JP6300544B2 - Vacuum deposition apparatus and vacuum deposition method - Google Patents

Vacuum deposition apparatus and vacuum deposition method Download PDF

Info

Publication number
JP6300544B2
JP6300544B2 JP2014015004A JP2014015004A JP6300544B2 JP 6300544 B2 JP6300544 B2 JP 6300544B2 JP 2014015004 A JP2014015004 A JP 2014015004A JP 2014015004 A JP2014015004 A JP 2014015004A JP 6300544 B2 JP6300544 B2 JP 6300544B2
Authority
JP
Japan
Prior art keywords
nozzle member
evaporation material
nozzle
evaporation
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014015004A
Other languages
Japanese (ja)
Other versions
JP2014167165A (en
Inventor
博之 大工
博之 大工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014015004A priority Critical patent/JP6300544B2/en
Publication of JP2014167165A publication Critical patent/JP2014167165A/en
Application granted granted Critical
Publication of JP6300544B2 publication Critical patent/JP6300544B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、有機EL膜を形成するための真空蒸着装置および真空蒸着方法に関する。   The present invention relates to a vacuum deposition apparatus and a vacuum deposition method for forming an organic EL film.

従来の有機EL膜形成用の真空蒸着装置は、蒸着材料を加熱して蒸発材料を得るための蒸発源と、蒸発源で得られた蒸発材料を移送する誘導路と、誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備える(例えば、特許文献1)。
上記の放出部材は、蒸発材料を拡散させるための分散容器と、被蒸着部材に向けて突設され、被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する。
A conventional vacuum deposition apparatus for forming an organic EL film includes an evaporation source for heating an evaporation material to obtain an evaporation material, an induction path for transferring the evaporation material obtained by the evaporation source, and an evaporation flowing from the induction path. A release member that releases the material to the deposition target member (for example, Patent Document 1).
The discharge member includes a dispersion container for diffusing the evaporation material, and a plurality of nozzle members protruding toward the deposition target member and having a throttle opening at the tip for discharging the evaporation material to the deposition target member. Have.

膜厚の均一性を高める方法として、例えば、各ノズルにおける絞り開口部の直径を変えることで、各ノズル部材から被蒸着部材へ放出される蒸発材料の量を調整することが挙げられる。   As a method for improving the uniformity of the film thickness, for example, the amount of the evaporation material discharged from each nozzle member to the deposition target member can be adjusted by changing the diameter of the aperture of each nozzle.

特開2007−332458号公報JP 2007-332458 A

しかし、ノズル部材の絞り開口部の直径により、各ノズル部材から被蒸着部材へ放出される蒸発材料の量だけでなく拡がり度合いが大きく変わる場合があり、膜厚が、蒸発材料の量だけでなく拡がり度合いの影響も受けて変化する。そのため、各ノズル部材の絞り開口部の直径を変えることにより、各ノズル部材から被蒸着部材へ放出される蒸発材料の量および拡がり度合いを同時に精度良く調整して膜全体の厚みの均一性を高めることは難しい。   However, depending on the diameter of the aperture opening of the nozzle member, not only the amount of evaporation material released from each nozzle member to the deposition target member but also the degree of spread may vary greatly, and the film thickness is not limited to the amount of evaporation material. It changes under the influence of the degree of spread. Therefore, by changing the diameter of the aperture of each nozzle member, the amount and the extent of evaporation material released from each nozzle member to the deposition target member can be simultaneously adjusted with high accuracy to increase the thickness uniformity of the entire film. It ’s difficult.

そこで、本発明は、各ノズル部材から被蒸着部材へ放出される蒸発材料の量および拡がり度合いを精度良く調整して、有機EL膜全体の厚みの均一性を高めることが可能な真空蒸着装置および真空蒸着方法を提供することを目的とする。   Accordingly, the present invention provides a vacuum deposition apparatus capable of accurately adjusting the amount and spread degree of the evaporated material discharged from each nozzle member to the deposition target member, and improving the thickness uniformity of the entire organic EL film, and An object is to provide a vacuum deposition method.

本発明に係る真空蒸着装置は、
有機EL膜形成用の蒸着材料を加熱して蒸発材料を得るための蒸発源と、前記蒸発源で得られた蒸発材料を移送する誘導路と、前記誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備え、
前記放出部材が、前記蒸発材料を拡散させるための分散容器と、前記被蒸着部材に向けて突設され、前記被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する真空蒸着装置であって、
各ノズル部材は、ノズル部材の内直径D(mm)、ノズル部材の空間部の長さL(mm)、および絞り開口部の直径D’(mm)を有し、
前記ノズル部材の内直径D(mm)、前記ノズル部材の空間部の長さL(mm)、および前記絞り開口部の直径D’(mm)は、関係式:
L≧9DおよびD’≦2.7D /L、または
L<9DおよびD’≦D/3
を満たし、
前記放出部材が、各ノズル部材における蒸発材料の流量が所定値となるように、各ノズル部材の基部の開口でその開口度合いを調整して蒸発材料の流量を調整する手段を有することを特徴とする。
The vacuum evaporation apparatus according to the present invention is
An evaporation source for heating an evaporation material for forming an organic EL film to obtain an evaporation material, a guide path for transferring the evaporation material obtained by the evaporation source, and an evaporation material flowing from the guide path as a member to be evaporated A discharge member that discharges to
A plurality of nozzles, each having a discharge container, a dispersion container for diffusing the evaporating material, and a throttle opening for discharging the evaporating material to the vapor deposition member at the tip thereof. A vacuum evaporation apparatus having a member,
Each nozzle member has an inner diameter D (mm) of the nozzle member, a length L (mm) of the space portion of the nozzle member, and a diameter D ′ (mm) of the aperture opening,
The inner diameter D (mm) of the nozzle member, the length L (mm) of the space portion of the nozzle member, and the diameter D ′ (mm) of the diaphragm opening are expressed by a relational expression:
L ≧ 9D and D ′ ≦ 2.7D 2 / L, or L <9D and D ′ ≦ D / 3
The filling,
The discharge member has means for adjusting the flow rate of the evaporation material by adjusting the degree of opening at the opening of the base of each nozzle member so that the flow rate of the evaporation material in each nozzle member becomes a predetermined value. To do.

また、本発明に係る真空蒸着方法は、有機EL膜形成用の蒸着材料を加熱して蒸発材料を得るための蒸発源と、前記蒸発源で得られた蒸発材料を移送する誘導路と、前記誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備え、前記放出部材が、前記蒸発材料を拡散させるための分散容器と、前記被蒸着部材に向けて突設され、前記被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する真空蒸着装置を用いた真空蒸着方法であって、
各ノズル部材に、ノズル部材の内直径D(mm)、ノズル部材の内部空間の長さL(mm)、および絞り開口部の直径D’(mm)を有し、前記ノズル部材の内直径D(mm)、前記ノズル部材の内部空間の長さL(mm)、および前記絞り開口部の直径D’(mm)が、関係式:
L≧9DおよびD’≦2.7D /L、または
L<9DおよびD’≦D/3
を満たすノズル部材を用い、かつ
各ノズル部材における蒸発材料の流量が所定値となるように、各ノズル部材の基部の開口でその開口度合いを調整して蒸発材料の流量を調整することを特徴とする。
The vacuum deposition method according to the present invention includes an evaporation source for heating an evaporation material for forming an organic EL film to obtain an evaporation material, a guide path for transferring the evaporation material obtained by the evaporation source, A discharge member that discharges the evaporation material flowing in from the guide path to the deposition target member, and the release member projects toward the deposition target member, a dispersion container for diffusing the evaporation material, and A vacuum deposition method using a vacuum deposition apparatus having a plurality of nozzle members having, at the tip thereof, throttle openings for discharging the evaporation material to the deposition target member,
Each nozzle member has an inner diameter D (mm) of the nozzle member, a length L (mm) of the inner space of the nozzle member, and a diameter D ′ (mm) of the aperture opening, and the inner diameter D of the nozzle member (Mm), the length L (mm) of the internal space of the nozzle member, and the diameter D ′ (mm) of the diaphragm opening are expressed by the relational expression:
L ≧ 9D and D ′ ≦ 2.7D 2 / L , or L <9D and D ′ ≦ D / 3
And the flow rate of the evaporation material is adjusted by adjusting the degree of opening at the opening of the base of each nozzle member so that the flow rate of the evaporation material in each nozzle member becomes a predetermined value. To do.

本発明によれば、各ノズル部材から被蒸着部材へ放出される蒸発材料の量および拡がり度合いを精度良く調整して、有機EL膜全体の厚みの均一性を高めることが可能な真空蒸着装置および真空蒸着方法を提供することができる。   According to the present invention, a vacuum deposition apparatus capable of accurately adjusting the amount and spread degree of the evaporation material discharged from each nozzle member to the deposition target member, and improving the thickness uniformity of the entire organic EL film, and A vacuum deposition method can be provided.

(ノズル部材の長さL)・(絞り開口部の直径D’)/(ノズル部材の内直径D)と、cosθ則のn値との関係を示す図である。(Nozzle member length L) · (diaphragm aperture diameter D ′) / (nozzle member inner diameter D) 2 and a diagram showing a relationship between n value of cos n θ rule. (絞り開口部の直径D’)/(ノズル部材の内直径D)と、cosθ則のn値との関係を示す図である。It is a figure which shows the relationship between (diameter D 'of an aperture opening part) / (inner diameter D of a nozzle member), and n value of cosn ( theta) rule. L=30mm、D=7mm、D’=2mmの場合における、絞り開口部から放出される蒸発材料の角度分布を示す図である。It is a figure which shows angle distribution of the evaporation material discharge | released from an aperture opening in the case of L = 30mm, D = 7mm, and D '= 2mm. L=30mm、D=7mm、D’=4mmの場合における、絞り開口部から放出される蒸発材料の角度分布を示す図である。It is a figure which shows the angle distribution of the evaporation material discharge | released from an aperture opening part in the case of L = 30mm, D = 7mm, and D '= 4mm. 本発明の一実施形態に係る真空蒸着装置を示す概略構成図である。It is a schematic block diagram which shows the vacuum evaporation system which concerns on one Embodiment of this invention. 図5に示す真空蒸着装置における放出部材のノズル部材付近を拡大した要部断面図である。It is principal part sectional drawing to which the nozzle member vicinity of the discharge | release member in the vacuum evaporation system shown in FIG. 5 was expanded. 図5に示す真空蒸着装置における各ノズル部材の流量計測時の状態を示す要部断面図である。It is principal part sectional drawing which shows the state at the time of the flow volume measurement of each nozzle member in the vacuum evaporation system shown in FIG. 本発明の他の実施形態に係る真空蒸着装置における放出部材のノズル部材付近を拡大した要部断面図である。It is principal part sectional drawing which expanded the nozzle member vicinity of the discharge | release member in the vacuum evaporation system which concerns on other embodiment of this invention.

本発明の真空蒸着装置は、有機EL膜形成用の蒸着材料を加熱して蒸発材料を得るための蒸発源と、蒸発源で得られた蒸発材料を移送する誘導路と、誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備える。放出部材は、蒸発材料を拡散させるための分散容器と、被蒸着部材に向けて突設され、被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する。   The vacuum vapor deposition apparatus of the present invention heats a vapor deposition material for forming an organic EL film to obtain an evaporation material, an induction path for transferring the evaporation material obtained from the evaporation source, and an inflow from the induction path A discharge member that discharges the evaporation material to the deposition target member. The discharge member includes a dispersion container for diffusing the evaporation material, and a plurality of nozzle members protruding toward the deposition target member and having a throttle opening at the tip for discharging the evaporation material to the deposition target member. Have.

本発明の真空蒸着装置で用いられる複数のノズル部材は、互いに略同一の形状および寸法を有する。複数のノズル部材は一列に配置してもよく、その列の複数を並列に配置してもよい。   The plurality of nozzle members used in the vacuum deposition apparatus of the present invention have substantially the same shape and dimensions. The plurality of nozzle members may be arranged in a line, and a plurality of the nozzle members may be arranged in parallel.

上記の蒸着は真空状態で行われる。よって、ノズル部材は、被蒸着部材に向けて突設されていればよく、ノズル部材から被蒸着部材へ蒸発材料が放出される方向は、例えば、水平方向でもよく、上下方向でもよい。   The above deposition is performed in a vacuum state. Therefore, the nozzle member only needs to protrude toward the member to be deposited, and the direction in which the evaporation material is discharged from the nozzle member to the member to be deposited may be, for example, the horizontal direction or the vertical direction.

各ノズル部材は、ノズル部材の内直径D(mm)、ノズル部材の内部空間の長さ(以下、ノズル部材の長さという)L(mm)、および絞り開口部の直径D’(mm)を有する。そして、ノズル部材の内直径D(mm)、ノズル部材の長さL(mm)、および絞り開口部の直径D’(mm)は、関係式(1):
L≧9DおよびD’≦2.7D/L、または
L<9DおよびD’≦D/3
を満たす。
Each nozzle member has an inner diameter D (mm) of the nozzle member, a length of the inner space of the nozzle member (hereinafter referred to as a length of the nozzle member) L (mm), and a diameter D ′ (mm) of the aperture opening. Have. The inner diameter D (mm) of the nozzle member, the length L (mm) of the nozzle member, and the diameter D ′ (mm) of the aperture opening are expressed by the relational expression (1):
L ≧ 9D and D ′ ≦ 2.7D 2 / L, or L <9D and D ′ ≦ D / 3
Meet.

上記の式(1)は、有機EL膜の形成に用いられる有機材料に対して得られる。上記の式(1)を満たす場合(図1(L≧9Dの場合)に示すL・D’/Dが0超2.7以下の領域、または図2(L<9Dの場合)に示すD’/Dが0超1/3以下の領域において)、各ノズル部材の絞り開口部から被蒸着部材に向けて放出される蒸発材料の拡がり度合いは、cosθ則に従う。すなわち、cosθ曲線で近似される。この場合、各ノズル部材の絞り開口部から放出された蒸発材料は、被蒸着部材の表面に十分に拡がりをもって堆積するため、膜厚の均一性を高めることができる。図1に示すように、L≧9Dの場合、L・D’/Dが0超2.7以下(D’≦2.7D/L)の領域では、cosθ則のn値は約4〜4.25である。また、図2に示すように、L<9Dの場合、D’/Dが0超1/3以下(D’≦D/3)の領域では、cosθ則のn値は約4.05〜4.25である。
cosθ則のn値が小さいほど、蒸発材料は被蒸着部材の表面に拡がって堆積し、膜厚の均一性が高められる。cosθ則のn値が約4〜4.1であり、膜厚の均一性をさらに高めることができるため、L≧9Dの場合、D’≦2D/Lが好ましい。cosθ則のn値が約4.05〜4.1であり、膜厚の均一性をさらに高めることができるため、L<9Dの場合、D’≦0.2Dが好ましい。
絞り開口部の直径D’の寸法精度の観点から、絞り開口部の直径D’は、例えば、1mm以上である。
The above formula (1) is obtained for the organic material used for forming the organic EL film. In the case where the above formula (1) is satisfied (L · D ′ / D 2 shown in FIG. 1 (when L ≧ 9D) is greater than 0 and equal to or less than 2.7 or shown in FIG. 2 (when L <9D) In a region where D ′ / D is greater than 0 and equal to or less than 1/3, the degree of spread of the evaporated material emitted from the aperture opening of each nozzle member toward the deposition target member follows the cos n θ law. That is, it is approximated by a cos n θ curve. In this case, the evaporation material discharged from the aperture opening of each nozzle member is deposited with a sufficient spread on the surface of the member to be deposited, so that the uniformity of the film thickness can be improved. As shown in FIG. 1, when L ≧ 9D, in the region where L · D ′ / D 2 is greater than 0 and less than or equal to 2.7 (D ′ ≦ 2.7D 2 / L), the n value of the cos n θ rule is About 4 to 4.25. As shown in FIG. 2, when L <9D, in the region where D ′ / D is greater than 0 and equal to or less than 1/3 (D ′ ≦ D / 3), the n value of the cos n θ rule is about 4.05. ˜4.25.
As the n value of the cos n θ rule is smaller, the evaporation material spreads and accumulates on the surface of the member to be deposited, and the uniformity of the film thickness is improved. Since the n value of the cos n θ rule is about 4 to 4.1 and the uniformity of the film thickness can be further improved, when L ≧ 9D, D ′ ≦ 2D 2 / L is preferable. Since the n value of the cos n θ rule is about 4.05 to 4.1 and the uniformity of the film thickness can be further improved, when L <9D, D ′ ≦ 0.2D is preferable.
From the viewpoint of dimensional accuracy of the diameter D ′ of the aperture opening, the diameter D ′ of the aperture opening is, for example, 1 mm or more.

L≧9DおよびD’>2.7D/L、またはL<9DおよびD’>D/3であると、各ノズル部材の絞り開口部から被蒸着部材に向けて放出される蒸発材料の拡がり度合いはcosθ則に従わず、各ノズル部材の絞り開口部から放出された蒸発材料は、被蒸着部材の表面に十分に拡がりをもって堆積しない。その結果、被蒸着部材における各ノズル部材の絞り開口部と対向する領域において蒸発材料が堆積する量が過度に多くなり、膜厚の均一性が低下する。 When L ≧ 9D and D ′> 2.7D 2 / L, or L <9D and D ′> D / 3, the spread of the evaporation material discharged from the aperture opening of each nozzle member toward the vapor deposition member The degree does not follow the cos n θ rule, and the evaporation material discharged from the aperture of each nozzle member does not spread with sufficient spread on the surface of the member to be deposited. As a result, the amount of the evaporated material deposited excessively in the region facing the aperture opening of each nozzle member in the member to be vapor-deposited becomes excessive, and the film thickness uniformity decreases.

ここで、図3は、式(1)を満たす場合における、絞り開口部から放出される蒸発材料の角度分布の一例を示す。図4は、式(1)を満たさない場合における、絞り開口部から放出される蒸発材料の角度分布の一例を示す。図中の横軸は絞り開口部のノズル中心からの蒸発材料の放射角度を示し、縦軸は放射角度に対する蒸発材料の放出量を示す。図中の実線はcosθ曲線、黒丸は各放射角に対する蒸発材料の量を示す。
図3は、L=30mm、D=7mm、D’=2mmの場合を示し、L<9Dの場合においてD’≦D/3を満たす。この場合、図3に示すように、cosθ曲線に沿った角度分布が得られる。一方、図4は、L=30mm、D=7mm、D’=4mmの場合を示し、L<9Dの場合においてD’≦D/3を満たさない。この場合、図4に示すように、放射角度が20°付近より小さい領域においてcosθ曲線から大きく外れる角度分布が得られる。
Here, FIG. 3 shows an example of the angular distribution of the evaporated material released from the aperture opening when the expression (1) is satisfied. FIG. 4 shows an example of the angular distribution of the evaporating material released from the aperture opening when Expression (1) is not satisfied. In the figure, the horizontal axis indicates the radiation angle of the evaporating material from the center of the nozzle of the aperture opening, and the vertical axis indicates the amount of evaporating material discharged with respect to the radiation angle. The solid line in the figure indicates the cos n θ curve, and the black circles indicate the amount of evaporation material for each radiation angle.
FIG. 3 shows a case where L = 30 mm, D = 7 mm, and D ′ = 2 mm, and satisfies D ′ ≦ D / 3 when L <9D. In this case, as shown in FIG. 3, an angular distribution along the cos n θ curve is obtained. On the other hand, FIG. 4 shows a case where L = 30 mm, D = 7 mm, and D ′ = 4 mm, and D ′ ≦ D / 3 is not satisfied when L <9D. In this case, as shown in FIG. 4, in the region where the radiation angle is smaller than around 20 °, an angular distribution that deviates greatly from the cos n θ curve is obtained.

図3および図4は、L<9Dの場合における絞り開口部から放出される蒸発材料の角度分布の一例を示すが、L≧9Dの場合でも、図3および4と同様の傾向を示す。具体的には、L≧9Dの場合においてD’≦2.7D/Lを満たす場合、図3のような、すべての領域においてcos曲線に近似する角度分布が得られる。L≧9Dの場合においてD’≦2.7D/Lを満たさない場合、図4のような、放射角度が小さい領域においてcosθ曲線から大きく外れる角度分布が得られる。 3 and 4 show an example of the angular distribution of the evaporating material discharged from the aperture opening when L <9D, and the same tendency as in FIGS. 3 and 4 is shown even when L ≧ 9D. Specifically, in the case of L ≧ 9D, when D ′ ≦ 2.7D 2 / L is satisfied, an angular distribution that approximates the cos n curve is obtained in all regions as shown in FIG. In the case of L ≧ 9D, when D ′ ≦ 2.7D 2 / L is not satisfied, an angle distribution greatly deviating from the cos n θ curve is obtained in a region where the radiation angle is small as shown in FIG.

Lの寸法がDの寸法に比べて十分に大きい場合、蒸発材料の分子がノズル内壁に衝突する確率が高くなる。このため、絞り開口部から蒸発材料の分子が放出され難くなるとともに、絞り開口部から放出される蒸発材料の分子のうち、ノズルの内壁に沿った方向に放出される蒸発材料の分子の割合が増大する。すなわち、ノズル絞り開口部から放出される蒸発材料の分子のうち、ノズル直上に向けて放出される蒸発材料の分子の割合が増大する。その結果、絞り開口部より放出される蒸発材料が拡がりを持たない傾向が強くなる。この傾向はノズルが長くなるほど顕著に現れる。
これに対して、本発明では、Lの値がDの値に比べて十分に大きいL≧9Dの場合でも、絞り開口部の直径D’を2.7D/L以下に小さくして絞り開口部に衝突する蒸発材料の分子の割合を大きくすることで、絞り開口部から放出される蒸発材料に拡がりを与えて、蒸発材料の拡がり度合いをcosθ曲線に近づけている。
When the dimension of L is sufficiently larger than the dimension of D, the probability that the molecules of the evaporation material collide with the inner wall of the nozzle is increased. For this reason, it is difficult for the molecules of the evaporation material to be released from the aperture opening, and among the molecules of the evaporation material released from the aperture opening, the ratio of the molecules of the evaporation material released in the direction along the inner wall of the nozzle is Increase. That is, the ratio of the molecules of the evaporating material released directly above the nozzle among the molecules of the evaporating material released from the nozzle aperture opening increases. As a result, the evaporating material discharged from the aperture opening has a strong tendency not to expand. This tendency becomes more prominent as the nozzle becomes longer.
On the other hand, in the present invention, even when L ≧ 9D, which is sufficiently larger than the value of D, the diameter D ′ of the diaphragm opening is reduced to 2.7 D 2 / L or less to reduce the diaphragm opening. By increasing the proportion of molecules of the evaporating material that collide with the portion, the evaporating material released from the aperture opening is expanded, and the degree of expansion of the evaporating material is brought close to the cos n θ curve.

上記の式(1)を満たす略同一の形状および寸法を有する複数のノズル部材を用いた場合でも、分散容器における複数のノズル部材の配置形態、誘導路の分散容器との接続箇所、分散容器の形状等により、各ノズル部材の間で放出される蒸発材料の量にばらつきが生じる。   Even when a plurality of nozzle members having substantially the same shape and dimensions satisfying the above formula (1) are used, the arrangement form of the plurality of nozzle members in the dispersion container, the connection place of the guide path with the dispersion container, Depending on the shape and the like, the amount of the evaporated material discharged between the nozzle members varies.

そこで、本発明の真空蒸着装置では、上記のノズル部材を含む放出部材を用いるとともに、各ノズル部材における蒸発材料の流量が所定値となるように各ノズル部材における蒸発材料の流量を調整する手段を設ける。上記の手段として、例えば、各ノズルにおける分散容器側の基部付近の開口度合いを調整可能な機構(例えば、ニードル弁やスライド可能な遮蔽板)が設けられる。   Therefore, in the vacuum vapor deposition apparatus of the present invention, there is provided means for adjusting the flow rate of the evaporation material in each nozzle member so that the discharge member including the nozzle member is used and the flow rate of the evaporation material in each nozzle member becomes a predetermined value. Provide. As the above-mentioned means, for example, a mechanism (for example, a needle valve or a slidable shielding plate) capable of adjusting the degree of opening in the vicinity of the base on the dispersion container side in each nozzle is provided.

各ノズル部材に対して調整される所定の流量は、上記のばらつきを低減するために設定される。例えば、装置を実際に使用する前に予め、上記の式(1)を満たす略同一の形状および寸法を有する複数のノズル部材を用いる場合における、上記のばらつきを低減するための膜厚分布についてのシミュレーションを行い、それに基づいて得られる。膜厚分布は、各ノズル部材の絞り開口部から被蒸着部材へ放出される蒸発材料の量および拡がり度合いを合成することにより得られる。   The predetermined flow rate adjusted for each nozzle member is set to reduce the above-described variation. For example, the film thickness distribution for reducing the above-described variation in the case of using a plurality of nozzle members having substantially the same shape and dimensions satisfying the above-described formula (1) in advance before actually using the apparatus. A simulation is performed and obtained based on the simulation. The film thickness distribution can be obtained by synthesizing the amount of the evaporation material released from the aperture opening of each nozzle member and the degree of spread.

上記の式(1)を満たすノズル部材を用いて(絞り開口部の径の寸法を一定にして)、各ノズル部材内部の流量を調整することで、ノズル部材の絞り開口部から被蒸着部材に向けて放出される蒸発材料の量および拡がり度合いを精度良く調整することができる。その結果、被蒸着部材の表面に蒸発材料が堆積して形成される膜全体の厚みの均一性を大幅に高めることができる。本発明では、放出部材および被蒸着部材を固定した状態で略均一な膜が得られる。   By using the nozzle member satisfying the above formula (1) (with the diameter size of the aperture opening constant) and adjusting the flow rate inside each nozzle member, the aperture opening of the nozzle member is changed to the vapor deposition member. It is possible to accurately adjust the amount and the degree of spread of the evaporating material released toward the target. As a result, the thickness uniformity of the entire film formed by depositing the evaporation material on the surface of the vapor deposition member can be greatly increased. In the present invention, a substantially uniform film can be obtained in a state where the discharge member and the vapor deposition member are fixed.

ノズル部材の流量がシミュレーションに基づく値に調整されているかどうかは、例えば、各ノズル部材から放出された蒸発材料の量を計測する手段を用いて確認すればよい。各ノズル部材から放出された蒸発材料の量を計測する手段は、ノズル部材の出口(絞り開口部)の直上に形成された蒸着膜の厚さを計測する膜厚検出手段であるのが好ましい。膜厚検出手段としては、例えば、水晶振動子型の膜厚検出センサーが挙げられる。膜厚検出センサーは、各ノズル部材の出口(絞り開口部)の直上に、それぞれ設置される。蒸着膜の厚さを計測する手段は、実使用の際には撤去される。   Whether or not the flow rate of the nozzle member is adjusted to a value based on the simulation may be confirmed using, for example, means for measuring the amount of the evaporated material released from each nozzle member. The means for measuring the amount of the evaporated material discharged from each nozzle member is preferably a film thickness detecting means for measuring the thickness of the deposited film formed immediately above the outlet (throttle opening) of the nozzle member. As the film thickness detection means, for example, a crystal oscillator type film thickness detection sensor can be cited. The film thickness detection sensors are respectively installed immediately above the outlets (throttle openings) of the nozzle members. The means for measuring the thickness of the deposited film is removed in actual use.

本発明の真空蒸着方法は、有機EL膜形成用の蒸着材料を加熱して蒸発材料を得るための蒸発源と、蒸発源で得られた蒸発材料を移送する誘導路と、誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備え、放出部材が、蒸発材料を拡散させるための分散容器と、被蒸着部材に向けて突設され、被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する真空蒸着装置を用いた方法に関する。
そして、各ノズル部材に上記の本発明の真空蒸着装置で用いられるノズル部材を用いる。さらに、上記の本発明の真空蒸着装置における各ノズル部材における蒸発材料の流量を調整する手段で行われる各ノズル部材における蒸発材料の流量の調整を行う。
The vacuum deposition method of the present invention includes an evaporation source for heating an evaporation material for forming an organic EL film to obtain an evaporation material, a guide path for transferring the evaporation material obtained by the evaporation source, and flowing from the guide path A discharge member that discharges the evaporation material to the vapor deposition member, and the discharge member protrudes toward the vapor deposition member and discharges the vaporization material to the vapor deposition member. The present invention relates to a method using a vacuum vapor deposition apparatus having a plurality of nozzle members having a diaphragm opening at a tip thereof.
And the nozzle member used with the said vacuum evaporation system of this invention is used for each nozzle member. Furthermore, the flow rate of the evaporating material in each nozzle member is adjusted by means for adjusting the flow rate of the evaporating material in each nozzle member in the vacuum vapor deposition apparatus of the present invention.

これにより、分散容器に設けられた複数のノズル部材の絞り開口部から被蒸着部材に向けて放出される蒸発材料の量および拡がり度合いを容易にかつ精度良く調整することができる。その結果、被蒸着部材の表面に蒸発材料が堆積して形成される膜全体の厚みの均一性を大幅に高めることができる。   This makes it possible to easily and accurately adjust the amount and the degree of expansion of the evaporating material released from the throttle openings of the plurality of nozzle members provided in the dispersion container toward the deposition target member. As a result, the thickness uniformity of the entire film formed by depositing the evaporation material on the surface of the vapor deposition member can be greatly increased.

上記の蒸発材料の流量を調整は、各ノズル部材から放出された蒸発材料の量を計測して得られる計測結果に基づいて行われるのが好ましい。これにより、予め膜厚分布のシミュレーションで求められた所定の流量に調整することができる。
上記の蒸発材料の量の計測は、ノズル部材の出口(絞り開口部)の直上に形成された蒸着膜の厚さを計測して得られる計測結果に基づいて行われるのが好ましい。水晶振動子型の膜厚検出センサーのような膜厚検出手段等により蒸着膜の厚さを計測することでノズル部材から放出された蒸発材料の量を容易に求めることができる。
The flow rate of the evaporating material is preferably adjusted based on a measurement result obtained by measuring the amount of evaporating material released from each nozzle member. Thereby, it can be adjusted to a predetermined flow rate obtained in advance by simulation of the film thickness distribution.
The amount of the evaporation material is preferably measured based on a measurement result obtained by measuring the thickness of the deposited film formed immediately above the outlet (throttle opening) of the nozzle member. By measuring the thickness of the deposited film with a film thickness detecting means such as a crystal oscillator type film thickness detecting sensor, the amount of the evaporated material released from the nozzle member can be easily obtained.

ここで、本発明の真空蒸着装置の一実施形態を、図5および6を参照しながら説明する。
図5に示すように、真空蒸着装置1は、有機EL膜形成用の蒸着材料2を加熱して蒸発材料を得るための蒸発源としてのるつぼ3と、るつぼ3で得られた蒸発材料を移送する誘導路4と、誘導路4から流入する蒸発材料を被蒸着部材としての基板5へ放出する放出部材6と、を備える。放出部材6は、蒸発材料を拡散させるための分散容器としての円柱状のマニホールド7と、基板5に向けて突設された複数のノズル部材8とを、有する。
Here, an embodiment of the vacuum deposition apparatus of the present invention will be described with reference to FIGS.
As shown in FIG. 5, the vacuum evaporation apparatus 1 transfers a crucible 3 as an evaporation source for heating an evaporation material 2 for forming an organic EL film to obtain an evaporation material, and an evaporation material obtained by the crucible 3. And a discharge member 6 that discharges the evaporating material flowing in from the guide path 4 to a substrate 5 as a member to be deposited. The discharge member 6 includes a cylindrical manifold 7 as a dispersion container for diffusing the evaporation material, and a plurality of nozzle members 8 protruding toward the substrate 5.

また、装置1は、基板5を保持するための基板ホルダー5aと、蒸着材料2が入ったるつぼ3を加熱する手段としてのヒータ10と、各ノズル部材8から基板5へ蒸発材料が放出される経路を開閉する手段としてのシャッター11と、基板5の表面に形成された蒸着膜(製造された有機EL膜)の厚さを計測する手段としての膜厚検出センサー12と、を備える。装置1を構成する上記の各種構成部材は、蒸発容器9内に収納される。装置1には、蒸発容器9の内部を真空状態にするための脱気手段が接続されている。脱気手段として、例えば、真空ポンプが用いられる。   The apparatus 1 also releases a substrate holder 5 a for holding the substrate 5, a heater 10 as a means for heating the crucible 3 containing the vapor deposition material 2, and the evaporation material from each nozzle member 8 to the substrate 5. A shutter 11 as means for opening and closing the path, and a film thickness detection sensor 12 as means for measuring the thickness of the deposited film (manufactured organic EL film) formed on the surface of the substrate 5 are provided. The above-described various constituent members constituting the device 1 are accommodated in the evaporation container 9. The apparatus 1 is connected to deaeration means for making the inside of the evaporation container 9 into a vacuum state. For example, a vacuum pump is used as the deaeration means.

図6に示すように、複数のノズル部材8は、円柱状のマニホールド7の軸方向に沿って、一列に等間隔に配置されている。各ノズル部材8は、その先端に、基板5へ蒸発材料を放出するための絞り開口部8aを有する。複数のノズル部材8は、互いに略同一の形状および寸法を有する。各ノズル部材8の形状は略円筒状であり、絞り開口部8aの形状は略円形状である。各ノズル部材8は、ノズル部材8の内直径D、ノズル部材8の長さL、および絞り開口部8aの直径D’を有する。   As shown in FIG. 6, the plurality of nozzle members 8 are arranged in a line at equal intervals along the axial direction of the columnar manifold 7. Each nozzle member 8 has a throttle opening 8a for discharging the evaporation material to the substrate 5 at the tip thereof. The plurality of nozzle members 8 have substantially the same shape and dimensions. Each nozzle member 8 has a substantially cylindrical shape, and the aperture 8a has a substantially circular shape. Each nozzle member 8 has an inner diameter D of the nozzle member 8, a length L of the nozzle member 8, and a diameter D 'of the aperture opening 8a.

ノズル部材8の内直径D(mm)、ノズル部材8の長さL(mm)、および絞り開口部8aの直径D’(mm)は、関係式(1):
L≧9DおよびD’≦2.7D/L、または
L<9DおよびD’≦D/3
を満たす。
The inner diameter D (mm) of the nozzle member 8, the length L (mm) of the nozzle member 8, and the diameter D ′ (mm) of the aperture 8 a are expressed by the relational expression (1):
L ≧ 9D and D ′ ≦ 2.7D 2 / L, or L <9D and D ′ ≦ D / 3
Meet.

放出部材6は、各ノズル部材8における蒸発材料の流量が所定値となるように各ノズル部材8における蒸発材料の流量を調整する手段としての先端部が略円錐状のニードル弁13を備える。より具体的には、ニードル弁13は、複数のノズル部材8にそれぞれ設置され、各ノズル部材8の分散容器7側の基部の開口付近において、その開口の度合いを調整可能に配置されている。このように配置することで、マニホールド7から各ノズル部材8の内部へ供給される蒸発材料の流量を精度良く調整することができる。その結果、絞り開口部8aの径を変えずに、絞り開口部8aから放出される蒸発材料の量を精度良く調整することができる。   The discharge member 6 includes a needle valve 13 having a substantially conical tip as a means for adjusting the flow rate of the evaporation material in each nozzle member 8 so that the flow rate of the evaporation material in each nozzle member 8 becomes a predetermined value. More specifically, the needle valve 13 is installed in each of the plurality of nozzle members 8 and is arranged in the vicinity of the opening of the base portion of each nozzle member 8 on the dispersion container 7 side so that the degree of opening can be adjusted. By arranging in this way, the flow rate of the evaporation material supplied from the manifold 7 to the inside of each nozzle member 8 can be adjusted with high accuracy. As a result, it is possible to accurately adjust the amount of the evaporation material released from the aperture opening 8a without changing the diameter of the aperture opening 8a.

図5および6に示す装置において、各ノズル部材8の流量がシミュレーションに基づく値に調整されているかどうか確認する場合、例えば、図7に示すように、各ノズル部材8の出口(絞り開口部8a)の直上に、膜厚検出手段としての水晶振動子型の膜厚検出センサー14を設置すればよい。このとき、隣接するノズル部材8から放出される蒸発材料の影響を受けないように、各ノズル部材8を隔離するための隔離壁15が設けられる。膜厚検出センサー14および隔離壁15は、膜厚の検出時に設置され、実使用の際には撤去される。   In the apparatus shown in FIGS. 5 and 6, when confirming whether the flow rate of each nozzle member 8 is adjusted to a value based on simulation, for example, as shown in FIG. 7, the outlet (throttle opening 8a) of each nozzle member 8 is used. The crystal oscillator type film thickness detection sensor 14 as the film thickness detection means may be installed immediately above. At this time, an isolation wall 15 for isolating each nozzle member 8 is provided so as not to be affected by the evaporation material discharged from the adjacent nozzle member 8. The film thickness detection sensor 14 and the isolation wall 15 are installed when the film thickness is detected, and are removed during actual use.

本実施形態の真空蒸着装置を用いた真空蒸着方法の具体例を以下に示す。
図5および6に示す真空蒸着装置を用い、るつぼ3および誘導路4がマニホールド7の中央部に配置される。各ノズル部材8の長さLを30mm、各ノズル部材8の内直径Dを7mm、絞り開口部8aの直径D’を2mmとする。ノズル部材8の絞り開口部8aと基板5(サイズ100mm×100mm)との間隔を、50mmとする。放出部材6において、16個のノズル部材8が所定の間隔で配置される。
予め、蒸着レート1.0Å/secで±3%以下となるように膜厚分布のシミュレーションを行い、各ノズル部材8からの蒸発材料の適正な放出量を求める。
A specific example of a vacuum deposition method using the vacuum deposition apparatus of the present embodiment is shown below.
The crucible 3 and the guide path 4 are arranged at the center of the manifold 7 using the vacuum deposition apparatus shown in FIGS. The length L of each nozzle member 8 is 30 mm, the inner diameter D of each nozzle member 8 is 7 mm, and the diameter D ′ of the aperture 8 a is 2 mm. The interval between the aperture opening 8a of the nozzle member 8 and the substrate 5 (size 100 mm × 100 mm) is set to 50 mm. In the discharge member 6, 16 nozzle members 8 are arranged at a predetermined interval.
In advance, the film thickness distribution is simulated so that the vapor deposition rate is 1.0% / sec or less at a deposition rate of 1.0 kg / sec, and an appropriate discharge amount of the evaporation material from each nozzle member 8 is obtained.

膜厚分布のシミュレーションは、例えば、以下の手順で行われる。
1つのノズルから放出される蒸発材料はcosθ則に沿って拡散する。このような拡散により基板に付着する蒸発材料の量、すなわち1つのノズルから放出される蒸発材料により基板の表面に形成される膜厚分布を求める。膜厚分布は、例えば、公知の手法(例えば、新版真空ハンドブック、(株)アルバック編、250頁)を用いて計算により求められる。
上記の蒸発材料の付着量(膜厚分布)を、各ノズルに対してそれぞれ求める。各ノズルから基板に到達する蒸発材料の付着量を基板各部で積分する。基板各部における蒸発材料の付着量の積分値の最大値および最小値を求め、以下の式により膜厚均一性を求める。
膜厚均一性(%)=(最大値−最小値)/(最大値+最小値)×100
そして、各ノズルからの蒸発材料の放出量を少しずつ変えて、膜厚均一性が±3%以下となる蒸発材料の放出量を求める。
The simulation of the film thickness distribution is performed by the following procedure, for example.
The evaporation material discharged from one nozzle diffuses along the cos n θ law. The amount of the evaporation material adhering to the substrate by such diffusion, that is, the film thickness distribution formed on the surface of the substrate by the evaporation material released from one nozzle is obtained. The film thickness distribution is obtained by calculation using, for example, a known method (for example, a new edition vacuum handbook, ULVAC, Inc., page 250).
The adhesion amount (film thickness distribution) of the evaporation material is obtained for each nozzle. The amount of evaporation material that reaches the substrate from each nozzle is integrated in each part of the substrate. The maximum value and the minimum value of the integral value of the amount of deposition of the evaporation material in each part of the substrate are obtained, and the film thickness uniformity is obtained by the following equation.
Film thickness uniformity (%) = (maximum value−minimum value) / (maximum value + minimum value) × 100
Then, the amount of evaporated material released from each nozzle is changed little by little to determine the amount of evaporated material released so that the film thickness uniformity is ± 3% or less.

ノズル部材8の出口(絞り開口部8a)の直上に水晶振動子型の膜厚検出センサー14を設置し、各ノズル部材8を隔離する隔離板15を設置する。
次に、真空蒸着装置1のるつぼ3内に蒸着材料としてトリス(8−キノリノラト)アルミニウム(以下、Alq3)を投入する。各ノズル部材8から放出される蒸発材料の量を膜厚検出センサー14で計測する。その計測結果に基づいて、シミュレーションで求めた所定の流量になるように、ノズル部材8の分散容器側の基部付近の開口部に設けたニードル弁13を調整する。
水晶振動子型の膜厚検出センサー14を撤去する。その後、1.0Å/secの蒸着レートで基板5にAlq3の蒸着膜を生成する。このとき、蒸着膜の膜厚均一性を±3%以内に維持することができる。
A crystal oscillator type film thickness detection sensor 14 is installed immediately above the outlet (aperture opening 8 a) of the nozzle member 8, and a separator plate 15 for isolating each nozzle member 8 is installed.
Next, tris (8-quinolinolato) aluminum (hereinafter referred to as Alq3) is put into the crucible 3 of the vacuum vapor deposition apparatus 1 as a vapor deposition material. The amount of evaporation material discharged from each nozzle member 8 is measured by the film thickness detection sensor 14. Based on the measurement result, the needle valve 13 provided at the opening near the base of the nozzle member 8 on the dispersion container side is adjusted so that the predetermined flow rate obtained by the simulation is obtained.
The crystal oscillator type film thickness detection sensor 14 is removed. Thereafter, an Alq3 vapor deposition film is formed on the substrate 5 at a vapor deposition rate of 1.0 kg / sec. At this time, the film thickness uniformity of the deposited film can be maintained within ± 3%.

本実施形態では、マニホールド7の形状を円柱状としたが、マニホールド7の形状はこれに限定されない。例えば、楕円柱状でもよく、略四角柱等の略多角柱状でもよい。
本実施形態では、複数のノズル部材8を等間隔に一列に配置したが、複数のノズル部材8の配置形態はこれに限定されない。例えば、その一列の複数を並列に配置してもよい。
In the present embodiment, the shape of the manifold 7 is a columnar shape, but the shape of the manifold 7 is not limited to this. For example, it may be an elliptical column shape or a substantially polygonal column shape such as a substantially quadrangular column.
In the present embodiment, the plurality of nozzle members 8 are arranged in a line at equal intervals, but the arrangement form of the plurality of nozzle members 8 is not limited to this. For example, a plurality of the rows may be arranged in parallel.

本実施形態では、各ノズル部材8における蒸発材料の流量を調整する手段としてニードル弁13を用いたが、ニードル弁13の代わりに、図8に示すように、円板状の遮蔽板23を用いてもよい。遮蔽板23の端部に接続された回転軸23aを回転させて、遮蔽板23をスライドさせることにより、ノズル部材8の開口度合いが調整される。
また、図8では円板状の遮蔽板23を用いたが、遮蔽板23の形状は、ノズル部材8の開口度合いを調整可能な形状であれば円板状以外でもよい。
In the present embodiment, the needle valve 13 is used as a means for adjusting the flow rate of the evaporation material in each nozzle member 8, but instead of the needle valve 13, as shown in FIG. May be. The opening degree of the nozzle member 8 is adjusted by rotating the rotating shaft 23 a connected to the end of the shielding plate 23 and sliding the shielding plate 23.
Further, although the disk-shaped shielding plate 23 is used in FIG. 8, the shape of the shielding plate 23 may be other than the disk shape as long as the opening degree of the nozzle member 8 can be adjusted.

1 真空蒸着装置
2 蒸発材料
3 るつぼ
4 誘導路
5 基板
5a 基板ホルダー
6 放出部材
7 マニホールド
8 ノズル部材
8a 絞り開口部
9 蒸発容器
10 ヒータ
11 シャッター
12 膜厚検出センサー
13 ニードル弁
14 膜厚検出センサー
15 隔離壁
23 遮蔽板
23a 回転軸
DESCRIPTION OF SYMBOLS 1 Vacuum evaporation apparatus 2 Evaporating material 3 Crucible 4 Guide path 5 Substrate 5a Substrate holder 6 Ejection member 7 Manifold 8 Nozzle member 8a Aperture opening 9 Evaporating container 10 Heater 11 Shutter 12 Film thickness detection sensor 13 Needle valve 14 Film thickness detection sensor 15 Isolation wall 23 Shielding plate 23a Rotating shaft

Claims (2)

有機EL膜形成用の蒸着材料を加熱して蒸発材料を得るための蒸発源と、
前記蒸発源で得られた蒸発材料を移送する誘導路と、
前記誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備え、
前記放出部材が、
前記蒸発材料を拡散させるための分散容器と、
前記被蒸着部材に向けて突設され、前記被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する真空蒸着装置であって、
各ノズル部材は、ノズル部材の内直径D(mm)、ノズル部材の空間部の長さL(mm)、および絞り開口部の直径D’(mm)を有し、
前記ノズル部材の内直径D(mm)、前記ノズル部材の空間部の長さL(mm)、および前記絞り開口部の直径D’(mm)は、関係式:
L≧9DおよびD’≦2.7D /L、または
L<9DおよびD’≦D/3
を満たし、
前記放出部材が、各ノズル部材における蒸発材料の流量が所定値となるように、各ノズル部材の基部の開口でその開口度合いを調整して蒸発材料の流量を調整する手段を有する
ことを特徴とする真空蒸着装置。
An evaporation source for heating an evaporation material for forming an organic EL film to obtain an evaporation material;
A guide path for transferring the evaporation material obtained by the evaporation source;
A discharge member that discharges the evaporation material flowing in from the guide path to the deposition target member, and
The release member is
A dispersion vessel for diffusing the evaporating material;
A plurality of nozzle members protruding toward the vapor deposition member and having a throttle opening at the tip for releasing the evaporation material to the vapor deposition member,
Each nozzle member has an inner diameter D (mm) of the nozzle member, a length L (mm) of the space portion of the nozzle member, and a diameter D ′ (mm) of the aperture opening,
The inner diameter D (mm) of the nozzle member, the length L (mm) of the space portion of the nozzle member, and the diameter D ′ (mm) of the diaphragm opening are expressed by a relational expression:
L ≧ 9D and D ′ ≦ 2.7D 2 / L , or L <9D and D ′ ≦ D / 3
The filling,
The discharge member has means for adjusting the flow rate of the evaporation material by adjusting the degree of opening at the opening of the base of each nozzle member so that the flow rate of the evaporation material in each nozzle member becomes a predetermined value. Vacuum deposition equipment.
有機EL膜形成用の蒸着材料を加熱して蒸発材料を得るための蒸発源と、
前記蒸発源で得られた蒸発材料を移送する誘導路と、
前記誘導路から流入する蒸発材料を被蒸着部材へ放出する放出部材と、を備え、
前記放出部材が、
前記蒸発材料を拡散させるための分散容器と、
前記被蒸着部材に向けて突設され、前記被蒸着部材へ蒸発材料を放出するための絞り開口部を先端に有する複数のノズル部材と、を有する真空蒸着装置を用いた真空蒸着方法であって、
各ノズル部材に、ノズル部材の内直径D(mm)、ノズル部材の内部空間の長さL(mm)、および絞り開口部の直径D’(mm)を有し、前記ノズル部材の内直径D(mm)、前記ノズル部材の内部空間の長さL(mm)、および前記絞り開口部の直径D’(mm)が、関係式:
L≧9DおよびD’≦2.7D /L、または
L<9DおよびD’≦D/3
を満たすノズル部材を用い、かつ
各ノズル部材における蒸発材料の流量が所定値となるように、各ノズル部材の基部の開口でその開口度合いを調整して蒸発材料の流量を調整する
ことを特徴とする真空蒸着方法。
An evaporation source for heating an evaporation material for forming an organic EL film to obtain an evaporation material;
A guide path for transferring the evaporation material obtained by the evaporation source;
A discharge member that discharges the evaporation material flowing in from the guide path to the deposition target member, and
The release member is
A dispersion vessel for diffusing the evaporating material;
A vacuum vapor deposition method using a vacuum vapor deposition apparatus that has a plurality of nozzle members that protrude from the vapor deposition member and have a throttle opening at the tip for discharging vaporized material to the vapor deposition member. ,
Each nozzle member has an inner diameter D (mm) of the nozzle member, a length L (mm) of the inner space of the nozzle member, and a diameter D ′ (mm) of the aperture opening, and the inner diameter D of the nozzle member (Mm), the length L (mm) of the internal space of the nozzle member, and the diameter D ′ (mm) of the diaphragm opening are expressed by the relational expression:
L ≧ 9D and D ′ ≦ 2.7D 2 / L , or L <9D and D ′ ≦ D / 3
And the flow rate of the evaporation material is adjusted by adjusting the degree of opening at the opening of the base of each nozzle member so that the flow rate of the evaporation material at each nozzle member becomes a predetermined value. Vacuum deposition method.
JP2014015004A 2013-01-31 2014-01-30 Vacuum deposition apparatus and vacuum deposition method Active JP6300544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015004A JP6300544B2 (en) 2013-01-31 2014-01-30 Vacuum deposition apparatus and vacuum deposition method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013016271 2013-01-31
JP2013016271 2013-01-31
JP2014015004A JP6300544B2 (en) 2013-01-31 2014-01-30 Vacuum deposition apparatus and vacuum deposition method

Publications (2)

Publication Number Publication Date
JP2014167165A JP2014167165A (en) 2014-09-11
JP6300544B2 true JP6300544B2 (en) 2018-03-28

Family

ID=51236548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015004A Active JP6300544B2 (en) 2013-01-31 2014-01-30 Vacuum deposition apparatus and vacuum deposition method

Country Status (4)

Country Link
JP (1) JP6300544B2 (en)
KR (1) KR102192495B1 (en)
CN (1) CN103966554B (en)
TW (1) TWI604076B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101990619B1 (en) * 2014-11-07 2019-06-18 어플라이드 머티어리얼스, 인코포레이티드 Apparatus for depositing evaporated material, distribution pipe, vacuum deposition chamber, and method for depositing an evaporated material
CN104617223B (en) 2015-02-03 2017-12-08 京东方科技集团股份有限公司 Organic light emitting diode device and preparation method thereof and evaporated device
JP6543664B2 (en) * 2017-09-11 2019-07-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Vacuum deposition chamber
CN108570645B (en) * 2017-11-30 2023-09-29 上海微电子装备(集团)股份有限公司 Vacuum evaporation device, evaporation head thereof and vacuum evaporation method
CN108198957B (en) * 2017-12-29 2019-11-12 信利(惠州)智能显示有限公司 Organic light-emitting display device and preparation method thereof
CN108754448A (en) * 2018-05-31 2018-11-06 昆山国显光电有限公司 Linear evaporation source, vaporizing-source system and evaporation coating device
JP2020176284A (en) * 2019-04-16 2020-10-29 株式会社アルバック Vapor deposition source, vacuum processing apparatus and film deposition method
JP2023540659A (en) * 2020-06-29 2023-09-26 アプライド マテリアルズ インコーポレイテッド Nozzle assembly, evaporation source, deposition system, and method for depositing evaporated material onto a substrate
JP7434261B2 (en) * 2021-12-02 2024-02-20 長州産業株式会社 Vapor deposition equipment and vapor deposition method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199653A (en) * 1996-01-17 1997-07-31 Sumitomo Metal Mining Co Ltd Method of plating very small area
JP2004225058A (en) * 2002-11-29 2004-08-12 Sony Corp Film deposition apparatus, display panel manufacturing apparatus, and method for the same
JP4476019B2 (en) * 2004-05-20 2010-06-09 東北パイオニア株式会社 Deposition source, vacuum film formation apparatus, organic EL element manufacturing method
JP4545010B2 (en) * 2005-02-18 2010-09-15 日立造船株式会社 Vapor deposition equipment
JP2007332458A (en) 2006-05-18 2007-12-27 Sony Corp Vapor deposition apparatus, and vapor deposition source, and display device manufacturing method
JP5567905B2 (en) 2009-07-24 2014-08-06 株式会社日立ハイテクノロジーズ Vacuum deposition method and apparatus
CN201751427U (en) * 2010-03-25 2011-02-23 彩虹显示器件股份有限公司 Linear evaporation source

Also Published As

Publication number Publication date
JP2014167165A (en) 2014-09-11
TWI604076B (en) 2017-11-01
TW201430157A (en) 2014-08-01
CN103966554B (en) 2018-08-07
CN103966554A (en) 2014-08-06
KR20140098693A (en) 2014-08-08
KR102192495B1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6300544B2 (en) Vacuum deposition apparatus and vacuum deposition method
CN203768445U (en) Vacuum evaporation device
TWI447246B (en) Vacuum evaporation device
US20130099020A1 (en) Direct liquid deposition
JP6602030B2 (en) System and method for bulk vaporization of precursors
KR20170092665A (en) Linear Evaporation Source
JP2006225725A (en) Vapor deposition apparatus
KR102309893B1 (en) Deposition rate measuring apparatus
WO2013118341A1 (en) Crucible for vapor deposition, vapor deposition device, and vapor deposition method
CN103518001A (en) Vacuum deposition device
CN113416929B (en) Evaporation source, debugging method thereof and evaporation device
KR101474363B1 (en) Linear source for OLED deposition apparatus
JP4583200B2 (en) Vapor deposition equipment
US9574264B2 (en) Method and apparatus for stably evaporation depositing uniform thin films
KR101160437B1 (en) Top down type high temperature evaporation source for metal film on substrate
JP2017025355A (en) Vapor deposition apparatus, and vapor deposition method
KR20150118691A (en) Device for providing deposition material and Deposition apparatus including the same
JP2013253288A (en) Thin film deposition apparatus and thin film deposition method
JP2011146434A (en) Cvd device
KR101243031B1 (en) Thickness monitor device and evaporation device having it
KR101982722B1 (en) Oranic material deposition apparatus
KR20140134531A (en) Source gas jetting nozzle for vacuum deposition apparatus
KR20150014700A (en) Vapor deposition apparatus and vapor deposition process using the same
KR20080090628A (en) Effusion cell for vaccum plating and the downward vaccum plating device using the same
KR20090112799A (en) A vacuum effusion cell for forming a thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250