JP5151490B2 - Coke production method - Google Patents
Coke production method Download PDFInfo
- Publication number
- JP5151490B2 JP5151490B2 JP2008002846A JP2008002846A JP5151490B2 JP 5151490 B2 JP5151490 B2 JP 5151490B2 JP 2008002846 A JP2008002846 A JP 2008002846A JP 2008002846 A JP2008002846 A JP 2008002846A JP 5151490 B2 JP5151490 B2 JP 5151490B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- less
- pulverization
- particle size
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coke Industry (AREA)
Description
本発明は、コークスの製造方法に関し、具体的には、コークス用原料として使用する粘結材を粉砕してコークスを製造する方法に関する。 The present invention relates to a method for producing coke, and specifically relates to a method for producing coke by pulverizing a caking additive used as a raw material for coke.
高炉の炉内の通気性を確保して安定した操業を行うためには、炉内に還元材として装入される高炉用コークスが高強度を有することが望ましい。また、近年の大型の高炉における、排出CO2の削減を目指した低還元材比操業を行うために、高炉用コークスにはいっそう高強度であることが求められる。コークスの強度を高めるためには、その原料として良質な粘結炭を用いることが有効である。 In order to ensure stable air permeability in the blast furnace, it is desirable that the blast furnace coke charged as a reducing material in the furnace has high strength. In addition, in order to perform operation with a low reducing material ratio aiming at reduction of exhausted CO 2 in a large blast furnace in recent years, blast furnace coke is required to have higher strength. In order to increase the strength of coke, it is effective to use high-quality caking coal as a raw material.
この良質な粘結炭には、高価であるとともに資源的にみてその存在量が少ない等の問題があるため、コークスの原料には、劣質でかつ安価な非微粘結炭をできるだけ多量に配合せざるを得ない。しかし、非微粘炭を多量に配合するとコークスの強度が低下するので、高炉用コークスの強度(以下、単に「強度」とも称する)を高めるという要請に反する。 Because this high-quality caking coal has problems such as being expensive and having a low abundance in terms of resources, the raw material for coke contains as much low-quality and inexpensive non-caking coal as possible. I have to. However, since the strength of coke is reduced when a large amount of non-microcoking coal is blended, it is against the request to increase the strength of coke for blast furnace (hereinafter also referred to simply as “strength”).
そこで、非微粘結炭を多量に配合することにより生じる粘結性の低下を補填するために、例えばアスファルト熱分解ピッチからなる粘結材が配合される。すなわち、非微粘結炭を多量に配合することにより生じる粘結性の不足及びコークスの強度の低下を、この粘結材を配合することによって補うものである。また、粘結材を配合することにより強度の低下が十分に補われ、強度に余裕が生じる場合には、良質な粘結炭の配合量を低下することができる。 Therefore, in order to compensate for the decrease in caking caused by blending a large amount of non-slightly caking coal, for example, a caking material made of asphalt pyrolysis pitch is blended. That is, the lack of caking property and the decrease in coke strength caused by blending a large amount of non-slightly caking coal are compensated by blending this caking material. Moreover, the mixing | blending of a caking additive can fully compensate for the fall of intensity | strength, and when the margin arises in an intensity | strength, the compounding quantity of good quality caking coal can be reduced.
このように、高炉用のコークスは、コークス用原料として、良質な粘結炭に非微粘結炭をできるだけ多量に配合し、さらに粘結材を配合することにより、製造される。
コークス用原料は、事前に望ましい粒度に粉砕された後にコークス炉へ装入される。通常、原料の粒度は3mm以下の粒子質量割合で管理されており、その値は一般に70〜80%程度である。ただし石炭類の試験方法を規定したJIS法の篩には目開きが3mmのものはなく、最も近い目開きは2.8mmである。粉砕石炭の粒度分布はRosin−Rammlerが提唱した分布関数(Rosin−Rammler式)で表現されることが多く、通常の粒度管理下ではRosin−Rammler式における均等数nは0.7程度である。この通常の粒度管理下において、2.8mm以下の粒子割合をRosin−Rammler式により3mm以下の粒子割合に読み替えると、3mm以下の粒子割合は2.8mm以下の粒子割合より1〜2%程度大きな値となる。
As described above, coke for blast furnace is produced by blending non-slightly caking coal as much as possible into high-quality caking coal as a coke raw material, and further blending a caking additive.
The coke raw material is pulverized to a desired particle size in advance and then charged into the coke oven. Usually, the particle size of the raw material is controlled at a particle mass ratio of 3 mm or less, and the value is generally about 70 to 80%. However, JIS method sieves that specify the test method for coals do not have a mesh opening of 3 mm, and the closest opening is 2.8 mm. The particle size distribution of the pulverized coal is often expressed by a distribution function (Rosin-Rammler equation) proposed by Rosin-Rammeler. Under normal particle size control, the equivalent number n in the Rosin-Rammler equation is about 0.7. Under this normal particle size control, when the particle ratio of 2.8 mm or less is read as the particle ratio of 3 mm or less by the Rosin-Rammler equation, the particle ratio of 3 mm or less is about 1 to 2% larger than the particle ratio of 2.8 mm or less. Value.
そして、コークス用原料の粉砕は、一般的に(a)コークス炉へ供する石炭と粘結材を混合した後に一括して粉砕する方法、(b)石炭の性状に基づいて分類される幾つかの石炭グループのいずれかに粘結材を混合してから粉砕する方法のいずれかにより行われる。 And the crushing of the raw material for coke is generally (a) a method of crushing in a lump after mixing coal to be fed to a coke oven and a caking additive, and (b) several types classified based on the properties of the coal. It is carried out by any of the methods in which the caking agent is mixed with any of the coal groups and then pulverized.
高炉用コークスの製造における粘結材の役割は、上述したように、劣質な非微粘結炭によるコークスの強度の低下を補うものであって、コークス炉への装入時において粘結材の粒径が小さいほどコークスの強度の向上効果が大きい傾向にある。このため、同一の種類の原料を配合する場合には、粘結材を細かく粉砕することにより、コークスの高強度化を図ることができる。つまり、粘結材を細かく粉砕することによるコークスの強度の増加分だけ、高価な粘結炭の使用量を少なくして非微粘結炭の配合量を増加することが可能であるので、配合する粘結材を細かく粉砕することが望ましい。このため、これまでにも、粘結材の粉砕に関する発明が開示されている。 As described above, the role of the binder in the production of coke for blast furnace is to compensate for the decrease in the strength of coke caused by poor non-slightly caking coal, and during the charging to the coke oven, The smaller the particle size, the greater the effect of improving the strength of coke. For this reason, when mix | blending the same kind of raw material, high intensity | strength of coke can be achieved by grind | pulverizing a caking additive finely. In other words, it is possible to increase the amount of non-slightly caking coal by reducing the amount of expensive caking coal by the amount of increase in coke strength by finely grinding the caking material. It is desirable to finely pulverize the binder. For this reason, the invention regarding the grinding | pulverization of a caking additive is disclosed until now.
特許文献1には、粘結材のみを単独で細かく粉砕し、配合のために粉砕した石炭に混合する方法に係る発明が開示されている。
さらに、特許文献2には、粘結材の平均粒径を4.6mm、2.4mmさらには0.8mmと小さくすることに応じてコークスの強度を上昇し得ること、及び粘結材を石炭とともに粉砕する場合には石炭の平均粒径を4.6mm以下とすることが開示されている。
Furthermore,
しかし、特許文献1により開示された発明を実施するには、粘結材のみを単独粉砕する設備を別途設ける必要があるとともに、石炭と均一に混合させる混合機等の設備を設ける必要があり、設備コストが嵩む。
However, in order to implement the invention disclosed in
また、特許文献2により開示された発明にしたがって粘結材によって強度を十分に向上するには、石炭の平均粒径を4.6mm以下とするだけでは不十分であり、粘結材もできるだけ細かく粉砕することが望まれる。しかし、一般的に、被粉砕物の粒径が細かくなるよう被粉砕物を粉砕するには必要な動力が増大する。また、ある粒径以下に粉砕するには、粉砕された微粒子が粉砕衝撃時に緩衝材として作用し、粉砕に必要な動力が著しく増大する。このため、被粉砕物の目標の粒径がこの粒径以下である場合には、この粒径以下に粉砕するための専用の設備を新たに設ける必要があり、やはり設備コストの上昇は否めない。
Further, in order to sufficiently improve the strength with the binder according to the invention disclosed in
このように、コークス、特に高炉用のコークスの製造では、石炭に配合する粘結材を所望の平均粒径に粉砕するための設備を新たに設けることなく、粘結材を所望の平均粒径以下に粉砕することが求められている。 Thus, in the production of coke, particularly coke for blast furnaces, the desired average particle size of the binder is obtained without newly providing a facility for crushing the binder to be blended with coal into the desired average particle size. The following is required to grind.
本発明者らは、上述した課題を解決するために鋭意検討を重ね、石炭の粉砕性(HGI)の違いに着目した。原料である石炭の粉砕性を表す指標として、ハードグローブ粉砕性指数(HGI)が一般に用いられる。HGIは、JIS M 8801(石炭類−試験方法)に記載された粉砕性評価指標であり、HGIが高いほど粉砕性が良好であることを意味する。 The inventors of the present invention have made extensive studies to solve the above-described problems, and have focused on the difference in coal grindability (HGI). A hard glove grindability index (HGI) is generally used as an index representing the grindability of coal as a raw material. HGI is an evaluation index for grindability described in JIS M 8801 (coals-test method), and the higher the HGI, the better the grindability.
そして、粘結材を石炭と混合して粉砕する際には、混合する石炭の平均HGIに基づいて粘結材及び石炭の混合物の粉砕後粒度を調整又は決定し、調整又は決定した粉砕後粒度となるように混合物を粉砕することとすれば、粘結材を所望の粒径に粉砕するための設備を新たに設けることなく、粘結材を所望の粒径以下に細かく粉砕することが可能となることを知見して、本発明を完成した。 And when mixing and pulverizing a caking additive with coal, based on the average HGI of the coal to mix, the particle size after crushing of the mixture of caking additive and coal is adjusted or determined, and the particle size after crushing adjusted or determined If the mixture is pulverized so that it becomes, it is possible to finely pulverize the binder to a desired particle size or less without newly installing a facility for pulverizing the binder to the desired particle size. As a result, the present invention was completed.
本発明は、粘結材であるアスファルト熱分解ピッチを1種又は2種以上の平均HGIが85以下である石炭と混合した後に、この石炭の平均HGIに基づいて粘結材と石炭の混合物の粉砕後粒度を調整し、調整した粉砕後粒度となるように混合物を粉砕する工程を含むこと、及び、前記平均HGIが65以下である場合には前記混合物の粉砕後の2.8mm以下の粒子が質量割合で70%より大きくなるように、前記平均HGIが65より大きく75以下である場合には前記混合物の粉砕後の2.8mm以下の粒子が質量割合で75%より大きくなるように、前記平均HGIが75より大きく85以下である場合には前記混合物の粉砕後の2.8mm以下の粒子が質量割合で85%より大きくなるように、前記粉砕後粒度を調整することを特徴とするコークスの製造方法である。 In the present invention, asphalt pyrolysis pitch as a binder is mixed with one or more kinds of coal having an average HGI of 85 or less, and then the mixture of the binder and coal is based on the average HGI of the coal. Adjusting the particle size after pulverization, and including a step of pulverizing the mixture so as to obtain the adjusted particle size after pulverization; and, when the average HGI is 65 or less, particles of 2.8 mm or less after pulverization of the mixture When the average HGI is greater than 65 and less than or equal to 75, so that the particles of 2.8 mm or less after pulverization of the mixture is greater than 75% by mass. When the average HGI is greater than 75 and less than or equal to 85, the particle size after pulverization is adjusted so that particles of 2.8 mm or less after pulverization of the mixture are greater than 85% by mass. A coke manufacturing method of a.
また、本発明は、粘結材を1種又は2種以上の石炭と混合した後に、この石炭の平均HGIに基づいて粘結材及び石炭の混合物の粉砕後粒度を決定し、決定した粉砕後粒度となるように混合物を粉砕する工程を含むことを特徴とするコークスの製造方法である。 In the present invention, after the binder is mixed with one or more kinds of coal, the particle size after pulverization of the mixture of the binder and coal is determined based on the average HGI of the coal, and after the determined pulverization A method for producing coke, comprising a step of pulverizing a mixture so as to have a particle size.
これらの本発明では、「HGI」とは、JIS M 8801(石炭類−試験方法)により規定される粉砕性評価指標である、ハードグローブ粉砕性指数を意味する。また、本発明では、「粉砕後粒度」とは、2.8mm以下の粒子の質量割合を意味する。 In these present inventions, “HGI” means a hard glove grindability index, which is a grindability evaluation index defined by JIS M 8801 (coals—test method). In the present invention, the “particle size after pulverization” means a mass ratio of particles of 2.8 mm or less.
換言すれば、本発明は、粘結材を1種又は2種以上の石炭と混合した後に粉砕する方法であって、粘結材と混合する石炭の平均HGIに基づいて、粘結材及び石炭の混合物の粉砕後粒度を調整又は決定し、調整又は決定した粉砕後粒度となるように混合物を粉砕することを特徴とする粘結材の粉砕方法である。 In other words, the present invention is a method of pulverizing a binder after mixing it with one or more types of coal, and based on the average HGI of the coal mixed with the binder, the binder and coal The particle size of the mixture is adjusted or determined, and the mixture is pulverized so as to have the adjusted or determined particle size after pulverization.
ここで、本発明における「石炭の平均HGIに基づいて・・・混合物の粉砕後粒度を調整し・・・」との発明特定事項について補足する。
鉄鋼業における代表的な石炭の粉砕工程に関して補足説明する。この石炭の粉砕としては、コークス用の原料石炭の粉砕と、高炉羽口から吹き込む微粉炭用の粉砕とがある。ハードグローブ粉砕性指数HGIが石炭の試験方法としてJISに規定されることから理解されるように、石炭の粉砕に際してHGIを考慮することは当業者にとって周知慣用の事項である。
Here, it supplements about the invention specific matter in this invention "Based on the average HGI of coal ... Adjusting the particle size after grinding | pulverization of a mixture ...".
A supplementary explanation will be given regarding the typical coal crushing process in the steel industry. The pulverization of coal includes pulverization of raw material coal for coke and pulverization for pulverized coal blown from a blast furnace tuyere. As is understood from the fact that the hard glove grindability index HGI is defined in JIS as a test method for coal, it is a well-known matter for those skilled in the art to consider HGI when crushing coal.
上述したように、コークス用原料は事前に望ましい粒度に粉砕する必要がある。この粒度の制御のため、石炭について検討する性状は、粉砕前粒度や水分と並んで粉砕性(石炭の硬軟)があり、HGIは粉砕性の指標として代表的に使用される。一方、粉砕機側では、粉砕ギャップやローター等の回転数の調整(粉砕機の形式により具体的な操作内容は異なる)が挙げられる。また、石炭と粉砕機の両面に渡る操作因子として石炭処理量がある。 As described above, the coke raw material needs to be pulverized to a desired particle size in advance. In order to control the particle size, the properties to be studied for coal include pulverization properties (hardness and softness of coal) along with the particle size and moisture before pulverization, and HGI is typically used as an indicator of pulverization properties. On the other hand, on the pulverizer side, adjustment of the number of rotations such as the pulverization gap and the rotor (specific operation contents differ depending on the type of the pulverizer). In addition, there is a coal throughput as an operating factor across both the coal and the pulverizer.
このため、本発明における「石炭の平均HGIに基づいて・・・混合物の粉砕後粒度を調整し・・・」との発明特定事項は、石炭の平均HGI等の石炭条件を勘案して、石炭処理量を含めた複数の操作要因を適宜組み合わせて粉砕機を操作することによって、目標の粉砕後粒度を得ることを意味する。 For this reason, in the present invention, the invention specific matter “based on the average HGI of coal ... adjusting the particle size after pulverization of the mixture ...” is based on coal conditions such as the average HGI of coal. It means that a target particle size after pulverization is obtained by operating a pulverizer by appropriately combining a plurality of operating factors including a processing amount.
本発明により、コークス、特に高炉用のコークスの製造に際して、石炭に配合する粘結材を所望の粒径に粉砕するための設備を新たに設けることなく、粘結材を所望の粒径以下に粉砕することができるようになる。このため、粘結材が有するコークスの強度の向上効果を十分に得ることができるので、所定のコークス強度を満足するために必要な高価な粘結炭の使用量を抑制するとともに安価な非微粘結炭の配合割合を増加させることができ、これにより、所望の高強度を有するコークスを低コストで製造することができるようになる。 According to the present invention, when producing coke, particularly coke for blast furnace, the caking material is reduced to a desired particle size or less without newly providing a facility for pulverizing the caking material to be blended with coal into a desired particle size. It can be crushed. For this reason, since the effect of improving the strength of coke possessed by the caking additive can be sufficiently obtained, the amount of expensive caking coal required for satisfying a predetermined coke strength is suppressed and an inexpensive non-fine effect is obtained. The blending ratio of caking coal can be increased, and thereby, coke having a desired high strength can be produced at a low cost.
以下、本発明に係るコークスの製造方法を実施するための最良の形態を、添付図面を参照しながら詳細に説明する。
The best mode for carrying out the method for producing coke according to the present invention will be described below in detail with reference to the accompanying drawings.
はじめに、本発明の原理を簡単に説明する。
一般的に、単独のコークス用原料に同一の動力を与えて粉砕する場合を考えると、粉砕性が良いコークス用原料は、粉砕性が悪いコークス用原料に比較すると粉砕され易いため、より細かく粉砕される。これは、2銘柄以上のコークス用原料を混合して粉砕する場合においても成立し、粉砕性が悪いコークス用原料に対して相対的に粉砕性が良いコークス用原料を混合して粉砕すると、粉砕性が良いコークス用原料には過大な動力が作用するため、粉砕性が良いコークス用原料は細かく粉砕される。
First, the principle of the present invention will be briefly described.
In general, considering the case where a single coke raw material is pulverized with the same power, a coke raw material with good pulverization is more easily pulverized than a coke raw material with poor pulverization, so it is finely pulverized. Is done. This is true even when two or more brands of coke raw materials are mixed and pulverized. When coke raw materials with relatively good pulverizability are mixed and pulverized with respect to coke raw materials with poor pulverization properties, Excessive power acts on the coke raw material with good properties, so the coke raw material with good grindability is finely ground.
一般的に、粘結材は、石炭と比較すると粉砕性が良いので、粉砕性が悪い石炭と混合した後に粉砕することにより、上述した理由と同様の理由によって、細かく粉砕するための専用の設備を新たに設けることなく、粘結材を細かく粉砕することができる。 Generally, caking materials have better grindability compared to coal, so by mixing with coal with poor grindability and grinding, dedicated equipment for fine grinding for the same reason as described above. The caking material can be finely pulverized without newly providing.
さらに、粘結材と混合する石炭の粉砕性が比較的良い場合には、粉砕する粒度をより小さく設定することにより、粘結材を細かく粉砕することができる。つまり、粘結材を粉砕性が悪い石炭と混合した後に粉砕する場合においては、所望の粘結材の粒径を得るにも粉砕後の粒度が粗くて済むが、反対に粉砕性が良い石炭と混合した後に粉砕する場合においては、粉砕後粒度をより細かく設定することにより所望の粘結材粒径を得ることが可能である。 Furthermore, when the pulverization property of coal mixed with the binder is relatively good, the binder can be finely pulverized by setting the particle size to be pulverized smaller. In other words, in the case of pulverizing after mixing the binder with coal having poor pulverizability, the particle size after pulverization may be coarse to obtain the desired particle size of the binder, but conversely, coal having good pulverizability. In the case of pulverization after mixing with, it is possible to obtain a desired binder particle size by setting the particle size after pulverization more finely.
このように、粘結材を1種又は2種以上の石炭と混合した後にこの混合物を粉砕する場合には、この石炭の粉砕性を表す指標であるハードグローブ粉砕性指数の平均値(平均HGI)に基づいて、混合物の粉砕後粒度(すなわち2.8mm以下の粒子の質量割合)を調整又は決定し、調整又は決定された粉砕後粒度(すなわち2.8mm以下の粒子の質量割合)となるように混合物を粉砕することが、有効である。 Thus, when this mixture is pulverized after mixing the caking additive with one or more kinds of coal, the average value of the hard glove grindability index (average HGI), which is an index representing the pulverizability of this coal. ) To adjust or determine the particle size after pulverization of the mixture (that is, the mass ratio of particles of 2.8 mm or less), and the adjusted or determined particle size after pulverization (that is, the mass ratio of particles of 2.8 mm or less). It is effective to grind the mixture in such a manner.
具体的には、(A)平均HGI≦65である石炭と粘結材を混合した後粉砕する場合には、2.8mm以下の粒子が質量割合で70%より大きくなるよう粉砕すること、(B)65<平均HGI≦75である石炭と粘結材を混合した後粉砕する場合には、2.8mm以下の粒子が質量割合で75%より大きくなるよう粉砕すること、(C)75<平均HGI≦85である石炭と粘結材を混合した後粉砕する場合には、2.8mm以下の粒子が質量割合で85%より大きくなるよう粉砕することが、望ましい。 Specifically, when (A) coal and a binder having an average HGI ≦ 65 are mixed and then pulverized, pulverization is performed so that particles of 2.8 mm or less are larger than 70% in mass ratio, B) In the case of pulverizing after mixing coal and binder with 65 <average HGI ≦ 75, pulverization is performed so that particles of 2.8 mm or less are larger than 75% by mass ratio, (C) 75 < When the coal having an average HGI ≦ 85 and the binder are mixed and then pulverized, it is desirable to pulverize particles having a particle size of 2.8 mm or less to be greater than 85% by mass.
なお、粘結材と混合する石炭の平均HGIの上限は85以下であることが望ましい。すなわち、平均HGIが大きな石炭との粉砕では、粘結材を1mm以下にするために粉砕後の2.8mm以下の粒子の質量割合を少なくとも85%よりも大きくする必要がある。ただし、一般に粘結炭のHGIは大きく、粘結炭の過粉砕は乾留後のコークス強度の低下を招くため望ましくない。そのため、混合する石炭の平均HGIの上限を、粘結炭の多くが除かれるよう85以下とすることが望ましい。 In addition, it is desirable that the upper limit of the average HGI of coal mixed with the binder is 85 or less. That is, in pulverization with coal having a large average HGI, it is necessary to make the mass ratio of particles of 2.8 mm or less after pulverization greater than at least 85% in order to reduce the binder to 1 mm or less. However, generally, HGI of caking coal is large, and excessive crushing of caking coal is not desirable because it causes a decrease in coke strength after dry distillation. Therefore, it is desirable that the upper limit of the average HGI of coal to be mixed is 85 or less so that most of the caking coal is removed.
このようにして粉砕されたコークス用原料は、その後に周知慣用の手法により、コークス炉に装入されて乾留されることにより、コークスが製造される。このため、本実施の形態によれば、所望の高強度を有する高炉用コークスを低コストで製造することができるようになる。 The coke raw material thus pulverized is then charged into a coke oven and dry-distilled by a well-known and commonly used technique to produce coke. For this reason, according to this Embodiment, the blast furnace coke which has desired high intensity | strength can be manufactured at low cost.
さらに、本発明を、実施例を参照しながらより具体的に説明する。
本発明者らが調査した結果、粘結材の粉砕に必要な動力が著しく増加する粘結材の粉砕後粒径は1mmであることが判明した。
Furthermore, the present invention will be described more specifically with reference to examples.
As a result of investigations by the present inventors, it has been found that the particle size after pulverization of the binder which significantly increases the power required for pulverizing the binder is 1 mm.
そこで、石炭の粉砕性(HGI)の違いに着目し、粘結材を石炭と混合して粉砕する場合に、混合する石炭の平均HGIに基づいて粉砕後粒度を調整することにより、細かく粉砕するための専用の設備を新たに設けることなく、粘結材を1mm以下に粉砕する方法を検討した。 Therefore, paying attention to the difference in coal grindability (HGI), when the binder is mixed with coal and pulverized, it is finely pulverized by adjusting the particle size after pulverization based on the average HGI of the coal to be mixed. For this reason, a method for crushing the binder to 1 mm or less was examined without newly providing a dedicated facility.
表1には、試料A〜Lの平均HGIと8種の石炭種a〜hの配合内訳とを併せて示す。表1の石炭種a〜hを用いて平均HGIが異なる12種類の試料A〜Lを準備した。 Table 1 shows the average HGI of the samples A to L and the blending breakdown of the eight coal types a to h. Twelve types of samples A to L having different average HGI were prepared using the coal types a to h in Table 1.
また、粘結材として、硫黄分含有率が6.5質量%程度、HGIが140程度のアスファルト熱分解ピッチを用いた。アスファルト熱分解ピッチは代表的な粘結材であるが、本実施例において粘結材としてアスファルト熱分解ピッチを用いた理由は、アスファルト熱分解ピッチの硫黄分含有率は石炭の10倍程度と高いために、粘結材と石炭との混合物中の硫黄分を分析することによって、粘結材と石炭との混合物中における粘結材の存在比率を精度よく算出することが可能だからである。 Further, as the binder, an asphalt pyrolysis pitch having a sulfur content of about 6.5 mass% and an HGI of about 140 was used. Asphalt pyrolysis pitch is a typical caking material, but the reason for using asphalt pyrolysis pitch as caking material in this example is that the sulfur content of the asphalt pyrolysis pitch is as high as about 10 times that of coal. Therefore, by analyzing the sulfur content in the mixture of the binder and coal, it is possible to accurately calculate the abundance ratio of the binder in the mixture of binder and coal.
本実施例では、各試料A〜Lに粘結材を外数で5質量%混合した後、種々の粒度に粉砕した。そして、粉砕後に篩分けを行い、篩目毎の粘結材含有量を、硫黄分濃度について粘結材を添加せずに粉砕した場合と比較することにより、粉砕後の粘結材の平均粒径を推定した。 In this example, the binders were mixed with each sample A to L in an external number of 5% by mass, and then pulverized into various particle sizes. And sieving after pulverization, the average particle size of the binder after pulverization by comparing the content of the binder for each sieve mesh with the case of pulverizing without adding the binder for the sulfur content The diameter was estimated.
粉砕後の粘結材の平均粒径と、粉砕後の粒度として2.8mm以下の粒子の質量割合(−2.8mm%)との関係を検討した。2.8mm以下の粒子の質量割合は、粉砕後の粘結材と石炭の混合物全体に対して、篩い目2.8mmの篩いを通過した質量割合とした。その結果、粘結材の平均粒径が1mm以下となる、石炭の平均HGIと粉砕後粒度との関係を明らかにすることができた。 The relationship between the average particle size of the binder after pulverization and the mass ratio (−2.8 mm%) of particles of 2.8 mm or less as the particle size after pulverization was examined. The mass ratio of particles having a particle size of 2.8 mm or less was a mass ratio that passed through a sieve having a sieve size of 2.8 mm with respect to the entire mixture of the binder and the coal after pulverization. As a result, it was possible to clarify the relationship between the average HGI of coal and the particle size after pulverization, in which the average particle size of the binder was 1 mm or less.
表2には、平均HGIが65以下である試料A〜Dに粘結材を混合した混合物を粉砕した際における、2.8mm以下の粒子の質量割合(−2.8mm%)が70%前後の結果を示す。また、図1は、粘結材の平均粒径の推定結果と粉砕後の2.8mm以下の粒子の質量割合(−2.8mm%)との関係をプロットしたグラフである。 Table 2 shows that the mass ratio of particles of 2.8 mm or less (−2.8 mm%) is around 70% when a mixture obtained by mixing a binder with samples A to D having an average HGI of 65 or less is crushed. The results are shown. FIG. 1 is a graph plotting the relationship between the estimation result of the average particle size of the binder and the mass ratio (−2.8 mm%) of particles of 2.8 mm or less after pulverization.
図1のグラフに示すように、平均HGIが65以下である石炭との混合において、2.8mm以下の粒子の質量割合(−2.8mm%)が少なくとも70%以上となるように粉砕することにより、粘結材の平均粒径を1mm以下にすることができる。 As shown in the graph of FIG. 1, in mixing with coal having an average HGI of 65 or less, pulverization is performed so that the mass ratio of particles of 2.8 mm or less (−2.8 mm%) is at least 70% or more. Thus, the average particle size of the binder can be reduced to 1 mm or less.
次に、表3には、平均HGIが65より大きく75以下である試料E〜Hに粘結材を混合した混合物を粉砕した際における、2.8mm以下の粒子の質量割合(−3mm%)が75%前後の結果を示す。また、図2は、粘結材の平均粒径の推定結果と粉砕後の2.8mm以下の粒子の質量割合(−2.8mm%)との関係をプロットしたグラフである。 Next, Table 3 shows a mass ratio (−3 mm%) of particles of 2.8 mm or less when a mixture obtained by mixing a binder with samples E to H having an average HGI of greater than 65 and 75 or less is pulverized. Shows a result of around 75%. FIG. 2 is a graph plotting the relationship between the estimation result of the average particle diameter of the binder and the mass ratio (−2.8 mm%) of particles of 2.8 mm or less after pulverization.
図2のグラフに示すように、平均HGIが65より大きく75以下である石炭との混合において、2.8mm以下の粒子の質量割合(−2.8mm%)が少なくとも75%以上となるように粉砕することにより、粘結材の平均粒径を1mm以下にすることができる。 As shown in the graph of FIG. 2, in mixing with coal having an average HGI greater than 65 and less than or equal to 75, the mass ratio of particles less than or equal to 2.8 mm (−2.8 mm%) is at least 75% or more. By crushing, the average particle diameter of the binder can be reduced to 1 mm or less.
さらに、表4には、平均HGIが75より大きく85以下である試料E〜Hに粘結材を混合した混合物を粉砕した際における、2.8mm以下の粒子の質量割合(−2.8mm%)が85%前後の結果を示す。また、図3は、粘結材の平均粒径の推定結果と粉砕後の2.8mm以下の粒子の質量割合(−2.8mm%)との関係をプロットしたグラフである。 Further, Table 4 shows a mass ratio of particles of 2.8 mm or less (−2.8 mm%) when a mixture obtained by mixing a binder with samples E to H having an average HGI of greater than 75 and 85 or less is pulverized. ) Shows a result of around 85%. FIG. 3 is a graph plotting the relationship between the estimation result of the average particle size of the binder and the mass ratio (−2.8 mm%) of particles of 2.8 mm or less after pulverization.
図3のグラフに示すように、平均HGIが75より大きく85以下である石炭との混合において、2.8mm以下の粒子の質量割合(−2.8mm%)が少なくとも85%以上になるように粉砕することにより、粘結材の平均粒径を1mm以下にすることができる。 As shown in the graph of FIG. 3, in mixing with coal having an average HGI greater than 75 and less than or equal to 85, the mass ratio of particles less than or equal to 2.8 mm (−2.8 mm%) is at least 85% or more. By crushing, the average particle diameter of the binder can be reduced to 1 mm or less.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008002846A JP5151490B2 (en) | 2008-01-10 | 2008-01-10 | Coke production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008002846A JP5151490B2 (en) | 2008-01-10 | 2008-01-10 | Coke production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009161705A JP2009161705A (en) | 2009-07-23 |
JP5151490B2 true JP5151490B2 (en) | 2013-02-27 |
Family
ID=40964683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008002846A Expired - Fee Related JP5151490B2 (en) | 2008-01-10 | 2008-01-10 | Coke production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5151490B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5845979B2 (en) * | 2012-03-07 | 2016-01-20 | Jfeスチール株式会社 | Production method of coal for coke oven charging |
JP6060696B2 (en) * | 2013-01-18 | 2017-01-18 | 新日鐵住金株式会社 | Agglomeration method of pulverized coal |
JP2018090650A (en) * | 2015-03-13 | 2018-06-14 | Jfeスチール株式会社 | Method of producing compaction molded product of coal and method of producing coke for use in blast furnace |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1060508A (en) * | 1996-08-22 | 1998-03-03 | Nkk Corp | Production of pulverized fine coal for blowing from tuyere in blast furnace |
JP3580203B2 (en) * | 1999-12-24 | 2004-10-20 | Jfeスチール株式会社 | Adjustment method of coal for charging coke oven |
JP4336208B2 (en) * | 2003-02-28 | 2009-09-30 | 新日本製鐵株式会社 | Crushing method for coke oven coal |
JP4486552B2 (en) * | 2005-06-22 | 2010-06-23 | 新日本製鐵株式会社 | Manufacturing method of high strength coke |
JP2007016186A (en) * | 2005-07-11 | 2007-01-25 | Kansai Coke & Chem Co Ltd | Method for producing coke |
JP5286635B2 (en) * | 2005-12-27 | 2013-09-11 | Jfeスチール株式会社 | Method for producing pulverized coal |
-
2008
- 2008-01-10 JP JP2008002846A patent/JP5151490B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009161705A (en) | 2009-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008111068A (en) | Manufacturing process of coke for blast furnace | |
JP5151490B2 (en) | Coke production method | |
JP4757956B2 (en) | Method for producing blast furnace coke | |
JP2004339503A (en) | Method for manufacturing high-strength coke | |
JP5045081B2 (en) | Manufacturing method of high strength coke | |
JP4788167B2 (en) | Method for producing metallurgical coke | |
CN110982548B (en) | Coal preparation method for coking coal material | |
JP5686052B2 (en) | Coke production method | |
JP6198640B2 (en) | Petroleum coke blowing blast furnace operation method | |
JP6241336B2 (en) | Method for producing blast furnace coke | |
CN111778048B (en) | Method for regulating and controlling granularity of matched coal | |
JP4617814B2 (en) | Coke production method | |
JP4890200B2 (en) | Manufacturing method of high strength coke | |
JP5942971B2 (en) | Coke production method | |
JP3580203B2 (en) | Adjustment method of coal for charging coke oven | |
JP5768726B2 (en) | Coke production method | |
JP5434214B2 (en) | Coke production method | |
JP4551493B2 (en) | Manufacturing method of high strength coke | |
CN113637495A (en) | Method for controlling particle size of crushed coal by double-line coal blending | |
JP5087911B2 (en) | Coke production method | |
KR102205814B1 (en) | Manufacturing method of ferrocox | |
JP3639075B2 (en) | Method for controlling coke breaking powder for metallurgy | |
JPH09279152A (en) | Grinding of coal charged into coke oven | |
JP2001323281A (en) | Method for producing coke | |
KR20110098146A (en) | Coal blending method for producing metallurgical coke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120919 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5151490 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |