JP5286635B2 - Method for producing pulverized coal - Google Patents

Method for producing pulverized coal Download PDF

Info

Publication number
JP5286635B2
JP5286635B2 JP2005373956A JP2005373956A JP5286635B2 JP 5286635 B2 JP5286635 B2 JP 5286635B2 JP 2005373956 A JP2005373956 A JP 2005373956A JP 2005373956 A JP2005373956 A JP 2005373956A JP 5286635 B2 JP5286635 B2 JP 5286635B2
Authority
JP
Japan
Prior art keywords
coal
pulverized
hopper
pulverized coal
belt conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005373956A
Other languages
Japanese (ja)
Other versions
JP2007175561A (en
Inventor
侯寿 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005373956A priority Critical patent/JP5286635B2/en
Publication of JP2007175561A publication Critical patent/JP2007175561A/en
Application granted granted Critical
Publication of JP5286635B2 publication Critical patent/JP5286635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Description

本発明は、微粉炭の製造設備および製造方法に関し、特に高炉羽口から還元材として吹き込むのに好適な微粉炭に関するものである。   The present invention relates to a pulverized coal production facility and method, and more particularly to pulverized coal suitable for blowing as a reducing material from a blast furnace tuyere.

高炉操業においては、鉄鉱石の還元材としてコークスが使用されている。このコークスを一部代替する補助還元材として、微粉炭を用い、微粉炭を高炉羽口から吹き込む微粉炭吹込み操業が行なわれている。高炉への微粉炭吹込み操業は、高炉用コークスに比べて微粉炭が安価であるために、大きなコスト低減効果が得られる。また、高炉への微粉炭吹き込み量を増やすことにより高炉用コークスの製造設備であるコークス炉の負荷軽減を図ることができ、コークス炉の延命にも寄与する。高炉用コークスの原料となる良質原料炭の資源枯渇化の問題もあり、高炉操業においては、多量の微粉炭吹き込みが行なわれ、溶銑製造における合理化に大きく寄与している。   In blast furnace operation, coke is used as a reducing material for iron ore. As an auxiliary reducing material that partially replaces this coke, pulverized coal is used, and pulverized coal injection operation is performed in which pulverized coal is injected from a blast furnace tuyere. The operation of injecting pulverized coal into the blast furnace provides a significant cost reduction effect because pulverized coal is less expensive than blast furnace coke. In addition, by increasing the amount of pulverized coal injected into the blast furnace, it is possible to reduce the load on the coke oven, which is a blast furnace coke manufacturing facility, and contribute to the extension of the life of the coke oven. There is also a problem of depletion of high-quality coking coal, which is a raw material for coke for blast furnace, and a large amount of pulverized coal is blown in blast furnace operation, which greatly contributes to rationalization in hot metal production.

このような、微粉炭の高炉内への吹込みにおいては、通常、微粉炭をキャリアガスにより、微粉炭製造設備から配管系内を通して高炉側に設けられた微粉炭吹込み装置まで気流輸送し、次いで微粉炭吹込み装置から高炉下部炉壁に設けられた羽口の近傍まで気体搬送し、熱風気流中に微粉炭を噴射して羽口から高炉炉内へ、適切な吹込み条件で吹き込み、燃焼させる。   In such a pulverized coal injection into the blast furnace, usually, the pulverized coal is air-flowed to the pulverized coal injecting device provided on the blast furnace side through the piping system from the pulverized coal production facility by the carrier gas, Next, gas is transported from the pulverized coal blowing device to the vicinity of the tuyere provided on the blast furnace lower furnace wall, pulverized coal is injected into the hot air stream and blown from the tuyere into the blast furnace furnace under appropriate blowing conditions, Burn.

微粉炭は、その粒径が大きいほど羽口内での燃焼性が悪化する一方で、粒径が小さすぎると吹き込みまでの輸送性が悪化して配管詰まり等が発生する。例えば、微粉炭の粒度が44μm以下が90mass%以上になると輸送性が悪化する。したがって、吹き込みに用いる微粉炭は、適正な粒度分布を有するように制御する必要がある。通常は目標粒度として74μm以下が75〜80mass%程度を設定し、原料石炭の硬さに応じて、ローラーミル等の粉砕機で粉砕時の加圧力等を変化させて、微粉炭の粒度が目標の粒度分布を有するように調整する。   As the particle size of the pulverized coal increases, the combustibility in the tuyere deteriorates. On the other hand, if the particle size is too small, the transportability up to blowing deteriorates and piping clogging occurs. For example, if the particle size of pulverized coal is 90 mass% or more when the particle size is 44 μm or less, the transportability deteriorates. Therefore, it is necessary to control the pulverized coal used for blowing so as to have an appropriate particle size distribution. Normally, the target particle size is set to 75 to 80 mass% for 74 μm or less, and the pulverized coal particle size is changed by changing the pressing force during pulverization with a pulverizer such as a roller mill according to the hardness of the raw coal. To have a particle size distribution of

一方で、石炭には性状の異なる様々な銘柄が存在し、銘柄ごとに異なる硬さを有している。通常の操業においては、複数の銘柄の石炭を混合して微粉炭を製造するが、使用する粉砕機で目標粒度が得られる範囲の銘柄の石炭のみを使用しており、その結果、使用できる石炭銘柄として、同程度の硬さを有するものを用いている。   On the other hand, various brands with different properties exist in coal, and each brand has a different hardness. In normal operations, pulverized coal is produced by mixing multiple brands of coal, but only brands of coal in a range where the target particle size can be obtained with the pulverizer used are used. A brand having the same degree of hardness is used.

しかし、近年は、世界の石炭消費量の増大による需要供給のバランス状況から、同一銘柄のみの石炭を長期間使用することは困難であり、硬さが同程度の石炭だけでなく、性状の異なる、様々な銘柄の石炭を用いて微粉炭を製造できることが望ましい。性状の異なる複数種類の石炭を用いた場合にも対応可能な方法として、石炭の粉砕性をパラメーターとして、石炭を粉砕する際の粉砕力を調整し、炉に吹き込む微粉炭の粒度分布を制御する微粉炭の製造方法が知られている(例えば、特許文献1参照。)。粉砕性としては、ハードグローブ粉砕性指数(HGI)を用いることができる。HGIは石炭の硬さを表し、値が大きいほど軟らかいことを示している。
特開2002−194408号公報
However, in recent years, it has been difficult to use only the same brand of coal for a long period of time due to the balance of supply and demand due to the increase in global coal consumption. It is desirable to be able to produce pulverized coal using various brands of coal. As a method that can be used even when multiple types of coal with different properties are used, the coal grindability is used as a parameter to adjust the grinding force when grinding the coal and to control the particle size distribution of the pulverized coal blown into the furnace A method for producing pulverized coal is known (see, for example, Patent Document 1). As the grindability, a hard glove grindability index (HGI) can be used. HGI represents the hardness of coal, and the larger the value, the softer.
JP 2002-194408 A

特許文献1に記載の方法は、銘柄別に最適な粉砕を行ない、複数銘柄を用いる場合には、銘柄別に粉砕したものを粉砕後に混合する方法である。石炭の銘柄別に粉砕を行なうことは望ましい方法ではあるが、一銘柄では粉砕機の一回の粉砕量に不足する場合があり、石炭の銘柄が頻繁に変更される場合には生産性が低下する。また、吹き込まれる微粉炭の性質を平均化させるためにも、複数銘柄の石炭を混合して用いることが好ましいが、粉砕後に効率良く混合するためには、多数の粉砕機が必要でありコスト高である。   The method described in Patent Document 1 is a method in which optimum pulverization is performed for each brand, and when a plurality of brands are used, a product pulverized for each brand is mixed after pulverization. Although it is desirable to pulverize by brand of coal, one brand may be insufficient for the amount of pulverization at one time, and if the brand of coal is changed frequently, productivity will decrease. . In addition, in order to average the properties of the pulverized coal to be blown, it is preferable to use a mixture of multiple brands of coal. However, in order to mix them efficiently after pulverization, a large number of pulverizers are necessary and costly. It is.

一方で、硬さの大きく異なる石炭を同時に粉砕すると、目標とする粒度分布が得られないという問題がある。硬さの大きく異なる2銘柄の石炭を同時粉砕した場合の粒度分布は、図3に示すように単一銘柄の粉砕に比べて粒度分布の幅の広いものとなり、輸送性が悪化する。この理由は、硬い石炭と軟らかい石炭とを混合して粉砕する際に、硬い石炭に合わせて粉砕ローラーの加圧力を設定すると、軟らかい石炭が過粉砕となり、軟らかい石炭に合わせて粉砕ローラーの加圧力を設定すると、硬い石炭が十分に粉砕されないためであるとされている。軟らかい石炭が過粉砕となると、微粉炭の流動性を悪化させ、硬い石炭が十分に粉砕されないと、羽口先での微粉炭の燃焼性を悪化させる。したがって、硬さの大きく異なる石炭を同時に粉砕処理して高炉吹き込み用の微粉炭を製造することは困難である。   On the other hand, if coal having greatly different hardnesses is pulverized at the same time, there is a problem that a target particle size distribution cannot be obtained. As shown in FIG. 3, the particle size distribution when two brands of coal having greatly different hardnesses are simultaneously pulverized has a wider particle size distribution than that of a single brand, and the transportability is deteriorated. This is because, when mixing hard and soft coal and crushing, if the pressing force of the crushing roller is set according to the hard coal, the soft coal will be over-pulverized, and the pressing force of the crushing roller will be adjusted according to the soft coal This is because hard coal is not sufficiently pulverized. If the soft coal is over-pulverized, the fluidity of the pulverized coal is deteriorated, and if the hard coal is not sufficiently pulverized, the combustibility of the pulverized coal at the tuyere is deteriorated. Therefore, it is difficult to produce pulverized coal for blast furnace injection by simultaneously pulverizing coals having greatly different hardnesses.

したがって本発明の目的は、このような従来技術の課題を解決し、硬さの異なる石炭を同時に粉砕する際にも、高炉吹き込みに好適な粒度分布を有する微粉炭が製造できる、微粉炭の製造設備および製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to produce pulverized coal that can produce pulverized coal having a particle size distribution suitable for blast furnace blowing even when pulverizing different hardness coals simultaneously. It is to provide equipment and a manufacturing method.

本発明者らは上記の課題を解決すべく実験と検討を重ねた結果、以下のような驚くべき事実を見出した。すなわち、従来は硬さの異なる石炭を、同一の粉砕機で粉砕しても目標とする吹き込み用に適正な粒度分布を得ることは困難であったが、硬さの異なる石炭を予め十分に混合し、適切な粉砕条件を設定することで、目標とする粒度分布を得ることが可能となるのである。本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)、複数の石炭ホッパーと、該石炭ホッパーから排出された石炭を搬送するベルトコンベアと、該ベルトコンベアで搬送された石炭を貯留する第一の配合ホッパーと、該第一の配合ホッパーから排出された石炭を貯留する第二の配合ホッパーと、該第二の配合ホッパーから排出された石炭を粉砕する粉砕機とを有する設備を用いて、複数の硬さの異なる銘柄の石炭を混合して粉砕する際に、混合された石炭のHGIの時間変動が±5%以内となるように混合した後に粉砕を行なうことを特徴とする微粉炭の製造方法。
(2)、前記複数銘柄の石炭の混合比に応じた質量平均として求められる平均HGIに応じて設定した粉砕力で粉砕を行なうことを特徴とする(1)に記載の微粉炭の製造方法。
(3)、前記第一の配合ホッパーと前記第二の配合ホッパーとの間に、石炭を搬送する第二のベルトコンベアを設置することを特徴とする(1)または(2)に記載の微粉炭の製造方法。
As a result of repeated experiments and studies to solve the above problems, the present inventors have found the following surprising facts. That is, in the past, it was difficult to obtain an appropriate particle size distribution for target blowing even when coals having different hardnesses were pulverized by the same pulverizer, but the coals having different hardnesses were sufficiently mixed in advance. By setting appropriate pulverization conditions, it is possible to obtain a target particle size distribution. The present invention has been made based on such findings, and the features thereof are as follows.
(1) From a plurality of coal hoppers, a belt conveyor that conveys coal discharged from the coal hopper, a first blending hopper that stores coal transported by the belt conveyor, and the first blending hopper Using a facility having a second blending hopper for storing discharged coal and a pulverizer for pulverizing the coal discharged from the second blending hopper, a plurality of brands of different hardness are mixed. And pulverizing after mixing so that the time fluctuation of the HGI of the mixed coal is within ± 5%.
(2) The method for producing pulverized coal according to (1), wherein pulverization is performed with a pulverization force set according to an average HGI determined as a mass average according to a mixing ratio of the plural brands of coal.
(3) The fine powder according to (1) or (2) , wherein a second belt conveyor for conveying coal is installed between the first blending hopper and the second blending hopper. Charcoal manufacturing method.

本発明によれば、硬さの異なる石炭を、同一の粉砕機で粉砕しても目標とする高炉の吹き込み用に適正な粒度分布を有する微粉炭が得られる。このため従来は使用が困難であった硬さの石炭を微粉炭原料として用いることが可能となる。また、低コストで複数銘柄の石炭を混合した微粉炭を製造できる。また、微粉炭を製造後に混合する必要が無いので、発火の危険が減り、安全に微粉炭を製造できる。   According to the present invention, even if pulverized coals having different hardnesses are pulverized by the same pulverizer, pulverized coal having an appropriate particle size distribution for target blast furnace blowing can be obtained. For this reason, it becomes possible to use the coal of the hardness which was difficult to use conventionally as a pulverized coal raw material. Moreover, it is possible to produce pulverized coal in which plural brands of coal are mixed at low cost. Moreover, since it is not necessary to mix pulverized coal after manufacture, the risk of ignition is reduced and pulverized coal can be manufactured safely.

まず、従来の微粉炭製造設備を図4を用いて説明する。従来の微粉炭製造設備は、複数の石炭ホッパー2と、石炭ホッパー2から切り出した石炭を搬送するベルトコンベア4と、ベルトコンベア4で搬送された石炭を貯留する配合ホッパー5と、この配合ホッパー5から切り出した石炭を粉砕する粉砕機8とで構成されている。微粉炭の製造は、ヤード1にストックされた石炭を石炭ホッパー2に貯留し、複数の石炭ホッパー2に貯留されている石炭をフィーダー3で共通のベルトコンベア4上に切出して、配合ホッパー5に貯留して、この配合ホッパー5から切り出した石炭を粉砕機に供給して粉砕して行なわれる。   First, a conventional pulverized coal production facility will be described with reference to FIG. A conventional pulverized coal production facility includes a plurality of coal hoppers 2, a belt conveyor 4 that conveys coal cut out from the coal hopper 2, a blending hopper 5 that stores coal transported by the belt conveyor 4, and the blending hopper 5 And a pulverizer 8 for pulverizing the coal cut out from the coal. In the manufacture of pulverized coal, the coal stocked in the yard 1 is stored in the coal hopper 2, the coal stored in the plurality of coal hoppers 2 is cut out on the common belt conveyor 4 by the feeder 3, The coal is stored and supplied from the blended hopper 5 to a pulverizer for pulverization.

石炭ホッパー2を石炭の銘柄(石炭種)別にして、各銘柄の石炭を所定の比率で供給・混合して粉砕することで、粉砕後の微粉炭の粒度分布を調製できるが、硬さの異なる石炭を用いる場合は、所定の粒度分布範囲内(例えば、74μm以下が75〜80mass%)とすることは困難である。本発明では、粉砕前に石炭を十分に混合するために、従来の設備に配合ホッパーを追加する。本発明の微粉炭の製造設備の一実施形態を、図1に示す。なお、微粉炭の製造設備は高炉装入原料の製造設備に比べて小規模であり、設備の変更が容易で、相対的にコストも低いため、本発明の実施は比較的容易に行なうことができる。   By classifying the coal hopper 2 according to the brand of coal (coal type), supplying and mixing each brand of coal at a predetermined ratio and pulverizing, the particle size distribution of the pulverized coal after pulverization can be adjusted. When using different coal, it is difficult to make it within a predetermined particle size distribution range (for example, 74 μm or less is 75 to 80 mass%). In the present invention, a blending hopper is added to the conventional equipment in order to sufficiently mix the coal before pulverization. One embodiment of the pulverized coal production facility of the present invention is shown in FIG. Since the pulverized coal production facility is smaller than the blast furnace charging raw material production facility, the facility can be easily changed and the cost is relatively low, so the present invention can be carried out relatively easily. it can.

図1において、微粉炭の製造設備は、複数の石炭ホッパー2と、石炭ホッパー2から切り出した石炭を搬送するベルトコンベア4と、ベルトコンベア4で搬送された石炭を貯留する第一の配合ホッパー5と、第一の配合ホッパー5の下流側に設置された第二の配合ホッパー7と、第二の配合ホッパー7から切り出した石炭を粉砕する粉砕機8とで構成されている。第一の配合ホッパー5と第二の配合ホッパー7との間に、石炭を搬送する第二のベルトコンベア6を設置することが好ましい。   In FIG. 1, the pulverized coal production facility includes a plurality of coal hoppers 2, a belt conveyor 4 that conveys coal cut out from the coal hopper 2, and a first blending hopper 5 that stores coal conveyed by the belt conveyor 4. And a second blending hopper 7 installed on the downstream side of the first blending hopper 5 and a pulverizer 8 for pulverizing the coal cut out from the second blending hopper 7. It is preferable to install the 2nd belt conveyor 6 which conveys coal between the 1st mixing | blending hopper 5 and the 2nd mixing | blending hopper 7. As shown in FIG.

図1に示す設備を用いた微粉炭の製造方法を説明する。ヤード1にストックされた石炭は、銘柄別に石炭ホッパー2に貯留し、複数の石炭ホッパー2に貯留されている石炭をフィーダー3で共通のベルトコンベア4上に所定の割合で切出して重ね排出し、ベルトコンベア4上に異種石炭の多層構造を形成する。この石炭が第一の配合ホッパー5に装入される際には、まだホッパー内で石炭は銘柄別に偏析している。第一の配合ホッパー5に貯留された石炭は、切り出される際にある程度混合される。第一の配合ホッパー5から切り出した石炭をベルトコンベア6で搬送し、第二の配合ホッパー7に装入する。石炭は第二の配合ホッパー7から排出される際にさらに混合されて、十分に混合された状態で粉砕機8に供給されて粉砕される。   A method for producing pulverized coal using the equipment shown in FIG. 1 will be described. Coal stocked in the yard 1 is stored in the coal hopper 2 according to brands, and the coal stored in the plurality of coal hoppers 2 is cut out at a predetermined rate on the common belt conveyor 4 by the feeder 3 and discharged repeatedly. A multilayer structure of different kinds of coal is formed on the belt conveyor 4. When this coal is charged into the first blending hopper 5, the coal is still segregated by brand in the hopper. The coal stored in the first blending hopper 5 is mixed to some extent when it is cut out. Coal cut out from the first blending hopper 5 is conveyed by the belt conveyor 6 and charged into the second blending hopper 7. The coal is further mixed when discharged from the second blending hopper 7 and supplied to the pulverizer 8 in a sufficiently mixed state to be pulverized.

以上のように、複数銘柄(品種)の石炭を混合状態で貯留するホッパーを粉砕工程までに2つ以上設けることで、異なる銘柄の石炭の混合を自動的に十分に行なうことができる。従来の設備を用いた場合には、石炭の混合が十分ではなく、粉砕する石炭の平均的な硬さ(HGI)は時間的に変動していた。本発明の微粉炭製造設備を用いて石炭の混合を十分に行なうと、各銘柄の石炭の配合比率で質量平均された平均HGIを用いて、平均的な銘柄として石炭を処理可能となり、その平均的な硬さに適合した粉砕条件を用いて粉砕を行なうことで、目標とする高炉吹き込みに適した粒度分布を有する微粉炭を製造することができる。粉砕条件としては、従来と同様、粉砕時の加圧力等を調整すればよい。   As described above, by providing two or more hoppers that store a plurality of brands (varieties) of coal in a mixed state until the pulverization step, different brands of coal can be sufficiently mixed automatically. When conventional equipment is used, coal is not sufficiently mixed, and the average hardness (HGI) of the coal to be pulverized fluctuates with time. When the coal is sufficiently mixed using the pulverized coal production facility of the present invention, it becomes possible to treat coal as an average brand using the average HGI mass-averaged at the blending ratio of each brand of coal, and the average By performing pulverization using pulverization conditions suitable for specific hardness, pulverized coal having a particle size distribution suitable for target blast furnace blowing can be produced. As pulverization conditions, the pressure applied during pulverization may be adjusted as in the conventional case.

粉砕前の石炭の混合は、平均HGIの時間変動が±5%以内となる程度まで行なうことが好ましい。石炭の粉砕工程前のホッパーが1段であるような場合には、平均HGIの時間変動は±15%程度であり、混合が十分ではなかったが、2段以上のホッパーを設けることで、平均HGIの時間変動を±5%以内に低減可能である。   It is preferable to mix the coal before pulverization until the average HGI time fluctuation is within ± 5%. When the hopper before the coal pulverization process is a single stage, the average HGI time fluctuation was about ± 15%, and mixing was not sufficient, but by providing two or more hoppers, the average The time variation of HGI can be reduced to within ± 5%.

本発明の微粉炭製造設備および製造方法を用いて製造した微粉炭の高炉への吹き込みは、通常と同様の方法を用いて行なえばよい。図1において、製造された微粉炭は、主管10を通して微粉炭吹込み装置11へ気体搬送する。微粉炭吹込み装置11に搬送された微粉炭を気送により分配器12へ供給し、更に分配器12から複数の枝管13を通して高炉14下部の多数の羽口15部まで分配気送する。熱風炉16から各羽口15部のブローパイプ17に供給される熱風18中に、微粉炭を吹込みノズル19からを噴射し、熱風と共に各羽口15から微粉炭を吹き込み、燃焼させる。所定の粒度に調整された微粉炭は、配管等でつまりを生じることなく羽口から吹き込まれ、良好な燃焼性を有している。   The pulverized coal produced using the pulverized coal production facility and production method of the present invention may be blown into the blast furnace using the same method as usual. In FIG. 1, the produced pulverized coal is conveyed by gas through a main pipe 10 to a pulverized coal blowing device 11. The pulverized coal conveyed to the pulverized coal blowing device 11 is supplied to the distributor 12 by air feeding, and further distributed to the many tuyere 15 parts below the blast furnace 14 from the distributor 12 through a plurality of branch pipes 13. Pulverized coal is injected from the nozzle 19 into the hot air 18 supplied from the hot air furnace 16 to the blow pipe 17 at each tuyere 15 part, and pulverized coal is blown from each tuyere 15 together with the hot air and burned. The pulverized coal adjusted to a predetermined particle size is blown from the tuyere without causing clogging in piping or the like, and has good combustibility.

図4に示すものと同様の設備を用いて、微粉炭の製造を行なった。粉砕は水平に回転するテーブルに複数のローラーを押し当て、圧縮力やせん断力によって原料を微粉砕するローラーミルを用いて行なった。原料石炭としてHGIが50のもの(低HGI炭)に、HGIが75の石炭(高HGI炭)を全体の70質量%配合し、平均HGIから算出して給炭量が50t/h時のローラーミルのローラーの加圧力を2.5MPaとして粉砕して微粉炭を製造し、流動性を測定して比較例とした。流動性は、微粉炭を微粉炭吹き込み装置に気体(窒素)輸送する際の、特定区間の輸送時間で評価した。   Using the same equipment as shown in FIG. 4, pulverized coal was produced. The pulverization was performed using a roller mill that presses a plurality of rollers against a horizontally rotating table and finely pulverizes the raw material by compressive force or shear force. Roller with 50% HGI as raw material coal (low HGI charcoal) and 70% by mass of 75% HGI coal (high HGI charcoal) and calculated from average HGI A pulverized coal was produced by pulverizing the pressing force of the mill roller at 2.5 MPa, and the fluidity was measured to obtain a comparative example. The fluidity was evaluated by the transport time of a specific section when transporting gas (nitrogen) to the pulverized coal blowing apparatus.

比較例の場合の粒度分布は、平均粒径が20〜30μmで、累積体積比率が10%の位置での粒度と90%の位置での粒度の差を、50%の位置での粒度で割った指数(以下、「指数S」と称する。)は3.7〜4.0であった。この指数Sは粒度分布の広がりを示す指数であり、値が大きくなるほど、その粒度分布の幅が広いことを意味している。   The particle size distribution in the case of the comparative example is the average particle size of 20 to 30 μm, and the difference between the particle size at the position where the cumulative volume ratio is 10% and the particle size at the position of 90% is divided by the particle size at the position of 50%. The index (hereinafter referred to as “index S”) was 3.7 to 4.0. The index S is an index indicating the spread of the particle size distribution, and the larger the value, the wider the particle size distribution.

次に、図1に示すものと同様の設備を用いて、微粉炭の製造を行った。ローラーミルは上記と同じ形式のものを用い、前述した石炭と同じ配合(高HGI炭の配合比率が70質量%)で、かつ、粉砕条件(給炭量:50t/h、ローラーミルの加圧力:2.5MPa)も同じにして粉砕し、粒度分布や流動性を評価して本発明例とした。   Next, pulverized coal was produced using the same equipment as shown in FIG. The roller mill is of the same type as above, and has the same composition as the coal described above (high HGI coal blending ratio is 70% by mass), and pulverization conditions (coal feed amount: 50 t / h, roller mill pressure) : 2.5 MPa) was pulverized in the same manner, and the particle size distribution and fluidity were evaluated to obtain an example of the present invention.

本発明例の微粉炭の粒度分布は平均粒径が20〜30μmであったが、分布の広がりを示す指数Sの値は2.1〜2.3となり、分布の広がりが抑制された。   The particle size distribution of the pulverized coal of the present invention example had an average particle size of 20 to 30 μm, but the value of the index S indicating the distribution spread was 2.1 to 2.3, and the spread of the distribution was suppressed.

本発明例と比較例との、流動性の測定結果を図2に併せて示す。図2に示すように、本発明例では微粉炭の輸送時間が短くなり、流動性が改善されていることがわかる。   The fluidity measurement results of the inventive example and the comparative example are also shown in FIG. As shown in FIG. 2, in the example of this invention, it turns out that the transport time of pulverized coal becomes short and fluidity | liquidity is improved.

本発明の一実施形態を示す微粉炭製造設備および吹き込み設備の概略図。1 is a schematic view of pulverized coal production equipment and blowing equipment showing an embodiment of the present invention. 微粉炭の流動性の変化を示すグラフ。The graph which shows the change of the fluidity | liquidity of pulverized coal. 単一銘柄と、2銘柄混合粉砕時の粒度分布の比較を示すグラフ。The graph which shows the comparison of the particle size distribution at the time of single brand and two brand mixed grinding. 従来の微粉炭製造設備および吹き込み設備の概略図。Schematic of conventional pulverized coal production equipment and blowing equipment.

符号の説明Explanation of symbols

1 ヤード
2 石炭ホッパー
3 フィーダー
4 ベルトコンベア
5 (第一の)配合ホッパー
6 第二のベルトコンベア
7 第二の配合ホッパー
8 粉砕機
10 主管
11 微粉炭吹込み装置
12 分配器
13 枝管
14 高炉
15 羽口
16 熱風炉
17 ブローパイプ
18 熱風
19 吹込みノズル
1 Yard 2 Coal Hopper 3 Feeder 4 Belt Conveyor 5 (First) Compounding Hopper 6 Second Belt Conveyor 7 Second Compounding Hopper 8 Crusher 10 Main Pipe 11 Pulverized Coal Injector 12 Distributor 13 Branch Pipe 14 Blast Furnace 15 Tuyere 16 hot blast furnace 17 blow pipe 18 hot blast 19 blow nozzle

Claims (3)

複数の石炭ホッパーと、
該石炭ホッパーから排出された石炭を搬送するベルトコンベアと、
該ベルトコンベアで搬送された石炭を貯留する第一の配合ホッパーと、
該第一の配合ホッパーから排出された石炭を貯留する第二の配合ホッパーと、
該第二の配合ホッパーから排出された石炭を粉砕する粉砕機とを有する設備を用いて、
硬さの異なる複数銘柄の石炭を、銘柄別に複数の石炭ホッパーの各々に貯留し、
前記複数の石炭ホッパーから、前記複数銘柄の石炭を前記ベルトコンベア上に切出して、前記ベルトコンベア上に異種石炭の多層構造を形成し、
前記ベルトコンベアで搬送された石炭を、前記第一の配合ホッパーへ供給して、前記第一の配合ホッパーから排出することで混合し、混合した石炭を前記第二の配合ホッパーへ供給して前記第二の配合ホッパーから排出することによりさらに混合し、混合された石炭のHGIの時間変動が±5%以内となるようにし、
次いで、前記混合された石炭を前記粉砕機へ供給して粉砕を行なうことを特徴とする微粉炭の製造方法。
Multiple coal hoppers,
A belt conveyor for conveying coal discharged from the coal hopper;
A first blending hopper for storing coal conveyed by the belt conveyor;
A second blending hopper for storing coal discharged from the first blending hopper;
Using the facilities having a pulverizer for pulverizing the coal discharged from said second compounding hopper, a,
Multiple brands of coal with different hardness are stored in each of multiple coal hoppers by brand,
From the plurality of coal hoppers, the plurality of brands of coal are cut out on the belt conveyor to form a multilayer structure of different kinds of coal on the belt conveyor,
The coal conveyed by the belt conveyor is fed to the first blending hopper, mixed by discharging from the first blending hopper, and the mixed coal is fed to the second blending hopper. further mixed by discharging from the second compounding hopper, as time variation of HGI of mixed together coal is within 5% ±,
Next, the mixed coal is supplied to the pulverizer and pulverized to pulverize the coal.
前記複数銘柄の石炭の混合比に応じた質量平均として求められる平均HGIに応じて設
定した粉砕力で粉砕を行なうことを特徴とする請求項1に記載の微粉炭の製造方法。
The method for producing pulverized coal according to claim 1, wherein the pulverized coal is pulverized with a pulverization force set according to an average HGI determined as a mass average according to a mixing ratio of the plural brands of coal.
前記第一の配合ホッパーと前記第二の配合ホッパーとの間に、石炭を搬送する第二のベ
ルトコンベアを設置することを特徴とする請求項1または2に記載の微粉炭の製造方法。
The method for producing pulverized coal according to claim 1 or 2, wherein a second belt conveyor for conveying coal is installed between the first blending hopper and the second blending hopper.
JP2005373956A 2005-12-27 2005-12-27 Method for producing pulverized coal Active JP5286635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373956A JP5286635B2 (en) 2005-12-27 2005-12-27 Method for producing pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373956A JP5286635B2 (en) 2005-12-27 2005-12-27 Method for producing pulverized coal

Publications (2)

Publication Number Publication Date
JP2007175561A JP2007175561A (en) 2007-07-12
JP5286635B2 true JP5286635B2 (en) 2013-09-11

Family

ID=38301278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373956A Active JP5286635B2 (en) 2005-12-27 2005-12-27 Method for producing pulverized coal

Country Status (1)

Country Link
JP (1) JP5286635B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151490B2 (en) * 2008-01-10 2013-02-27 新日鐵住金株式会社 Coke production method
KR101002404B1 (en) * 2010-05-07 2010-12-21 (주)명우분체시스템 A coal pulverization and distribution transfer device
JP5442564B2 (en) * 2010-09-06 2014-03-12 株式会社神戸製鋼所 Pulverized coal combustion method and pulverized coal combustion apparatus
CN102327805A (en) * 2011-09-30 2012-01-25 姜本熹 Method and device for charging grinder
JP6047031B2 (en) * 2013-02-19 2016-12-21 出光興産株式会社 Grinding equipment pulverization characteristic judgment program, coal combustion efficiency judgment program, pulverization equipment pulverization characteristic judgment apparatus, and coal combustion efficiency judgment apparatus
WO2020245915A1 (en) * 2019-06-04 2020-12-10 ホソカワミクロン株式会社 Learning model generation method, computer program, learning model, control device, and control method
CN115261533A (en) * 2022-07-27 2022-11-01 广东韶钢松山股份有限公司 Method for adjusting coal grinding amount of injected coal
CN117470721B (en) * 2023-12-28 2024-03-26 山西建龙实业有限公司 Method for measuring and evaluating high-temperature degradation strength and granularity degradation behavior of metallurgical coke

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143519A (en) * 1995-11-13 1997-06-03 Sumitomo Metal Ind Ltd Method for operating blast furnace by blowing pulverized coal
JPH10211443A (en) * 1997-01-28 1998-08-11 Mitsubishi Heavy Ind Ltd Coaling device
JP2002105516A (en) * 2000-09-29 2002-04-10 Nkk Corp Method for operating blast furnace
JP2002194408A (en) * 2000-12-28 2002-07-10 Nkk Corp Method for producing pulverized coal to be injected into reacting furnace
JP3721090B2 (en) * 2001-03-14 2005-11-30 株式会社神戸製鋼所 Air flow transportation method of pulverized coal
JP2003013120A (en) * 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Method of operating blast furnace
JP2003340299A (en) * 2002-05-24 2003-12-02 Ishikawajima Harima Heavy Ind Co Ltd Determination method for coal grinding property of mill and control method for coal production characteristics

Also Published As

Publication number Publication date
JP2007175561A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5286635B2 (en) Method for producing pulverized coal
US11549159B2 (en) Method of operating a sinter plant
JPH1060508A (en) Production of pulverized fine coal for blowing from tuyere in blast furnace
CN103041905A (en) Method and system for crumbling and grinding carbide slag
EP3392353B1 (en) Method for manufacturing molten iron
JP2010150646A (en) Method for charging raw material into blast furnace
JP5338309B2 (en) Raw material charging method to blast furnace
JP2006348309A (en) Process for production of cokes and productive facilities therefor
JP2002194408A (en) Method for producing pulverized coal to be injected into reacting furnace
JP2014201763A (en) Method for producing granulation raw material for sintering
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP5741319B2 (en) Pulverized coal injection method
JP5338308B2 (en) Raw material charging method to blast furnace
KR101149156B1 (en) Method of producing sintered ore
JP6772712B2 (en) Powder coke crushing equipment and powder coke crushing method
JP5338310B2 (en) Raw material charging method to blast furnace
WO2005054088A2 (en) Method and device for the pneumatic transport of solid matter
JP6079677B2 (en) Blast furnace blowing pulverized coal, blast furnace blowing pulverized coal manufacturing method and blast furnace operating method
JP2005068474A (en) Method and system for blowing pulverized fine coal into blast furnace
JP2006124617A (en) Process for production of coke and productive facility therefor
KR20140109535A (en) Method for injection pulverized coal into blast furnace
JPH05156329A (en) Method for operating powder injection from tuyere in blast furnace
JP2022143141A (en) Blast furnace operation method
JPH01100212A (en) Operational method for blowing fine material in blast furnace
KR20020049686A (en) Powder coke mixing injection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250