JP6198640B2 - Petroleum coke blowing blast furnace operation method - Google Patents

Petroleum coke blowing blast furnace operation method Download PDF

Info

Publication number
JP6198640B2
JP6198640B2 JP2014041712A JP2014041712A JP6198640B2 JP 6198640 B2 JP6198640 B2 JP 6198640B2 JP 2014041712 A JP2014041712 A JP 2014041712A JP 2014041712 A JP2014041712 A JP 2014041712A JP 6198640 B2 JP6198640 B2 JP 6198640B2
Authority
JP
Japan
Prior art keywords
coal
coke
pulverized
petroleum coke
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014041712A
Other languages
Japanese (ja)
Other versions
JP2015166485A (en
Inventor
笠井 昭人
昭人 笠井
嗣憲 加藤
嗣憲 加藤
健太郎 野澤
健太郎 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014041712A priority Critical patent/JP6198640B2/en
Publication of JP2015166485A publication Critical patent/JP2015166485A/en
Application granted granted Critical
Publication of JP6198640B2 publication Critical patent/JP6198640B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

本発明は、微粉炭の多量吹込み操業を行っている高炉において、微粉炭の一部を石油コークスに置換して羽口から吹き込む高炉操業方法に関するものである。   The present invention relates to a blast furnace operating method in which a part of pulverized coal is replaced with petroleum coke and blown from a tuyere in a blast furnace performing a large amount of pulverized coal injection operation.

高炉操業においては、羽口から吹き込む炭材(固体還元剤)として、通常、石炭を微粉砕した微粉炭が使用されている。微粉炭の代替品として石油コークス(オイルコークスともいう。)が知られているが、石油コークスは、概して、微粉炭に比べて低揮発分でかつ粉砕性に劣ることから、燃焼性に劣る。このため、微粉炭の一部を石油コークスに置換して羽口から吹き込むと、羽口先のレースウェイ内での燃焼性の悪化により、未燃焼の炭素粉が発生して高炉内に蓄積し、炉内通気性が悪化する懸念がある。したがって、従来は、特に150kg/t−銑鉄以上の高微粉炭比操業下では、石油コークスを使用することができなかった。   In blast furnace operation, pulverized coal obtained by finely pulverizing coal is usually used as a carbon material (solid reducing agent) blown from the tuyere. Petroleum coke (also referred to as oil coke) is known as an alternative to pulverized coal, but petroleum coke generally has lower volatile content and lower grindability than pulverized coal, and is therefore less combustible. For this reason, when part of the pulverized coal is replaced with petroleum coke and blown from the tuyere, unburned carbon powder is generated and accumulated in the blast furnace due to the deterioration of combustibility in the raceway at the tuyere, There is concern that air permeability in the furnace will deteriorate. Accordingly, conventionally, petroleum coke could not be used, particularly under the operation of a high pulverized coal ratio of 150 kg / t-pig iron or higher.

高炉操業において、石油コークスを微粉炭の代替品として羽口から吹き込む従来技術としては、例えば下記特許文献1〜3に記載された方法が挙げられる。   In the blast furnace operation, as a conventional technique in which petroleum coke is blown from the tuyere as an alternative to pulverized coal, for example, methods described in the following Patent Documents 1 to 3 can be given.

特許文献1には、オイルコークスの燃焼性向上を目的として、酸素富化送風を行い、羽口先温度2350〜2400℃として微粉炭中にオイルコークスを混合して炉内に吹き込む方法が提案されている。しかしながら、この方法は、同文献の実施例に記載されるように、吹込み燃料比75kg/t−銑鉄と低吹込み燃料比レベルでの適用に留まっている。また同文献には、オイルコークスの粉砕性に関する問題点は指摘されておらず、ましてやオイルコークスからショットコークスを分離し別途粗粉砕しておくことについては記載はもとより示唆すらも認められない。   Patent Document 1 proposes a method in which oxygen-enriched air is blown for the purpose of improving combustibility of oil coke, and oil coke is mixed in pulverized coal at a tuyere tip temperature of 2350 to 2400 ° C. and blown into the furnace. Yes. However, this method is limited to application at a fuel injection ratio of 75 kg / t-pig iron and a low fuel injection ratio level, as described in the examples of the document. Further, this document does not point out any problems relating to the pulverization property of oil coke, and further, neither the description nor even suggesting that shot coke is separated from oil coke and separately pulverized separately.

また、特許文献2には、羽口内径部への灰分の溶融物の付着による微粉炭の吹込みの不安定化を防止することを目的として、石炭に灰分含有率2%以下の石油系固体炭化水素(石油コークス)を混合し粉砕して所定の平均灰分含有率以下の微粉の混合燃料と成して高炉羽口へ吹き込む方法が提案されている。しかしながら、この方法は、同文献の実施例に記載されるように、石油系固体炭化水素としては、石炭よりも粉砕性の良い(HGIが高い)特殊品のみの適用に留まっている。   Patent Document 2 discloses a petroleum solid having an ash content of 2% or less in coal for the purpose of preventing instability of pulverized coal injection due to adhesion of a molten ash to the inner diameter of the tuyere. There has been proposed a method in which hydrocarbons (petroleum coke) are mixed and pulverized to form finely mixed fuel having a predetermined average ash content or less and blown into the blast furnace tuyere. However, as described in the examples of this document, this method is limited to the application of only special products having a pulverization property (higher HGI) than coal as petroleum-based solid hydrocarbons.

また、特許文献3には、石炭系固体燃料では本質的に達成不可能であったオイルなみの高カロリー、低Ashを享受し高炉の操業改善を図ることを目的として、高炉羽口に連接された熱風吹き込み用ブローパイプ内へ、固体燃料を供給し、かつ、燃焼を生じせしめるランスとブローパイプの接点以前で石油コークスを、微粉炭用石炭中に混合し、その混合比率を20%以上吹き込むことにより、高炉羽口への既公知微粉炭吹き込み設備を円滑に活用し高炉にとってより効果的な燃焼効率を得る方法が提案されている。しかしながら、この方法は、同文献の実施例に記載されるように、石油コークスとしては、石炭よりも粉砕性の良い(HGIが高い)特殊品のみの適用に留まっている。また、この方法は、送風原単位1250Nm/t−銑鉄と仮定して、同文献の実施例の操業データから吹込み燃料比を推算すると86kg/t−銑鉄となり、低吹込み燃料比レベルでの適用に留まっている。 Further, Patent Document 3 is connected to the blast furnace tuyere for the purpose of improving the operation of the blast furnace by enjoying high calorie and low Ash like oil, which was essentially impossible to achieve with coal-based solid fuel. Oil coke is mixed into the coal for pulverized coal before supplying the solid fuel into the blow pipe for hot air blowing and before the contact between the lance and the blow pipe that causes combustion, and the mixing ratio is blown over 20%. Thus, a method has been proposed in which a known pulverized coal injection facility into the blast furnace tuyere is smoothly used to obtain more effective combustion efficiency for the blast furnace. However, as described in Examples of the same document, this method is limited to the application of only special products having a better grindability (higher HGI) than coal as petroleum coke. Also, in this method, assuming that the basic unit of air blowing is 1250 Nm 3 / t-pig iron, the fuel injection ratio is estimated to be 86 kg / t-pig iron from the operation data of the embodiment of the same document, and at a low fuel injection ratio level. The application remains.

特開平3−51606号公報Japanese Patent Laid-Open No. 3-51606 特開昭60−131905号公報JP-A-60-131905 特開昭63−121607号公報JP-A-63-121607

そこで本発明の目的は、微粉炭比150kg/t−銑鉄以上の高微粉炭比操業下において、吹込み炭材の燃焼性を悪化させることなく、安定して、石油コークスを微粉炭の一部と置換して羽口から吹き込むことができる高炉操業方法を提供することにある。   Therefore, an object of the present invention is to stably convert petroleum coke to a part of pulverized coal without deteriorating the combustibility of the blown coal material under high pulverized coal ratio operation of pulverized coal ratio 150 kg / t-pig iron or higher. It is to provide a method of operating a blast furnace that can be replaced by a tuyere and can be blown from a tuyere.

本発明の要旨は、銑鉄1トン当たり、150kg以上の石炭と10〜80kgの石油コークスとからなる160〜250kgの微粉炭材を羽口から吹き込む高炉操業方法であって、前記石油コークスをショットコークスとそれ以外の残部に分離するショットコークス分離工程と、次いで、前記ショットコークスを粒度分布の最大値が5mm以下となるように粗粉砕して粗粉砕物とするショットコークス粗粉砕工程と、前記石炭が、揮発分を無水ベースで25質量%以上含有する石炭であって、この石炭と、前記石油コークスの残部と、前記ショットコークスの粗粉砕物とを、粒径300μm以下が95質量%以上になるように混合粉砕して、前記微粉炭材を作製する混合粉砕工程と、この微粉炭材を前記羽口から高炉内へ吹き込む羽口吹込み工程と、を備えたことを特徴とする石油コークス吹込み高炉操業方法である。 The gist of the present invention is a blast furnace operating method in which 160 to 250 kg of fine coal material consisting of 150 kg or more of coal and 10 to 80 kg of petroleum coke per ton of pig iron is blown from the tuyere, and the petroleum coke is shot coke. Shot coke separation step for separating the coke into the rest, and then the shot coke coarse pulverization step for coarsely pulverizing the shot coke so that the maximum value of the particle size distribution is 5 mm or less, and the coal Is a coal containing 25% by mass or more of volatile matter on an anhydrous basis, and the coal, the remainder of the petroleum coke, and the coarsely pulverized product of the shot coke have a particle size of 300 μm or less to 95% by mass or more. A mixing and pulverizing step for producing the pulverized carbon material by mixing and pulverizing the pulverized carbon material, and a tuyere blowing for blowing the pulverized carbon material into the blast furnace from the tuyere And extent, petroleum coke blowing blast furnace operation method characterized by comprising a.

本発明に係る石油コークス吹込み高炉操業方法を用いることで、微粉炭比150kg/t−銑鉄以上の高微粉炭比操業下においても、レースウェイ内での吹込み炭材の燃焼性が維持されて未燃焼の炭素粉の増加が抑制されるとともに、微粉炭の一部を石油コークスに置換することによる、発生ガス量の減少と灰分量の低下が相俟って炉内通気性を維持できるようになり、高炉の安定操業が可能になった。   By using the petroleum coke blowing blast furnace operating method according to the present invention, the combustibility of the blowing coal in the raceway is maintained even under high pulverized coal ratio operation of pulverized coal ratio 150 kg / t-pig iron or higher. In addition, the increase in unburned carbon powder is suppressed, and by replacing part of the pulverized coal with petroleum coke, the reduction in the amount of generated gas and the decrease in the ash content can be combined to maintain the breathability in the furnace. As a result, stable operation of the blast furnace became possible.

従来技術の工程と本発明の工程とを対比して示す概略フロー図である。It is a general | schematic flowchart which contrasts and shows the process of a prior art, and the process of this invention.

上述したように、本発明に係る石油コークス吹込み高炉操業方法は、
(A)銑鉄1トン当たり、150kg以上の石炭と10〜80kgの石油コークスとからなる160〜250kgの微粉炭材を羽口から吹き込む高炉操業方法であって、
(B)前記石油コークスをショットコークスとそれ以外の残部に分離するショットコークス分離工程と、
(C)次いで、前記ショットコークスを粒径5mm以下に粗粉砕して粗粉砕物とするショットコークス粗粉砕工程と、
(D)前記石炭が、揮発分を無水ベースで25質量%以上含有する石炭であって、この石炭と、前記石油コークスの残部と、前記ショットコークスの粗粉砕物とを、粒径300μm以下が95質量%以上になるように混合粉砕して、前記微粉炭材を作製する混合粉砕工程と、
(E)この微粉炭材を前記羽口から高炉内へ吹き込む羽口吹込み工程と、を備えたことを特徴とするものである。
As mentioned above, the petroleum coke blowing blast furnace operating method according to the present invention is:
(A) A blast furnace operating method in which 160 to 250 kg of finely divided coal material consisting of 150 kg or more of coal and 10 to 80 kg of petroleum coke is blown from a tuyere per ton of pig iron,
(B) a shot coke separation step of separating the petroleum coke into shot coke and the rest other than that,
(C) Next, the shot coke coarse pulverization step to coarsely pulverize the shot coke to a particle size of 5 mm or less,
(D) The coal contains 25% by mass or more of volatile matter on an anhydrous basis, and the coal, the remainder of the petroleum coke, and the coarsely pulverized product of the shot coke have a particle size of 300 μm or less. Mixing and pulverizing to pulverize the carbonaceous material by mixing and pulverizing to 95% by mass or more;
(E) A tuyere blowing step of blowing this fine carbonaceous material from the tuyere into the blast furnace.

以下、上記(A)〜(E)の要件ごとにさらに詳細に説明する。   Hereinafter, it demonstrates in detail for every requirement of said (A)-(E).

[(A)銑鉄1トン当たり、150kg以上の石炭と10〜80kgの石油コークスとからなる160〜250kgの微粉炭材を羽口から吹き込む高炉操業方法]
<銑鉄1トン当たり150kg以上の石炭>
本発明に係る石油コークス吹込み高炉操業方法は、微粉炭比150kg/t−銑鉄以上の高微粉炭吹込み操業下での石油コークスの使用技術を対象としているので、微粉炭用の石炭の使用量は銑鉄1トン当たり150kg以上を前提とした。
[(A) Blast furnace operation method in which 160 to 250 kg of fine coal material consisting of 150 kg or more of coal and 10 to 80 kg of petroleum coke is blown from the tuyere per ton of pig iron]
<150kg of coal per ton of pig iron>
Since the method for operating a petroleum coke-injection blast furnace according to the present invention is directed to a technology for using petroleum coke under a high-pulverized coal injection operation with a pulverized coal ratio of 150 kg / t-pig iron or more, the use of coal for pulverized coal is used. The amount was assumed to be 150 kg or more per ton of pig iron.

<銑鉄1トン当たり10〜80kgの石油コークス>
ここに、「石油コークス」とは、既述したようにオイルコークスとも呼ばれ、石油精製の重質残渣油(アスファルト、ピッチ等)を炭化して得られる炭素質物質の総称である。原油の精製過程において主に減圧蒸留装置から出てくる重油残渣油を熱分解装置(コーカー)にて処理し、ガソリン・軽油留分を搾り取った後に残る残渣である。
石油コークスの使用量は、微粉炭用の石炭の一部と置換して、還元材コストを低減するとともに、発生ガス量減少および灰分量低下の効果を有効に発揮させるため、銑鉄1トン当たり10kg以上、好ましくは15kg以上、さらに好ましくは20kg以上とする。ただし、石油コークスの使用量が多くなりすぎると、レースウェイ内での燃焼性が低下して未燃焼炭素粉の発生が増加するので、銑鉄1トン当たり80kg以下、好ましくは75kg以下、さらに好ましくは70kg以下とする。
<10-80kg of petroleum coke per ton of pig iron>
Here, “petroleum coke” is also called oil coke as described above, and is a general term for carbonaceous substances obtained by carbonizing heavy residual oil (asphalt, pitch, etc.) of petroleum refining. It is the residue that remains after heavy oil residue oil, which mainly comes out from the vacuum distillation unit, is processed in a thermal cracking unit (coker) in the crude oil refining process, and the gasoline / light oil fraction is squeezed out.
The amount of petroleum coke used is 10 kg per ton of pig iron in order to replace the part of coal for pulverized coal to reduce the reducing material cost and to effectively exhibit the effects of reduced gas generation and ash content. Above, preferably 15 kg or more, more preferably 20 kg or more. However, if the amount of petroleum coke used is too large, the combustibility in the raceway decreases and the generation of unburned carbon powder increases, so 80 kg or less, preferably 75 kg or less, and more preferably 70 kg or less.

<銑鉄1トン当たり160〜250kgの微粉炭材>
そして、前記石炭と前記石油コークスからなる微粉炭材の使用量については、その下限は、前記石炭と前記石油コークスの各使用量の下限同士の合計量である、銑鉄1トン当たり160kgとしたが、その上限は、酸素富化送風などの既存技術により炉内通気性を確保して安定操業を維持しうる250kgとした。
<160-250kg pulverized coal per ton of pig iron>
And about the usage-amount of the pulverized coal material which consists of the said coal and the said petroleum coke, the minimum was set to 160 kg per 1 ton of pig iron which is the total amount of each usage-amount of the said coal and the said petroleum coke. The upper limit was 250 kg which can maintain the stable operation by securing the air permeability in the furnace by existing technology such as oxygen-enriched air blowing.

[(B)前記石油コークスをショットコークスとそれ以外の残部に分離するショットコークス分離工程]
<ショットコークスとそれ以外の残部>
ここに、「ショットコークス」とは、石油コークスに含まれるもののうち、硬くて高密度で球状のものである。また、ショットコークス以外の残部は、ニードルコークス、スポンジコークスなど、ショットコークスよりも柔らかくて低密度で非球状のものである(例えば、特開2007−537343号公報、特開2008−504376号公報等参照)。
[(B) Shot Coke Separation Process for Separating the Petroleum Coke into Shot Coke and Other Remaining Parts]
<Shot coke and the rest of it>
Here, “shot coke” is a hard, high-density, spherical shape among those contained in petroleum coke. Further, the remainder other than shot coke is softer, lower density and non-spherical than needle coke, sponge coke, etc. (for example, JP 2007-537343 A, JP 2008-504376 A, etc.) reference).

<ショットコークスとそれ以外の残部とに分離>
ショットコークスとそれ以外の残部とに分離するのは、硬くて粉砕しにくいショットコークスだけを選別して、別途粗粉砕しておくためである。分離手段としては、特に限定されないが、例えば、硬度差や密度差(反発係数差)を利用した反発式選別機、形状の相違を利用した転選機(スパイラルシュート方式、ベルトコンベア方式など)が挙げられる。具体的には、搖動機械式選別機、傾斜型選別機、搖動反発式選別機、形状選別機(転選機)などが例示できる。
<Separated into shot coke and the rest>
The reason why the shot coke is separated from the remaining portion is that only the shot coke that is hard and difficult to grind is selected and coarsely ground separately. Separation means is not particularly limited. For example, a repulsion sorter using a hardness difference or a density difference (repulsion coefficient difference), a reversing machine using a difference in shape (spiral chute method, belt conveyor method, etc.) Can be mentioned. Specific examples include a peristaltic mechanical sorter, an inclined type sorter, a peristaltic repulsive sorter, and a shape sorter (shifter).

なお、分離したショットコークスは、本発明では次工程以降の処理をして最終的には高炉内に吹き込まれて使用されるが、本発明の範囲外の別の利用方法として、高炉では使用せずに、コークス炉でコークス原料として使用する、セメント・キルン等の燃料として外販する、等の方法も考えられる。   The separated shot coke is used in the present invention after the next step and finally blown into the blast furnace. However, as another utilization method outside the scope of the present invention, the separated shot coke is not used in the blast furnace. Instead, a method of using as a coke raw material in a coke oven, selling as a fuel such as cement kiln, etc. is conceivable.

[(C)次いで、前記ショットコークスを粒径5mm以下に粗粉砕して粗粉砕物とするショットコークス粗粉砕工程]
<粒径5mm以下>
ここで、「粒径5mm以下」とは、5mm(またはそれ以下)の篩目を全量通過する状態をいう。
[(C) Next, a shot coke coarse pulverization step in which the shot coke is coarsely pulverized to a particle size of 5 mm or less to obtain a coarse pulverized product]
<Particle size 5mm or less>
Here, “particle size of 5 mm or less” refers to a state in which a total amount of 5 mm (or less) sieve mesh passes.

<前記ショットコークスを粒径5mm以下に粗粉砕>
上記の分離したショットコークスを粗粉砕して粒径5mm以下とすることで、ショットコークスとそれ以外の残部(ニードルコークス、ポーラスコークス等)と石炭の各粉砕性をほぼ同等にすることにより、次工程での混合粉砕における混合性と微粉砕性が良くなり、レースウェイ内で燃焼しにくい粗粉が少なくなり、高炉への吹込み時の燃焼性が向上する(図1(b)参照)。
一方、粗粉砕をせずにショットコークスをそのまま使用すると(すなわち、ショットコークスとそれ以外の残部とに分離することなく、石油コークスをそのまま使用すると)、次工程での石炭との混合粉砕において、硬くて球状のままのショットコークスは粉砕されにくいため、レースウェイ内で燃焼しにくいショットコークス由来の粗粉が増加し、高炉への吹込み時の燃焼性が悪化する(図1(a)参照)。
<Roughly grinding the shot coke to a particle size of 5 mm or less>
By roughly pulverizing the above-mentioned separated shot coke to a particle size of 5 mm or less, the pulverization properties of shot coke and other remaining parts (needle coke, porous coke, etc.) and coal are made substantially equal to each other. The mixing and fine pulverizing properties in the mixing and pulverization in the process are improved, the coarse powder which is difficult to burn in the raceway is reduced, and the flammability at the time of blowing into the blast furnace is improved (see FIG. 1B).
On the other hand, when shot coke is used as it is without coarse pulverization (that is, petroleum coke is used as it is without being separated into shot coke and the rest), in mixed pulverization with coal in the next step, Since hard and spherical shot coke is difficult to pulverize, the coarse powder derived from shot coke that is difficult to burn in the raceway increases, and the combustibility when injected into the blast furnace deteriorates (see FIG. 1 (a)). ).

粗粉砕の手段としては、特に限定されるものではないが、一般的には、ロッドミル、ボールミル、ハンマミル、ピンミル、インパクトクラシャ、ジャイアントクラッシャ、コーンクラッシャ等が挙げられる。なお、石油コークスが水分を含有していても、粒径5mm以下への粗粉砕であるので、粗粉砕に際して石油コークスは必ずしも乾燥する必要はない。   The means for coarse pulverization is not particularly limited, and generally includes a rod mill, ball mill, hammer mill, pin mill, impact crusher, giant crusher, corn crusher and the like. Even if the petroleum coke contains moisture, it is coarsely pulverized to a particle size of 5 mm or less, and therefore the petroleum coke does not necessarily need to be dried during the coarse pulverization.

[(D)前記石炭が、揮発分を無水ベースで25質量%以上含有する石炭であって、この石炭と、前記石油コークスの残部と、前記ショットコークスの粗粉砕物とを、粒径300μm以下が95質量%以上になるように混合粉砕して、前記微粉炭材を作製する混合粉砕工程]
<揮発分を乾量基準で25質量%以上含有する石炭>
揮発分の多い石炭は燃焼性が良く、レースウェイ内の燃焼場の温度が上昇する。その結果、燃えにくい石油コークスの燃焼が促進される(いわゆる加速燃焼)。このような加速燃焼作用を有効に発揮させるためには、石炭の揮発分量を無水ベースで25質量%以上、好ましくは30質量%以上とする必要がある。ただし、石炭の揮発分量を高くしすぎると、発生ガス量が増大し、炉内通気性を低下させるおそれがあるので、無水ベースで50質量%以下、さらには40質量%以下とするのが好ましい。
なお、本発明で使用する石炭としては、揮発分量が上記所定範囲の石炭1種類だけを用いてもよいが、平均揮発量が上記所定範囲となるように揮発分量の異なる複数種類の石炭を配合して用いてもよい。
[(D) The coal contains 25% by mass or more of volatile matter on an anhydrous basis, and the coal, the remainder of the petroleum coke, and the coarsely pulverized product of the shot coke have a particle size of 300 μm or less. Is mixed and pulverized so that the pulverized carbon material is produced by mixing and pulverizing so that the amount is 95 mass% or more
<Coal containing 25% by mass or more of volatile matter on a dry basis>
Coal with a lot of volatile matter has good combustibility, and the temperature of the combustion field in the raceway rises. As a result, combustion of petroleum coke that is difficult to burn is promoted (so-called accelerated combustion). In order to effectively exhibit such accelerated combustion action, the volatile content of coal needs to be 25% by mass or more, preferably 30% by mass or more, on an anhydrous basis. However, if the amount of volatile matter in the coal is increased too much, the amount of gas generated increases and the air permeability in the furnace may be reduced. Therefore, it is preferably 50% by mass or less, more preferably 40% by mass or less on an anhydrous basis. .
In addition, as coal used by this invention, you may use only one type of coal with the amount of volatiles of the said predetermined range, but mix | blends multiple types of coal with different amounts of volatiles so that an average amount of volatiles may become the said predetermined range. May be used.

<この石炭と、前記石油コークスの残部と、前記ショットコークスの粗粉砕物とを、粒径300μm以下が95質量%以上になるように混合粉砕>
上記のように、石油コークスから分離したショットコークスを予め粗粉砕しておくことで、粉砕性をほぼ同等にした、石炭と、石油コークスの残部と、ショットコークスの粗粉砕物とを混合粉砕することにより、異種炭材の混合性および粉砕性が向上し、燃焼性がさらに向上する。レースウェイ内での燃焼性を確保するため、混合粉砕の結果得られる粉状固体燃料の粒度は、粒径300μm以下が95質量%以上になるようにする。
混合粉砕の手段としては、特に限定されるものでなく、例えば、石炭を微粉炭にするのに常用される竪型ローラーミル等を用いることができ、そのセパレータ回転速度や粉砕時間(原料供給速度)等を調整することで上記所定粒度が得られる。なお、被粉砕物(石炭、石油コークス)が水分を含有する場合は、粒径300μm以下が95質量%以上の微粉砕であるので、混合粉砕に際して被粉砕物を乾燥する必要がある。
<Mixing and pulverizing this coal, the remainder of the petroleum coke, and the coarsely pulverized product of the shot coke so that the particle size of 300 μm or less is 95% by mass or more>
As described above, shot coke separated from petroleum coke is coarsely pulverized in advance, so that the pulverization property is almost equal and coal, the remainder of petroleum coke and the coarsely pulverized shot coke are mixed and pulverized. By this, the mixing property and grindability of dissimilar carbon materials are improved, and the combustibility is further improved. In order to ensure combustibility in the raceway, the particle size of the pulverized solid fuel obtained as a result of the mixed pulverization is such that the particle size of 300 μm or less is 95% by mass or more.
The means for mixing and pulverizing is not particularly limited. For example, a vertical roller mill or the like commonly used for making coal into pulverized coal can be used, and the separator rotation speed and pulverization time (raw material supply speed) can be used. ) Etc. are adjusted to obtain the predetermined particle size. In addition, when a to-be-ground material (coal, petroleum coke) contains moisture, it is necessary to dry the to-be-ground material during the mixing and pulverization because the particle size of 300 μm or less is fine pulverization of 95% by mass or more.

[(E)この微粉炭材を前記羽口から高炉内へ吹き込む羽口吹込み工程]
上記のようにして作製した微粉炭材は、例えば、従来の微粉炭と同様、羽口に設置した微粉炭吹込みランスを用いて高炉内に吹き込むことができる。なお、レースウェイ内における微粉炭材の燃焼性をさらに向上させるため、従来の微粉炭吹込み操業で常用されている送風への酸素富化量の調整を行ってもよい。
[(E) A tuyere blowing step of blowing this fine carbonaceous material into the blast furnace from the tuyere]
The pulverized coal material produced as described above can be blown into the blast furnace using, for example, a pulverized coal blowing lance installed at the tuyere, similarly to conventional pulverized coal. In addition, in order to further improve the combustibility of the pulverized coal material in the raceway, the oxygen enrichment amount to the air blowing that is commonly used in the conventional pulverized coal blowing operation may be adjusted.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することももちろん可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

〔使用炭材〕
石油コークスとして、下記表1に示す各成分組成を有する5種類の石油コークスを用いた。また、石炭として、下記表2に示す各成分組成を有する3種類の石炭を用いた。
[Used charcoal]
As the petroleum coke, five types of petroleum coke having each component composition shown in Table 1 below were used. Moreover, three types of coal having each component composition shown in Table 2 below were used as the coal.

〔ショットコークスの分離〕
そして、上記各石油コークスを、搖動機械式選別機(御池鉄工所社製)を用いて、(1)高反発物(重量物)、(2)低反発物(軽量物)、(3)細粒物、の3種類に選別した。そして、搖動スクリーンの傾斜角度および回転数、ならびに選別ファンの風量を適宜調整して、選別された上記(1)高反発物(重量物)の圧潰強度が50〜100kgf(≒490〜980N)で、形状係数が0.9以上となったものをショットコークスとし、選別された上記(2)低反発物(軽量物)と(3)細粒物の圧潰強度が40kgf(≒390N)以下で、形状係数が0.8以下となったものをショットコークス以外の残部とした。なお、上記表1に、分離されたショットコークスの石油コークス中における質量割合を併記した。
[Separation of shot coke]
Then, using the peristaltic mechanical sorter (manufactured by Oike Iron Works Co., Ltd.), (1) high resilience (heavy), (2) low resilience (light), (3) fine Sorted into three types: grain. Then, by appropriately adjusting the tilt angle and rotation speed of the peristaltic screen and the air volume of the sorting fan, the crushing strength of the sorted (1) high repulsion material (heavy material) is 50 to 100 kgf (≈490 to 980 N). When the shape factor is 0.9 or more is shot coke, the crushing strength of the selected (2) low resilience (light weight) and (3) fine particles is 40 kgf (≈390 N) or less, The shape factor of 0.8 or less was determined as the balance other than shot coke. In Table 1, the mass ratio of the separated shot coke in petroleum coke is also shown.

〔ショットコークスの粗粉砕〕
上記のようにして分離したショットコークスを、ハンマミル(ホソカワミクロン社製、型式:H18)を用いて、ハンマの回転速度、粉砕時間等を調整することで、粒径5mm以下(5mmの篩目を全量通過する状態)に粗粉砕した。
[Coarse shot coke]
The shot coke separated as described above is adjusted to the rotation speed, grinding time, etc. of the hammer using a hammer mill (Hosokawa Micron Corporation, model: H18), so that the total size of the sieve having a particle size of 5 mm or less (5 mm sieve) Coarsely pulverized to a passing state).

〔石炭の揮発分量の調整〕
上記3種類の石炭を、単独で用いて、または複数種類を配合して揮発分量の調整を行った。なお、複数種類を配合する場合には、配合後の石炭の揮発分量は、配合された各石炭の揮発分量を配合質量割合で加重平均して求めた。
[Adjustment of volatile content of coal]
The above three types of coal were used alone or a plurality of types were blended to adjust the volatile content. In addition, when mix | blending multiple types, the volatile matter amount of the coal after mixing | blending was calculated | required by carrying out the weighted average of the volatile matter amount of each mix | blended coal with a mixing | blending mass ratio.

〔炭材の混合粉砕〕
上記のようにして調製された、石炭と、ショットコークスの粗粉砕物と、ショットコークス以外の残部とを、石炭と石油コークスの配合質量割合を種々変更し、粉砕機として竪型ローラーミル(アーステクニカ社製、型式:KVM−60)を用いて混合粉砕を行った。この粉砕機は、粉砕・分級・乾燥を1台で実施することができる高性能加圧式粉砕機であり、複数種類の炭材を投入して一緒に粉砕することで、混合しながら所定粒度まで粉砕(混合粉砕)ができる。粉砕条件としては、原料供給量=2.0t/h、ミル入口風量=50Nm/min、ローラー加圧力=4.0t/ローラー、セパレータ回転速度=100rpm、ミル入口温度=200〜400℃、ミル出口温度=50〜100℃とした。
[Mixing and grinding of charcoal]
The coal, the coarsely pulverized product of shot coke, and the remainder other than shot coke prepared in the manner described above were changed in various mass ratios of coal and petroleum coke, and the vertical roller mill (earth) was used as a pulverizer. The mixture was pulverized using Technica's model: KVM-60. This pulverizer is a high-performance pressure pulverizer that can perform pulverization, classification, and drying with a single machine. By mixing multiple types of charcoal materials and pulverizing them together, the pulverizer can achieve a predetermined particle size while mixing. Can be pulverized (mixed pulverized). As pulverization conditions, raw material supply amount = 2.0 t / h, mill inlet air volume = 50 Nm 3 / min, roller pressure = 4.0 t / roller, separator rotation speed = 100 rpm, mill inlet temperature = 200 to 400 ° C., mill The outlet temperature was set to 50 to 100 ° C.

〔微粉炭材の燃焼試験〕
そして、上記混合粉砕後の微粉炭材の高炉レースウェイ内における燃焼性を評価するため、コークス充填型試験燃焼炉(宮川一也ら:材料とプロセス,vol.7(1994),p.128、有山達郎ら:鉄と鋼,vol.81(1995),p.1114参照)を用いて、燃焼試験を行った。この試験燃焼炉は、高さ2.5m、奥行き1.9mの扇形の炉であり、内径0.08mの羽口1本を備えている。試験条件としては、コークス粒径=8〜20mm、送風温度=1050℃、送風量=720Nm/hとした。
[Combustion test of pulverized coal]
And in order to evaluate the combustibility in the blast furnace raceway of the pulverized coal after the above-mentioned mixing and pulverization, a coke filling type test combustion furnace (Kazuya Miyagawa et al .: Materials and Processes, vol. 7 (1994), p. 128, Tatsuro Ariyama et al .: Iron and steel, vol. 81 (1995), p. This test combustion furnace is a fan-shaped furnace having a height of 2.5 m and a depth of 1.9 m, and has one tuyere with an inner diameter of 0.08 m. As test conditions, coke particle size = 8-20 mm, blowing temperature = 1050 ° C., blowing amount = 720 Nm 3 / h.

微粉炭材の燃焼性を評価する指標として、レースウェイでの燃え残りの炭素分である未燃C量(単位:kg/t−溶銑)を用いた。この未燃C量は、下記式(1)で定義される。
未燃C量(kg/t−溶銑)=微粉炭材比(kg/t−溶銑)×[(100−微粉炭材の灰分(df%))/100]×[(100−微粉炭材の燃焼率(%))/100]・・・式(1)
ここに、微粉炭材の燃焼率(%)=[微粉炭材の(固定炭素+揮発分)の質量減少量]÷[微粉炭素の(固定炭素+揮発分)の初期質量]×100
As an index for evaluating the combustibility of the pulverized carbon material, the amount of unburned carbon (unit: kg / t-molten iron), which is the carbon content remaining on the raceway, was used. This unburned C amount is defined by the following formula (1).
Unburned C amount (kg / t-hot metal) = Powdered carbon material ratio (kg / t-hot metal) × [(100−ash content of pulverized carbon material (df%)) / 100] × [(100−fine coal material Combustion rate (%)) / 100] ... Equation (1)
Here, the combustion rate (%) of pulverized carbon material = [mass reduction amount of (fixed carbon + volatile content) of pulverized carbon material] ÷ [initial mass of (fixed carbon + volatile content) of pulverized carbon] × 100

上記微粉炭材の燃焼率は、具体的には、燃焼試験中に上記試験燃焼炉の羽口対面よりサンプリングプローブを挿入してレースウェイ出口での微粉炭材を採集し、燃焼試験前後のおける微粉炭材の灰分を測定し、アッシュトレーサ法にて次式で求めた。
微粉炭材の燃焼率(%)=[(100−燃焼試験前の灰分量)−(100−燃焼試験後の灰分量)×(燃焼試験前の灰分量/燃焼試験後の灰分量)]÷(100−燃焼試験前の灰分量)×100
Specifically, the combustion rate of the pulverized coal material can be measured before and after the combustion test by collecting the pulverized coal material at the exit of the raceway by inserting a sampling probe from the tuyere facing the test combustion furnace during the combustion test. The ash content of the fine carbonaceous material was measured and determined by the following formula using the ash tracer method.
Combustion rate of fine coal (%) = [(100−Amount of ash before combustion test) − (100−Amount of ash after combustion test) × (Amount of ash before combustion test / Amount of ash after combustion test)] ÷ (100—Amount of ash before combustion test) × 100

また、微粉炭材比(kg/t−銑鉄)は、送風原単位1250Nm/t−銑鉄と仮定して、送風量720Nm/h一定の条件下で微粉炭材供給量(kg/h)を調整することにより設定した。 Further, the fine carbonaceous material ratio (kg / t-pig iron) is assumed to be a basic unit of air blowing of 1250 Nm 3 / t-pig iron, and the supply amount of fine carbonaceous material (kg / h) under a constant air flow rate of 720 Nm 3 / h. It was set by adjusting.

そして、下記の根拠により、未燃C量が70kg/t−銑鉄より少ない場合を、微粉炭材の燃焼性が良好で合格(○)、70kg/t−銑鉄以上の場合を、燃焼性が劣り不合格(×)と判定した。   And on the basis of the following, when the amount of unburned C is less than 70 kg / t-pig iron, the pulverized coal material has good combustibility and passes (○), and when it is 70 kg / t-pig iron or more, combustibility is poor It was determined to be rejected (x).

すなわち、高炉内におけるソリューションカーボン量(C+CO→2COの反応で消費される銑鉄1トン当たりのC量[kg/t−銑鉄])は、従来の高炉操業の実績から、微粉炭比が160kg/t−銑鉄以上の場合70〜85kg/t−銑鉄である。したがって、未燃C量が70kg/t−銑鉄より少なければ、高炉内でソリューションロス反応によりこの未燃Cが完全に消費されるため、未燃Cが高炉内に蓄積することが防止され、高炉内の通気性が確保できることになる。 That is, the amount of solution carbon in the blast furnace (the amount of C per 1 ton of pig iron consumed by the reaction of C + CO 2 → 2CO [kg / t-pig iron]) is 160 kg / pulverized coal ratio based on the results of conventional blast furnace operation. In the case of t-pig iron or more, it is 70 to 85 kg / t-pig iron. Therefore, if the amount of unburned C is less than 70 kg / t-pig iron, the unburned C is completely consumed by the solution loss reaction in the blast furnace, so that it is prevented from accumulating in the blast furnace. The inside air permeability can be secured.

試験条件および試験結果を下記表3および表4に示す。   Test conditions and test results are shown in Tables 3 and 4 below.

上記表3に示すように、本発明の要件を全て満足する場合は、いずれも、未燃C量が70kg/t−銑鉄を下回っており、吹込み炭材(微粉炭材)の燃焼性に優れることがわかる。   As shown in Table 3 above, when all the requirements of the present invention are satisfied, the amount of unburned C is less than 70 kg / t-pig iron, and the combustibility of the blown carbon material (pulverized carbon material) is improved. It turns out that it is excellent.

これに対し、上記表4に示すように、本発明の要件のうち、少なくともいずれかの要件を満足しない場合は、未燃C量が70kg/t−銑鉄以上になっており、吹込み炭材(微粉炭材)の燃焼性が劣ることがわかる。   On the other hand, as shown in Table 4 above, when at least one of the requirements of the present invention is not satisfied, the unburned C amount is 70 kg / t-pig iron or more, and the blown carbon material It turns out that the combustibility of (pulverized carbonaceous material) is inferior.

例えば、試験No.101は、ショットコークスの分離・粗粉砕を行わずに、そのままの石油コークスを石炭と混合粉砕したため、得られた微粉炭材に粗粉が多く含まれ、燃焼試験における未燃Cが増加している。   For example, test no. No. 101 was obtained by mixing and pulverizing the raw petroleum coke with coal without separating and coarsely pulverizing shot coke, so that the resulting fine pulverized carbon material contained a large amount of coarse powder, and unburned C in the combustion test increased. Yes.

また、試験No.102は、ショットコークスの分離・粗粉砕を行わず、さらに、そのままの石油コークスと石炭とを別個に粉砕した後に混合したため、得られた微粉炭材に粗粉が多く含まれるとともに、異種炭材の混合性が不十分となり、燃焼試験における未燃Cが増加している。   In addition, Test No. No. 102 does not perform separation and coarse pulverization of shot coke, and further mixes the raw petroleum coke and coal separately after pulverization, so that the resulting fine pulverized carbon material contains a large amount of coarse powder, As a result, the unmixed C in the combustion test has increased.

また、試験No.103、104は、ショットコークスの分離・粗粉砕を行わず、そのままの石油コークスを、揮発分量の低い石炭と混合粉砕したため、得られた微粉炭材に粗粉が多く含まれるとともに、加速燃焼作用が十分に発揮されず、燃焼試験における未燃Cが増加している。   In addition, Test No. Nos. 103 and 104 do not perform shot coke separation / coarse pulverization, but because the raw coke is mixed and pulverized with coal having a low volatile content, the resulting pulverized carbon material contains a large amount of coarse powder and accelerated combustion action. Is not fully exhibited, and unburned C in the combustion test is increasing.

また、試験No.105は、ショットコークスの分離・粗粉砕を行ってはいるが、石炭と石油コークスとを別個に粉砕した後に混合したため、得られた微粉炭材は十分に微粉化されているものの、異種炭材の混合性が不十分となり、燃焼試験における未燃Cが増加している。   In addition, Test No. 105, although shot coke is separated and coarsely pulverized, coal and petroleum coke are separately pulverized and mixed, so the obtained pulverized carbon material is sufficiently pulverized, but different carbon material As a result, the unmixed C in the combustion test has increased.

また、試験No.106〜108は、ショットコークスの分離を行ってはいるが、粗粉砕を行わないか、または粗粉砕が不十分であったため、その後に石炭と石油コークスの残部とともに混合粉砕を行っているにも関わらず、微粉炭材には粗粉が多く含まれ、燃焼試験における未燃Cが増加している。   In addition, Test No. Nos. 106 to 108, although the shot coke is separated, the coarse pulverization is not performed, or the coarse pulverization is insufficient, and then the mixed pulverization is performed together with the remainder of the coal and petroleum coke. Regardless, the pulverized carbon material contains a large amount of coarse powder, and the unburned C in the combustion test increases.

また、試験No.109、110は、ショットコークスの分離・粗粉砕を行い、石炭と石油コークスの残部とともに混合粉砕を行っているものの、使用した石炭の揮発分が低かったため、燃焼試験における未燃Cが増加している。   In addition, Test No. Nos. 109 and 110 perform shot coke separation / coarse pulverization and mixed pulverization together with the remainder of coal and petroleum coke, but because the volatile content of the coal used was low, unburned C in the combustion test increased. Yes.

また、試験No.111は、ショットコークスの分離・粗粉砕を行い、揮発分の高い石炭と石油コークスの残部とともに混合粉砕を行っているものの、混合粉砕が不十分であったため、微粉炭材の微粉化が不足し、燃焼試験における未燃Cが増加している。   In addition, Test No. No. 111, shot coke was separated and coarsely pulverized, and mixed and pulverized together with the remaining volatile coal and the remainder of petroleum coke, but because the mixed pulverization was insufficient, pulverized coal material was insufficiently pulverized The unburned C in the combustion test is increasing.

また、試験No.112は、ショットコークスの分離・粗粉砕を行い、揮発分の高い石炭と石油コークスの残部とともに十分に混合粉砕を行っているものの、石油コークスへの置換率(石油コークスの原単位)が高すぎたため、燃焼試験における未燃Cが増加している。   In addition, Test No. No. 112 performs shot coke separation and coarse pulverization, and sufficiently mixes and pulverizes the remaining volatile coal and the remainder of petroleum coke, but the substitution rate for petroleum coke (the basic unit of petroleum coke) is too high. Therefore, unburned C in the combustion test is increasing.

また、試験No.113は、ショットコークスの分離・粗粉砕を行い、揮発分の高い石炭と石油コークスの残部とともに十分に混合粉砕を行っているものの、吹込み炭材比(微粉炭材の原単位)が高すぎたため、燃焼試験における未燃Cが増加している。   In addition, Test No. No. 113 performs shot coke separation and coarse pulverization, and sufficiently pulverizes the mixed pulverized coal and the remainder of petroleum coke, but the blown carbon material ratio (basic unit of pulverized carbon material) is too high. Therefore, unburned C in the combustion test is increasing.

以上より、本発明の適用性が確認できた。   From the above, the applicability of the present invention was confirmed.

Claims (1)

銑鉄1トン当たり、150kg以上の石炭と10〜80kgの石油コークスとからなる160〜250kgの微粉炭材を羽口から吹き込む高炉操業方法であって、
前記石油コークスをショットコークスとそれ以外の残部に分離するショットコークス分離工程と、
次いで、前記ショットコークスを粒度分布の最大値が5mm以下となるように粗粉砕して粗粉砕物とするショットコークス粗粉砕工程と、
前記石炭が、揮発分を無水ベースで25質量%以上含有する石炭であって、この石炭と、前記石油コークスの残部と、前記ショットコークスの粗粉砕物とを、粒径300μm以下が95質量%以上になるように混合粉砕して、前記微粉炭材を作製する混合粉砕工程と、
この微粉炭材を前記羽口から高炉内へ吹き込む羽口吹込み工程と、
を備えたことを特徴とする石油コークス吹込み高炉操業方法。
A blast furnace operation method in which 160 to 250 kg of finely divided coal material consisting of 150 kg or more of coal and 10 to 80 kg of petroleum coke is blown from a tuyere per ton of pig iron,
A shot coke separation step for separating the petroleum coke into shot coke and the rest, and
Then, the shot coke coarse pulverization step to coarsely pulverize the shot coke so that the maximum value of the particle size distribution is 5 mm or less ,
The coal contains 25% by mass or more of volatile matter on an anhydrous basis, and the coal, the remainder of the petroleum coke, and the coarsely pulverized product of the shot coke have a particle size of 300 μm or less and 95% by mass. Mixed and pulverized to produce the pulverized carbon material by mixing and pulverizing as described above,
A tuyere blowing step of blowing this fine carbonaceous material into the blast furnace from the tuyere,
A method for operating a petroleum coke-injection blast furnace characterized by comprising:
JP2014041712A 2014-03-04 2014-03-04 Petroleum coke blowing blast furnace operation method Expired - Fee Related JP6198640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041712A JP6198640B2 (en) 2014-03-04 2014-03-04 Petroleum coke blowing blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041712A JP6198640B2 (en) 2014-03-04 2014-03-04 Petroleum coke blowing blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2015166485A JP2015166485A (en) 2015-09-24
JP6198640B2 true JP6198640B2 (en) 2017-09-20

Family

ID=54257478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041712A Expired - Fee Related JP6198640B2 (en) 2014-03-04 2014-03-04 Petroleum coke blowing blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6198640B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6907705B2 (en) * 2017-05-24 2021-07-21 住友金属鉱山株式会社 Oxidized ore smelting method
JP6885238B2 (en) * 2017-07-12 2021-06-09 日本製鉄株式会社 How to operate the blast furnace
JP7356021B2 (en) * 2019-12-04 2023-10-04 日本製鉄株式会社 Lance for blowing pulverized coal and method for blowing pulverized coal

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1184665B (en) * 1985-10-24 1987-10-28 Centro Speriment Metallurg CHARCOAL-TAR MIX WITH HIGH SOLID CONTENT
JPS63121607A (en) * 1986-11-08 1988-05-25 Nakayama Seikosho:Kk Method for operating blast furnace
JPH0356611A (en) * 1989-07-26 1991-03-12 Sumitomo Metal Ind Ltd Method for charging carbonaceous material to blast furnace
JPH04335093A (en) * 1991-05-13 1992-11-24 Nippon Steel Corp Method for treating coal
JPH07228905A (en) * 1994-02-17 1995-08-29 Nippon Steel Corp Operation of blast furnace
US20030102250A1 (en) * 2001-12-04 2003-06-05 Michael Siskin Delayed coking process for producing anisotropic free-flowing shot coke
EP2097498A4 (en) * 2006-11-17 2012-09-05 Roger G Etter Selective cracking and coking of undesirable components in coker recycle and gas oils
JP5442564B2 (en) * 2010-09-06 2014-03-12 株式会社神戸製鋼所 Pulverized coal combustion method and pulverized coal combustion apparatus
JP6208970B2 (en) * 2013-04-08 2017-10-04 株式会社トクヤマ Power generation method

Also Published As

Publication number Publication date
JP2015166485A (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP2013006957A (en) Method for producing charged coal for coke oven, and method for producing coke
Mathieson et al. Potential for the use of biomass in the iron and steel industry
JP6198640B2 (en) Petroleum coke blowing blast furnace operation method
JP6102484B2 (en) Method for producing sintered ore
JP4757956B2 (en) Method for producing blast furnace coke
JP4788167B2 (en) Method for producing metallurgical coke
JP6241336B2 (en) Method for producing blast furnace coke
JP5686052B2 (en) Coke production method
KR101296887B1 (en) Carbonaceous material for sintering iron ore
JP5151490B2 (en) Coke production method
KR101864524B1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP5942971B2 (en) Coke production method
JP5011833B2 (en) Coke manufacturing method
JP5862515B2 (en) Blast furnace operation method using oil palm core shell coal.
CN114507553A (en) Mixed fuel with high coal-coke replacement ratio for blast furnace injection and preparation method thereof
JP2001181650A (en) Method for preparing coal for charging into coke oven
JP5768726B2 (en) Coke production method
JP4625253B2 (en) Method for producing blast furnace coke
JP2022143141A (en) Blast furnace operation method
JPS6040192A (en) Production of metallurgical coke
JP4776945B2 (en) Method for producing highly reactive coke for blast furnace
JP2008156661A (en) Method for producing coke for blast furnace
JP2005068474A (en) Method and system for blowing pulverized fine coal into blast furnace
JPH10130653A (en) Method for pretreating coal for coke making and production of coke
JP2002105516A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170822

R150 Certificate of patent or registration of utility model

Ref document number: 6198640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees