape of

以下、上記実施の形態1をより具体的に示した実施例について説明する。
この実施例では、図1の通り、るつぼ2が2つ、導入管11が2本の真空蒸着装置1を使用した。また、一方のるつぼ2内の蒸着材料A(A1)をα−NPDとし、他方のるつぼ2内の蒸着材料A(A2)をAlq3とした。ここで、ノズル25のノズル間最大距離(L)が1.0m、内部空間22の厚さ(D)が0.25mの拡散容器21を用いた。
Hereinafter, examples that more specifically illustrate the first embodiment will be described.
In this embodiment, as shown in FIG. 1, a vacuum vapor deposition apparatus 1 having two crucibles 2 and two introduction pipes 11 was used. The vapor deposition material A (A1) in one crucible 2 was α-NPD, and the vapor deposition material A (A2) in the other crucible 2 was Alq3. Here, the diffusion container 21 in which the maximum distance (L) between the nozzles of the nozzle 25 is 1.0 m and the thickness (D) of the internal space 22 is 0.25 m is used.

上記真空蒸着装置1を用いて、1.0Å/secの蒸着レートで、基板Kにα−NPDの蒸着膜を生成し、この蒸着膜に重ねてAlq3の蒸着膜を生成した。これら蒸着膜の膜厚均一性を、いずれも±3%以内とすることができた。   Using the vacuum deposition apparatus 1, an α-NPD deposition film was formed on the substrate K at a deposition rate of 1.0 Å / sec, and an Alq3 deposition film was formed on the deposition film. The film thickness uniformity of these vapor-deposited films was all within ± 3%.

また、この工程において、蒸着材料Aの加熱温度が、α−NPDで280℃、Alq3で340℃となり、従来の分岐部を有する導入管11が具備された真空蒸着装置1に比べて、いずれも5℃低下させることができた。   Further, in this process, the heating temperature of the vapor deposition material A is 280 ° C. for α-NPD and 340 ° C. for Alq 3, both of which are compared with the vacuum vapor deposition apparatus 1 provided with the introduction pipe 11 having a conventional branch portion. The temperature could be lowered by 5 ° C.

[実施の形態2]
本実施の形態2に係る真空蒸着装置1は、上記実施の形態1に係る真空蒸着装置1と異なり、共蒸着を行い得るものである。
[Embodiment 2]
Unlike the vacuum deposition apparatus 1 according to the first embodiment, the vacuum deposition apparatus 1 according to the second embodiment can perform co-deposition.

以下、本実施の形態2に係る真空蒸着装置1について図6に基づき説明するが、上記実施の形態1と異なる拡散容器21、導入管11および水晶振動式膜厚計41の配置に着目して説明するとともに、上記実施の形態1と同一の構成については、同一番号を付してその説明を省略する。なお、以下では、図6(a)上の左右方向を左右方向といい、図6(b)上の左右方向を前後方向という。   Hereinafter, the vacuum vapor deposition apparatus 1 according to the second embodiment will be described with reference to FIG. 6, but paying attention to the arrangement of the diffusion container 21, the introduction tube 11, and the quartz vibration type film thickness meter 41, which is different from the first embodiment. While describing, about the same structure as the said Embodiment 1, the same number is attached | subjected and the description is abbreviate | omitted. In the following, the left-right direction on FIG. 6A is referred to as the left-right direction, and the left-right direction on FIG. 6B is referred to as the front-rear direction.

図6に示すように、この真空蒸着装置1は、真空容器3の内部に拡散容器21が複数段(図6では3段)に重なって配置されている。上段の拡散容器21Hには、その左側下面の前後方向に複数本[図6(b)では2本]の導入管11が接続されている。中段の拡散容器21Mには、その右側下面の前後方向に複数本[図6(b)では2本]の導入管11が接続されている。下段の拡散容器21Lには、その中側下面の前後方向に複数本[図6(b)では2本]の導入管11が接続されている。また、上記導入管11と同数のるつぼ2およびバルブ51が、真空容器3の下方に配置されている。このため、全ての導入管11は、真空容器3の底壁3bを貫通して略垂直に配置されている。さらに、各拡散容器21の後面には、図6(b)に示すように、各内部空間22の蒸発材料の一部を検出用に放出する検出ノズル26が取り付けられている。また、これら検出ノズル26の後方には、当該検出ノズル26で放出された蒸発材料に基づいて各拡散容器21H,21M,21Lによる蒸着レートを検出する水晶振動式膜厚計41がそれぞれ配置されている。   As shown in FIG. 6, in this vacuum vapor deposition device 1, a diffusion container 21 is arranged in a plurality of stages (three stages in FIG. 6) inside the vacuum container 3. A plurality of [two in FIG. 6B] introduction pipes 11 are connected to the upper diffusion container 21H in the front-rear direction of the lower surface on the left side. A plurality of [two in FIG. 6B] introduction pipes 11 are connected to the middle diffusion container 21M in the front-rear direction of the lower surface on the right side. A plurality of [two in FIG. 6B] introduction pipes 11 are connected to the lower diffusion container 21L in the front-rear direction of the inner lower surface. Further, the same number of crucibles 2 and valves 51 as the introduction pipe 11 are arranged below the vacuum vessel 3. For this reason, all the introduction pipes 11 are disposed substantially vertically through the bottom wall 3 b of the vacuum vessel 3. Furthermore, as shown in FIG. 6B, a detection nozzle 26 that discharges a part of the evaporation material in each internal space 22 for detection is attached to the rear surface of each diffusion container 21. Further, behind these detection nozzles 26, crystal vibration type film thickness meters 41 for detecting vapor deposition rates by the diffusion containers 21H, 21M, and 21L based on the evaporation material discharged from the detection nozzles 26 are respectively arranged. Yes.

以下、上記真空蒸着装置1の作用について上記実施の形態1と異なる点について説明する。
基板Kの近傍で複数の拡散容器21H,21M,21Lによる全体の蒸着レートが水晶振動式膜厚計41により計測され、拡散容器21H,21M,21Lの後方で当該拡散容器21H,21M,21Lによる各蒸着レートが水晶振動式膜厚計41によりそれぞれ計測される。そして、全体の蒸着レートおよび拡散容器21H,21M,21Lの各蒸着レートが所望の値になるように、バルブ51により蒸発材料の流量を適宜制御する。
Hereinafter, the difference of the operation of the vacuum vapor deposition apparatus 1 from the first embodiment will be described.
In the vicinity of the substrate K, the entire deposition rate by the plurality of diffusion containers 21H, 21M, and 21L is measured by the quartz vibrating film thickness meter 41, and behind the diffusion containers 21H, 21M, and 21L, by the diffusion containers 21H, 21M, and 21L. Each deposition rate is measured by the quartz vibration type film thickness meter 41. Then, the flow rate of the evaporation material is appropriately controlled by the valve 51 so that the entire vapor deposition rate and the vapor deposition rates of the diffusion containers 21H, 21M, and 21L have desired values.

このように、上記実施の形態2に係る真空蒸着装置1によると、実施の形態1に係る真空蒸着装置1と同様に、蒸着材料Aの加熱温度を低く設定できるとともに、蒸着膜の膜厚均一性を±3%以内とすることができる。また、複数の拡散容器21が配置されているので、拡散容器21ごとに種類の異なる蒸発材料を導入することで、共蒸着を行うことができる。   Thus, according to the vacuum evaporation apparatus 1 which concerns on the said Embodiment 2, while the heating temperature of the vapor deposition material A can be set low similarly to the vacuum evaporation apparatus 1 which concerns on Embodiment 1, the film thickness of a vapor deposition film is uniform The sex can be within ± 3%. Moreover, since the several diffusion container 21 is arrange | positioned, co-evaporation can be performed by introduce | transducing a vaporization material from which a kind differs for every diffusion container 21. FIG.

ところで、上記実施の形態1および2では、導入管11が略水平または略垂直であるとして図示したが、これに限定されるものではない。
さらに、上記実施の形態1および2では、拡散容器21が、その基板対向面にノズル25を取り付けたものとして説明したが、ノズル25を取り付けずに、放出孔23から蒸発材料を直接放出するものであってもよい。
In the first and second embodiments, the introduction pipe 11 is illustrated as being substantially horizontal or substantially vertical. However, the present invention is not limited to this.
Further, in the first and second embodiments described above, the diffusion container 21 has been described as having the nozzle 25 attached to the substrate-facing surface, but the evaporation material is directly discharged from the discharge hole 23 without the nozzle 25 being attached. It may be.

また、上記実施の形態1では、真空蒸着装置1が複数のるつぼ2を具備するものとして説明したが、1つのるつぼ2を具備するものであってもよい。
また、上記実施の形態1における複数のるつぼ2内の蒸着材料Aを異なるものA(A1,A2)としてもよく、同一であってもよい。同一とすることで、蒸着材料Aの加熱温度を一層低く設定できる。
In the first embodiment, the vacuum vapor deposition apparatus 1 has been described as including a plurality of crucibles 2, but may include a single crucible 2.
Further, the vapor deposition materials A in the plurality of crucibles 2 in the first embodiment may be different ones (A1, A2) or the same. By making it the same, the heating temperature of the vapor deposition material A can be set still lower.

また、上記実施の形態1および2では、拡散容器21の内部空間の厚さ(D)として高さについて図示したが、これは基板対向面とその反対面との間隔であればよい。すなわち、内部空間の厚さ(D)は、拡散容器21の上面が基板対向面だと上下面間隔であり、拡散容器21の左面または右面が基板対向面だと左右面間隔である。   In the first and second embodiments, the height is illustrated as the thickness (D) of the internal space of the diffusion container 21, but this may be any distance between the substrate facing surface and the opposite surface. That is, the thickness (D) of the internal space is a vertical space when the upper surface of the diffusion container 21 is a substrate-facing surface, and a horizontal space when the left or right surface of the diffusion container 21 is a substrate-facing surface.

K 基板
A 蒸着材料
2 るつぼ
11 導入管
21 拡散容器
22 内部空間
23 放出口
24 導入口
K substrate A vapor deposition material 2 crucible 11 introduction pipe 21 diffusion container 22 internal space 23 discharge port 24 introduction port

Claims (1)

それぞれ蒸着材料を蒸発させて蒸発材料とする複数のるつぼと、これらるつぼの下流開口それぞれ接続されたバルブと、これらバルブから導入管を通じて蒸発材料を導入するとともに導入された蒸発材料を拡散させる拡散容器と、この拡散容器の内部で拡散された蒸発材料を基板に向けて放出する複数の放出孔とを備え、上記基板に真空下で蒸着を行う真空蒸着装置であって、
上記導入管の全てが分岐部を有しておらず
蒸着レートが0.1Å/sec以上10Å/sec以下であり、
拡散容器の内部空間厚さ(D)が1m以下およびノズル間最大距離(L)が5m以下で、
且つ、拡散容器の内部空間厚さ(D)とノズル間最大距離(L)との関係が、以下の式(2)〜(3)
100×D≦80×L+244 ・・・(2)
100×D≦−0.25×L+4.75 ・・・(3)
のいずれかを満たすことを特徴とする真空蒸着装置。
A plurality of crucibles each for evaporating vapor deposition material to evaporate material, valves connected to respective downstream openings of these crucibles, diffusion that introduces the evaporative material from these valves through the introduction pipe and diffuses the introduced evaporative material A vacuum deposition apparatus comprising a container and a plurality of discharge holes for discharging the evaporated material diffused inside the diffusion container toward the substrate, and performing deposition on the substrate under vacuum,
All of the above introduction pipes do not have a branch part ,
The deposition rate is 0.1 Å / sec or more and 10 Å / sec or less,
The internal space thickness (D) of the diffusion container is 1 m or less and the maximum distance between nozzles (L) is 5 m or less,
And the relationship between the internal space thickness (D) of the diffusion container and the maximum distance (L) between the nozzles is expressed by the following equations (2) to (3).
100 × D ≦ 80 × L + 244 (2)
100 × D ≦ −0.25 × L + 4.75 (3)
Any one of the above is satisfied.
JP2013004166A 2013-01-15 2013-01-15 Vacuum deposition equipment Active JP6222929B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013004166A JP6222929B2 (en) 2013-01-15 2013-01-15 Vacuum deposition equipment
CN201310721942.4A CN103924195A (en) 2013-01-15 2013-12-24 Vacuum Evaporating Device
CN201320858786.1U CN203768445U (en) 2013-01-15 2013-12-24 Vacuum evaporation device
KR1020130163500A KR102180359B1 (en) 2013-01-15 2013-12-26 Vacuum evaporation apparatus
TW103101449A TWI596224B (en) 2013-01-15 2014-01-15 Apparatus of vacuum evaporating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004166A JP6222929B2 (en) 2013-01-15 2013-01-15 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JP2014136804A JP2014136804A (en) 2014-07-28
JP6222929B2 true JP6222929B2 (en) 2017-11-01

Family

ID=51142582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004166A Active JP6222929B2 (en) 2013-01-15 2013-01-15 Vacuum deposition equipment

Country Status (4)

Country Link
JP (1) JP6222929B2 (en)
KR (1) KR102180359B1 (en)
CN (2) CN103924195A (en)
TW (1) TWI596224B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104178734B (en) * 2014-07-21 2016-06-15 京东方科技集团股份有限公司 Evaporation coating device
CN206396318U (en) * 2017-01-24 2017-08-11 京东方科技集团股份有限公司 A kind of crucible
WO2018141365A1 (en) * 2017-01-31 2018-08-09 Applied Materials, Inc. Material deposition arrangement, vacuum deposition system and method therefor
KR102493131B1 (en) * 2018-02-06 2023-01-31 삼성디스플레이 주식회사 Apparatus for deposition a organic material, and deposition method of a organic material using the same
WO2019198664A1 (en) 2018-04-12 2019-10-17 株式会社トクヤマ Photochromic optical article and method for manufacturing same
CN109321884A (en) * 2018-10-17 2019-02-12 武汉华星光电半导体显示技术有限公司 Evaporation coating device
TW202134454A (en) * 2020-03-10 2021-09-16 日商昭和真空股份有限公司 Vapor deposition source unit, vapor deposition source, and nozzle for vapor deposition source capable of maintaining a high film formation rate while ensuring the directivity of an evaporated vapor deposition material
CN112877646B (en) * 2021-01-13 2023-01-31 嘉讯科技(深圳)有限公司 High-efficient vacuum plating device with mix and plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110973A (en) * 1977-03-10 1978-09-28 Futaba Denshi Kogyo Kk Method and apparatus for manufacturing compounds
JPH03183762A (en) * 1989-12-12 1991-08-09 Nikon Corp Vacuum vapor deposition device
JP4570403B2 (en) * 2004-06-28 2010-10-27 日立造船株式会社 Evaporation apparatus, vapor deposition apparatus, and method for switching evaporation apparatus in vapor deposition apparatus
JP4602054B2 (en) * 2004-11-25 2010-12-22 東京エレクトロン株式会社 Vapor deposition equipment
JP2006225757A (en) * 2005-01-21 2006-08-31 Mitsubishi Heavy Ind Ltd Vacuum vapor deposition apparatus
JP2007332458A (en) 2006-05-18 2007-12-27 Sony Corp Vapor deposition apparatus, and vapor deposition source, and display device manufacturing method
CN101356296B (en) * 2006-05-19 2011-03-30 株式会社爱发科 Vapor deposition apparatus for organic vapor deposition material and process for producing organic thin film
JP5506147B2 (en) * 2007-10-18 2014-05-28 キヤノン株式会社 Film forming apparatus and film forming method
JP4551465B2 (en) * 2008-06-24 2010-09-29 東京エレクトロン株式会社 Vapor deposition source, film forming apparatus, and film forming method
US20100159132A1 (en) * 2008-12-18 2010-06-24 Veeco Instruments, Inc. Linear Deposition Source
JP4782219B2 (en) * 2009-07-02 2011-09-28 三菱重工業株式会社 Vacuum deposition equipment
WO2011074551A1 (en) * 2009-12-18 2011-06-23 平田機工株式会社 Vacuum deposition method and vacuum deposition apparatus
JP5549461B2 (en) * 2010-07-26 2014-07-16 富士通株式会社 Electronic component peeling apparatus and peeling method
KR20120010736A (en) * 2010-07-27 2012-02-06 히다치 조센 가부시키가이샤 Deposition apparatus
KR101422533B1 (en) * 2012-12-04 2014-07-24 주식회사 선익시스템 A Linear Type Evaporator with a Mixing Zone

Also Published As

Publication number Publication date
KR102180359B1 (en) 2020-11-18
TW201428116A (en) 2014-07-16
CN103924195A (en) 2014-07-16
CN203768445U (en) 2014-08-13
JP2014136804A (en) 2014-07-28
TWI596224B (en) 2017-08-21
KR20140092221A (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP6222929B2 (en) Vacuum deposition equipment
JP4767000B2 (en) Vacuum deposition equipment
TWI467040B (en) Evaporator for organic materials
JP4966028B2 (en) Vacuum deposition equipment
US20100092665A1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus and method for using evaporating apparatus
JP4545010B2 (en) Vapor deposition equipment
JP2018501405A5 (en)
JP6300544B2 (en) Vacuum deposition apparatus and vacuum deposition method
US20120192793A1 (en) Film forming apparatus
JP2005336527A (en) Vapor deposition apparatus
JP2013189678A (en) Vapor deposition apparatus
CN106560007B (en) The film deposition apparatus for having multiple crucibles
JP2012226838A (en) Vacuum vapor deposition apparatus
US20110017135A1 (en) Tomic layer film forming apparatus
JP2009108375A (en) Vapor deposition apparatus and vapor deposition source
JP6207319B2 (en) Vacuum deposition equipment
KR101422533B1 (en) A Linear Type Evaporator with a Mixing Zone
JP2006111926A (en) Vapor deposition system
JP2009228090A (en) Vapor deposition apparatus and vapor deposition source
JP6382508B2 (en) Coating equipment
KR101474363B1 (en) Linear source for OLED deposition apparatus
KR20130042157A (en) Apparatus for processing substrate
KR101415664B1 (en) Vaporizer and Depositing Apparatus including Vaporizer
KR101490438B1 (en) Vaporizer in depositing apparatus
JP2017025355A (en) Vapor deposition apparatus, and vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6222929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250