JP6207792B2 - 移動距離計測装置 - Google Patents

移動距離計測装置 Download PDF

Info

Publication number
JP6207792B2
JP6207792B2 JP2017501997A JP2017501997A JP6207792B2 JP 6207792 B2 JP6207792 B2 JP 6207792B2 JP 2017501997 A JP2017501997 A JP 2017501997A JP 2017501997 A JP2017501997 A JP 2017501997A JP 6207792 B2 JP6207792 B2 JP 6207792B2
Authority
JP
Japan
Prior art keywords
signal
rotation center
phase rotation
coordinates
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017501997A
Other languages
English (en)
Other versions
JPWO2016136371A1 (ja
Inventor
浩 田口
浩 田口
亘 辻田
亘 辻田
雅洋 石川
雅洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016136371A1 publication Critical patent/JPWO2016136371A1/ja
Application granted granted Critical
Publication of JP6207792B2 publication Critical patent/JP6207792B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Description

本発明は、移動体の移動距離を計測する移動距離計測装置及び移動距離計測方法に関する。本発明はさらに、移動距離計測装置を備えたエレベーター及び車両に関する。
エレベーターのかご、車両などの移動体に取り付けられ、電波を用いて移動体の移動距離及び/又は速度を計測する移動距離計測装置が、例えば特許文献1及び2に開示されている。
特許文献1は、移動体(車両)から固定面(地面)に送信信号を電波として照射し、送信信号に対する反射信号の位相差に基づいて移動体の移動距離を算出することを開示している。反射信号の振幅情報を用いずに位相差の積算値(積算位相)に基づいて移動距離を算出するので、固定面の電波の反射状態が急激に変動した場合でも、正確に移動距離を計測できる。
特許文献2は、エレベーターのかごからガイドレール又は壁に電波を照射し、反射波のドップラシフト量からかごの速度を算出するエレベーターの安全装置において、2つのドップラセンサを進行方向に対して前後対称又は左右対称に略同一の照射角度となるように取り付け、両者の検出信号に基づいて照射角度を校正することを開示している。
国際公開第2013/105359号 特開2010−105754号公報
移動距離計測装置は、送信信号に対する反射信号の位相差を算出するために、反射信号の直交検波(IQ検波)を行ってIQ平面上における反射信号の座標を算出する。しかしながら、送信信号を発生する発振器及びアンテナの温度特性及び製造ばらつきに起因するDCオフセットによって、また、送信アンテナから受信アンテナに直接に入射する直接波によって、反射信号の位相回転の中心、すなわち、IQ平面上における反射信号の座標の回転の中心が原点からずれることがある。この場合、位相差を正確に求められず、移動距離の算出結果に誤差が生じるという課題がある。
特許文献1によれば、反射波の振幅情報を用いずに位相差積算値に基づいて移動距離を算出するので、金属物体の存在によって電波の反射状態が変動しても、移動距離を正確に算出できる。しかし、反射信号の位相回転中心がIQ平面の原点からずれている場合に補正する手段を備えていない。
特許文献2は、2つのドップラセンサを備え、両者の検出信号に基づいて照射角度を校正するので、センサの取付誤差による照射角度のずれを容易に校正できる。しかし、反射信号の位相回転の中心がIQ平面の原点からずれている場合に補正する手段を備えていない。
本発明の目的は、上記の課題を解決し、反射信号の位相回転の中心がIQ平面の原点からずれる場合であっても移動体の移動距離を正確に計測できる移動距離計測装置及び移動距離計測方法を提供することにある。本発明の目的はさらに、移動距離計測装置を備えたエレベーター及び車両を提供することにある。
本発明の一態様に係る移動距離計測装置は、
固定面に沿って移動する移動体に設けられ、当該移動体の移動距離を計測する移動距離計測装置において、前記移動距離計測装置は、
無線周波数を有する送信信号を複数の単位時間区間にわたって発生する発振器と、
前記送信信号を前記固定面に電波として照射する送信アンテナと、
前記送信アンテナから前記固定面に照射されて前記固定面で反射された電波を受信し、前記送信信号に対応する反射信号として取得する受信アンテナと、
前記複数の単位時間区間のそれぞれにおいて前記送信信号を基準信号として用いて前記反射信号を直交検波し、前記複数の単位時間区間にそれぞれ対応する複数のIQ信号であって、IQ平面上における前記反射信号の座標をそれぞれ示す複数のIQ信号を取得するIQ信号取得手段と、
記IQ平面上における前記反射信号の位相回転中心の座標を検出する位相回転中心検出手段と、
前記IQ平面上における前記反射信号の座標と前記位相回転中心の座標とに基づいて前記送信信号に対する前記反射信号の位相差を算出し、前記位相差に基づいて前記移動体の移動距離を算出する移動距離演算手段とを備え
前記発振器は、前記移動体が停止しているとき、互いに異なる無線周波数を有する少なくとも2つの送信信号を発生し、
前記IQ信号取得手段は、前記移動体が停止しているとき、前記少なくとも2つの送信信号に対応する少なくとも2つのIQ信号を取得し、
前記位相回転中心検出手段は、前記少なくとも2つのIQ信号に基づいて、前記IQ平面上における前記反射信号の位相回転中心の座標を検出することを特徴とする。
本発明に係る移動距離計測装置によれば、反射信号の位相回転中心の原点からのずれを、取得された少なくとも2つのIQ信号に基づいて算出し、正確な位相回転中心に基づいて送信信号と反射信号の位相差を求めて移動距離を算出するように構成したので、反射信号の位相回転の中心が原点からずれる場合であっても移動体の移動距離を正確に計測することができる。
本発明の実施の形態1に係る移動距離計測装置10が取り付けられたエレベーターの構成を模式的に示す図である。 本発明の実施の形態1に係る移動距離計測装置10の内部構成を示す図である。 本発明の実施の形態1に係る移動距離計測装置10のアンテナ12の配置例を示す図である。 本発明の実施の形態1におけるかご3の移動に伴って生じるIQ復調器14の出力信号の変化を説明する図である。 本発明の実施の形態1におけるIQ復調器14の出力信号とかご3の移動距離との関係を説明する図である。 本発明の実施の形態1における位相差の算出を説明する図である。 比較例における位相差の算出を説明する図である。 本発明の実施の形態1に係る移動距離計測装置10の動作を示すフローチャートである。 図8のステップS1の停止判定処理を詳細に示すフローチャートである。 図8のステップS3の位相回転中心検出処理を詳細に示すフローチャートである。 本発明の実施の形態1における反射信号の位相回転中心の座標の検出方法を説明する図である。 本発明の実施の形態1における位相回転中心検出処理での送信信号の周波数の決定方法を説明する図である。 図8のステップS4の移動距離演算処理を詳細に示すフローチャートである。 本発明の実施の形態1におけるIQ信号の補正方法を説明する図である。 本発明の実施の形態2に係る移動距離計測装置10の動作を示すフローチャートである。 図15のステップS42の位相回転中心検出処理を詳細に示すフローチャートである。 本発明の実施の形態3における位相回転中心検出処理を詳細に示すフローチャートである。 本発明の実施の形態3における反射信号の位相回転中心の座標の検出方法を説明する図である。 本発明の実施の形態3における反射信号の位相回転中心の座標の検出方法を説明する図である。 本発明の実施の形態4に係る移動距離計測装置10が取り付けられた列車の構成を模式的に示す図である。 本発明の実施の形態5に係る反射信号の位相回転中心の座標の検出方法を説明する図である。 本発明の実施の形態5に係る反射信号の位相回転中心の座標の検出方法を説明する図である。 本発明の実施の形態5に係る反射信号の位相回転中心の座標の検出方法を説明する図である。
実施の形態1.
実施の形態1では、移動距離計測装置をエレベーターのかごに取り付けた場合について示す。この場合、エレベーターの昇降路が固定面であり、エレベーターのかごが移動体であり、移動距離計測装置は昇降路に沿って移動するかごの移動距離を計測する。
図1は、本発明の実施の形態1に係る移動距離計測装置10が取り付けられたエレベーターの構成を模式的に示す図である。図1において、昇降路1内には一対のガイドレール2が設置されている。かご3は、ガイドレール2に案内されて昇降路1内を昇降する。かご3は、駆動装置4に掛けられた主ロープ5によって吊り下げられ、主ロープ5の反対側には釣合おもり6が吊り下げられている。かご3の上面には、取付治具7を介して移動距離計測装置10が取り付けられている。なお、移動距離計測装置10は、かご3の側面又は底面に取り付けられてもよい。
図2は、本発明の実施の形態1に係る移動距離計測装置10の内部構成を示す図である。移動距離計測装置10は、かご3の移動距離を計測する。図2において、移動距離計測装置10は、発振器11、送信アンテナ12a、受信アンテナ12b、増幅器13、IQ復調器14、位相回転中心検出回路15、移動距離演算回路16、入力端子17、出力端子18、停止判定回路19、及び制御回路20を備えて構成される。
発振器11は無線周波信号を発生する。ここで、発振器11は、PLL(Phase Locked Loop)を水晶発振器などの温度特性の優れた基準信号源に同期させることで、連続波の無線周波信号を安定的に発生する。発振器11は、位相回転中心検出回路15によって設定された無線周波数を有する無線周波信号を、複数の単位時間区間にわたって発生する。発振器11によって複数の単位時間区間にわたって発生された無線周波信号は、複数の単位時間区間にそれぞれ対応する複数の送信信号として送信アンテナ12a及びIQ復調器14に送られる。移動距離を計測するために、発振器11は、例えば、10GHz帯、24GHz帯、60GHz帯、77GHz帯などのマイクロ波帯の無線周波信号を発生してもよい。
送信アンテナ12aは、発振器11によって発生された複数の送信信号を固定面に電波(送信波)として照射する送信手段である。ここで、固定面は、かご3の移動方向と略平行であり、かつ、送信アンテナ12a及び受信アンテナ12bと対向する面である。送信アンテナ12aが電波を照射する固定面は、ガイドレール2でもよいし、昇降路1の壁でもよい。また、固定面に反射体を設けて、反射体に電波を照射してもよい。
受信アンテナ12bは、送信アンテナ12aの近傍に設置され、送信アンテナ12aから固定面に照射されて固定面で反射した電波(反射波)を受信し、送信信号に対応する反射信号として取得する受信手段である。受信アンテナ12bで取得された反射信号は、増幅器13に送られる。
送信アンテナ12a及び受信アンテナ12bの偏波方向は水平偏波であるとする。すなわち、ガイドレール2の短手方向と平行であり、ガイドレール2の長手方向とは直交する。なお、送信アンテナ12a及び受信アンテナ12bの偏波方向を垂直偏波としてもよい。
送信アンテナ12a及び受信アンテナ12bは、同一基板上に形成されたパッチアンテナとして構成されてもよい。この場合、部品としては1つのアンテナ12として扱うことができ、機能としては1つのアンテナ12が送信アンテナ12aと受信アンテナ12bを含むことができる。また、送信アンテナ12a及び受信アンテナ12bは、移動距離計測装置10の別個の位置に設けられてもよい。この場合、送信アンテナ12aから固定面までの電波の伝搬距離と、固定面から受信アンテナ12bまでの電波の伝搬距離とは異なる可能性がある。以下、本明細書では、送信アンテナ12a及び受信アンテナ12bは互いの近傍に設置され、固定面への往復の伝搬距離が互いに等しい場合を例として説明する。
増幅器13は、受信アンテナ12bから送られた反射信号を所定の振幅レベルまで増幅する。増幅器13で増幅された反射信号はIQ復調器14に送られる。
IQ復調器14は、反射信号を直交検波(IQ検波)して複数のIQ信号を取得するIQ信号取得手段である。前述のように送信信号が連続波なので、反射信号も連続波である。ただし、IQ復調器14は、単位時間区間ごとに反射信号をサンプリングして直交検波することにより、連続波の反射信号を、複数の単位時間区間(すなわち複数の送信信号)にそれぞれ対応する複数の反射信号として処理する。IQ復調器14は、複数の単位時間区間のそれぞれにおいて、発振器11によって発生された送信信号を基準信号として用いて、増幅器13から送られた当該送信信号に対応する反射信号を直交検波する。これにより、IQ復調器14は、複数の単位時間区間にそれぞれ対応する複数のIQ信号であって、IQ平面上における反射信号の座標をそれぞれ示す複数のIQ信号を取得する。IQ復調器14で取得されたIQ信号は、位相回転中心検出回路15、移動距離演算回路16、及び停止判定回路19に送られる。
位相回転中心検出回路15は、IQ復調器14で取得された複数のIQ信号のうちの少なくとも3つのIQ信号に基づいて、IQ平面上における反射信号(すなわち、少なくとも3つのIQ信号)の位相回転中心の座標を検出する位相回転中心検出手段である。位相回転中心検出回路15は、制御回路20からの指示に応じて位相回転中心検出処理を実行し、位相回転中心検出回路15で検出された位相回転中心の座標を示す信号を移動距離演算回路16に送り、位相回転中心検出処理が完了したことを示す信号を制御回路20に送る。また、位相回転中心検出回路15は、発生させる送信信号の周波数を発振器11に設定する。また、位相回転中心検出回路15は、発振器11に設定した送信信号の周波数を通知する信号を停止判定回路19に送る。
移動距離演算回路16は、IQ平面上における反射信号の座標と位相回転中心の座標とに基づいて送信信号に対する反射信号の位相差を算出し、位相差に基づいてかご3の移動距離を算出する移動距離演算手段である。移動距離演算回路16は、位相差を算出する前に、位相回転中心の座標に基づいてIQ平面上における反射信号の座標を補正し、補正された座標に基づいて送信信号に対する反射信号の位相差を算出してもよい。移動距離演算回路16は、制御回路20からの指示に応じて移動距離演算処理を実行し、この移動距離演算回路16で算出された移動距離を示す信号を制御回路20及び出力端子18に送る。なお、移動距離演算回路16は、入力端子17を介して外部からリセット信号が入力された場合には、移動距離をゼロに戻す。
停止判定回路19は、IQ復調器14から送られたIQ信号と位相回転中心検出回路15から通知された送信信号の周波数とに基づいて、かご3が停止しているか否かを判定する停止判定手段である。停止判定回路19は、かご3が停止していると判定すると、このことを示す停止中信号を制御回路20に送る。
制御回路20は、位相回転中心検出回路15及び移動距離演算回路16を制御する。制御回路20は、停止判定回路19から停止中信号を受信する。また、制御回路20は、位相回転中心検出処理の実行を指示する信号を位相回転中心検出回路15に送るとともに、位相回転中心検出処理が完了したことを示す信号を位相回転中心検出回路15から受信する。また、制御回路20は、移動距離演算処理の実行を指示する信号を移動距離演算回路16に送るともに、算出された移動距離を示す信号を移動距離演算回路16から受信する。
図3は、本発明の実施の形態1に係る移動距離計測装置10のアンテナ12の配置例を示す図である。図3は、移動距離計測装置10を側面から見た模式図である。図3において、破線21は、固定面(ガイドレール2の面)に対する垂線である。破線21は、移動距離計測装置10の上下を対称に二等分してもよい。また、破線22は、かご3の進行方向の上斜め方向に破線21から角度θだけ傾いた線である。角度θは、例えば45度とする。図3に示すように、アンテナ12は、電波の照射方向が破線22に一致するように配置されている。このとき、アンテナ12の中点から固定面までの距離は、図3に示す長さhとなる。また、アンテナ12から固定面までの電波の伝搬距離は、図3に示す長さLとなる。hとLの関係は次式(1)で表される。
L=h/cosθ ・・・(1)
ここで、IQ復調器14の出力信号の変化に基づいてかご3の移動距離を算出する方法と、そのときに生じる課題について説明する。
図4は、本発明の実施の形態1におけるかご3の移動に伴って生じるIQ復調器14の出力信号の変化を説明する図である。まず、図4を参照して、かご3の移動に伴って生じるIQ復調器14の出力信号の変化と、それに基づくかご3の移動距離の算出方法について説明する。ここでは、電波の照射方向(破線22の方向)と同じ角度で到来した反射信号に基づいてかご3の移動距離を算出する場合について説明するが、反射信号の強度が最大となる方向を求めて、その方向から到来した反射信号に基づいて算出してもよい。反射信号の強度が最大となる方向は、アンテナ12の指向性パターン、アンテナ12から固定面まで距離h、及びアンテナ12の取付角度θから求めることができる。
図4において、ベクトルΔsは、固定面であるガイドレール2が微小単位時間当りに見かけ上進む方向と大きさを示している。実際には、かご3の移動に伴って移動距離計測装置10が移動するが、ここでは移動距離計測装置10を基準に考える。また、微小単位時間は、かご3が最高速度のときに進む距離が送信信号の波長より十分に小さい値(例えば1/10以下)となる時間間隔である。そして、アンテナ12から固定面までの電波の伝搬距離の変化量ΔLは次式(2)で表される。
ΔL=Δs・sinθ ・・・(2)
また、送信信号の波長をλとすると、微小単位時間での反射信号の位相変化量Δψは次式(3)で表される。
Δψ=2(2π/λ)・ΔL ・・・(3)
この位相変化量ΔψがIQ復調器14の出力信号の変化として現れる。この際、IQ復調器14は、反射信号と送信信号との直交検波により、I成分(同相成分)及びQ成分(直交成分)からなる2つの成分を有するIQ信号を出力する。そして、移動距離演算回路16は、arctan(Q/I)を求めることで、当該IQ信号の位相を得ることができる。arctanは逆正接関数である。そして、微小単位時間前との位相の差分を求めると、この値がΔψとなるので、式(2)及び式(3)から微小単位時間当りの移動距離Δsを算出することができる。
上記の方法で微小単位時間当りの移動距離Δsを求めて積分することで、ある時間におけるかご3の移動距離sを求めることができる。一方、微小単位時間当りの位相変化量Δψを積算した積算位相を求めて、積算位相から直接的に移動距離sを求めることもできる。この方法について、図5を参照して説明する。
図5は、本発明の実施の形態1におけるIQ復調器14の出力信号とかご3の移動距離との関係を説明する図である。図5は、IQ復調器14の出力信号のI成分(x軸)及びQ成分(y軸)と、かご3の移動距離(z軸)との関係を示す。図5において、円31は、xy平面(IQ平面)上の位相の回転軌跡を示している。螺旋32は、円31をz軸に引き伸ばして示した螺旋である。なお、位相は時計回りに回り、時計回りの位相の回転を正とする。
IQ復調器14の出力信号から求めた位相変化量Δψを積算した積算位相は、螺旋32上の1点となる。積算位相をψとすると、移動距離sは次式(4)で求められる。
s=ψ・λ/(4π・sinθ) ・・・(4)
図5において、螺旋32上の点33は、位相が螺旋32上を0から2πまで一周した点である。ここで、位相は、螺旋32上をさらに一周するとき、2πから0に戻って再び2πまで進むのではなく、そのまま2πから4πまで進むものとして計算する。このように位相の不連続点を生じさせることなく連続に積み上げることはフェーズアンラップとして知られ、ここではその方法を用いる。すなわち、位相変化量を2π以上にわたって積算し、その積算位相から移動距離を求める。なお、移動距離演算回路16は、入力端子17を介して外部からリセット信号が入力された場合には、積算位相をゼロに戻す。
上記の方法でかご3の移動距離を求めるとき、反射信号の位相回転の中心がIQ平面上の原点Oからずれていると、位相変化量及び積算位相を正確に求められず、移動距離の算出結果に誤差が生じる。実際には、発振器11及びアンテナ12の温度特性及び製造ばらつきに起因するDCオフセットによって、また、送信アンテナ12aから受信アンテナ12bに直接に入射する直接波によって、反射信号の位相回転の中心が原点Oからずれることがある。図6及び図7を参照して、反射信号の位相回転の中心が原点Oからずれている場合に生じる移動距離の計測誤差について説明する。
図6は、本発明の実施の形態1における位相差の算出を説明する図である。図7は、比較例における位相差の算出を説明する図である。図6及び図7において、点P11〜点P14はIQ復調器14で取得されたIQ信号を示している。この例では、IQ信号の位相は、原点Oとは異なる点P10を中心に回転し、点P11〜P14は点P10を中心とする円41の円周上にある。点P11のIQ信号が取得されてから点P12のIQ信号が取得されるまでの間にかご3が移動した距離と、点P13のIQ信号が取得されてから点P14のIQ信号が取得されるまでの間にかご3が移動した距離とは等しいとする。
図6に示すように点P10を位相回転中心として位相差を求めた場合、点P11及びP12の間の位相差φ1と、点P13及びP14の間の位相差φ2とは等しくなる。ゆえに、上記の方法で位相差φ1から算出される移動距離と、位相差φ2から算出される移動距離も等しくなり、移動距離を正しく計測できる。
しかしながら、図7に示すように原点Oを位相回転中心として位相差を求めた場合は、点P11及びP12の間の位相差φ1’と、点P13及びP14の間の位相差φ2’とは等しくならない。ゆえに、上記の方法で位相差φ1’から算出される移動距離と、位相差φ2’から算出される移動距離も等しくならず、移動距離の計測結果に誤差が生じる。
このように、位相回転の中心がIQ平面上の原点Oからずれている場合、移動距離演算回路16において、IQ復調器14から送られたIQ信号をそのまま用い、原点Oを位相回転中心と見なして位相変化量及び積算位相を求めると、移動距離の計測結果に誤差が生じるという課題がある。この課題を解決するため、実施の形態1に係る移動距離計測装置10は、反射信号の位相回転中心の座標を検出する位相回転中心検出回路15と、検出された位相回転中心の座標に基づいてIQ復調器14から送られたIQ信号を補正し、補正したIQ信号に基づいてかご3の移動距離を算出する移動距離演算回路16とを備えて構成される。この構成により、反射信号の位相回転の中心が原点Oからずれる場合であっても、計測誤差を低減し、かご3の移動距離を高精度に計測することが可能となる。
実施の形態1に係る移動距離計測装置10の動作について以下に説明する。
図8は、本発明の実施の形態1に係る移動距離計測装置10の動作を示すフローチャートである。まず、停止判定回路19は停止判定処理を実行し、かご3が停止していると判定すると、このことを示す停止中信号を制御回路20に送る(ステップS1)。制御回路20は、かご3が停止しているか否かを判定し(ステップS2)、YESのときはステップS3に進み、NOのときはステップS4に進む。制御回路20は、停止判定回路19から停止中信号を受信していれば、かご3が停止していると判定する。かご3が停止していると判定した場合は、制御回路20は、位相回転中心検出回路15に位相回転中心検出処理の実行を指示する(ステップS3)。制御回路20は、位相回転中心検出回路15から処理が完了したことを示す信号を受信し、かご3が移動中であると判断すると、移動距離演算回路16に移動距離演算処理の実行を指示する(ステップS4)。
なお、ステップS3の位相回転中心検出処理は、かご3が停止している場合に常に行わなくてもよい。例えば、かご3が停止している状態において、所定の時間間隔で実行してもよい。
図9は、図8のステップS1の停止判定処理を詳細に示すフローチャートである。図9は停止判定回路19の動作を示す。
まず、停止判定回路19は、位相回転中心検出処理を実行中であるか否かを判断し(ステップS11)、YESのときは図8のステップS2に進み、NOのときは図9のステップS12に進む。位相回転中心検出処理を実行中であるか否かを判断するために、停止判定回路19は、位相回転中心検出回路15から通知された送信信号の周波数が、位相回転中心検出処理に使用される予め決められた周波数であるか否かを確認する。位相回転中心検出処理を実行中でない場合(例えば、移動距離演算処理に使用される周波数が発振器11に設定されている場合)、停止判定回路19は、IQ復調器14から第1のIQ信号を取得し(ステップS12)、予め決められた時間(時間期間)の経過後にIQ復調器14から第2のIQ信号を取得し(ステップS13)、IQ信号の変化量を算出する(ステップS14)。次いで、停止判定回路19は、予め決められた時間期間にわたるIQ信号の変化量が予め決められたしきい値以下であるか否かを確認し(ステップS15)、YESのときはステップS16に進み、NOのときは図8のステップS2に進む。IQ信号の変化量が予め決められたしきい値以下である場合、停止判定回路19は、移動体が停止していると判定し、制御回路20に停止中信号を送る(ステップS16)。
詳細後述するように、位相回転中心検出回路15は、位相回転中心検出処理において、発振器11に対して複数の周波数を順次に設定する。位相回転中心検出処理の実行中に取得されたIQ信号を停止判定処理に使用しないようにするため、停止判定回路19は、ステップS11において、位相回転中心検出回路15から通知された送信信号の周波数を確認し、移動距離演算処理に使用される周波数が発振器11に設定されている場合のみ、IQ信号を取得して停止判定を行う。
かご3が停止中は固定面の状態が変化しないので、IQ復調器14から送られるIQ信号は略一定となる。それゆえ、停止判定回路19は、予め決められた時間期間にわたるIQ信号の変化量を算出し、変化量が予め決められたしきい値以下であればかご3が停止していると判定する。このように停止判定を行うことで、反射信号の位相回転の中心が原点からずれていれる場合であっても、かご3が停止しているか否かを正確に判定することができる。
なお、停止判定回路19は、入力端子17を介して外部(例えばエレベーター制御装置)から、かご3が停止していることを示す信号を受信し、その信号に基づいて停止判定を行うように構成されてもよい。また、入力端子17を介して外部から制御回路20に直接に停止中信号を入力するように構成してもよい。このように構成した場合、停止判定回路19は不要となる。また、制御回路20は、移動距離演算回路16により算出された移動距離からかご3の速度を算出して、かご3の速度がゼロ又は所定速度未満であれば停止していると判定するように構成されてもよい。かご3の速度は、算出された移動距離をその移動時間で除算することにより算出される。
図10は、図8のステップS3の位相回転中心検出処理を詳細に示すフローチャートである。
まず、位相回転中心検出回路15は、発生させる送信信号の周波数として、予め決められた複数の周波数のうちの1つを発振器11に設定する(ステップS21)。位相回転中心検出回路15は、少なくとも3つの互いに異なる周波数を発振器11に順次に設定する。このとき、位相回転中心検出回路15は、発振器11に設定した周波数を通知する信号を停止判定回路19に送る。設定する周波数の決定方法については詳細後述する。
次いで、発振器11は、設定された周波数を有する送信信号を発生し、送信アンテナ12aは、発振器11によって発生された送信信号をガイドレール2に電波として照射する(ステップS22)。次いで、受信アンテナ12bは、送信アンテナ12aからガイドレール2に照射されてガイドレール2で反射された電波を受信して反射信号として取得し、増幅器13は、この反射信号を所定の振幅レベルまで増幅する(ステップS23)。次いで、IQ復調器14は、増幅器13から送られた反射信号を、発振器11によって発生された送信信号を基準信号として用いて直交検波(IQ検波)し、IQ信号を取得する(ステップS24)。
位相回転中心検出回路15は、IQ復調器14から送られたIQ信号を取得する。次いで、位相回転中心検出回路15は、予め決められたすべての周波数について、送信信号を発生し、送信信号に対応する反射信号のIQ信号を取得したか否かを判定し(ステップS25)、YESのときはステップS26に進み、NOのときはステップS21に戻る。位相回転中心検出回路15は、発振器11に周波数を設定した時点から時間tが経過して以降に取得したIQ信号を、当該周波数に対応するIQ信号として取得する。ここで、時間tは、発振器11に周波数を設定した時点から送信アンテナ12aにより電波が照射されるまでに要する時間tと、照射された電波が伝搬距離Lを往復するのに要する時間tとの合計時間である。時間tは、電波の速度をcとすると次式(5)で表される。
=2L/c ・・・(5)
予め決められたすべての周波数についてIQ信号が取得されていない場合は、ステップS21に戻り、位相回転中心検出回路15は、発振器11に次の周波数を設定する。発振器11は、互いに異なる無線周波数を有する少なくとも3つの送信信号を発生し、送信アンテナ12aは、少なくとも3つの送信信号をガイドレール2に電波として照射し、受信アンテナ12bは、少なくとも3つの送信信号に対応する少なくとも3つの反射信号を取得し、IQ復調器14は、少なくとも3つの反射信号に対応する少なくとも3つのIQ信号を取得する。一方、予め決められたすべての周波数についてIQ信号が取得された場合には、位相回転中心検出回路15は、取得された少なくとも3つのIQ信号に基づいて、IQ平面上における反射信号の位相回転中心の座標を検出する(ステップS26)。
位相回転中心検出回路15は、位相回転中心の座標の検出が完了すると、予め決められた1つの周波数を発振器11に設定する(ステップS27)。この周波数は、ステップS21〜S25で発振器11に設定される周波数とは異なる周波数であり、ステップS4の移動距離演算処理において使用される周波数である。次いで、位相回転中心検出回路15は、検出された位相回転中心の座標を示す信号を移動距離演算回路16に送り(ステップS28)、さらに、位相回転中心検出処理が完了したことを示す信号を制御回路20に送る(ステップS29)。
図11は、本発明の実施の形態1における反射信号の位相回転中心の座標の検出方法を説明する図である。図11は、かご3の停止中に、送信信号の周波数を24.05GHzから24.25GHzまで0.01GHz刻みで変化させて順次に取得したIQ信号をIQ平面上にプロットした例を示している。送信信号の周波数が変わると波長が変わるので、伝搬距離が一定であれば、位相が異なるIQ信号が得られる。図11において、点P24.05GHzは、周波数を24.05GHzに設定して取得したIQ信号の座標を示し、点P24.06GHzは、周波数を24.06GHzに設定して取得したIQ信号の座標を示し、以後、同様である。反射信号の強度が一定の場合、送信信号の周波数を変化させて順次に取得したIQ信号の軌跡51は円弧又は円となる。そして、円弧51の中心52が、位相回転の中心に相当する。
円の中心は、取得した3つ以上のIQ信号から求めることができる。3つのIQ信号のIQ平面上での座標を、P(x,y)、P(x,y)、P(x,y)とする。円の中心の座標をP(x,y)とし、半径をrとし、円周上の点の座標を(x,y)とすると、円の方程式は次式(6)で表される。
(x−x+(y−y=r ・・・(6)
3点P、P、及びPを通る円の中心の座標を求めるためには、式(6)のx及びyに3点の座標を代入して得られる3元2次連立方程式を解いて、x及びyを求めればよい。なお、円の中心の求め方はこの方法に限らず、線分P−Pの垂直二等分線と、線分P−Pの垂直二等分線とを求め、それら2本の垂直二等分線の交点を求める方法を用いてもよく、又は、Hough変換等の画像上の円の検出を行う一般的な方法を用いてもよい。
かご3が停止中は固定面の状態が変化しないので、反射信号の強度が一定であることが期待できる。それゆえ、かご3の停止中に、予め決められた少なくとも3つの互いに異なる周波数の送信信号に対応する少なくとも3つのIQ信号に基づいて、上記の方法を適用することにより、反射信号の位相回転中心の座標を正確に検出することができる。
図12は、本発明の実施の形態1における位相回転中心検出処理での送信信号の周波数の決定方法を説明する図である。図12を参照して、上記の方法で位相回転中心の座標を検出するうえでの送信信号の周波数の決定方法について説明する。図12において、点P21及び点P22は、送信信号の周波数をそれぞれf及びfに設定して取得したIQ信号の座標を示している。周波数fの送信信号の波長λ、及び、周波数fの送信信号の波長λは、電波の速度をcとすると、それぞれ次式(7)及び(8)で表される。
λ=c/f ・・・(7)
λ=c/f ・・・(8)
点P21及びP22の間の位相差φは次式(9)で表される。
φ=(2L/λ)・2π−(2L/λ)・2π ・・・(9)
ここで、Lはアンテナ12からガイドレール2までの電波の伝搬距離である。式(9)に式(1)、式(7)、及び式(8)を代入して整理すると、次式(10)が得られる。
=f−c・φ・cosθ/(4π・h) ・・・(10)
上記の方法で3点を通る円の中心の座標を求める際に、各2点間の位相差が非常に小さい3点、すなわち、近接した3点を基準とすると、円の中心の座標を正しく求められない可能性がある。そこで、送信信号の周波数は式(10)を用いて選択する。式(10)を用いることで、少なくとも3つの送信信号の無線周波数は、少なくとも3つのIQ信号が予め決められた位相差を互いに有するように、送信アンテナ12a及び受信アンテナ12bの主ビーム方向と、送信アンテナ12a及び受信アンテナ12bからガイドレール2までの距離とに基づいて決定される。第1の周波数及び適切な位相差(例えばπ/3)を任意に決定し、それらを式(10)のf及びφにそれぞれ代入して求められるfを第2の周波数として選択する。同様に、第1の周波数f又は第2の周波数fと適切な位相差とに基づいて、式(10)を用いて第3の周波数を選択する。このようにして送信信号の周波数を選択することで、適度な位相差を有する3つ以上のIQ信号を取得できるので、それらのIQ信号に基づいて上記の方法を適用することにより、位相回転中心の座標を正確に検出することができる。
図13は、図8のステップS4の移動距離演算処理を詳細に示すフローチャートである。
図13において、ステップS31〜S33の処理は、図10に示すフローチャートのステップS22〜S24の処理と同一であるので、それらの各処理の説明は省略する。まず、移動距離演算回路16は、送信信号を発生させ、反射信号のIQ信号を取得する(ステップS31〜S33)。前述のとおり、位相回転中心検出処理の完了時に、位相回転中心検出回路15は、予め決められた1つの周波数を発振器11に設定する(図10のステップS27)ので、移動距離演算処理中は常に、発振器11はこの周波数の送信信号を発生する。
次いで、移動距離演算回路16は、位相回転中心検出回路15から直近に受信した位相回転中心の座標を示す信号に基づいて、IQ平面上における反射信号の座標を補正する(ステップS34)。次いで、移動距離演算回路16は、補正された座標に基づいて送信信号に対する反射信号の位相差を算出し、算出された位相差からかご3の移動距離を算出する(ステップS35)。次いで、移動距離演算回路16は、算出された移動距離を示す信号を制御回路20及び出力端子18に出力する(ステップS36)。
なお、図13の移動距離演算処理において、移動距離演算回路16は、位相差を算出する前に、位相回転中心の座標に基づいてIQ平面上における反射信号の座標を補正したが(ステップS34)、反射信号の座標を補正することなく、反射信号の座標と位相回転中心の座標とに基づいて直接に位相差を算出してもよい。位相回転中心の座標が既知であれば、IQ平面上における反射信号の座標を正確に算出することができ、従って、正確な位相変化量及び積算位相を算出することができる。
図14は、本発明の実施の形態1におけるIQ信号の補正方法を説明する図である。図14を参照して、移動距離演算回路16がIQ信号を補正する方法について説明する。図14において、点PはIQ復調器14で取得された補正前のIQ信号を示している。この例では、IQ信号の位相は、原点とは異なる点Pを中心に回転し、点Pは点Pを中心とする円61の円周上の点である。
位相回転中心検出回路15は、前述の位相回転中心検出処理により、位相回転中心、すなわち点Pの座標(x,y)を検出して、その座標を移動距離演算回路16に通知する。移動距離演算回路16は、受信した点Pの座標に基づいて点Pの座標を補正する。補正前の点Pの座標を(x,y)、補正後の点P’の座標を(x’,y’)とすると、x’及びy’はそれぞれ次式(11)及び(12)で表される。
x’=x−x ・・・(11)
y’=y−y ・・・(12)
補正後のIQ信号を示す点P’は、原点を中心とする破線円62の円周上の点となる。よって、補正後のIQ信号を用いると位相変化量及び積算位相を正確に求められるので、かご3の移動距離を正しく計測することができる。IQ信号に基づいて位相変化量及び積算位相を算出し、かご3の移動距離を算出する方法の詳細は前述のとおりである。
図8の移動距離計測処理では、かご3が移動している限り、ステップS4の移動距離演算処理が反復的に実行される。
以上のような実施の形態1に係る移動距離計測装置10によれば、反射信号の位相回転中心の原点からのずれを、取得された少なくとも3つのIQ信号に基づいて算出し、正確な位相回転中心の座標及びIQ信号の座標から送信信号及び反射信号の位相差を求めて移動距離を算出するように構成したので、反射信号の位相回転の中心が原点からずれる場合であってもかご3の移動距離を正確に計測することができる。
また、かご3が停止しているか否かを、IQ信号の変化量に基づいて判定するように構成したので、反射信号の位相回転の中心が原点からずれる場合であっても、かご3が停止しているか否かを正確に判定できる。それゆえ、かご3の状態に応じた位相回転中心の座標の検出を正確に行うことができ、かご3の移動距離の計測精度を向上できる。
また、かご3の停止中に、予め決められた少なくとも3つの周波数の送信信号に対応する少なくとも3つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出するように構成したので、反射信号の位相回転中心の座標を正確に検出することができ、かご3の移動距離の計測精度を向上できる。
また、少なくとも3つのIQ信号が予め決められた位相差を互いに有するように、少なくとも3つの送信信号の無線周波数を決定するように構成したので、反射信号の位相回転中心の座標を正確に検出することができ、かご3の移動距離の計測精度を向上できる。
また、エレベーター分野において、電波を用いて非接触でかご3の移動距離及び速度を正確に計測することができるので、エンコーダと昇降路全長にわたるロープとで構成された従来の調速機を撤廃することができ、設置コスト及びメンテナンスコストを抑えることができる。
実施の形態2.
実施の形態1に係る移動距離計測装置10では、位相回転中心検出回路15は、かご3の停止中に、予め決められた少なくとも3つの周波数の送信信号に対応する少なくとも3つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出するように構成していた。これに対して、本発明の実施の形態2では、かごの移動中に、一定の周波数の送信信号を発生しているときに取得した少なくとも3つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出するように構成する場合について示す。
実施の形態2に係る移動距離計測装置10の内部構成は、図2に示す実施の形態1に係る移動距離計測装置10の内部構成と同様であるので説明を省略する。
図15は、本発明の実施の形態2に係る移動距離計測装置10の動作を示すフローチャートである。実施の形態2に係る移動距離計測装置10では、位相回転中心検出回路15は、常に、予め決められた一定の無線周波数を発振器11に設定する。
まず、制御回路20は、かご3が予め決められたしきい値以上の速度で移動しているか否かを判定し(ステップS41)、YESのときはステップS42に進み、NOのときはステップS43に進む。かご3の速度は、移動距離演算回路16が算出した移動距離をその移動時間で除算することにより算出する。なお、算出した速度が予め決められたしきい値以上であり、かつ、停止判定回路19から停止中信号を受信していなければ、かご3が予め決められたしきい値以上の速度で移動していると判定してもよい。
かご3が予め決められたしきい値以上の速度で移動していると判定した場合は、制御回路20は、位相回転中心検出回路15に位相回転中心検出処理の実行を指示する(ステップS42)。ステップS42の位相回転中心検出処理の詳細は、図16を参照して後述する。
制御回路20は、かご3が停止しているか否かを判断し(ステップS43)、YESのときは移動距離計測処理を終了し、NOのときはステップS44に進む。制御回路20は、位相回転中心検出回路15から処理が完了したことを示す信号を受信し、かつ、かご3が移動中であると判断すると、移動距離演算回路16に移動距離演算処理の実行を指示する(ステップS44)。ステップS44の移動距離演算処理の詳細は、図13に示すフローチャートと同一であるので説明を省略する。
なお、ステップS42の位相回転中心検出処理は、かご3が予め決められたしきい値以上の速度で移動している場合に常に行わなくてもよい。例えば、かご3が予め決められたしきい値以上の速度で移動している状態において、所定の時間間隔で実行してもよい。
図16は、図15のステップS42の位相回転中心検出処理を詳細に示すフローチャートである。
まず、位相回転中心検出回路15は、発生させる送信信号の周波数として、予め決められた1つの周波数を発振器11に設定する(ステップS51)。図16において、ステップS52〜S54の処理は、図10に示すフローチャートのステップS22〜S24の処理と同一であるので、それらの各処理の説明は省略する。
位相回転中心検出回路15は、IQ復調器14から送られたIQ信号を取得する。次いで、位相回転中心検出回路15は、予め決められた個数(少なくとも3つ)の異なる時点(すなわち、かご3が異なる距離まで移動した時点)において、それぞれIQ信号を取得したか否かを判断し(ステップS55)、YESのときはステップS56に進み、NOのときはステップS52に戻る。
予め決められた個数のIQ信号が取得されていない場合は、位相回転中心検出回路15は、ステップS52に戻り、ステップS52〜S55を繰り返す。発振器11は、同じ無線周波数を有する送信信号を少なくとも3つの単位時間区間にわたって発生し、送信アンテナ12aは、これらの単位時間区間にそれぞれ対応する送信信号(少なくとも3つの送信信号)をガイドレール2に電波として照射し、受信アンテナ12bは、少なくとも3つの送信信号に対応する少なくとも3つの反射信号を取得し、IQ復調器14は、少なくとも3つの単位時間区間(すなわち少なくとも3つの反射信号)にそれぞれ対応する少なくとも3つのIQ信号を取得する。一方、予め決められた個数のIQ信号が取得された場合は、位相回転中心検出回路15は、直近に取得された少なくとも3つのIQ信号に基づいて、IQ平面上における反射信号の位相回転中心の座標を検出する(ステップS56)。
位相回転中心検出回路15は、位相回転中心の座標の検出が完了すると、検出された位相回転中心の座標を移動距離演算回路16に通知し(ステップS57)、さらに、位相回転中心検出処理の完了を制御回路20に通知する(ステップS58)。
反射信号の位相回転中心の座標の検出方法について、以下に説明する。かご3の移動中に、一定の周波数の送信信号を発生しているときに順次に取得した複数のIQ信号の軌跡は円又は円弧となる。そして、その円又は円弧の中心が位相回転中心に相当する。すなわち、実施の形態1で説明した、かご3の停止中に送信信号の周波数を変化させて順次に取得したIQ信号の軌跡と同様となる。従って、かご3が予め決められたしきい値以上の速度で移動中に直近に取得された3つ以上のIQ信号に基づいて、実施の形態1で説明した円の中心を求める方法を適用することにより、位相回転中心の座標を検出することができる。
ここで、図15のステップS41のしきい値の決定方法について説明する。実施の形態1で説明したとおり、3点を通る円の中心の座標を求める際に、各2点間の位相差が非常に小さい3点、すなわち、近接した3点を基準とすると、円の中心の座標を正しく求められない可能性がある。そこで、ステップS42の位相回転中心検出処理を実行する条件となるかご3の速度のしきい値は、実施の形態1で示した式(4)を用いて定める。式(4)は、積算位相(位相差)ψと移動距離sとの関係を表している。式(4)を用いることで、ステップS41のしきい値は、少なくとも3つのIQ信号が予め決められた位相差を互いに有するように、送信アンテナ12a及び受信アンテナ12bの主ビーム方向と、送信信号の電波の波長とに基づいて決定される。適切な位相差(例えばπ/3)を任意に定め、それを式(4)の積算位相ψに代入して移動距離sを求める。そして、IQ信号を取得する単位時間当りに、かご3が距離s以上にわたって移動する速度を、速度のしきい値として定める。このようにして定めたしきい値以上の速度でかご3が移動しているときに取得した3つ以上のIQ信号は、互いに適度な位相差を有しているので、それらのIQ信号に基づいて上記の方法を適用することにより、位相回転中心の座標を正確に検出することができる。
図15の移動距離計測処理では、かご3が移動している限り、ステップS44の移動距離演算処理が反復的に実行される。
以上のような実施の形態2に係る移動距離計測装置10によれば、かご3の移動中に、一定の周波数の送信信号を発生しているときに取得した少なくとも3つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出するように構成したので、かご3の移動中にも、反射信号の位相回転中心の座標を正確に検出することができ、かご3の移動距離の計測精度を向上できる。
また、少なくとも3つのIQ信号が予め決められた位相差を互いに有するように、位相回転中心検出処理を実行するときのかご3の速度のしきい値を決定するように構成したので、反射信号の位相回転中心の座標を正確に検出することができ、かご3の移動距離の計測精度を向上できる。
なお、実施の形態1に示した位相回転中心検出処理と組み合わせて、かご3が停止中の場合及び予め決められたしきい値未満の速度で移動中の場合は、停止中に検出した位相回転中心の座標に基づいて移動距離を算出し、かご3が予め決められたしきい値以上の速度で移動中の場合は、移動中に検出した位相回転中心の座標に基づいて移動距離を算出するように構成してもよい。
実施の形態3.
実施の形態2に係る移動距離計測装置10では、位相回転中心検出回路15は、かごが予め決められたしきい値以上の速度で移動中に、一定の周波数の送信信号を発生しているときに取得した少なくとも3つのIQ信号のIQ平面上での軌跡に基づいて、反射信号の位相回転中心の座標を検出するように構成していた。これに対して、本発明の実施の形態3では、かごが予め決められたしきい値以上の速度で移動中に、一定の周波数の送信信号を発生しているときに取得した反射信号のパワースペクトルに基づいて、反射信号の位相回転中心の座標を検出するように構成した場合について示す。
実施の形態3に係る移動距離計測装置10の内部構成は、図2に示す実施の形態1に係る移動距離計測装置10の内部構成と同様であるので説明を省略する。
実施の形態3に係る移動距離計測装置10の動作は、図15に示すフローチャートと同様であり、ステップS42の位相回転中心検出処理の詳細が実施の形態2と異なる。
図17は、本発明の実施の形態3における位相回転中心検出処理を詳細に示すフローチャートである。図17において、ステップS61〜S65の処理は、図16に示すフローチャートのステップS51〜S55の処理と同一であるので、それらの各処理の説明は省略する。位相回転中心検出回路15は、直近に取得された少なくとも3つのIQ信号に対してFFT(Fast Fourier Transform)処理を行うことにより、少なくとも3つの反射信号のパワースペクトルを算出する(ステップS66)。ここで、反射信号のパワースペクトルを算出するために使用するIQ信号は、かご3が予め決められたしきい値以上の速度で移動しているとき、直近の所定時間期間中に取得されたものである。次いで、位相回転中心検出回路15は、算出されたパワースペクトルに基づいて反射信号の直接波成分を検出する(ステップS67)。次いで、位相回転中心検出回路15は、IQ平面上における反射信号の直接波成分の座標に基づいて、実施の形態1及び2と同様に、反射信号の位相回転中心の座標を検出する(ステップS68)。位相回転中心検出回路15は、位相回転中心の座標の検出が完了すると、検出された位相回転中心の座標を移動距離演算回路16に通知し(ステップS69)、さらに、位相回転中心検出処理の完了を制御回路20に通知する(ステップS70)。
図18及び図19を参照して、反射信号のパワースペクトルに基づいて反射信号の位相回転中心の座標を検出する方法について説明する。図18及び図19は、本発明の実施の形態3における反射信号の位相回転中心の座標の検出方法を説明する図である。図18及び図19において、横軸は周波数を示し、縦軸は反射信号強度を示す。図18は、かご3が停止中における反射信号のパワースペクトルの波形を示し、図19は、かご3が移動中における反射信号のパワースペクトルの波形を示している。かご3が停止中の場合は、反射波の周波数と、送信アンテナ12aから受信アンテナ12bに直接に入射する直接波fの周波数が一致するので、パワースペクトルは周波数fのみ信号強度が高い波形となる。一方、かご3が移動中の場合は、反射波の周波数がかご3の移動速度を反映するドップラ周波数fとなるので、反射波成分及び直接波成分の周波数が分離し、パワースペクトルは両周波数の信号強度が高い波形となる。よって、パワースペクトルの波形において、ドップラ周波数f以外で信号強度が高い周波数を直接波成分として抽出する。そして、抽出された直接波成分のIQ平面上での座標に基づいて、反射信号の位相回転中心の座標を検出する。
かご3が移動中は、かご3の振動などによって反射信号の強度が変化する可能性がある。それゆえ、かご3の移動中に取得した少なくとも3つのIQ信号に基づいて、上記の方法を適用することにより、かご3が移動中でも反射信号の位相回転中心の座標を正確に検出することができる。
以上のような実施の形態3に係る移動距離計測装置10によれば、実施の形態2における効果と同様の効果が得られる。
また、かご3の移動中に、一定の周波数の送信信号を発生しているときに取得した反射信号のパワースペクトルに基づいて、反射信号の位相回転中心の座標を検出するように構成したので、かご3の振動などによって反射信号の強度が変化する場合であっても、反射信号の位相回転中心の座標を正確に検出することができ、かご3の移動距離の計測精度を向上できる。
なお、実施の形態1に示した位相回転中心検出処理と組み合わせて、かご3が停止中の場合及び予め決められたしきい値未満の速度で移動中の場合は、停止中に検出した位相回転中心の座標に基づいて移動距離を算出し、かご3が予め決められたしきい値以上の速度で移動中の場合は、移動中に検出した位相回転中心の座標に基づいて移動距離を算出するように構成してもよい。
実施の形態4.
実施の形態4では、移動距離計測装置を列車の車両に取り付けた場合について示す。この場合、列車の車両が移動体であり、移動距離計測装置は車両の移動距離を計測する。
図20は、本発明の実施の形態4に係る移動距離計測装置10が取り付けられた列車の構成を模式的に示す図である。図20において、車両71が走行する軌道には、レール72が敷かれ、その下にレール72を支える枕木73が所定の間隔で敷かれている。また、枕木73の間には砂利石(バラスト)74が敷き詰められている。一方、車両71の底面の前後には、接続軸75を介して台車76が接続され、台車76には車輪77が取り付けられている。また、車両71の底面の略中央には、艤装治具78を介して移動距離計測装置10が取り付けられている。
実施の形態4に係る移動距離計測装置10の内部構成は、図2に示す実施の形態1に係る移動距離計測装置10の内部構成と同様であるので説明を省略する。なお、送信アンテナ12aは、固定面である軌道(地面)に電波(送信波)を照射する。
実施の形態4に係る移動距離計測装置10の動作は、図8に示すフローチャートと同様であるので説明を省略する。
以上のような実施の形態4に係る移動距離計測装置10によれば、実施の形態1における効果と同様の効果が得られる。
また、鉄道分野において、車両71の移動距離を正確に計測することができるので、移動距離を補正するために設置する地上子の個数を削減又は全廃することができ、設置コスト及びメンテナンスコストを抑えることができる。
なお、移動距離計測装置は、列車に限らず、固定面に沿って移動する移動体、例えば自動車の車両に取り付けられてもよい。
実施の形態5.
実施の形態1では、移動体の停止中に、予め決められた少なくとも3つの周波数の送信信号に対応する少なくとも3つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出する場合を説明した。これに対して、実施の形態5では、移動体の停止中に、予め決められた少なくとも2つの互いに異なる周波数の送信信号に対応する少なくとも2つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出する場合について説明する。
実施の形態5に係る移動距離計測装置10の内部構成は、図2に示す実施の形態1に係る移動距離計測装置10の内部構成と同様であるので説明を省略する。
実施の形態5に係る移動距離計測装置10の動作は、図8に示すフローチャートと同様であり、ステップS3の位相回転中心検出処理の詳細が実施の形態1と異なる。実施の形態5における位相回転中心検出処理は、図10に示すフローチャートと同様であり、設定する周波数の個数(すなわち、取得するIQ信号の個数)及び位相回転中心の座標の検出方法が実施の形態1と異なる。実施の形態5に係る移動距離計測装置10では、位相回転中心検出回路15は、ステップS21において、予め決められた少なくとも2つの互いに異なる周波数を発振器11に順次に設定する。そして、ステップS26において、位相回転中心検出回路15は、取得された少なくとも2つのIQ信号に基づいて、IQ平面上における反射信号の位相回転中心の座標を検出する。
図21〜図23は、実施の形態5に係る反射信号の位相回転中心の座標の検出方法を説明する図である。図21において、点P31及び点P32は、送信信号の周波数を予め決められた2つの周波数f1及びf2に設定して取得したIQ信号の座標を示す。周波数f1及びf2の関係は、f1<f2であるとする。点P31と点P32との間の位相差φは、実施の形態1で示した式(9)を用いて求めることができる。
円周上の2点の座標がわかり、その2点と円の中心とを結ぶ2本の半径がなす中心角がわかれば、円の中心座標は2通りに定まる。点P31と点P32との2点を通り、点P31及び点P32と中心とを結ぶ2本の半径がなす中心角がφ(0°<φ<180°)である円は、点Pを中心とする円81と、点Pを中心とする円82である。
実施の形態1の図11に示したように、移動体の停止中に、送信信号の周波数を順に大きくなるように変化させていった場合、各周波数で取得したIQ信号の軌跡は時計回り(右回り)となる。したがって、f1<f2より、点P31から点P32への軌跡は時計回りとなる。
図22に示すように、円81の円周上において、点P31から点P32への時計回りの軌跡は、位相差がφとなり妥当である。一方、図23に示すように、円82の円周上において、点P31から点P32への時計回りの軌跡は、位相差が360°−φとなり妥当でない。よって、円81の中心Pを、反射信号の位相回転中心の座標として検出する。
上記の方法で、2つの互いに異なる周波数の送信信号に対応する2つのIQ信号に基づいて位相回転中心の座標を検出するためには、2つのIQ信号の位相差φが0°<φ<180°となるように、送信信号の周波数を設定する必要がある。そこで、実施の形態1で説明した送信信号の周波数の決定方法を用いて、2つのIQ信号が0°より大きくかつ180°より小さい位相差を有するように、第1の周波数及び第2の周波数を選択する。
以上のように構成された実施の形態5に係る移動距離計測装置によれば、かご3の停止中に、予め決められた少なくとも2つの互いに異なる周波数の送信信号に対応する少なくとも2つのIQ信号に基づいて、反射信号の位相回転中心の座標を検出するように構成したので、電波を送信する回数をより少なくして、反射信号の位相回転中心の座標を迅速かつ正確に検出することができる。
1 昇降路、2 ガイドレール、3 かご、4 駆動装置、5 主ロープ、6 釣合おもり、7 取付治具、10 移動距離計測装置、11 発振器、12 アンテナ、12a 送信アンテナ、12b 受信アンテナ、13 増幅器、14 IQ復調器、15 位相回転中心検出回路、16 移動距離演算回路、17 入力端子、18 出力端子、19 停止判定回路、20 制御回路、71 車両、72 レール、73 枕木、74 砂利石(バラスト)、75 接続軸、76 台車、77 車輪、78 艤装治具。

Claims (8)

  1. 固定面に沿って移動する移動体に設けられ、当該移動体の移動距離を計測する移動距離計測装置において、前記移動距離計測装置は、
    無線周波数を有する送信信号を複数の単位時間区間にわたって発生する発振器と、
    前記送信信号を前記固定面に電波として照射する送信アンテナと、
    前記送信アンテナから前記固定面に照射されて前記固定面で反射された電波を受信し、前記送信信号に対応する反射信号として取得する受信アンテナと、
    前記複数の単位時間区間のそれぞれにおいて前記送信信号を基準信号として用いて前記反射信号を直交検波し、前記複数の単位時間区間にそれぞれ対応する複数のIQ信号であって、IQ平面上における前記反射信号の座標をそれぞれ示す複数のIQ信号を取得するIQ信号取得手段と、
    前記IQ平面上における前記反射信号の位相回転中心の座標を検出する位相回転中心検出手段と、
    前記IQ平面上における前記反射信号の座標と前記位相回転中心の座標とに基づいて前記送信信号に対する前記反射信号の位相差を算出し、前記位相差に基づいて前記移動体の移動距離を算出する移動距離演算手段とを備え、
    前記発振器は、前記移動体が停止しているとき、互いに異なる無線周波数を有する少なくとも2つの送信信号を発生し、
    前記IQ信号取得手段は、前記移動体が停止しているとき、前記少なくとも2つの送信信号に対応する少なくとも2つのIQ信号を取得し、
    前記位相回転中心検出手段は、前記少なくとも2つのIQ信号に基づいて、前記IQ平面上における前記反射信号の位相回転中心の座標を検出することを特徴とする移動距離計測装置。
  2. 前記移動距離演算手段は、前記位相回転中心の座標に基づいて前記IQ平面上における前記反射信号の座標を補正し、前記補正された座標に基づいて前記送信信号に対する前記反射信号の位相差を算出し、前記位相差に基づいて前記移動体の移動距離を算出することを特徴とする請求項1記載の移動距離計測装置。
  3. 前記少なくとも2つの送信信号の無線周波数は、前記少なくとも2つのIQ信号が予め決められた位相差を互いに有するように、前記送信アンテナ及び前記受信アンテナの主ビーム方向と、前記送信アンテナ及び前記受信アンテナから前記固定面までの距離とに基づいて決定されることを特徴とする請求項1又は2記載の移動距離計測装置。
  4. 前記少なくとも2つの送信信号の無線周波数は、前記少なくとも2つのIQ信号が0度より大きくかつ180度より小さい位相差を有するように決定されることを特徴とする請求項3記載の移動距離計測装置。
  5. 前記移動距離計測装置は、前記IQ信号に基づいて前記移動体が停止しているか否かを判定する停止判定手段をさらに備え、
    前記停止判定手段は、予め決められた時間期間にわたる前記IQ信号の変化量が予め決められた第1のしきい値以下である場合、前記移動体が停止していると判定することを特徴とする請求項1から4のうちの1つに記載の移動距離計測装置。
  6. 請求項1からのうちの1つに記載の移動距離計測装置を備えたことを特徴とするエレベーター。
  7. 請求項1からのうちの1つに記載の移動距離計測装置を備えたことを特徴とする車両。
  8. 固定面に沿って移動する移動体に設けられた移動距離計測装置を用いて前記移動体の移動距離を計測する移動距離計測方法において、前記移動距離計測方法は、
    無線周波数を有する送信信号を複数の単位時間区間にわたって発生するステップと、
    前記送信信号を前記固定面に電波として照射するステップと、
    前記固定面に照射されて前記固定面で反射された電波を受信し、前記送信信号に対応する反射信号として取得するステップと、
    前記複数の単位時間区間のそれぞれにおいて前記送信信号を基準信号として用いて前記反射信号を直交検波し、前記複数の単位時間区間にそれぞれ対応する複数のIQ信号であって、IQ平面上における前記反射信号の座標をそれぞれ示す複数のIQ信号を取得するステップと、
    前記IQ平面上における前記反射信号の位相回転中心の座標を検出するステップと、
    前記IQ平面上における前記反射信号の座標と前記位相回転中心の座標とに基づいて前記送信信号に対する前記反射信号の位相差を算出し、前記位相差に基づいて前記移動体の移動距離を算出するステップとを含み、
    前記位相回転中心の座標を検出するステップは、前記移動体が停止しているとき、
    互いに異なる無線周波数を有する少なくとも2つの送信信号を発生するステップと、
    前記少なくとも2つの送信信号に対応する少なくとも2つのIQ信号を取得するステップと、
    前記少なくとも2つのIQ信号に基づいて、前記IQ平面上における前記反射信号の位相回転中心の座標を検出するステップとを含むことを特徴とする移動距離計測方法。
JP2017501997A 2015-02-23 2016-01-28 移動距離計測装置 Active JP6207792B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015032928 2015-02-23
JP2015032928 2015-02-23
PCT/JP2016/052476 WO2016136371A1 (ja) 2015-02-23 2016-01-28 移動距離計測装置

Publications (2)

Publication Number Publication Date
JPWO2016136371A1 JPWO2016136371A1 (ja) 2017-08-03
JP6207792B2 true JP6207792B2 (ja) 2017-10-04

Family

ID=56788355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017501997A Active JP6207792B2 (ja) 2015-02-23 2016-01-28 移動距離計測装置

Country Status (5)

Country Link
JP (1) JP6207792B2 (ja)
KR (1) KR102034474B1 (ja)
CN (1) CN107250839B (ja)
DE (1) DE112016000867T5 (ja)
WO (1) WO2016136371A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205002B2 (en) 2017-07-18 2021-12-21 Canon Kabushiki Kaisha Information processing apparatus and method for controlling information processing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142628A1 (ja) * 2017-02-06 2018-08-09 日本電気株式会社 物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体
JP6768150B2 (ja) * 2017-04-26 2020-10-14 三菱電機株式会社 移動距離計測装置
JP6616810B2 (ja) * 2017-08-01 2019-12-04 アンリツ株式会社 無線端末の受信特性測定システムおよび測定方法
CN112573312B (zh) * 2020-12-03 2023-02-28 日立楼宇技术(广州)有限公司 电梯轿厢位置确定方法、装置、电梯系统及存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5426698A (en) * 1977-07-30 1979-02-28 Matsushita Electric Works Ltd Alarm unit using ultrasonic waves
JPH10239426A (ja) * 1997-02-27 1998-09-11 Ikuo Arai 物標変位検出装置
JP2005127992A (ja) 2003-09-30 2005-05-19 Tokyo Univ Of Agriculture レーザー距離計による移動体位置計測装置及び計測方法
US7688256B2 (en) * 2004-06-24 2010-03-30 Bae Systems Plc Velocity extraction
EP1777548A4 (en) * 2004-08-02 2010-07-21 Mitsubishi Electric Corp RADAR
KR20060023246A (ko) * 2004-09-09 2006-03-14 주식회사 이노츠 무선통신 시스템의 송수신 감도시험 방법 및 장치
JP3784823B1 (ja) * 2005-07-15 2006-06-14 国立大学法人徳島大学 距離測定装置、距離測定方法および距離測定プログラム
JP4871104B2 (ja) * 2006-11-24 2012-02-08 日立オートモティブシステムズ株式会社 レーダ装置及び信号処理方法
JP5297762B2 (ja) 2008-10-28 2013-09-25 株式会社日立製作所 エレベーターの安全装置
CN101806897B (zh) * 2009-02-17 2012-05-30 南京德朔实业有限公司 光电测距方法及其装置
JP5710029B2 (ja) * 2012-01-10 2015-04-30 三菱電機株式会社 移動距離計測装置
JP2014126523A (ja) * 2012-12-27 2014-07-07 Oki Electric Ind Co Ltd 速度算出装置、速度算出方法及びプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205002B2 (en) 2017-07-18 2021-12-21 Canon Kabushiki Kaisha Information processing apparatus and method for controlling information processing apparatus

Also Published As

Publication number Publication date
KR102034474B1 (ko) 2019-11-08
CN107250839B (zh) 2020-04-21
JPWO2016136371A1 (ja) 2017-08-03
KR20170107501A (ko) 2017-09-25
WO2016136371A1 (ja) 2016-09-01
DE112016000867T5 (de) 2017-11-16
CN107250839A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6207792B2 (ja) 移動距離計測装置
US9336683B2 (en) Travel distance measurement device
JP5710029B2 (ja) 移動距離計測装置
JP5428488B2 (ja) 車両傾斜検知装置
CN106405535B (zh) 列车速度检测装置及列车速度检测方法
JP4931748B2 (ja) 列車位置検知装置および移動無線機
JP6074322B2 (ja) 速度計測装置
KR102457941B1 (ko) 측정 장치 및 측정 방법
JP2011012984A (ja) 対象物の位置測定装置
JP5186724B2 (ja) レーダ装置の光軸調整方法
JP6768150B2 (ja) 移動距離計測装置
US9488500B2 (en) Position measurment apparatus for measuring position of mobile object on the basis of refelected wave
JP5992804B2 (ja) 通信衛星追尾装置
TWI666463B (zh) 列車速度檢測裝置及列車速度檢測方法
JP2020016517A (ja) 速度測定装置、レーダシステム及び速度測定プログラム
TW201704068A (zh) 列車位置檢測裝置及列車位置檢測方法
JP2013140072A (ja) 車両傾斜検知装置
TWI652494B (zh) 列車狀態檢測裝置及列車狀態檢測方法
JP2024072577A (ja) 鉄道車両速度検出装置および鉄道車両速度検出方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170313

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170905

R150 Certificate of patent or registration of utility model

Ref document number: 6207792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250