WO2020245915A1 - Learning model generation method, computer program, learning model, control device, and control method - Google Patents

Learning model generation method, computer program, learning model, control device, and control method Download PDF

Info

Publication number
WO2020245915A1
WO2020245915A1 PCT/JP2019/022172 JP2019022172W WO2020245915A1 WO 2020245915 A1 WO2020245915 A1 WO 2020245915A1 JP 2019022172 W JP2019022172 W JP 2019022172W WO 2020245915 A1 WO2020245915 A1 WO 2020245915A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
learning model
particle size
powder processing
processing apparatus
Prior art date
Application number
PCT/JP2019/022172
Other languages
French (fr)
Japanese (ja)
Inventor
智浩 北村
Original Assignee
ホソカワミクロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホソカワミクロン株式会社 filed Critical ホソカワミクロン株式会社
Priority to JP2021524544A priority Critical patent/JPWO2020245915A1/ja
Priority to PCT/JP2019/022172 priority patent/WO2020245915A1/en
Publication of WO2020245915A1 publication Critical patent/WO2020245915A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric

Definitions

  • the present invention relates to a learning model generation method, a computer program, a learning model, a control device, and a control method.
  • the powder processing process is composed of a combination of various processes such as storage, supply, transportation, pulverization, classification, and mixing (see, for example, Patent Document 1).
  • various processes such as storage, supply, transportation, pulverization, classification, and mixing (see, for example, Patent Document 1).
  • the powder handled in the powder processing process exhibits a wide variety of properties depending on the type, size, shape, etc. of the powder. Therefore, there is a problem that the operating conditions set in the powder processing apparatus often depend on the experience and intuition of field engineers.
  • the present invention provides a learning model generation method, a computer program, a learning model, a control device, and a control method capable of determining control parameters related to a powder processing apparatus without depending on the experience and intuition of a field engineer. The purpose.
  • the method for generating a learning model includes measurement data indicating an operating state of the powder processing apparatus with respect to the powder processing apparatus having at least a function of crushing the powder raw material using a computer.
  • the powder particle size data obtained from the powder processing apparatus is acquired, and the acquired measurement data and the particle size data are used as teacher data, and the powder is input according to the input of the particle size desired by the user.
  • Generate a learning model that outputs the calculation results for the control parameters that control the operating state of the processing device.
  • the computer program includes measurement data indicating the operating state of the powder processing apparatus and the powder processing apparatus for the powder processing apparatus having at least a function of crushing the powder raw material in the computer.
  • the particle size data of the powder obtained from the above is acquired, and the acquired measurement data and the particle size data are used as the training data, and the operating state of the powder processing apparatus is performed according to the input of the particle size desired by the user.
  • the learning model includes an input layer in which a particle size desired by the user is input, an output layer that outputs calculation results for control parameters that control the operating state of the powder processing apparatus, and the powder.
  • An intermediate layer in which the relationship between the particle size and the control parameter is learned by using the measurement data indicating the operating state of the processing device and the particle size data of the powder obtained from the powder processing device as training data.
  • the computer calculates the intermediate layer and outputs the calculation result for the control parameter that controls the operating state of the powder processing apparatus. Make it work.
  • the control device shows a receiving unit that receives an input of a particle size desired by a user, particle size data of powder obtained from the powder processing device, and an operating state of the powder processing device.
  • a learning model in which the relationship between the particle size of the powder and the control parameters that control the operating state of the powder processing apparatus is learned by using the measurement data as the teacher data, and the reception unit accepts the learning model.
  • a calculation processing unit that inputs the data of the particle size to the learning model and executes the calculation by the learning model, and a control unit that controls the operation of the device including the powder processing device based on the calculation result by the learning model. And.
  • the input of the particle size desired by the user is received, and the received particle size data is the particle size data of the powder obtained from the powder processing device and the powder processing device.
  • the measurement data indicating the operating state of the powder is input to the learning model.
  • the operation by the learning model is executed, and the operation of the apparatus including the powder processing apparatus is controlled based on the calculation result obtained from the learning model.
  • control parameters related to the powder processing apparatus can be determined without depending on the experience and intuition of field engineers.
  • FIG. It is a schematic diagram which shows the whole structure of the powder processing system which concerns on Embodiment 1.
  • FIG. It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the internal structure of the control device which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the internal structure of a terminal device.
  • FIG. It is a schematic diagram which shows the structural example of the learning model in Embodiment 1.
  • FIG. It is a conceptual diagram which shows an example of the data which a control device collects. It is a flowchart explaining the generation procedure of the learning model by a control device. It is a flowchart explaining the control procedure by a control device.
  • FIG. 1 It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 2. It is a schematic diagram which shows the structural example of the learning model in Embodiment 2. It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 3. It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 4. FIG. It is a schematic diagram which shows the structural example of the learning model in Embodiment 4. It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 5. It is a schematic diagram which shows the structural example of the learning model in Embodiment 5.
  • Embodiment 6 It is a schematic diagram which shows the structural example of the learning model in Embodiment 6. It is a schematic diagram which shows the structural example of the learning model in Embodiment 7. It is a conceptual diagram which shows the example of collecting data in Embodiment 8. It is a flowchart explaining the generation procedure of the learning model which concerns on Embodiment 8. It is a flowchart explaining the control procedure by a control device. It is a flowchart explaining the re-learning procedure of a learning model. It is a flowchart explaining the adjustment procedure of a control parameter. It is a flowchart explaining the procedure of the process executed by a terminal device and a control device. It is a schematic diagram which shows an example of an input screen. It is a schematic diagram which shows an example of a monitoring screen.
  • FIG. 1 is a schematic view showing the overall configuration of the powder processing system 1 according to the first embodiment.
  • the powder processing system 1 according to the first embodiment is, for example, a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, a blower 7 (or a pump), and a control device 100 (FIG. 3).
  • the raw material supply machine 2 is a device for supplying the powder raw material to the powder processing device 4A.
  • the powder raw material supplied by the raw material supply machine 2 to the powder processing device 4A is, for example, a raw material for fine powdered toner used for coloring paper in a copier or a laser printer.
  • toner raw materials powder paints, battery materials, magnetic materials, dyes, resins, waxes, polymers, pharmaceuticals, catalysts, metal powders, silica, solder, cement, foods, inorganic materials, organic materials, or metal materials It may be a powder raw material for producing powder.
  • the raw material supply machine 2 is connected to the powder processing device 4A via the raw material supply path TP1.
  • a screw feeder 21 (see FIG. 2) for transporting the powder raw material is provided in the raw material supply path TP1.
  • the screw feeder 21 is preferable when the powder raw material is a solid and the powder raw material is continuously charged at a constant speed.
  • a double damper, a rotary valve, or the like may be used instead of the screw feeder 21.
  • the hot air generated by the hot air generator 3 may be introduced into the raw material supply path TP1 and the powder raw material may be supplied to the powder processing apparatus 4A together with the hot air.
  • the raw material feeder 2 performs weight control using a weight sensor S1 (see FIG.
  • the supply amount of the powder raw material may be adjusted so as to be. Further, the raw material supply machine 2 supplies the powder raw material per unit time (that is, the supply speed) based on the output of the built-in timer (not shown) and the supply amount of the powder raw material measured by the weight sensor S1. May be measured.
  • the weight sensor S1 may be provided not only in the raw material supply machine 2, but also in the powder processing device 4A, the cyclone 5, and the dust collector 6.
  • the hot air generator 3 is a device for generating hot air to be introduced into the powder processing device 4A, and includes a heat source such as a heating heater, a blower, and a control device for controlling the temperature and air volume of the hot air.
  • the hot air generator 3 is not limited to the above configuration, and a known configuration may be used. For example, a part of the hot air introduced into the powder processing apparatus 4A may be recovered and circulated between the hot air generator 3 and the powder processing apparatus 4A.
  • the hot air generator 3 is connected to the powder processing device 4A via the gas introduction path TP2.
  • the hot air generated by the hot air generator 3 is introduced into the powder processing apparatus 4A via the gas introduction path TP2.
  • the temperature of the hot air generated by the hot air generator 3 is appropriately set according to the powder processed by the powder processing apparatus 4A. For example, hot air of about 200 ° C. to 600 ° C. may be generated in order to dry the powder processed by the powder processing apparatus 4A.
  • the powder processing apparatus 4A is an apparatus for producing powder having a particle size smaller than a predetermined particle size by crushing the powder raw material supplied from the raw material supply machine 2 and classifying the obtained powder.
  • the powder processing apparatus 4A according to the present embodiment mainly performs a pulverization treatment for crushing a powder raw material and a classification treatment for classifying the pulverized powder (for example, ACM Parberizer manufactured by Hosokawa Micron Co., Ltd. (registered trademark). )).
  • the powder processed by the powder processing apparatus 4A is transported to the cyclone 5 via the powder transport path TP3.
  • the particle size sensor S2 is installed in the middle of the powder transport path TP3 from the powder processing device 4A to the cyclone 5, and the particle size of the powder passing through the powder processing device 4A by the particle size sensor S2. Is measured at regular or regular timings (for example, every 5 seconds).
  • the powder collected by the cyclone 5 is taken out to the product tank 8 and collected as a product.
  • the particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90.
  • D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively.
  • the cumulative volume distribution is a distribution representing the relationship between the particle size ( ⁇ m) of the powder and the integration frequency (volume%) from the small diameter side.
  • D50 is also generally referred to as an average particle diameter (median diameter).
  • a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
  • the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to the product tank 8, and the dust collector 6 to the dust collector tank 9 are reached. It may be installed on a route or the like.
  • a dust collector 6 is connected to the cyclone 5 via a dust collection path TP4.
  • the dust collector 6 includes a bug filter for collecting fine powder or the like that has passed through the cyclone 5.
  • the gas that has passed through the bug filter of the dust collector 6 flows to the blower 7 through the exhaust air passage TP5 and is discharged from the discharge port of the blower 7.
  • the fine powder or the like collected by the bug filter of the dust collector 6 is taken out to the dust collection tank 9 and collected.
  • a blower 7 is connected to the dust collector 6 via an exhaust air passage TP5.
  • the gas flow from the powder processing apparatus 4A to the cyclone 5 that is, the gas flow for extracting the powder from the powder processing apparatus 4A
  • the gas flow from the cyclone 5 to the dust collector 6 Form a flow.
  • a flow rate sensor S3 (see FIG. 3) is installed in the middle of the exhaust passage TP5 from the dust collector 6 to the blower 7, and the discharge / suction flow rate when taking out the powder from the powder processing apparatus 4A is measured. Measure at regular or regular timing (for example, every 5 seconds).
  • the flow rate sensor S3 is installed in the raw material supply path TP1, the gas introduction path TP2, the powder transport path TP3, the dust collection path TP4, the discharge port of the blower 7, and the like. You may.
  • the control device 100 is a device that controls the operation of devices including the powder processing device 4A, and is connected to and from these devices so that various data can be exchanged.
  • the device including the powder processing device 4A includes the powder processing device 4A, and may further include at least one of the raw material supply machine 2, the hot air generator 3, the cyclone 5, the dust collector 6, and the blower 7. It represents that.
  • the device including the powder processing device 4A is also described as a device to be controlled.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4A according to the first embodiment.
  • the powder processing apparatus 4A includes a cylindrical casing 410 that performs powder processing inside the powder processing apparatus 4A.
  • the casing 410 is provided with a raw material input port 411, a gas introduction port 412, a crushing rotor 413, a guide ring 414, a classification rotor 415, a powder outlet 416, and the like.
  • the material of the casing 410 a known material conventionally used for the casing of the powder processing apparatus may be used. Specifically, iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial), stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, and stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc. may be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial)
  • stainless steel materials such as SUS304 and SUS316
  • iron casting materials such as FC20 and FC40
  • stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc.
  • aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • the inner surface of the casing 410 is subjected to plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied.
  • the inner surface of the casing 410 is buffed, electrolytically polished, coated with PTFE (Polytetrafluoroethylene), or plated with nickel or the like. Treatment may be applied.
  • PTFE Polytetrafluoroethylene
  • the casing 410 is provided with a raw material input port 411 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 410.
  • the raw material input port 411 is preferably provided at a position above the rotary disk 413A of the crushing rotor 413.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 410 from the raw material input port 411.
  • the casing 410 is provided with a gas introduction port 412 for introducing hot air (gas) from the hot air generator 3 into the casing 410.
  • the gas introduction port 412 is connected to the hot air generator 3 via the gas introduction path TP2.
  • the position of the gas introduction port 412 is not particularly limited, but it is preferably provided at a position lower than the crushing rotor 413 so that the gas is introduced into the casing 410 via the rotating crushing rotor 413.
  • the gas is introduced from the direction intersecting the rotation direction of the crushing rotor 413, but the gas may be introduced along the rotation direction of the crushing rotor 413.
  • the gas introduced from the gas introduction port 412 forms an air flow that circulates while swirling inside the casing 410, and reaches the cyclone 5 and the dust collector 6 from the powder outlet 416 via the classification rotor 415 from the inside of the casing 410.
  • the airflow in the casing 410 may be formed by suction by the blower 7 connected via the cyclone 5 and the dust collector 6, or may be formed by blowing (pressurizing) from the gas introduction port 412 side.
  • the type of gas introduced into the casing 410 may be appropriately determined according to the target processed product. For example, air may be used, or an inert gas such as nitrogen or argon may be used to prevent oxidation.
  • temperature sensors S4 may be provided at one or a plurality of locations in the casing 410 to control the temperature inside the casing 410.
  • the temperature of the gas introduced into the casing 410 may be adjusted so that the exhaust temperature at the powder outlet 416 is 35 to 55 ° C. ..
  • the temperature sensor S4 may be provided in the cyclone 5, the dust collector 6, the product tank 8, the dust collecting tank 9, and the like.
  • the hot air from the hot air generator 3 is introduced into the casing 410, but using a cold air generator (not shown in the figure), the temperature is about ⁇ 20 ° C. to 5 ° C. in the casing 410. It may be configured to introduce the cold air of.
  • the gas introduced into the casing 410 is preferably a dehumidified gas in order to prevent dew condensation.
  • cold air adjusted to 0 to 15 ° C. may be used.
  • a jacket portion may be provided around the casing 410.
  • the jacket portion adjusts the internal temperature of the casing 410 by circulating and supplying a heating fluid or a cooling fluid from a tank provided separately.
  • the crushing rotor 413 is a rotor including a rotary disk 413A and a plurality of hammers 413B protruding upward from the upper peripheral edge of the rotary disk 413A, and the rotation speed is adjusted to a desired speed by the power of the crushing motor 413M (see FIG. 3). It is configured to rotate.
  • the crushing motor 413M is one of the driving units included in the powder processing system 1.
  • the rotation speed of the crushing motor 413M is measured by the rotation speed sensor S5 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • a plurality of hammers 413B of the crushing rotor 413 are arranged at equal intervals in the circumferential direction on the upper peripheral edge of the rotary disk 413A.
  • the shape, size, number, and material of the hammer 413B are appropriately designed according to the required particle size, circularity, and the like of the product powder.
  • FIG. 2 shows a rod-shaped hammer 413B, it may be a rectangular parallelepiped hammer or a trapezoidal hammer in a plan view. Further, instead of the hammer 413B, a blade-like structure may be used.
  • the crushing rotor 413 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 410, and the powder raw material introduced into the casing 410 is impacted, compressed, and ground by the action of the hammer 413B.
  • the powder raw material is crushed by giving mechanical energy such as shearing.
  • the material of the crushing rotor 413 a known material conventionally used for the crushing rotor of the powder processing apparatus may be used.
  • SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used.
  • a cemented carbide tip may be attached so that the hammer 413B can withstand an impact force, or a composite of a metal such as ceramics or cermet having wear resistance and toughness and ceramics may be used.
  • the surface of the crushing rotor 413 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device.
  • plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device.
  • Abrasion resistant treatment such as SUS630 and quench hardening treatment of SUS630 may be performed.
  • the surface of the crushing rotor 413 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
  • the configuration of the hammer 413B protruding upward from the upper peripheral edge portion of the rotating disk 413A has been described, but a hammer protruding downward from the lower surface peripheral edge portion of the rotating disk 413A may be used.
  • the hammer protruding downward in this way does not directly pulverize the powder raw materials in the casing 410, but can form a strong swirling airflow in the casing 410, so that the powder raw materials collide with each other.
  • the powder raw material can be indirectly crushed.
  • a crushing liner may be provided on the inner peripheral surface of the casing 410 at a position facing the hammer 413B.
  • the crushing liner is a tubular member having a central axis along the rotation axis direction of the crushing rotor 413, and even if the inner peripheral surface of the tubular member is provided with a triangular, corrugated, or wedge-shaped groove. Good.
  • the guide ring 414 is a cylindrical member for generating a swirling air flow in the casing 410 and guiding the powder processed in the casing 410 to the classification rotor 415.
  • the guide ring 414 is arranged coaxially with the crushing rotor 413 above the crushing rotor 413 and fixed inside the casing 410.
  • the fixing method of the guide ring 414 is not particularly limited, but it is necessary to fix the guide ring 414 without rotating inside the casing 410 during the operation of the powder processing apparatus 4A. This is to control the flow state of the powder to be processed to an appropriate state inside the casing 410. In the example of FIG.
  • the guide ring 414 whose inner diameter is continuously increased from the lower side to the upper side in the casing 410 is shown, but the guide ring whose inner diameter is continuously decreased toward the upper side is used. It may be a guide ring whose inner diameter does not change in the vertical direction.
  • the classification rotor 415 is a rotor provided with a plurality of classification blades 415A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M (see FIG. 3).
  • the classification motor 415M is one of the driving units included in the powder processing system 1.
  • the rotation speed of the classification motor 415M is measured by the rotation speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • the classification rotor 415 is provided above the crushing rotor 413, and only the powder having a particle size smaller than a predetermined particle size is passed through the powder processed in the casing 410 by centrifugal force due to high-speed rotation. Only the body is guided to the powder outlet 416.
  • the particle size of the powder passing through the classification rotor 415 can be set by controlling the rotation speed of the classification rotor 415 and the like. That is, by controlling the rotation speed of the classification rotor 415, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 410. On the other hand, the powder that cannot pass through the classification rotor 415 circulates in the casing 410 and is repeatedly processed.
  • the material of the classification rotor 415 a known material conventionally used for the classification rotor of the powder processing apparatus may be used.
  • SS400, S25C, S45C, SUS304, SUS316, titanium, titanium alloy, aluminum alloy and the like can be used.
  • the surface of the classification rotor 415 is specially subjected to heat hardening treatment such as carburizing and quenching, tungsten carbide spraying material treatment, plating treatment such as hard chrome plating, and heat hardening treatment after spraying in order to improve the durability of the device.
  • Abrasion resistant treatment such as thermal spray material treatment, metal vapor deposition performed under vacuum, and carbon vapor deposition of a diamond structure may be performed.
  • the surface of the classification rotor 415 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
  • the powder processing apparatus 4A includes a crushing rotor 413 and a classification rotor 415, it may be used as a classification machine without using the crushing rotor 413. Further, since it is possible to introduce hot air from the hot air generator 3, the powder processing device 4A may be used as a dryer. Further, the powder processing apparatus 4A may be used as a particle design apparatus by providing a coarse powder recovery port in the casing 410 and collecting the coarse powder. Further, a plurality of types of raw materials may be supplied to the casing 410 and used as a continuous mixer in which the plurality of types of raw materials are mixed in the casing 410.
  • a dust content concentration sensor for measuring the dust content concentration and a powder composition are added to at least one of the devices including the powder processing device 4A or at least one of the paths between the devices.
  • a measurement sensor such as a NIR sensor for measuring, a moisture sensor for measuring the moisture content of powder, a pressure sensor for measuring pressure, and a sound pressure / frequency sensor for measuring sound pressure or frequency may be provided.
  • FIG. 3 is a block diagram showing an internal configuration of the control device 100 according to the first embodiment.
  • the control device 100 is composed of a general-purpose or dedicated computer, and includes a control unit 101, a storage unit 102, an input unit 103, an output unit 104, a communication unit 105, an operation unit 106, and a display unit 107.
  • the control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
  • the ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the control device 100.
  • the CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, to control the operation of each hardware unit, thereby as a control device according to the present invention.
  • the RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
  • the control unit 101 is configured to include a CPU, a ROM, and a RAM, but has a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), a quantum processor, and a volatile or non-volatile memory. It may be one or more arithmetic circuits or control circuits including the above. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
  • a clock for outputting date and time information
  • a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction
  • a counter for counting the number.
  • the storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like.
  • the storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the device, and the like.
  • the computer program stored in the storage unit 102 includes a control program PG1 for controlling the operation of the device to be controlled, a particle size of the powder processed by the powder processing device 4A, and control parameters related to the powder processing device 4A.
  • a learning program PG2 and the like for learning the relationship with.
  • the computer program including the control program PG1 and the learning program PG2 may be provided by the non-temporary recording medium M1 in which the computer program is readablely recorded.
  • the recording medium M1 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD (Secure Digital) card, or a micro SD card.
  • the control unit 101 reads various programs from the recording medium M1 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
  • the control device 100 shifts to the learning phase.
  • the learning phase is carried out, for example, when the control device 100 is introduced. Further, the learning phase may be executed when a user's instruction is received through the operation unit 106 or at a regular timing.
  • the control unit 101 includes the rotation speed of the crushing rotor 413 included in the powder processing apparatus 4A, the rotation speed of the classification rotor 415, and the discharge / suction flow rate when the powder is taken out from the casing 410 (processing chamber).
  • the measurement data and the particle size data of the powder obtained from the powder processing apparatus 4A are acquired. These measurement data and particle size data may be collected in advance or may be collected after the transition to the learning phase.
  • the control unit 101 uses the collected measurement data and particle size data as teacher data to learn the relationship between the particle size of the powder obtained from the powder processing device 4A and the control parameters related to the powder processing device 4A. , Generate a learning model 200.
  • control parameters relating to the powder processing apparatus 4A include control parameters for directly controlling the operation of the powder processing apparatus 4A (for example, the rotation speed of the crushing rotor 413 and the rotation speed of the classification rotor 415). .. Further, the control parameters related to the powder processing device 4A may include control parameters for controlling the operations of the raw material supply machine 2, the hot air generator 3, the dust collector 6, and the blower 7 attached to the powder processing device 4A. In the present embodiment, the particle size obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413 included in the powder processing device 4A, the rotation speed of the classification rotor 415, and the powder from the processing chamber of the powder processing device 4A. The configuration for learning the relationship with the control parameters that control the discharge / suction flow rate when taking out the body will be described.
  • the learning model 200 generated in the learning phase is stored in the storage unit 102.
  • the learning model 200 is defined by its definition information.
  • the definition information of the learning model 200 includes, for example, the structural information of the learning model 200, parameters such as weights and biases between nodes.
  • control device 100 shifts to the operation phase when the control unit 101 executes the control program PG1.
  • the operation phase is carried out after the execution of the learning model 200.
  • the control device 100 controls the operation of the device including the powder processing device 4A.
  • the control unit 101 may accept the input of the particle diameter (desired particle diameter) desired by the user.
  • the control unit 101 inputs the received particle size data into the learning model 200 and executes an operation using the learning model 200 to obtain the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the powder. Acquires the calculation result related to the control parameters that control the discharge / suction flow rate when taking out.
  • the control unit 101 controls the operation of the device to be controlled based on the calculation result obtained from the learning model 200.
  • the input unit 103 includes a connection interface for connecting the device to be controlled.
  • the device connected to the input unit 103 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7.
  • the connection interface included in the input unit 103 may be a wired interface or a wireless interface. Data sent from the raw material supply machine 2, the hot air generator 3, the powder processing device 4A, the cyclone 5, the dust collector 6, and the blower 7 are input to the input unit 103.
  • the data input to the input unit 103 is measured by the weight sensor S1, the particle size sensor S2, the flow rate sensor S3, the temperature sensor S4, the rotation speed sensor S5 for the crushing rotor 413, and the rotation speed sensor S6 for the classification rotor 415.
  • the measurement data to be performed is included.
  • the device to be controlled is connected to the input unit 103, but at least a part of the sensors S1 to S6 may be directly connected to the input unit 103.
  • the measurement data output from the sensors S1 to S6 is directly input to the input unit 103 without going through the device to be controlled.
  • the control device 100 may acquire measurement data through the communication unit 105 described later.
  • the output unit 104 includes a connection interface for connecting the device to be controlled.
  • the device connected to the output unit 104 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7.
  • the connection interface included in the output unit 104 may be a wired interface or a wireless interface.
  • the control unit 101 controls the operation of the device to be controlled by outputting a control command through the output unit 104. For example, when controlling the rotation speed of the crushing rotor 413, the control unit 101 generates a control command for the crushing motor 413M, which is a driving unit of the crushing rotor 413, and outputs the control command to the powder processing apparatus 4A through the output unit 104.
  • Control the rotation speed of the crushing rotor 413 Control the rotation speed of the crushing rotor 413.
  • the control unit 101 generates a control command for the classification motor 415M which is a drive unit of the classification rotor 415 and outputs the control command to the powder processing device 4A through the output unit 104.
  • the rotation speed of the classification rotor 415 is controlled.
  • the control unit 101 when controlling the discharge / suction flow rate from the casing 410 included in the powder processing apparatus 4A, the control unit 101 generates a control command for the blower 7 and outputs the control command to the blower 7 through the output unit 104, whereby the casing 410. Controls the discharge / suction flow rate from.
  • the communication unit 105 includes a communication interface for transmitting and receiving various communication data.
  • the communication interface included in the communication unit 105 is, for example, a communication interface conforming to the communication standard of LAN (Local Area Network) used in WiFi (registered trademark) and Ethernet (registered trademark).
  • a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution) may be used.
  • the communication unit 105 communicates with, for example, the terminal device 500 used by the user of the powder processing system 1.
  • the communication unit 105 may receive the operation data or the setting data transmitted from the terminal device 500 in order to accept the remote operation of the powder processing system 1.
  • the control unit 101 executes a process according to the received operation data or the setting data. For example, when the user receives the data of the desired particle size, the control unit 101 may execute the calculation using the learning model 200 and perform the process of acquiring the control parameters related to the powder processing apparatus 4A. Further, the control unit 101 may generate screen data of the user interface screen to be displayed on the terminal device 500, and may transmit the generated screen data to the terminal device 500 through the communication unit 105.
  • the operation unit 106 is provided with an input interface such as a keyboard and a mouse, and accepts various operations and various settings.
  • the control unit 101 performs appropriate processing based on various operations and various settings received through the operation unit 106, and stores the setting information in the storage unit 102 as necessary.
  • the control device 100 is provided with the operation unit 106, but the operation unit 106 is not indispensable, and the operation is received through a computer (for example, the terminal device 500) connected to the outside. You may.
  • the display unit 107 includes a display panel such as a liquid crystal panel or an organic EL (Electro-Luminescence) panel, and displays information to be notified to the user.
  • the display unit 107 may display, for example, the measurement data of the various sensors S1 to S6 received through the communication unit 105, or may display information based on various operations and various settings received through the operation unit 106. Further, the display unit 107 may display the calculation result by the learning model 200.
  • the control device 100 is configured to include the display unit 107, but the display unit 107 is not essential and outputs information to be notified to the user to an external computer (for example, the terminal device 500). , The information may be displayed on the output destination computer.
  • control device 100 has been described as a single computer, but it does not have to be a single computer, and may be composed of a plurality of computers or a plurality of virtual computers.
  • FIG. 4 is a block diagram showing the internal configuration of the terminal device 500.
  • the terminal device 500 is a computer such as a personal computer, a smartphone, or a tablet terminal, and includes a control unit 501, a storage unit 502, a communication unit 503, an operation unit 504, and a display unit 505.
  • the control unit 501 includes, for example, a CPU, a ROM, a RAM, and the like.
  • the ROM included in the control unit 501 stores a control program or the like that controls the operation of each hardware unit included in the terminal device 500.
  • the CPU in the control unit 501 executes a control program stored in the ROM and various computer programs stored in the storage unit 502 described later, and controls the operation of each hardware unit.
  • the control unit 501 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number. Data and the like used during execution of the calculation are temporarily stored in the RAM included in the control unit 501.
  • the storage unit 502 includes a storage device that uses a hard disk, a flash memory, or the like.
  • the storage unit 502 stores a computer program executed by the control unit 501, various data acquired from the outside, various data generated inside the device, and the like.
  • the computer program stored in the storage unit 502 may include an application program for accessing the control device 100 from the terminal device 500.
  • the communication unit 503 includes a communication interface for transmitting and receiving various data.
  • the communication interface included in the communication unit 503 is, for example, a communication interface conforming to the LAN communication standard used in WiFi (registered trademark) and Ethernet (registered trademark).
  • a communication interface conforming to communication standards such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, and LTE may be used.
  • the communication unit 503 communicates with, for example, the control device 100 of the powder processing system 1.
  • the data received by the terminal device 500 through the communication unit 503 includes screen data for displaying the interface screen of the control device 100 on the display unit 505, data indicating the setting state and control state of the device including the powder processing device 4A, and the like.
  • the data indicating the set state includes a set value regarding the rotation speed of the crushing rotor 413, a set value regarding the rotation speed of the classification rotor 415, a set value regarding the discharge / suction flow rate by the blower 7, and the like.
  • the data indicating the control state includes a measured value related to the rotation speed of the crushing rotor 413, a measured value related to the rotation speed of the classification rotor 415, a measured value related to the discharge / suction flow rate by the blower 7, and a powder processing device 4A. It includes alarm information and the like output from.
  • the data received by the communication unit 503 is output to the control unit 501.
  • the data transmitted by the terminal device 500 through the communication unit 503 includes operation data, setting data, and the like when the powder processing system 1 is remotely controlled.
  • the operation unit 504 is equipped with an input interface such as a keyboard and a mouse, and accepts various operations and various settings.
  • the control unit 501 performs appropriate processing based on various operations and various settings received through the operation unit 504, and stores the setting information in the storage unit 502 as necessary.
  • the display unit 505 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays information to be notified to the user.
  • the display unit 505 displays the interface screen of the control device 100, for example, based on the screen data received by the communication unit 503. Further, the display unit 505 displays the setting state and the control state of the device including the powder processing device 4A based on the data indicating the setting state and the control state of the device including the powder processing device 4A received by the communication unit 503. You may.
  • FIG. 5 is a schematic diagram showing a configuration example of the learning model 200 according to the first embodiment.
  • the learning model 200 is, for example, a learning model for machine learning including deep learning, and is configured by a neural network.
  • the learning model 200 includes an input layer 201, intermediate layers 202A and 202B, and an output layer 203.
  • two intermediate layers 202A and 202B are described, but the number of intermediate layers is not limited to two and may be three or more.
  • the input layer 201, the intermediate layers 202A, 202B, and the output layer 203 have one or more nodes, and the nodes of each layer are connected to the nodes existing in the previous and next layers in one direction with a desired weight and bias. Has been done.
  • the same number of data as the number of nodes included in the input layer 201 is input to the input layer 201 of the learning model 200.
  • the data input to the node of the input layer 201 is the data of the particle diameter (desired particle diameter) desired by the user.
  • an example of the particle diameter data input to the node of the input layer 201 is the median diameter.
  • the diameter is not limited to the median, and may be a mode diameter or various arithmetic mean values.
  • the particle diameter data given to the node of the input layer 201 is not limited to a single value such as the median diameter, the mode diameter, and various arithmetic mean values, but may be each value of D10, D50, and D90. It may be a range set for each of D10, D50, and D90 (that is, an upper limit value and a lower limit value of a range allowed by the user with respect to the particle size).
  • the particle size data input to the learning model 200 is output to the node included in the first intermediate layer 202A through the nodes constituting the input layer 201.
  • the data input to the first intermediate layer 202A is output to the nodes included in the next intermediate layer 202B through the nodes constituting the intermediate layer 202A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 203 is obtained. Parameters such as weights and biases that connect the nodes are learned by a predetermined learning algorithm.
  • the particle size data regarding the particle size obtained from the powder processing device 4A that is, the particle size data measured by the particle size sensor S2
  • the rotation of the crushing rotor 413 included in the powder processing device 4A Various parameters including weights and biases between nodes are learned by a predetermined learning algorithm using the measurement data including the speed, the rotation speed of the classification rotor 415, and the discharge / suction flow rate when taking out the powder from the casing 410 as training data. can do.
  • the output layer 203 outputs calculation results related to control parameters that control the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 203 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the crushing rotor 413 is G1, the rotation speed of the classification rotor 415 is C1, and the discharge.
  • the number of nodes constituting the output layer 203 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control device 100 includes particle size data regarding the particle size obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410 of the powder processing device 4A.
  • the measurement data including the above is collected, and these data are used as the teacher data to generate the learning model 200 as described above.
  • FIG. 6 is a conceptual diagram showing an example of data collected by the control device 100.
  • the control unit 101 of the control device 100 acquires and acquires measurement data from the particle size sensor S2, the rotation speed sensor S5 of the crushing rotor 413, the rotation speed sensor S6 of the classification rotor 415, and the flow rate sensor S3 through the input unit 103.
  • the data is stored in the storage unit 102 together with the time stamp, and the data used for the teacher data is collected.
  • FIG. 6 shows an example of the data collected by the control device 100. Among the data shown in FIG.
  • the first record shows that the actual measurement value of the rotation speed of the crushing rotor 413 is 4749.6 rpm, the actual measurement value of the rotation speed of the classification rotor 415 is 3195.1 rpm, and the actual measurement value of the discharge / suction flow rate.
  • the second and subsequent records which are the actual measurement values of the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410 when the powder processing system 1 is operating.
  • the example of FIG. 6 shows an example in which data is collected at intervals of 5 seconds, the time interval for collecting data is not limited to 5 seconds and may be set arbitrarily.
  • the control unit 101 uses the collected data as the teacher data to learn the relationship between the particle size of the powder obtained from the powder processing apparatus 4A and the control parameters related to the powder processing apparatus 4A, as described above.
  • the learning model 200 is generated.
  • FIG. 7 is a flowchart illustrating a procedure for generating the learning model 200 by the control device 100.
  • the control unit 101 of the control device 100 includes measurement data including the rotation speed of the crushing rotor 413 provided in the powder processing device 4A, the rotation speed of the classification rotor 415, and the discharge / suction flow rate when the powder is taken out from the casing 410.
  • the particle size data of the powder obtained from the powder processing apparatus 4A is collected (step S101).
  • the collected measurement data and particle size data are stored in the storage unit 102 together with the time stamp.
  • the control unit 101 After collecting the measurement data and the particle size data, the control unit 101 selects a set of teacher data from the data stored in the storage unit 102 (step S102). That is, the control unit 101 has the measured values of the rotation speeds of the crushing rotor 413 and the classification rotor 415, the discharge / suction flow rate from the casing 410, and the powder particle diameter values obtained at that time (D10, D50, Select only one set with D90).
  • control unit 101 inputs the value of the particle diameter included in the selected teacher data into the learning model 200 (step S103), and executes the calculation by the learning model 200 (step S104). That is, the control unit 101 inputs the value of the particle diameter to the nodes constituting the input layer 201 of the learning model 200, performs the calculation using the weights and biases between the nodes in the intermediate layers 202A and 202B, and outputs the calculation result. The process of outputting from the node of layer 203 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 200 is given an initial value.
  • control unit 101 evaluates the calculation result obtained in step S104 (step S105), and determines whether or not the learning is completed (step S106). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S104 and the teacher data.
  • the control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function is below the threshold value (or above the threshold value), the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
  • control unit 101 updates the weights and biases between the nodes of the learning model 200 (step S107), returns the process to step S102, and another teacher. Continue learning with the data.
  • the control unit 101 may update the weights and biases between the nodes by using the error back propagation method in which the weights and biases between the nodes are sequentially updated from the output layer 203 to the input layer 201 of the learning model 200. it can.
  • control unit 101 stores the learned learning model 200 in the storage unit 102 (step S108), and ends the process according to this flowchart.
  • the control device 100 includes particle size data regarding the particle size obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413, and the rotation speed of the classification rotor 415. And the measurement data including the discharge / suction flow rate when the powder is taken out from the casing 410 is collected.
  • the control device 100 uses the collected data as the teacher data, and according to the input of the particle size desired by the user, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate to the casing 410. It is possible to generate a learning model 200 that outputs the calculation result related to the control parameter that controls.
  • control device 100 is configured to generate the learning model 200, but even if an external server (not shown) for generating the learning model 200 is provided and the learning model 200 is generated by the external server. Good.
  • the control device 100 may acquire the learning model 200 from the external server by communication or the like, and store the acquired learning model 200 in the storage unit 102.
  • FIG. 8 is a flowchart illustrating a control procedure by the control device 100.
  • the control unit 101 of the control device 100 receives an input of a particle size (desired particle size) desired by the user through the operation unit 106 (step S121).
  • the control unit 101 may accept the value of D50 as the particle diameter desired by the user.
  • the control unit 101 may accept the respective values of D10, D50, and D90 instead of the value of D50, and may accept the upper limit value and the lower limit value for each of D10, D50, and D90. That is, the particle size data may be input according to the configuration of the input layer 201 included in the learning model 200.
  • control unit 101 inputs the received particle size data to the input layer 201 of the learning model 200, and executes the calculation by the learning model 200 (step S122). At this time, the control unit 101 gives the received particle size data to the node of the input layer 201.
  • the data given to the node of the input layer 201 is output to the node of the adjacent intermediate layer 202A.
  • intermediate layer 202A an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer 202B in the subsequent stage.
  • an operation using an activation function including weights and biases between nodes is further performed, and the operation result is output to each node of the output layer 203.
  • Each node of the output layer 203 outputs the calculation result regarding the control parameter of the powder processing apparatus 4A. Specifically, each node of the output layer 203 outputs a calculation result regarding control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
  • the control unit 101 acquires the calculation result from the learning model 200 (step S123) and determines the control parameters used for control (step S124).
  • the control unit 101 determines the control parameters used for control by specifying the combination of the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, which have the highest probability.
  • control unit 101 executes control based on the control parameters determined in step S124 (step S125). That is, the control unit 101 generates a control command for the crushing motor 413M and the classification motor 415M so that the rotation speeds of the crushing rotor 413 and the classification rotor 415 become the values determined in step S124, and powder processing is performed through the output unit 104. Output to device 4A. Further, the control unit 101 generates a control command for the blower 7 so that the discharge / suction flow rate from the casing 410 becomes the value determined in step S124, and outputs the control command to the blower 7 through the output unit 104.
  • the control device 100 receives the input of the particle size desired by the user, thereby performing the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge from the casing 410.
  • the control parameters that control the suction flow rate can be determined. That is, in the present embodiment, the control parameters related to the powder processing apparatus 4A can be determined without depending on the experience and intuition of the field engineer.
  • the control device 100 executes control based on the determined control parameters so that a powder having a desired particle size can be obtained.
  • a configuration for acquiring calculation results related to control parameters using a machine learning learning model 200 configured by a neural network has been described, but the learning model 200 is limited to a model obtained by using a specific method.
  • a learning model by a perceptron instead of the neural network by deep learning, a learning model by a perceptron, a convolutional neural network, a recurrent neural network, a residual network, a self-organizing map, or the like may be used.
  • a regression analysis method including linear regression, logistic regression, support vector machine, etc., and a method using a search tree such as a decision tree, a regression tree, a random forest, and a gradient boosting tree.
  • Bayesian estimation method including simple bays, AR (Auto Regressive), MA (Moving Average), ARIMA (Auto Regressive Integrated Moving Average), time series prediction method including state space model, clustering method including K neighborhood method, etc.
  • learning models learned by methods using ensemble learning including boosting, bagging, etc., hierarchical clustering, non-hierarchical clustering, clustering methods including topic models, association analysis, emphasis filtering, etc. There may be.
  • a learning model may be constructed using multivariate analysis including PLS (Partial Least Squares) regression, multiple regression analysis, principal component analysis, factor analysis, cluster analysis and the like.
  • the powder processing system 1 in the second embodiment includes a pin mill (powder processing device 4B shown in FIG. 9) instead of the powder processing device 4A, but the other configurations are the same as those in the first embodiment. Therefore, the detailed description thereof will be omitted.
  • FIG. 9 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4B according to the second embodiment.
  • the powder processing apparatus 4B includes a cylindrical casing 420 that performs powder processing inside the powder processing apparatus 4B.
  • the casing 420 is provided with a raw material input port 421, a fixed crushing rotor 422, a rotary crushing rotor 423, a powder outlet 424, and the like.
  • the material of the casing 420 it is preferable that the same material as the casing of the powder processing apparatus 4A described in the first embodiment is used. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
  • the casing 420 is provided with a raw material input port 421 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 420.
  • the raw material input port 421 is provided above, for example, the crushing rotors 422 and 423.
  • the crushing rotor 422 is a fixed rotor, and includes a disk 422A fixed in the casing 420 and a plurality of pins 422B protruding toward the crushing rotor 423 side.
  • the crushing rotor 423 is a rotary rotor, which includes a rotary disk 423A and a plurality of pins 423B protruding toward the crushing rotor 422 side, and is desired by the power of a crushing motor 413M (see FIG. 3). It is configured to rotate at a rotational speed.
  • the pin 423B of the crushing rotor 423 is positioned so as not to collide with the pin 422B of the fixed crushing rotor 422 when the rotary disk 423A rotates.
  • the shapes, dimensions, arrangement, number, and materials of the pins 422B and 423B included in the crushing rotors 422 and 423 are appropriately designed according to the required particle size and circularity of the product powder. Will be done.
  • the crushing rotor 423 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 420, and the powder raw materials introduced into the casing 420 are impacted, compressed, and abraded by the action of the pins 422B and 423B.
  • the powder raw material is crushed by giving mechanical energy such as crushing and shearing.
  • the material of the crushing rotors 422 and 423 known materials conventionally used for the crushing rotor of the powder processing apparatus may be used.
  • SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used.
  • a cemented carbide tip may be attached so as to withstand the impact force, or a composite of metal and ceramics such as ceramics having wear resistance and toughness or cermet may be used. Good.
  • the surface of the crushing rotor 422,423 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and diamond structure in order to improve the durability of the device.
  • plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and diamond structure in order to improve the durability of the device.
  • Abrasion resistant treatment such as carbon vapor deposition, quenching hardening treatment of SUS630, and the like may be performed.
  • the surfaces of the crushing rotors 422 and 423 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
  • a cyclone 5, a dust collector 6, and a blower 7 are connected to the powder outlet 424 via a powder transport path TP3 or the like.
  • the powder crushed by the crushing rotors 422 and 423 is taken out from the powder outlet 424 together with the air flow.
  • the control device 100 generates a learning model that outputs as a calculation result related to the control parameters of the powder processing device 4B in response to the input of the desired particle size, so that the rotation speed of the crushing rotor 423 measured by the rotation speed sensor S5 is generated.
  • the discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are collected as teacher data.
  • the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the rotation speed of the crushing rotor 423, and the discharge when the powder is taken out from the powder outlet 424.
  • a learning model 210 (see FIG. 10) that outputs calculation results related to control parameters that control the suction flow rate is generated. Since the procedure for generating the learning model 210 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 210 may be generated by the control device 100 or by an external server device (not shown).
  • FIG. 10 is a schematic diagram showing a configuration example of the learning model 210 according to the second embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 210 includes an input layer 211, intermediate layers 212A, 212B, and an output layer 213, each of which has one or more nodes. The number of intermediate layers is not limited to two, and may be three or more.
  • the learning model 210 relates to a control parameter for controlling the rotation speed of the crushing rotor 423 and the discharge / suction flow rate from the casing 420 with respect to the input of the particle diameter (desired particle diameter) desired by the user. It is configured to output the calculation result.
  • the control device 100 When the control device 100 performs an calculation using the learning model 210, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 210.
  • the particle size data input to the learning model 210 is output to the node included in the first intermediate layer 212A through the nodes constituting the input layer 211.
  • the data input to the first intermediate layer 212A is output to the nodes included in the next intermediate layer 212B through the nodes constituting the intermediate layer 212A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 213 is obtained.
  • the output layer 213 outputs the calculation result regarding the rotation speed of the crushing rotor 423 and the control parameters for controlling the discharge / suction flow rate when the powder is taken out from the casing 420.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 213 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the crushing rotor 423 is G1 and the discharge / suction flow rate is V1.
  • the number of nodes constituting the output layer 213 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 specifies the combination having the highest probability among the probabilities of being output from the output layer 213 (in the present embodiment, the combination of the rotation speed of the crushing rotor 423 and the discharge / suction flow rate). By doing so, the control parameters used for control are determined.
  • the control unit 101 generates a control command for controlling the operation of the crushing motor 413M and the blower 7 based on the determined control parameters, and outputs the control command to each device through the output unit 104.
  • the powder is taken out from the rotation speed of the crushing rotor 423 and the powder outlet 424 according to the input of the particle size desired by the user.
  • a learning model 210 that outputs calculation results related to control parameters for controlling the discharge / suction flow rate at the time is generated. Further, by using the learning model 210, calculation results regarding control parameters for controlling the rotation speed of the crushing rotor 423 and the discharge / suction flow rate from the casing 420 can be obtained.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 210 so that the powder having a desired particle size can be obtained.
  • the powder processing system 1 in the third embodiment includes an impact type crusher (powder processing device 4C shown in FIG. 11) instead of the powder processing device 4A, but the other configurations are the embodiment. Since it is the same as 1, the detailed description thereof will be omitted.
  • an impact crusher for example, Grassis (registered trademark) manufactured by Hosokawa Micron Co., Ltd.
  • the powder processing system 1 in the third embodiment includes an impact type crusher (powder processing device 4C shown in FIG. 11) instead of the powder processing device 4A, but the other configurations are the embodiment. Since it is the same as 1, the detailed description thereof will be omitted.
  • FIG. 11 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4C according to the third embodiment.
  • the powder processing apparatus 4C includes a cylindrical casing 430 that performs powder processing inside the powder processing apparatus 4C.
  • the casing 430 is provided with a raw material input port 431, a crushing rotor 432, a liner 433, a powder outlet 434, and the like.
  • the material of the casing 430 it is preferable to use the same material as the casing of the powder processing apparatus 4A described in the first embodiment. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
  • the casing 430 is provided with a raw material input port 431 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 430.
  • the raw material input port 431 is provided above, for example, the crushing rotor 432.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by, for example, a screw feeder (not shown) in the raw material supply path TP1 and is charged into the casing 430 from the raw material input port 431.
  • a refrigerant may be introduced into the casing 430.
  • the refrigerant may be introduced, for example, through a refrigerant introduction port provided on the peripheral surface of the casing 430 or a rotating shaft of the crushing rotor 432.
  • the crushing rotor 432 includes a plurality of rotating disks 432A, 432A, ..., 432A arranged coaxially along the rotation axis, and is rotated at a desired rotation speed by the power of the crushing motor 413M (see FIG. 3). It is configured in.
  • the peripheral surface of the rotating disk 432A is provided with triangular, corrugated, and wedge-shaped grooves.
  • a liner 433 is arranged on the inner peripheral surface of the casing 430 at a position facing the peripheral surface of the rotating disk 432A.
  • the liner 433 is a tubular member having a central axis along the rotation axis direction of the crushing rotor 432, and a triangular, corrugated, and wedge-shaped groove is provided on the inner peripheral surface of the tubular member. ..
  • the material of the crushing rotor 432 and the liner 433 known materials that have been conventionally used may be used.
  • SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used.
  • a cemented carbide chip may be attached so as to withstand an impact force, or a composite of a metal and a ceramic such as ceramics or cermet having wear resistance and toughness may be used.
  • the surfaces of the crushing rotor 432 and the liner 433 are subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and diamond structure in order to improve the durability of the device.
  • plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and diamond structure in order to improve the durability of the device.
  • Abrasion resistant treatment such as carbon vapor deposition of SUS630, quenching hardening treatment of SUS630, and the like may be performed.
  • the surfaces of the crushing rotor 432 and the liner 433 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
  • the crushing rotor 432 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 430, and the powder raw material introduced into the casing 430 is impacted and compressed by the action of the crushing rotor 432 and the liner 433. , Grinding, shearing and other mechanical energy to crush the powder raw material.
  • a cyclone 5, a dust collector 6, and a blower 7 are connected to the powder outlet 434 via a powder transport path TP3 or the like.
  • the powder crushed by the crushing rotor 432 and the liner 433 is taken out from the powder outlet 434 together with the air flow.
  • the control device 100 generates a learning model that outputs as a calculation result related to the control parameters of the powder processing device 4C in response to the input of the desired particle size, so that the rotation speed of the crushing rotor 432 measured by the rotation speed sensor S5 is generated.
  • the discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are collected as teacher data.
  • the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the rotation speed of the crushing rotor 432, and the discharge when the powder is taken out from the powder outlet 434. Generate a learning model that outputs the calculation results related to the control parameters that control the suction flow rate.
  • the learning model may be generated by the control device 100 or by an external server device (not shown). Since the configuration and generation procedure of the learning model generated in the third embodiment are the same as those in the second embodiment, the description thereof will be omitted.
  • a learning model that outputs the calculation results related to the control parameters for controlling the suction flow rate.
  • control results regarding control parameters for controlling the rotation speed of the crushing rotor 432 and the discharge / suction flow rate from the casing 430 can be obtained.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model so that the powder having a desired particle size can be obtained.
  • the powder processing system 1 includes a medium stirring type powder processing device (powder processing device 4D shown in FIG. 12) instead of the powder processing device 4A, but has other configurations. Is the same as that of the first embodiment, and therefore detailed description thereof will be omitted.
  • FIG. 12 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4D according to the fourth embodiment.
  • the powder processing apparatus 4D includes a cylindrical casing 440 that performs powder processing inside the powder processing apparatus 4D.
  • the casing 440 is provided with a raw material input port 441, a gas introduction port 442, a crushing unit 443, a classification rotor 444, a powder outlet 445, an agitator 446, and the like.
  • the material of the casing 440 it is preferable that the same material as the casing of the powder processing apparatus 4D described in the first embodiment is used. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
  • the casing 440 is provided with a raw material input port 441 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 440.
  • the raw material input port 441 is provided above, for example, the crushing section 443.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by, for example, a screw feeder (not shown) in the raw material supply path TP1 and is charged into the casing 440 from the raw material input port 441.
  • an air flow is generated inside the casing 440 by introducing a gas such as compressed air into the casing 440 through the gas introduction port 442.
  • the powder processing apparatus 4D includes a crushing unit 443 having an agitator 446 that agitates balls (or beads) as a medium.
  • the agitator 446 is configured to rotate at a desired rotation speed by the power of the stirring motor 446M.
  • the stirring motor 446M is one of the driving units included in the powder processing system 1.
  • the powder raw material charged into the casing 440 is in a state of covering the surface of the medium.
  • the medium is agitated by rotating the agitator 446, and the powder raw material covering the surface of the medium is given impact, compression, shearing, and grinding to crush the powder raw material. it can.
  • the crushed powder is conveyed together with the air flow and is classified by the classification rotor 444 provided on the upper part of the apparatus.
  • the configuration of the classification rotor 444 is the same as that of the first embodiment. That is, the classification rotor 444 is a rotor provided with a plurality of classification blades 444A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M.
  • the rotation speed of the classification motor is measured by the rotation speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • the classification rotor 444 passes only powder having a particle size smaller than a predetermined particle size among the powders processed in the casing 440 by centrifugal force due to high-speed rotation, and guides only the passed powder to the powder outlet 445.
  • the powder that cannot pass through the classification rotor 444 circulates in the casing 440 and is repeatedly processed.
  • the particle size of the powder passing through the powder outlet 445 can be set by controlling the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate.
  • the control device 100 generates a learning model 220 that outputs control parameters related to the powder processing device 4D as a calculation result in response to an input of a desired particle size, so that the rotation speed of the agitator 446 measured by the rotation speed sensor S5 is generated.
  • the rotation speed of the classification rotor 444 measured by the rotation speed sensor S6, the discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are collected as teacher data.
  • the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the powder from the powder outlet 445. Generates a learning model 220 (see FIG. 13) that outputs calculation results related to control parameters that control the discharge / suction flow rate when taking out. Since the procedure for generating the learning model 220 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 220 may be generated by the control device 100 or may be generated by an external server device (not shown).
  • FIG. 13 is a schematic diagram showing a configuration example of the learning model 220 in the fourth embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 220 includes an input layer 221 having one or a plurality of nodes, intermediate layers 222A and 222B, and an output layer 223, respectively. The number of intermediate layers is not limited to two, and may be three or more.
  • the learning model 220 has the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate from the casing 440 in response to the input of the particle diameter (desired particle diameter) desired by the user. It is configured to output the calculation result related to the control parameters that control.
  • the control device 100 When the control device 100 performs an operation using the learning model 220, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 220.
  • the particle size data input to the learning model 220 is output to the node included in the first intermediate layer 222A through the nodes constituting the input layer 221.
  • the data input to the first intermediate layer 222A is output to the node included in the next intermediate layer 222B through the nodes constituting the intermediate layer 222A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 223 is obtained.
  • the output layer 223 outputs calculation results related to control parameters that control the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate when the powder is taken out from the casing 440.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 223 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the agitator 446 is A1, the rotation speed of the classification rotor 444 is C1, and discharge.
  • the probability P1 that the suction flow rate is V1 is output, and the rotation speed of the agitator 446 is A2, the rotation speed of the classification rotor 444 is C2, and the probability P2 that the discharge / suction flow rate is V2 is output from the second node. From the nth node, the probability Pn that the rotation speed of the agitator 446 is An, the rotation speed of the classification rotor 444 is Cn, and the discharge / suction flow rate is Vn may be output.
  • the number of nodes constituting the output layer 223 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 223 (in this embodiment, the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate).
  • the control parameters used for control are determined by specifying the combination of).
  • the control unit 101 generates a control command for controlling the operation of the stirring motor 446M, the classification motor 415M, and the blower 7 based on the determined control parameters, and outputs the control command to each device through the output unit 104.
  • the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the powder from the powder outlet 445 are obtained according to the input of the particle size desired by the user.
  • a learning model 220 that outputs calculation results related to control parameters for controlling the discharge / suction flow rate when taking out the body is generated. Further, by using the learning model 220, calculation results regarding control parameters for controlling the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate from the casing 440 can be obtained.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 220 so that the powder having a desired particle size can be obtained.
  • the powder processing apparatus 4A for crushing the powder raw material by applying mechanical energy such as impact, compression, grinding, and shearing to the powder raw material introduced into the casing 410 has been described.
  • the present invention is applied to an airflow type powder processing apparatus (for example, Micron Jet (registered trademark) T type manufactured by Hosokawa Micron Co., Ltd.) that performs pulverization treatment by the action of a jet airflow introduced into a casing. May be applied.
  • an airflow type powder processing apparatus for example, Micron Jet (registered trademark) T type manufactured by Hosokawa Micron Co., Ltd.
  • the powder processing system 1 according to the fifth embodiment includes a flow-type powder processing device 4E (see FIG. 14) instead of the mechanical powder processing device 4A, but other configurations are implemented. Since it is the same as the first form of the above, the detailed description thereof will be omitted.
  • FIG. 14 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4E according to the fifth embodiment.
  • the powder processing apparatus 4E includes a cylindrical casing 450 that performs powder processing inside the powder processing apparatus 4E.
  • the casing 450 is provided with a raw material input port 451, an ejector gas introduction port 452, a crushed gas introduction port 453, a collision plate 454, a classification rotor 455, a powder outlet 456, and the like.
  • the material of the casing 450 it is preferable that the same material as the casing of the powder processing apparatus 4A described in the first embodiment is used. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
  • plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
  • the casing 450 is provided with a raw material input port 451 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 450.
  • the raw material input port 451 is provided above, for example, the ejector gas introduction port 452.
  • the powder raw material supplied from the raw material supply machine 2 is conveyed by, for example, a screw feeder (not shown) in the raw material supply path TP1 and is charged into the casing 450 from the raw material input port 451.
  • a gas such as compressed air is introduced into the casing 450 through the ejector gas introduction port 452 and the crushed gas introduction port 453, thereby causing a jet stream inside the casing 450. generate.
  • the powder raw material charged from the raw material charging port 451 is suction-accelerated by the jet stream in the casing 450 and is crushed by colliding with the collision plate 454. Alternatively, the powders sucked and accelerated by the jet stream collide with each other to be crushed.
  • a pressure sensor (not shown) for measuring the crushing pressure at a constant or regular timing (for example, at 5-second intervals) is provided inside the casing 450.
  • the powder crushed by the action of the jet stream is conveyed together with the stream and classified by the classification rotor 455 provided on the upper part of the device.
  • a cylindrical guide ring 457 may be provided around the collision plate 454 to guide the crushed powder to the classification rotor 455.
  • the configuration of the classification rotor 455 is the same as that of the first embodiment. That is, the classification rotor 455 is a rotor provided with a plurality of classification blades 455A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M.
  • the rotation speed of the classification motor is measured by the rotation speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
  • the classification rotor 455 passes only powder having a particle size smaller than a predetermined particle size among the powder processed in the casing 450 by centrifugal force due to high-speed rotation, and guides only the passed powder to the powder outlet 456.
  • the particle size of the powder passing through the classification rotor 455 can be set by controlling the rotation speed of the classification rotor 455 and the like. That is, by controlling the rotation speed of the classification rotor 455, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 450. On the other hand, the powder that cannot pass through the classification rotor 455 circulates in the casing 450 and is repeatedly processed.
  • the control device 100 is a pressure sensor (non-standard) provided in the crushed gas introduction port 453 in order to generate a learning model 230 that outputs a calculation result regarding the control parameters of the powder processing device 4E in response to the input of the desired particle size.
  • the crushing pressure measured by (shown), the rotation speed of the classification rotor 455 measured by the rotation speed sensor S6, the discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are trained. Collect as data.
  • the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the crushing pressure in the casing 450, the rotation speed of the classification rotor 455, and the powder from the powder outlet 456.
  • a learning model 230 (see FIG. 15) that outputs calculation results related to control parameters that control the discharge / suction flow rate when the body is taken out is generated. Since the procedure for generating the learning model 230 is the same as that in the first embodiment, the description thereof will be omitted.
  • the learning model 230 may be generated by the control device 100 or may be generated by an external server device (not shown).
  • FIG. 15 is a schematic diagram showing a configuration example of the learning model 230 according to the fifth embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 230 includes an input layer 231 having one or a plurality of nodes, intermediate layers 232A and 232B, and an output layer 233, respectively.
  • the number of intermediate layers is not limited to two, and may be three or more.
  • the crushing pressure in the casing 450, the rotation speed of the classification rotor 455, and the discharge / suction from the casing 450 are obtained in response to the input of the particle diameter (desired particle diameter) desired by the user. It is configured to output the calculation result related to the control parameters that control the flow rate.
  • the control device 100 When the control device 100 performs an calculation using the learning model 230, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 230.
  • the particle size data input to the learning model 230 is output to the node included in the first intermediate layer 232A through the nodes constituting the input layer 231.
  • the data input to the first intermediate layer 232A is output to the node included in the next intermediate layer 232B through the nodes constituting the intermediate layer 232A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 233 is obtained.
  • the output layer 233 outputs calculation results related to control parameters that control the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the discharge / suction flow rate when the powder is taken out from the casing 450.
  • the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 233 is composed of n nodes from the first node to the nth node, and from the first node, the crushing pressure of the crushing gas introduction port 453 is B1, and the rotation speed of the classification rotor 455 is C1.
  • the probability P1 that the discharge / suction flow rate is V1 is output, and the probability P2 that the crushing pressure of the crushing gas introduction port 453 is B2, the rotation speed of the classification rotor 455 is C2, and the discharge / suction flow rate is V2 from the second node.
  • the probability Pn that the crushing pressure of the crushing gas introduction port 453 is Bn, the rotation speed of the classification rotor 455 is Cn, and the discharge / suction flow rate is Vn may be output from the nth node.
  • the number of nodes constituting the output layer 233 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 233 (in the present embodiment, the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the discharge). -By specifying the combination of suction flow rates), the control parameters used for control are determined. Based on the determined control parameters, the control unit 101 generates control commands for controlling the crushing pressure of compressed air or the like that generates a jet stream in the casing 450, the operation of the classification motor 415M, and the blower 7, and each of them is generated through the output unit 104. Output to the device.
  • the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the powder are obtained according to the input of the particle size desired by the user.
  • a learning model 230 is generated that outputs calculation results related to control parameters for controlling the discharge / suction flow rate when the powder is taken out from the body take-out port 456. Further, by using the learning model 230, calculation results regarding the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the control parameters for controlling the discharge / suction flow rate from the casing 450 can be obtained.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 230 so that the powder having a desired particle size can be obtained.
  • FIG. 16 is a schematic diagram showing a configuration example of the learning model 240 in the sixth embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 240 includes an input layer 241 having one or a plurality of nodes, intermediate layers 242A and 242B, and an output layer 243, respectively.
  • the number of intermediate layers is not limited to two, and may be three or more.
  • the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410 are obtained in response to the input of the particle diameter (desired particle diameter) desired by the user.
  • the calculation result regarding the control parameter for controlling the supply amount of the powder raw material by the raw material supply machine 2 and the temperature in the casing 410 is output.
  • the supply amount of the powder raw material may be the supply amount per unit time (that is, the supply rate).
  • the particle size data (particle size data measured by the particle size sensor S2) regarding the particle size obtained from the powder processing device 4A and the rotation of the crushing rotor 413 included in the powder processing device 4A Includes speed, rotational speed of classifying rotor 415, discharge / suction flow rate when taking out powder from casing 410, supply amount of powder raw material obtained by weight sensor S1, and temperature in casing 410 obtained by temperature sensor S4. It is generated by learning the relationship between the particle size and the control parameters using the measured data as the teacher data.
  • the supply amount of the powder raw material may be the supply amount per unit time (that is, the supply rate). Further, only one of the supply amount of the powder raw material and the temperature inside the casing 410 may be adopted as the control parameter.
  • the learning model 240 may be generated by the control device 100 or by an external server device (not shown).
  • the control device 100 When the control device 100 performs an operation using the learning model 240, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 240.
  • the particle size data input to the learning model 240 is output to the node included in the first intermediate layer 242A through the nodes constituting the input layer 241.
  • the data input to the first intermediate layer 242A is output to the node included in the next intermediate layer 242B through the nodes constituting the intermediate layer 242A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 243 is obtained.
  • the output layer 243 controls the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the discharge / suction flow rate when taking out powder from the casing 410, the supply amount of the powder raw material, and the temperature inside the casing 410. Outputs the calculation result related to the parameter. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 243 is composed of n nodes from the first node to the nth node, and the rotation speed of the crushing rotor 413 is G1, the rotation speed of the classification rotor 415 is C1, and the discharge is performed from the first node.
  • the probability P1 that the suction flow rate is V1, the supply amount of the powder raw material is F1, and the temperature inside the casing 410 is T1 is output, and the rotation speed of the crushing rotor 413 is G2 and the rotation speed of the classification rotor 415 is from the second node.
  • the discharge / suction flow rate is V2
  • the supply amount of the powder raw material is F2
  • the probability P2 that the temperature inside the casing 410 is T2 is output
  • the rotation speed of the crushing rotor 413 is Gn from the nth node.
  • the number of nodes constituting the output layer 243 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 243 (in the present embodiment, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate). , The supply amount of the powder raw material, and the combination of the temperature in the casing 410), the control parameters used for the control are determined. Based on the determined control parameters, the control unit 101 generates control commands for controlling the operations of the crushing motor 413M, the classification motor 415M, the blower 7, the raw material supply machine 2, and the hot air generator 3, and each of them is generated through the output unit 104. Output to the device.
  • the control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 240 so that the powder having a desired particle size can be obtained.
  • FIG. 17 is a schematic diagram showing a configuration example of the learning model 250 according to the seventh embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 250 includes an input layer 251 having one or a plurality of nodes, intermediate layers 252A and 252B, and an output layer 253, respectively.
  • the number of intermediate layers is not limited to two, and may be three or more.
  • the particle size (desired particle size) desired by the user, the circularity of the powder, the water content of the powder raw material, the driving power or the driving current of the powder processing apparatus 4A For input of at least one of the temperature of the fluid (heat medium temperature) to be introduced into the powder processing apparatus 4A, the weight of the medium (medium weight) in the medium stirring type powder processing apparatus, the environmental temperature, and the environmental humidity. It is configured to output calculation results related to control parameters that control the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
  • the circularity of the powder is a value represented by, for example, (perimeter of a circle having a projected area equal to the projected area of the particles) / (perimeter of the particles), and is collected using a known measuring device. can do.
  • the water content of the powder raw material is a value represented by, for example,% by mass, and can be collected using a known measuring device such as an infrared moisture meter.
  • the drive power and drive current of the powder processing device 4A may be obtained by acquiring values measured inside the powder processing device 4A.
  • the heat medium temperature may be a value measured inside the powder processing apparatus 4A, and the medium weight may be a value measured in advance.
  • the environmental temperature and humidity are the temperature and humidity of the ambient environment in which the powder processing apparatus 4A is set, and can be collected by using a known temperature sensor and humidity sensor.
  • the learning model 250 may be generated by the control device 100 or by an external server device (not shown).
  • the particle size (desired particle size) of the powder desired by the user, the circularity of the powder desired by the user, and the moisture content of the powder desired by the user At least one of the content, the driving power or driving current of the powder processing apparatus 4A set by the user, the heat medium temperature, the medium weight, the measured value of the environmental temperature, and the measured value of the environmental humidity is input to the learning model 250.
  • the data input to the learning model 250 is output to the nodes included in the first intermediate layer 252A through the nodes constituting the input layer 251.
  • the data input to the first intermediate layer 252A is output to the node included in the next intermediate layer 252B through the nodes constituting the intermediate layer 252A.
  • the output is calculated using the activation function including the weights and biases set between the nodes.
  • the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 253 is obtained.
  • the output layer 253 controls the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the discharge / suction flow rate when powder is taken out from the casing 410, the supply amount of the powder raw material, and the temperature inside the casing 410. Outputs the calculation result related to the control parameter. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
  • the output layer 253 is composed of n nodes from the first node to the nth node, and the rotation speed of the crushing rotor 413 is G1, the rotation speed of the classification rotor 415 is C1, and the discharge is performed from the first node.
  • the number of nodes constituting the output layer 253 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
  • the control unit 101 of the control device 100 has the highest probability of being output from the output layer 253 (in this embodiment, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction). By specifying the combination of flow rates), the control parameters used for control are determined. Based on the determined control parameters, the control unit 101 generates control commands for controlling the operations of the crushing motor 413M, the classification motor 415M, and the blower 7, and outputs the control commands to each device through the output unit 104.
  • the particle size of the powder desired by the user As described above, when the learning model 250 according to the seventh embodiment is used, the particle size of the powder desired by the user, the circularity of the powder desired by the user, the water content of the powder desired by the user, and the like.
  • the powder can be generated on condition of the drive power or drive current of the powder processing apparatus 4A set by the user.
  • the composition is such that the calculation result is output for the input of at least one of the medium weight, the environmental temperature, and the environmental humidity, but the dust content concentration, the powder composition, the powder moisture, the pressure, the sound pressure, or the like. At least one of the frequencies may be further input.
  • the learning model 250 is configured to output calculation results regarding control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
  • the configuration may be such that the calculation result regarding the control parameter that controls at least one of the supply amount of the powder raw material and the temperature in the casing 410 is output.
  • the learning model 250 may adopt a model constructed by the recurrent neural network.
  • the control device 100 has the powder particle size data obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413 included in the powder processing device 4A, and the classification for each type of powder raw material.
  • the rotation speed of the rotor 415 and the measurement data including the discharge / suction flow rate when the powder is taken out from the casing 410 are collected.
  • FIG. 18 is a conceptual diagram showing an example of collecting data in the eighth embodiment.
  • the control unit 101 of the control device 100 acquires measurement data from the particle size sensor S2, the rotation speed sensor S5 of the crushing rotor 413, the rotation speed sensor S6 of the classification rotor 415, and the flow rate sensor S3 through the input unit 103.
  • the data is stored in the storage unit 102 together with the time stamp and information on the type of the powder raw material.
  • the information regarding the type of the powder raw material may be character information indicating the type name of the powder raw material, or may be an arbitrary identifier that can specify the type of the powder raw material.
  • Information on the type of powder raw material may be received through the operation unit 106 before data collection or after data collection.
  • FIG. 18 shows a state in which data is collected for each type of powder raw material such as toner raw material, graphite, and manganese dioxide (MnO 2 ) and stored in the storage unit 102.
  • the control unit 101 uses the data collected for each type of powder raw material as the teacher data to generate the learning model 200.
  • FIG. 19 is a flowchart illustrating a procedure for generating the learning model 200 according to the eighth embodiment.
  • the control unit 101 of the control device 100 receives information regarding the type of the powder raw material prior to the generation of the learning model 200 (step S401). For example, the control unit 101 displays a screen for inquiring the user about the type of the powder raw material on the display unit 107, and can receive information on the type of the powder raw material through the displayed screen. Further, the control unit 101 may receive information on the type of the powder raw material by transmitting an inquiry about the type of the powder raw material from the communication unit 105 to the terminal device 500 and receiving a reply from the terminal device 500. ..
  • control unit 101 reads the data stored in association with the type received in step S401 from the storage unit 102 (step S402).
  • the control unit 101 selects the data to be used for the teacher data from the read data (step S403). That is, the control unit 101 uses the read data to measure the rotational speed of the crushing rotor 413, the rotational speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, and the powder obtained at that time. Only one set of particle size values (D10, D50, D90) is selected.
  • control unit 101 inputs the value of the particle diameter included in the selected teacher data into the learning model 200 (step S404), and executes the calculation by the learning model 200 (step S405). That is, the control unit 101 inputs the value of the particle diameter to the nodes constituting the input layer 201 of the learning model 200, performs the calculation using the weights and biases between the nodes in the intermediate layers 202A and 202B, and outputs the calculation result. The process of outputting from the node of layer 203 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 200 is given an initial value.
  • control unit 101 evaluates the calculation result obtained in step S405 (step S406), and determines whether or not the learning is completed (step S407). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S405 and the teacher data. ..
  • the control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function is below the threshold value (or above the threshold value), the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
  • control unit 101 updates the weights and biases between the nodes of the learning model 200 (step S408), returns the process to step S403, and another teacher. Continue learning with the data.
  • the control unit 101 may update the weights and biases between the nodes by using the error back propagation method in which the weights and biases between the nodes are sequentially updated from the output layer 203 to the input layer 201 of the learning model 200. it can.
  • control unit 101 stores the learned learning model 200 in the storage unit 102 in association with the information regarding the type of the powder raw material (step S409), and this flowchart. Ends the processing by.
  • control device 100 can generate the learning model 200 according to the type of the powder raw material.
  • the learning model 200 in the eighth embodiment is the same as that in the first embodiment, but instead of the learning model 200, the learning models 210 to 250 described in the second to seventh embodiments are generated for each type of powder raw material. You may.
  • control device 100 is configured to generate the learning model 200, but even if an external server (not shown) for generating the learning model 200 is provided and the learning model 200 is generated by the external server. Good.
  • the control device 100 may acquire the learning model 200 from the external server by communication or the like, and store the acquired learning model 200 in the storage unit 102.
  • FIG. 20 is a flowchart illustrating a control procedure by the control device 100.
  • the control unit 101 of the control device 100 receives information regarding the type of the powder raw material and input of the particle size desired by the user through the operation unit 106 (step S421).
  • the control unit 101 reads out the learning model 200 according to the type of the received powder raw material from the storage unit 102 (step S422).
  • the control unit 101 inputs the received particle size data to the input layer 201 of the learning model 200 read out in step S422, and executes the calculation by the learning model 200 (step S423).
  • the control unit 101 gives the received particle size data to the node of the input layer 201, and executes the calculation by the intermediate layers 202A and 202B.
  • the output layer 203 of the learning model 200 outputs calculation results related to control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
  • control unit 101 acquires the calculation result from the learning model 200 (step S424) and determines the control parameters used for control (step S425).
  • the control unit 101 may determine a combination of the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate based on the probability of being output as the calculation result.
  • control unit 101 executes control based on the control parameters determined in step S425 (step S426). That is, the control unit 101 generates control commands for the crushing motor 413M and the classification motor 415M so that the rotation speeds of the crushing rotor 413 and the classification rotor 415 become the values determined in step S425, and powder processing is performed through the output unit 104. Output to device 4A. Further, the control unit 101 generates a control command for the blower 7 so that the discharge / suction flow rate from the casing 410 becomes the value determined in step S425, and outputs the control command to the blower 7 through the output unit 104.
  • control device 100 can determine the control parameters by using the learning model 200 according to the type of the powder raw material.
  • the control device 100 can perform control based on the determined control parameters so that a powder having a desired particle size can be obtained.
  • control parameters are determined using the learning model 200 generated for each type of powder raw material.
  • learning models 210 to 250 described in the second to seventh embodiments are used as powder.
  • the control parameters may be determined by generating for each type of body material and using the generated learning models 210 to 250.
  • FIG. 21 is a flowchart illustrating a re-learning procedure of the learning model 200.
  • the control unit 101 of the control device 100 accepts the input of the particle diameter (desired particle diameter) desired by the user, and transfers the received particle diameter data to the learning model 200. By inputting, the calculation result related to the control parameter is acquired.
  • the control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 200.
  • the control unit 101 includes measurement data including the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, and the powder particles obtained from the powder processing apparatus 4A. Diameter data and may be collected.
  • the collected measurement data and particle size data are stored in the storage unit 102 together with the time stamp.
  • the control unit 101 compares the particle size indicated by the particle size data (that is, the actually measured value of the particle size) with the desired particle size of the user at an appropriate timing after the start of the operation phase (step S501).
  • the control unit 101 may compare the value of D50 obtained as the actually measured value with the value of D50 input as the desired particle size.
  • the control unit 101 sets the value of D10, D50, D90 obtained as the measured value.
  • the values of D10, D50, and D90 (or their upper and lower limit values) input as the desired particle size may be compared.
  • the control unit 101 determines whether or not to execute re-learning based on the comparison result (step S502).
  • control unit 101 determines that re-learning is not executed (S502: NO), and processes according to this flowchart. To finish.
  • control unit 101 determines that the re-learning is executed (S502: YES).
  • control unit 101 When it is determined to execute re-learning, the control unit 101 reads the data collected after the start of operation from the storage unit 102 (step S503) and selects the teacher data (step S504).
  • the re-learning procedure after step S503 may be executed at a timing when the powder processing system 1 is not operating.
  • the control unit 101 inputs the value of the particle diameter included in the selected teacher data into the learning model 200 (step S505), and executes the calculation by the learning model 200 (step S506). That is, the control unit 101 inputs the value of the particle diameter to the nodes constituting the input layer 201 of the learning model 200, performs the calculation using the weights and biases between the nodes in the intermediate layers 202A and 202B, and outputs the calculation result. The process of outputting from the node of layer 203 is performed.
  • control unit 101 evaluates the calculation result obtained by the calculation in step S506 (step S507), and determines whether or not the learning is completed (step S508). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S506 and the teacher data.
  • an error function also referred to as an objective function, a loss function, or a cost function
  • control unit 101 updates the weights and biases between the nodes of the learning model 200 (step S509), returns the process to step S504, and another teacher. Continue learning with the data.
  • the control unit 101 may update the weights and biases between the nodes by using the error back propagation method in which the weights and biases between the nodes are sequentially updated from the output layer 203 to the input layer 201 of the learning model 200. it can.
  • control unit 101 stores the learned learning model 200 in the storage unit 102 (step S510), and ends the process according to this flowchart.
  • control device 100 since the control device 100 according to the present embodiment relearns the learning model 200 as necessary, the accuracy of powder processing by the powder processing system 1 even after the start of the operation phase. Can be enhanced.
  • the re-learning procedure of the learning model 200 has been described in the ninth embodiment, the learning models 210 to 250 described in the second to seventh embodiments and the learning for each type of the powder raw material described in the eighth embodiment have been described.
  • the model 200 can also be relearned by the same procedure.
  • FIG. 22 is a flowchart illustrating a control parameter adjustment procedure.
  • the control unit 101 of the control device 100 accepts the input of the particle diameter (desired particle diameter) desired by the user, and transfers the received particle diameter data to the learning model 200. By inputting, the calculation result related to the control parameter is acquired.
  • the control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 200.
  • the control unit 101 includes measurement data including the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, and the powder particles obtained from the powder processing apparatus 4A. Diameter data and may be collected.
  • the collected measurement data and particle size data are stored in the storage unit 102 together with the time stamp.
  • the control unit 101 compares the particle diameter indicated by the particle diameter data (that is, the actually measured value of the particle diameter) with the desired particle diameter of the user at an appropriate timing after the start of the operation phase (step S601).
  • the control unit 101 may compare the value of D50 obtained as the actually measured value with the value of D50 input as the desired particle size.
  • the control unit 101 sets the value of D10, D50, D90 obtained as the measured value.
  • the values of D10, D50, and D90 (or their upper and lower limit values) input as the desired particle size may be compared.
  • the control unit 101 determines whether or not to adjust the control parameter based on the comparison result (step S602).
  • the control unit 101 determines that the control parameter is not adjusted (S602: NO), and processes according to this flowchart. To finish.
  • control unit 101 determines that the control parameter is adjusted (S602: YES).
  • control unit 101 adjusts the control parameter according to the comparison result in step S602 (step S603), and operates the device including the powder processing device 4A based on the adjusted control parameter.
  • Control step S604.
  • the control unit 101 makes the rotation speeds of the crushing rotor 413 and the classification rotor 415 lower than the current values, and the discharge / suction flow rate is the current value.
  • the control parameters are adjusted so as to be larger, and the operation of the device including the powder processing device 4A is controlled based on the adjusted control parameters.
  • control unit 101 sets the rotation speeds of the crushing rotor 413 and the classification rotor 415 to be higher than the current values, and the discharge / suction flow rate is the current value.
  • the control parameters are adjusted so as to be smaller, and the operation of the device including the powder processing device 4A is controlled based on the adjusted control parameters.
  • control parameters can be adjusted to.
  • FIG. 23 is a flowchart illustrating a procedure of processing executed by the terminal device 500 and the control device 100.
  • the control unit 501 of the terminal device 500 accesses the control device 100 through the communication unit 503 (step S701).
  • control unit 101 of the control device 100 receives access from the terminal device 500 when the powder processing device 4A is not operating, for example, a screen related to an input screen for receiving an input of a particle size desired by the user. Data is generated (step S702), and the generated screen data is transmitted from the communication unit 105 to the terminal device 500 (step S703).
  • the control unit 101 may execute the processes after step S703 described below.
  • the control unit 501 of the terminal device 500 receives the screen data of the input screen transmitted from the control device 100 from the communication unit 503 (step S704).
  • the control unit 501 displays the input screen on the display unit 505 based on the received screen data (step S705), and receives the input of the particle size desired by the user (step S706).
  • FIG. 24 is a schematic diagram showing an example of an input screen.
  • This input screen shows a screen for accepting a lower limit value and an upper limit value for each of D10, D50, and D90.
  • the values of D10, D50, and D90 desired by the user may be accepted, or only the value of D50 (median diameter) may be accepted.
  • the control unit 501 transmits the particle size data received in step S706 to the control device 100 (step S707).
  • the control unit 101 of the control device 100 receives the particle size data transmitted from the terminal device 500 from the communication unit 105 (step S708).
  • the control unit 101 inputs the received particle size data into, for example, the learning model 200, and executes the calculation by the learning model 200 (step S709).
  • the control unit 101 acquires the calculation result from the learning model 200 (step S710), and determines the control parameter based on the calculation result (step S711).
  • the control unit 101 controls the operation of the device including the powder processing device 4A based on the determined control parameter (step S712).
  • the control unit 101 determines the particle size of the powder obtained from the powder processing device 4A, the rotation speeds of the crushing rotor 413 and the classification rotor 415, and the discharge / suction flow rate from the casing 410.
  • the measurement data of is acquired from the input unit 103 at any time.
  • the control unit 101 generates screen data of the monitoring screen including at least one of the above measurement data and an overall view of the powder processing system 1 at an appropriate timing (step S713).
  • the control unit 101 transmits the generated screen data from the communication unit 105 to the terminal device 500 (step S714).
  • the control unit 501 of the terminal device 500 receives the screen data transmitted from the control device 100 from the communication unit 503 (step S715).
  • the control unit 501 displays the monitoring screen on the display unit 505 based on the received screen data (step S716).
  • FIG. 25 is a schematic view showing an example of the monitoring screen. In the example shown in FIG. 25, the measurement data of the particle size obtained from the powder processing device 4A (that is, the actually measured value of the particle size measured by the particle size sensor S2) and the overall view of the powder processing system 1 are shown. The state in which the including monitoring screen is displayed on the display unit 505 is shown.
  • the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the measurement data of the discharge / suction flow rate from the casing 410 are displayed on the monitoring screen. You may. Further, the monitoring screen monitors the desired particle size input by the user, the rotation speed of the crushing rotor 413 set based on the calculation result of the learning model 200, the rotation speed of the classification rotor 415, the value of the discharge / suction flow rate from the casing 410, and the like. It may be displayed in.
  • the powder processing system 1 can be remotely controlled by using the terminal device 500, and the operating status of the powder processing system 1 can be monitored by the terminal device 500.
  • the present invention is not limited to the powder processing devices 4A to 4E described in the first to eleventh embodiments, but the impact type crusher, the shear type crusher, the air flow type crusher, the grinding type crusher, and the medium stirring type. It can be applied to powder processing devices classified into crushers, screen mills, bead mills, ball mills, pin mills, and jet mills (that is, powder processing devices having at least a crushing function).
  • the gas is introduced into the powder processing devices 4A to 4E, but a liquid may be introduced instead of the gas.
  • a liquid may be introduced instead of the gas.
  • the flow rate sensor S3 a sensor that measures the flow rate of the liquid may be used.
  • a pump may be used instead of the blower 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

Provided is a learning model generation method, a computer program, a learning model, a control device, and a control method. Using a computer, a powder processing apparatus equipped with at least a function of pulverizing powder raw materials acquires measurement data that indicates the operation state of the powder processing apparatus and particle diameter data of powder obtained from the powder processing apparatus, and generates a learning model that outputs a computation result for a control parameter for controlling the operation state of the powder processing apparatus in accordance with input of the particle diameter desired by the user by using the acquired measurement data and particle diameter data as training data.

Description

学習モデルの生成方法、コンピュータプログラム、学習モデル、制御装置、及び制御方法Learning model generation method, computer program, learning model, control device, and control method
 本発明は、学習モデルの生成方法、コンピュータプログラム、学習モデル、制御装置、及び制御方法に関する。 The present invention relates to a learning model generation method, a computer program, a learning model, a control device, and a control method.
 粉体処理プロセスは、貯蔵、供給、輸送、粉砕、分級、混合など種々のプロセスの組み合わせにより構成される(例えば、特許文献1を参照)。ユーザが望む品質を持った製品又は中間体を安定的に得るためには、粉体処理装置の操作条件を適切に設定する必要がある。 The powder processing process is composed of a combination of various processes such as storage, supply, transportation, pulverization, classification, and mixing (see, for example, Patent Document 1). In order to stably obtain a product or intermediate having the quality desired by the user, it is necessary to appropriately set the operating conditions of the powder processing apparatus.
特開2008-194592号公報Japanese Unexamined Patent Publication No. 2008-194592
 しかしながら、粉体処理プロセスにおいて取り扱う粉体は、粉体の種類、サイズ、形状等に応じて千差万別の性質を示す。このため、粉体処理装置に設定される操作条件は、現場技術者の経験や勘に依存している要素が多いという問題点を有している。 However, the powder handled in the powder processing process exhibits a wide variety of properties depending on the type, size, shape, etc. of the powder. Therefore, there is a problem that the operating conditions set in the powder processing apparatus often depend on the experience and intuition of field engineers.
 本発明は、現場技術者の経験や勘に依存することなく、粉体処理装置に関する制御パラメータを決定できる学習モデルの生成方法、コンピュータプログラム、学習モデル、制御装置、及び制御方法を提供することを目的とする。 The present invention provides a learning model generation method, a computer program, a learning model, a control device, and a control method capable of determining control parameters related to a powder processing apparatus without depending on the experience and intuition of a field engineer. The purpose.
 本発明の一態様に係る学習モデルの生成方法は、コンピュータを用いて、粉体原料を粉砕する機能を少なくも備える粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体の粒子径データとを取得し、取得した計測データと粒子径データとを教師データに用いて、ユーザが所望する粒子径の入力に応じて、前記粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力する学習モデルを生成する。 The method for generating a learning model according to one aspect of the present invention includes measurement data indicating an operating state of the powder processing apparatus with respect to the powder processing apparatus having at least a function of crushing the powder raw material using a computer. The powder particle size data obtained from the powder processing apparatus is acquired, and the acquired measurement data and the particle size data are used as teacher data, and the powder is input according to the input of the particle size desired by the user. Generate a learning model that outputs the calculation results for the control parameters that control the operating state of the processing device.
 本発明の一態様に係るコンピュータプログラムは、コンピュータに、粉体原料を粉砕する機能を少なくも備える粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体の粒子径データとを取得し、取得した計測データと粒子径データとを教師データに用いて、ユーザが所望する粒子径の入力に応じて、前記粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力する学習モデルを生成する処理を実行させるためのコンピュータプログラムである。 The computer program according to one aspect of the present invention includes measurement data indicating the operating state of the powder processing apparatus and the powder processing apparatus for the powder processing apparatus having at least a function of crushing the powder raw material in the computer. The particle size data of the powder obtained from the above is acquired, and the acquired measurement data and the particle size data are used as the training data, and the operating state of the powder processing apparatus is performed according to the input of the particle size desired by the user. It is a computer program for executing a process of generating a learning model that outputs a calculation result for a control parameter that controls.
 本発明の一態様に係る学習モデルは、ユーザが所望する粒子径が入力される入力層、粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力する出力層、及び前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体の粒子径データとを教師データに用いて、前記粒子径と前記制御パラメータとの関係を学習してある中間層を備え、前記入力層にユーザが所望する粒子径が入力された場合、前記中間層にて演算し、前記粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力するようコンピュータを機能させる。 The learning model according to one aspect of the present invention includes an input layer in which a particle size desired by the user is input, an output layer that outputs calculation results for control parameters that control the operating state of the powder processing apparatus, and the powder. An intermediate layer in which the relationship between the particle size and the control parameter is learned by using the measurement data indicating the operating state of the processing device and the particle size data of the powder obtained from the powder processing device as training data. When the particle size desired by the user is input to the input layer, the computer calculates the intermediate layer and outputs the calculation result for the control parameter that controls the operating state of the powder processing apparatus. Make it work.
 本発明の一態様に係る制御装置は、ユーザが所望する粒子径の入力を受付ける受付部と、粉体処理装置から得られる粉体の粒子径データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて、前記粉体の粒子径と、粉体処理装置の動作状態を制御する制御パラメータとの間の関係を学習してある学習モデルと、前記受付部にて受付けた粒子径のデータを前記学習モデルへ入力し、前記学習モデルによる演算を実行する演算処理部と、前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する制御部とを備える。 The control device according to one aspect of the present invention shows a receiving unit that receives an input of a particle size desired by a user, particle size data of powder obtained from the powder processing device, and an operating state of the powder processing device. A learning model in which the relationship between the particle size of the powder and the control parameters that control the operating state of the powder processing apparatus is learned by using the measurement data as the teacher data, and the reception unit accepts the learning model. A calculation processing unit that inputs the data of the particle size to the learning model and executes the calculation by the learning model, and a control unit that controls the operation of the device including the powder processing device based on the calculation result by the learning model. And.
 本発明の一態様に係る制御方法は、ユーザが所望する粒子径の入力を受付け、受付けた粒子径のデータを、粉体処理装置から得られる粉体の粒子径データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて、前記粉体の粒子径と、粉体処理装置の動作状態を制御する制御パラメータとの間の関係を学習してある学習モデルへ入力し、前記学習モデルによる演算を実行し、前記学習モデルから得られる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する。 In the control method according to one aspect of the present invention, the input of the particle size desired by the user is received, and the received particle size data is the particle size data of the powder obtained from the powder processing device and the powder processing device. Using the measurement data indicating the operating state of the powder as the teacher data, the relationship between the particle size of the powder and the control parameters that control the operating state of the powder processing apparatus is input to the learning model. , The operation by the learning model is executed, and the operation of the apparatus including the powder processing apparatus is controlled based on the calculation result obtained from the learning model.
 本願によれば、現場技術者の経験や勘に依存することなく、粉体処理装置に関する制御パラメータを決定できる。 According to the present application, control parameters related to the powder processing apparatus can be determined without depending on the experience and intuition of field engineers.
実施の形態1に係る粉体処理システムの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the powder processing system which concerns on Embodiment 1. FIG. 実施の形態1に係る粉体処理装置の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る制御装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the control device which concerns on Embodiment 1. FIG. 端末装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a terminal device. 実施の形態1における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 1. FIG. 制御装置が収集するデータの一例を示す概念図である。It is a conceptual diagram which shows an example of the data which a control device collects. 制御装置による学習モデルの生成手順を説明するフローチャートである。It is a flowchart explaining the generation procedure of the learning model by a control device. 制御装置による制御手順を説明するフローチャートである。It is a flowchart explaining the control procedure by a control device. 実施の形態2に係る粉体処理装置の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 2. 実施の形態2における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 2. 実施の形態3に係る粉体処理装置の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 3. 実施の形態4に係る粉体処理装置の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 4. FIG. 実施の形態4における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 4. 実施の形態5に係る粉体処理装置の構成を示す模式的断面図である。It is a schematic cross-sectional view which shows the structure of the powder processing apparatus which concerns on Embodiment 5. 実施の形態5における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 5. 実施の形態6における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 6. 実施の形態7における学習モデルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the learning model in Embodiment 7. 実施の形態8におけるデータの収集例を示す概念図である。It is a conceptual diagram which shows the example of collecting data in Embodiment 8. 実施の形態8に係る学習モデルの生成手順を説明するフローチャートである。It is a flowchart explaining the generation procedure of the learning model which concerns on Embodiment 8. 制御装置による制御手順を説明するフローチャートである。It is a flowchart explaining the control procedure by a control device. 学習モデルの再学習手順を説明するフローチャートである。It is a flowchart explaining the re-learning procedure of a learning model. 制御パラメータの調整手順を説明するフローチャートである。It is a flowchart explaining the adjustment procedure of a control parameter. 端末装置及び制御装置が実行する処理の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the process executed by a terminal device and a control device. 入力画面の一例を示す模式図である。It is a schematic diagram which shows an example of an input screen. モニタリング画面の一例を示す模式図である。It is a schematic diagram which shows an example of a monitoring screen.
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 (実施の形態1)
 図1は実施の形態1に係る粉体処理システム1の全体構成を示す模式図である。実施の形態1に係る粉体処理システム1は、例えば、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、ブロワ7(若しくはポンプ)、及び制御装置100(図3を参照)を備える。
Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments thereof.
(Embodiment 1)
FIG. 1 is a schematic view showing the overall configuration of the powder processing system 1 according to the first embodiment. The powder processing system 1 according to the first embodiment is, for example, a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, a blower 7 (or a pump), and a control device 100 (FIG. 3).
 原料供給機2は、粉体原料を粉体処理装置4Aへ供給するための装置である。原料供給機2が粉体処理装置4Aへ供給する粉体原料は、例えば、コピー機やレーザープリンタで紙の着色に使われる微細な粉末状のトナーの原料である。トナー原料に限らず、粉体塗料、電池材料、磁性材料、染料、樹脂、ワックス、ポリマ、医薬品、触媒、金属粉、シリカ、はんだ、セメント、食品など、無機材料、有機材料、又は金属材料の粉体を製造するための粉体原料であってもよい。 The raw material supply machine 2 is a device for supplying the powder raw material to the powder processing device 4A. The powder raw material supplied by the raw material supply machine 2 to the powder processing device 4A is, for example, a raw material for fine powdered toner used for coloring paper in a copier or a laser printer. Not limited to toner raw materials, powder paints, battery materials, magnetic materials, dyes, resins, waxes, polymers, pharmaceuticals, catalysts, metal powders, silica, solder, cement, foods, inorganic materials, organic materials, or metal materials It may be a powder raw material for producing powder.
 原料供給機2は、原料供給路TP1を介して粉体処理装置4Aに接続されている。原料供給路TP1内には、粉体原料を搬送するためのスクリューフィーダ21(図2を参照)が設けられている。スクリューフィーダ21は、粉体原料が固体の場合であって、粉体原料を一定速度で連続的に投入する場合に好ましい。スクリューフィーダ21に代えて、ダブルダンパーやロータリーバルブ等を用いてもよい。また、熱風発生機3が発生させる熱風を原料供給路TP1に導入し、熱風と共に粉体原料を粉体処理装置4Aに供給してもよい。更に、原料供給機2は、ロードセルなどの重量センサS1(図3を参照)を用いて重量管理を行い、粉体処理装置4Aにおいて連続処理を行う場合であっても、装置内滞留量が一定となるように粉体原料の供給量を調節してもよい。また、原料供給機2は、内蔵タイマ(不図示)の出力と、重量センサS1により計測される粉体原料の供給量とに基づき、単位時間当たりの粉体原料の供給量(すなわち供給速度)を計測してもよい。重量センサS1は、原料供給機2だけでなく、粉体処理装置4A、サイクロン5、及び集塵機6に設けられてもよい。 The raw material supply machine 2 is connected to the powder processing device 4A via the raw material supply path TP1. A screw feeder 21 (see FIG. 2) for transporting the powder raw material is provided in the raw material supply path TP1. The screw feeder 21 is preferable when the powder raw material is a solid and the powder raw material is continuously charged at a constant speed. A double damper, a rotary valve, or the like may be used instead of the screw feeder 21. Further, the hot air generated by the hot air generator 3 may be introduced into the raw material supply path TP1 and the powder raw material may be supplied to the powder processing apparatus 4A together with the hot air. Further, the raw material feeder 2 performs weight control using a weight sensor S1 (see FIG. 3) such as a load cell, and the amount of retention in the device is constant even when continuous processing is performed in the powder processing device 4A. The supply amount of the powder raw material may be adjusted so as to be. Further, the raw material supply machine 2 supplies the powder raw material per unit time (that is, the supply speed) based on the output of the built-in timer (not shown) and the supply amount of the powder raw material measured by the weight sensor S1. May be measured. The weight sensor S1 may be provided not only in the raw material supply machine 2, but also in the powder processing device 4A, the cyclone 5, and the dust collector 6.
 熱風発生機3は、粉体処理装置4Aに導入する熱風を発生させるための装置であり、加熱ヒータなどの熱源、送風機、及び熱風の温度及び風量を制御する制御装置などを備える。熱風発生機3は、上記の構成に限らず、公知の構成を用いればよい。例えば、粉体処理装置4Aに導入した熱風の一部を回収し、熱風発生機3と粉体処理装置4Aとの間で循環させてもよい。 The hot air generator 3 is a device for generating hot air to be introduced into the powder processing device 4A, and includes a heat source such as a heating heater, a blower, and a control device for controlling the temperature and air volume of the hot air. The hot air generator 3 is not limited to the above configuration, and a known configuration may be used. For example, a part of the hot air introduced into the powder processing apparatus 4A may be recovered and circulated between the hot air generator 3 and the powder processing apparatus 4A.
 熱風発生機3は、気体導入路TP2を介して粉体処理装置4Aに接続されている。熱風発生機3が発生させた熱風は、気体導入路TP2を介して、粉体処理装置4Aに導入される。熱風発生機3が発生させる熱風の温度は、粉体処理装置4Aで処理される粉体に応じて適宜設定される。例えば、粉体処理装置4Aで処理した粉体を乾燥させるために200℃~600℃程度の熱風を発生させてもよい。 The hot air generator 3 is connected to the powder processing device 4A via the gas introduction path TP2. The hot air generated by the hot air generator 3 is introduced into the powder processing apparatus 4A via the gas introduction path TP2. The temperature of the hot air generated by the hot air generator 3 is appropriately set according to the powder processed by the powder processing apparatus 4A. For example, hot air of about 200 ° C. to 600 ° C. may be generated in order to dry the powder processed by the powder processing apparatus 4A.
 粉体処理装置4Aは、原料供給機2から供給される粉体原料を粉砕し、得られる粉体を分級することにより、所定粒子径未満の粉体を生成するための装置である。本実施の形態に係る粉体処理装置4Aは、主として、粉体原料を粉砕する粉砕処理と、粉砕した粉体を分級する分級処理とを行う装置(例えば、ホソカワミクロン株式会社製ACMパルベライザ(登録商標))として説明する。 The powder processing apparatus 4A is an apparatus for producing powder having a particle size smaller than a predetermined particle size by crushing the powder raw material supplied from the raw material supply machine 2 and classifying the obtained powder. The powder processing apparatus 4A according to the present embodiment mainly performs a pulverization treatment for crushing a powder raw material and a classification treatment for classifying the pulverized powder (for example, ACM Parberizer manufactured by Hosokawa Micron Co., Ltd. (registered trademark). )).
 粉体処理装置4Aにて処理された粉体は、粉体輸送路TP3を介してサイクロン5に輸送される。本実施の形態では、粉体処理装置4Aからサイクロン5に至る粉体輸送路TP3の中途に粒子径センサS2を設置し、粒子径センサS2により粉体処理装置4Aを通過する粉体の粒子径を常時若しくは定期的なタイミング(例えば5秒間隔)にて計測する。サイクロン5により収集される粉体は製品タンク8に取り出され、製品として回収される。 The powder processed by the powder processing apparatus 4A is transported to the cyclone 5 via the powder transport path TP3. In the present embodiment, the particle size sensor S2 is installed in the middle of the powder transport path TP3 from the powder processing device 4A to the cyclone 5, and the particle size of the powder passing through the powder processing device 4A by the particle size sensor S2. Is measured at regular or regular timings (for example, every 5 seconds). The powder collected by the cyclone 5 is taken out to the product tank 8 and collected as a product.
 粒子径センサS2は、例えばレーザ回折・散乱法を用いて粒度分布を測定する装置であり、D10,D50,D90の値を出力する。ここで、D10,D50,D90は、それぞれ粒度分布における累積体積分布の小径側から累積10%、50%、90%に相当する粒子径を表す。累積体積分布とは、粉末の粒子径(μm)と、小径側からの積算頻度(体積%)との関係を表す分布である。D50は、一般には平均粒子径(メジアン径)ともいわれる。D10,D50,D90に代えて、粒子径の頻度分布において出現比率が最も大きい粒子径を表すモード径を用いてもよく、各種算術平均値(個数平均、長さ平均、面積平均、体積平均など)を用いてもよい。
 なお、本実施の形態では、粉体輸送路TP3に粒子径センサS2を設置する構成としたが、原料供給機2、サイクロン5から製品タンク8に至る経路、集塵機6から集塵タンク9に至る経路等に設置されてもよい。
The particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90. Here, D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively. The cumulative volume distribution is a distribution representing the relationship between the particle size (μm) of the powder and the integration frequency (volume%) from the small diameter side. D50 is also generally referred to as an average particle diameter (median diameter). Instead of D10, D50, D90, a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
In the present embodiment, the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to the product tank 8, and the dust collector 6 to the dust collector tank 9 are reached. It may be installed on a route or the like.
 サイクロン5には、集塵経路TP4を介して集塵機6が接続されている。集塵機6は、サイクロン5を通過した微粉等を捕集するためのバグフィルタを備える。集塵機6のバグフィルタを通過した気体は、排風路TP5を通じてブロワ7へ流れ、ブロワ7の排出口から排出される。一方、集塵機6のバグフィルタにより捕集された微粉等は集塵タンク9に取り出され、回収される。 A dust collector 6 is connected to the cyclone 5 via a dust collection path TP4. The dust collector 6 includes a bug filter for collecting fine powder or the like that has passed through the cyclone 5. The gas that has passed through the bug filter of the dust collector 6 flows to the blower 7 through the exhaust air passage TP5 and is discharged from the discharge port of the blower 7. On the other hand, the fine powder or the like collected by the bug filter of the dust collector 6 is taken out to the dust collection tank 9 and collected.
 集塵機6には、排風路TP5を介してブロワ7が接続されている。このブロワ7を駆動することにより、粉体処理装置4Aからサイクロン5への気体の流れ(すなわち、粉体処理装置4Aから粉体を取り出す気体の流れ)、及びサイクロン5から集塵機6への気体の流れを形成する。本実施の形態では、集塵機6からブロワ7に至る排風路TP5の中途に流量センサS3(図3を参照)を設置し、粉体処理装置4Aから粉体を取り出す際の吐出・吸引流量を常時若しくは定期的なタイミング(例えば5秒間隔)にて計測する。排風路TP5に流量センサS3を設置する構成に代えて、原料供給路TP1、気体導入路TP2、粉体輸送路TP3、集塵経路TP4、ブロワ7の排出口等に流量センサS3を設置してもよい。 A blower 7 is connected to the dust collector 6 via an exhaust air passage TP5. By driving the blower 7, the gas flow from the powder processing apparatus 4A to the cyclone 5 (that is, the gas flow for extracting the powder from the powder processing apparatus 4A) and the gas flow from the cyclone 5 to the dust collector 6 Form a flow. In the present embodiment, a flow rate sensor S3 (see FIG. 3) is installed in the middle of the exhaust passage TP5 from the dust collector 6 to the blower 7, and the discharge / suction flow rate when taking out the powder from the powder processing apparatus 4A is measured. Measure at regular or regular timing (for example, every 5 seconds). Instead of installing the flow rate sensor S3 in the exhaust air passage TP5, the flow rate sensor S3 is installed in the raw material supply path TP1, the gas introduction path TP2, the powder transport path TP3, the dust collection path TP4, the discharge port of the blower 7, and the like. You may.
 制御装置100は、粉体処理装置4Aを含む装置の動作を制御する装置であり、これら装置との間で各種データの授受ができるように接続される。ここで、粉体処理装置4Aを含む装置とは、粉体処理装置4Aを含み、原料供給機2、熱風発生機3、サイクロン5、集塵機6、及びブロワ7の少なくとも1つを更に含んでもよいことを表している。以下の説明において、粉体処理装置4Aを含む装置を、制御対象の装置とも記載する。 The control device 100 is a device that controls the operation of devices including the powder processing device 4A, and is connected to and from these devices so that various data can be exchanged. Here, the device including the powder processing device 4A includes the powder processing device 4A, and may further include at least one of the raw material supply machine 2, the hot air generator 3, the cyclone 5, the dust collector 6, and the blower 7. It represents that. In the following description, the device including the powder processing device 4A is also described as a device to be controlled.
 図2は実施の形態1に係る粉体処理装置4Aの構成を示す模式的断面図である。粉体処理装置4Aは、その内部において粉体処理を行う円筒形状のケーシング410を備える。このケーシング410には、原料投入口411、気体導入口412、粉砕ロータ413、ガイドリング414、分級ロータ415、粉体取出口416等が設けられている。 FIG. 2 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4A according to the first embodiment. The powder processing apparatus 4A includes a cylindrical casing 410 that performs powder processing inside the powder processing apparatus 4A. The casing 410 is provided with a raw material input port 411, a gas introduction port 412, a crushing rotor 413, a guide ring 414, a classification rotor 415, a powder outlet 416, and the like.
 ケーシング410の素材は、従来から粉体処理装置のケーシングに用いられている公知の材料を用いればよい。具体的には、SS400、S25C、S45C、SPHC(Steel Plate Hot Commercial)などの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。 As the material of the casing 410, a known material conventionally used for the casing of the powder processing apparatus may be used. Specifically, iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial), stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, and stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc. may be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
 ケーシング410の内面は、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 In order to improve the durability of the equipment, the inner surface of the casing 410 is subjected to plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied.
 また、ケーシング410内において、トナーなどの低融点樹脂成分の粉体処理を行う場合、固着成分が製品に混入すると品質不良となる。そこで、処理粉体の付着又は固着による気流の乱れ、または、ケーシング410内の閉塞を防ぐために、ケーシング410の内面には、バフ研磨、電解研磨、PTFE(Polytetrafluoroethylene)などのコーティング、ニッケルなどのメッキ処理が施されてもよい。 Further, when powder treatment of a low melting point resin component such as toner is performed in the casing 410, if the fixed component is mixed in the product, the quality becomes poor. Therefore, in order to prevent turbulence of the air flow due to adhesion or fixation of the treated powder or blockage in the casing 410, the inner surface of the casing 410 is buffed, electrolytically polished, coated with PTFE (Polytetrafluoroethylene), or plated with nickel or the like. Treatment may be applied.
 ケーシング410には、原料供給機2から供給される粉体原料をケーシング410内に投入するための原料投入口411が設けられている。この原料投入口411は、粉砕ロータ413の回転円盤413Aよりも上方の位置に設けられることが好ましい。原料供給機2から供給される粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口411よりケーシング410内に投入される。 The casing 410 is provided with a raw material input port 411 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 410. The raw material input port 411 is preferably provided at a position above the rotary disk 413A of the crushing rotor 413. The powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 410 from the raw material input port 411.
 ケーシング410には、熱風発生機3による熱風(気体)をケーシング410内に導入するための気体導入口412が設けられている。気体導入口412は、気体導入路TP2を介して熱風発生機3に接続されている。この気体導入口412の位置は特に限定されないが、回転する粉砕ロータ413を介してケーシング410内に気体が導入されるように、粉砕ロータ413よりも下方の位置に設けられることが好ましい。本実施の形態では、粉砕ロータ413の回転方向と交差する方向から気体を導入する構成としたが、粉砕ロータ413の回転方向に沿って気体を導入する構成としてもよい。 The casing 410 is provided with a gas introduction port 412 for introducing hot air (gas) from the hot air generator 3 into the casing 410. The gas introduction port 412 is connected to the hot air generator 3 via the gas introduction path TP2. The position of the gas introduction port 412 is not particularly limited, but it is preferably provided at a position lower than the crushing rotor 413 so that the gas is introduced into the casing 410 via the rotating crushing rotor 413. In the present embodiment, the gas is introduced from the direction intersecting the rotation direction of the crushing rotor 413, but the gas may be introduced along the rotation direction of the crushing rotor 413.
 気体導入口412から導入された気体は、ケーシング410内部を旋回しつつ循環する気流を形成すると共に、ケーシング410の内部から分級ロータ415を経て、粉体取出口416からサイクロン5及び集塵機6に到達する。ケーシング410内の気流は、サイクロン5及び集塵機6を介して接続されているブロワ7による吸引によって形成されてもよく、気体導入口412側からの吹き込み(加圧)によって形成されてもよい。ケーシング410内に導入される気体の種類は、目的とする処理品に応じて適宜決めればよい。例えば、空気を用いてもよく、酸化防止のために、窒素、アルゴンなどの不活性ガスを用いてもよい。 The gas introduced from the gas introduction port 412 forms an air flow that circulates while swirling inside the casing 410, and reaches the cyclone 5 and the dust collector 6 from the powder outlet 416 via the classification rotor 415 from the inside of the casing 410. To do. The airflow in the casing 410 may be formed by suction by the blower 7 connected via the cyclone 5 and the dust collector 6, or may be formed by blowing (pressurizing) from the gas introduction port 412 side. The type of gas introduced into the casing 410 may be appropriately determined according to the target processed product. For example, air may be used, or an inert gas such as nitrogen or argon may be used to prevent oxidation.
 処理対象の粉体によっては、ケーシング410内の温度上昇により、粉体に軟化現象が生じ、粉体同士が融着して粒子径にばらつきが生じたり、収率が低下したりする場合がある。そこで、ケーシング410内の1又は複数箇所に温度センサS4(図3を参照)を設け、ケーシング410内の温度を管理してもよい。例えば、処理対象の粉体が例えば低融点のトナーの場合、粉体取出口416での排気温度が35~55℃となるように、ケーシング410内に導入する気体の温度を調節してもよい。
 また、サイクロン5、集塵機6、製品タンク8、集塵タンク9等に温度センサS4を設けてもよい。
Depending on the powder to be treated, the temperature rise in the casing 410 may cause the powder to soften, and the powders may be fused to each other to cause variations in particle size or decrease in yield. .. Therefore, temperature sensors S4 (see FIG. 3) may be provided at one or a plurality of locations in the casing 410 to control the temperature inside the casing 410. For example, when the powder to be treated is toner having a low melting point, for example, the temperature of the gas introduced into the casing 410 may be adjusted so that the exhaust temperature at the powder outlet 416 is 35 to 55 ° C. ..
Further, the temperature sensor S4 may be provided in the cyclone 5, the dust collector 6, the product tank 8, the dust collecting tank 9, and the like.
 また、本実施の形態では、ケーシング410内に熱風発生機3からの熱風を導入する構成としたが、図に示していない冷風発生機を用いて、ケーシング410内に-20℃~5℃程度の冷風を導入する構成としてもよい。この場合、結露防止のために、ケーシング410内に導入される気体は除湿された気体であることが好ましい。その他に、熱によって風味がなくなったり、変質し易い食品等を処理する場合には、0~15℃に調節された冷風空気を用いてもよい。 Further, in the present embodiment, the hot air from the hot air generator 3 is introduced into the casing 410, but using a cold air generator (not shown in the figure), the temperature is about −20 ° C. to 5 ° C. in the casing 410. It may be configured to introduce the cold air of. In this case, the gas introduced into the casing 410 is preferably a dehumidified gas in order to prevent dew condensation. In addition, when processing foods that lose their flavor due to heat or are easily deteriorated, cold air adjusted to 0 to 15 ° C. may be used.
 更に、ケーシング410の内部温度を調節するために、ケーシング410の周囲にジャケット部を設けてもよい。ジャケット部は、別に設けたタンクから加熱流体または冷却流体を循環供給することによって、ケーシング410の内部温度を調節する。 Further, in order to adjust the internal temperature of the casing 410, a jacket portion may be provided around the casing 410. The jacket portion adjusts the internal temperature of the casing 410 by circulating and supplying a heating fluid or a cooling fluid from a tank provided separately.
 粉砕ロータ413は、回転円盤413Aと、回転円盤413Aの上面周縁部から上向きに突出する複数のハンマ413Bとを備えるロータであり、粉砕モータ413M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、粉砕モータ413Mは、粉体処理システム1が備える駆動部の1つである。粉砕モータ413Mの回転速度は、回転速度センサS5(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。粉砕ロータ413のハンマ413Bは、回転円盤413Aの上面周縁部にて周方向に等間隔に複数配置される。なお、ハンマ413Bの形状、寸法、個数、及び素材は、要求される製品粉体の粒子径や円形度等に応じて適宜設計される。例えば、図2では、棒状のハンマ413Bを示しているが、直方体状のハンマであってもよく、平面視において台形状のハンマであってもよい。また、ハンマ413Bに代えて、刃物状の構造物を用いてもよい。 The crushing rotor 413 is a rotor including a rotary disk 413A and a plurality of hammers 413B protruding upward from the upper peripheral edge of the rotary disk 413A, and the rotation speed is adjusted to a desired speed by the power of the crushing motor 413M (see FIG. 3). It is configured to rotate. Here, the crushing motor 413M is one of the driving units included in the powder processing system 1. The rotation speed of the crushing motor 413M is measured by the rotation speed sensor S5 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). A plurality of hammers 413B of the crushing rotor 413 are arranged at equal intervals in the circumferential direction on the upper peripheral edge of the rotary disk 413A. The shape, size, number, and material of the hammer 413B are appropriately designed according to the required particle size, circularity, and the like of the product powder. For example, although FIG. 2 shows a rod-shaped hammer 413B, it may be a rectangular parallelepiped hammer or a trapezoidal hammer in a plan view. Further, instead of the hammer 413B, a blade-like structure may be used.
 粉砕ロータ413は、粉砕モータ413Mの動力によって回転し、ケーシング410内に旋回する気流を発生させると共に、ハンマ413Bの作用により、ケーシング410内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料を粉砕する。 The crushing rotor 413 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 410, and the powder raw material introduced into the casing 410 is impacted, compressed, and ground by the action of the hammer 413B. The powder raw material is crushed by giving mechanical energy such as shearing.
 粉砕ロータ413の素材は、従来から粉体処理装置の粉砕ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、SUS630などを用いることができる。また、ハンマ413Bについては、衝撃力に耐え得るように、超硬合金のチップを付けたり、磨耗性及び強靭性を備えたセラミックスやサーメットなどの金属とセラミックスとの複合物を用いてもよい。 As the material of the crushing rotor 413, a known material conventionally used for the crushing rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used. Further, for the hammer 413B, a cemented carbide tip may be attached so that the hammer 413B can withstand an impact force, or a composite of a metal such as ceramics or cermet having wear resistance and toughness and ceramics may be used.
 更に、粉砕ロータ413の表面は、装置の耐久性向上のために、ハードクロムメッキなどのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理、SUS630の焼き入れ硬化処理などが施されていてもよい。また、粉砕ロータ413の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。 Further, the surface of the crushing rotor 413 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device. Abrasion resistant treatment such as SUS630 and quench hardening treatment of SUS630 may be performed. Further, the surface of the crushing rotor 413 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
 本実施の形態では、回転円盤413Aの上面周縁部から上向きに突出したハンマ413Bの構成について説明したが、回転円盤413Aの下面周縁部から下向きに突出したハンマを用いてもよい。このように下向きに突出したハンマは、ケーシング410内の粉体原料を直接的に粉砕するものではないが、ケーシング410内に強い旋回気流を形成することができるため、粉体原料同士を衝突させて間接的に粉体原料を粉砕することができる。 In the present embodiment, the configuration of the hammer 413B protruding upward from the upper peripheral edge portion of the rotating disk 413A has been described, but a hammer protruding downward from the lower surface peripheral edge portion of the rotating disk 413A may be used. The hammer protruding downward in this way does not directly pulverize the powder raw materials in the casing 410, but can form a strong swirling airflow in the casing 410, so that the powder raw materials collide with each other. The powder raw material can be indirectly crushed.
 また、ケーシング410の内周面であって、ハンマ413Bと対向する位置には粉砕ライナが設けられてもよい。粉砕ライナは、粉砕ロータ413の回転軸方向に沿った中心軸を有する筒状の部材であり、この筒状の部材の内周面には、三角形、波形、くさび形の溝が設けられてもよい。 Further, a crushing liner may be provided on the inner peripheral surface of the casing 410 at a position facing the hammer 413B. The crushing liner is a tubular member having a central axis along the rotation axis direction of the crushing rotor 413, and even if the inner peripheral surface of the tubular member is provided with a triangular, corrugated, or wedge-shaped groove. Good.
 ガイドリング414は、ケーシング410内に旋回する気流を発生させ、ケーシング410内で処理される粉体を分級ロータ415へ導くための円筒状の部材である。ガイドリング414は、粉砕ロータ413の上方にて粉砕ロータ413と同軸に配され、ケーシング410の内部に固定される。ガイドリング414の固定方法は特に限定されるものではないが、粉体処理装置4Aの動作中はケーシング410内部にて回転することなく固定される必要がある。これは、ケーシング410内部で、処理対象の粉体の流動状態を適切な状態に制御するためである。図2の例では、その内径がケーシング410内の下側から上側に向かって連続的に大きくなっているガイドリング414を示しているが、内径が上側に向かって連続的に小さくなるガイドリングであってもよく、内径が上下方向で変化しないガイドリングであってもよい。 The guide ring 414 is a cylindrical member for generating a swirling air flow in the casing 410 and guiding the powder processed in the casing 410 to the classification rotor 415. The guide ring 414 is arranged coaxially with the crushing rotor 413 above the crushing rotor 413 and fixed inside the casing 410. The fixing method of the guide ring 414 is not particularly limited, but it is necessary to fix the guide ring 414 without rotating inside the casing 410 during the operation of the powder processing apparatus 4A. This is to control the flow state of the powder to be processed to an appropriate state inside the casing 410. In the example of FIG. 2, the guide ring 414 whose inner diameter is continuously increased from the lower side to the upper side in the casing 410 is shown, but the guide ring whose inner diameter is continuously decreased toward the upper side is used. It may be a guide ring whose inner diameter does not change in the vertical direction.
 分級ロータ415は、放射状に配される複数の分級羽根415Aを備えたロータであり、分級モータ415M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、分級モータ415Mは、粉体処理システム1が備える駆動部の1つである。分級モータ415Mの回転速度は、回転速度センサS6(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。分級ロータ415は、粉砕ロータ413の上方に設けられており、高速回転による遠心力により、ケーシング410内で処理された粉体のうち所定粒子径未満の粉体のみを通過させ、通過させた粉体のみを粉体取出口416へ導く。 The classification rotor 415 is a rotor provided with a plurality of classification blades 415A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M (see FIG. 3). Here, the classification motor 415M is one of the driving units included in the powder processing system 1. The rotation speed of the classification motor 415M is measured by the rotation speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). The classification rotor 415 is provided above the crushing rotor 413, and only the powder having a particle size smaller than a predetermined particle size is passed through the powder processed in the casing 410 by centrifugal force due to high-speed rotation. Only the body is guided to the powder outlet 416.
 ここで、分級ロータ415を通過する粉体の粒子径は、分級ロータ415の回転速度等を制御することによって設定することができる。すなわち、分級ロータ415の回転速度を制御することによって、ケーシング410内から所定粒子径未満の粉体を取り出すことができる。一方、分級ロータ415を通過できない粉体は、ケーシング410内を循環し、繰り返し処理される。 Here, the particle size of the powder passing through the classification rotor 415 can be set by controlling the rotation speed of the classification rotor 415 and the like. That is, by controlling the rotation speed of the classification rotor 415, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 410. On the other hand, the powder that cannot pass through the classification rotor 415 circulates in the casing 410 and is repeatedly processed.
 分級ロータ415の素材は、従来から粉体処理装置の分級ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、チタン、チタン合金、アルミ合金などを用いることができる。また、分級ロータ415の表面は、装置の耐久性向上のために、浸炭焼入れなどの熱硬化処理、タングステンカーバイド溶射材処理、ハードクロムメッキなどのメッキ処理、溶射後に熱硬化処理を施すための特殊溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 As the material of the classification rotor 415, a known material conventionally used for the classification rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, titanium, titanium alloy, aluminum alloy and the like can be used. In addition, the surface of the classification rotor 415 is specially subjected to heat hardening treatment such as carburizing and quenching, tungsten carbide spraying material treatment, plating treatment such as hard chrome plating, and heat hardening treatment after spraying in order to improve the durability of the device. Abrasion resistant treatment such as thermal spray material treatment, metal vapor deposition performed under vacuum, and carbon vapor deposition of a diamond structure may be performed.
 また、分級ロータ415への粉体の付着や固着を防止するため、分級ロータ415の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。 Further, in order to prevent the powder from adhering or sticking to the classification rotor 415, the surface of the classification rotor 415 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
 本実施の形態に係る粉体処理装置4Aは、粉砕ロータ413及び分級ロータ415を備えているが、粉砕ロータ413を使用せずに、分級機として利用してもよい。また、熱風発生機3から熱風を導入することが可能であるため、粉体処理装置4Aを乾燥機として利用してもよい。また、ケーシング410に粗粉回収口を設け、粗粉を回収することにより、粉体処理装置4Aを粒子設計装置として利用してもよい。更に、複数種の原料をケーシング410へ供給し、ケーシング410内で複数種の原料を混合する連続混合機として利用してもよい。 Although the powder processing apparatus 4A according to the present embodiment includes a crushing rotor 413 and a classification rotor 415, it may be used as a classification machine without using the crushing rotor 413. Further, since it is possible to introduce hot air from the hot air generator 3, the powder processing device 4A may be used as a dryer. Further, the powder processing apparatus 4A may be used as a particle design apparatus by providing a coarse powder recovery port in the casing 410 and collecting the coarse powder. Further, a plurality of types of raw materials may be supplied to the casing 410 and used as a continuous mixer in which the plurality of types of raw materials are mixed in the casing 410.
 また、粉体処理装置4Aを含む装置の少なくとも1つ、又は装置間の各経路の少なくとも1つに、上述した各種センサに加え、含塵濃度を計測する含塵濃度センサ、粉体の組成を計測するNIRセンサなどの計測センサ、粉体の湿分を計測する湿分センサ、圧力を計測する圧力センサ、音圧若しくは周波数を計測する音圧・周波数センサが設けられてもよい。 Further, in addition to the various sensors described above, a dust content concentration sensor for measuring the dust content concentration and a powder composition are added to at least one of the devices including the powder processing device 4A or at least one of the paths between the devices. A measurement sensor such as a NIR sensor for measuring, a moisture sensor for measuring the moisture content of powder, a pressure sensor for measuring pressure, and a sound pressure / frequency sensor for measuring sound pressure or frequency may be provided.
 以下、粉体処理システム1における制御系の構成について説明する。
 図3は実施の形態1に係る制御装置100の内部構成を示すブロック図である。制御装置100は、汎用又は専用のコンピュータにより構成されており、制御部101、記憶部102、入力部103、出力部104、通信部105、操作部106、及び表示部107を備える。
Hereinafter, the configuration of the control system in the powder processing system 1 will be described.
FIG. 3 is a block diagram showing an internal configuration of the control device 100 according to the first embodiment. The control device 100 is composed of a general-purpose or dedicated computer, and includes a control unit 101, a storage unit 102, an input unit 103, an output unit 104, a communication unit 105, an operation unit 106, and a display unit 107.
 制御部101は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。制御部101が備えるROMには、制御装置100が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部101内のCPUは、ROMに記憶された制御プログラムや後述する記憶部102に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御することによって、本発明に係る制御装置としての機能を実現する。制御部101が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。 The control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the control device 100. The CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, to control the operation of each hardware unit, thereby as a control device according to the present invention. To realize the function of. The RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
 制御部101は、CPU、ROM、及びRAMを備える構成としたが、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、量子プロセッサ、揮発性又は不揮発性のメモリ等を備える1又は複数の演算回路又は制御回路であってもよい。また、制御部101は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えていてもよい。 The control unit 101 is configured to include a CPU, a ROM, and a RAM, but has a GPU (Graphics Processing Unit), an FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor), a quantum processor, and a volatile or non-volatile memory. It may be one or more arithmetic circuits or control circuits including the above. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
 記憶部102は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部102には、制御部101によって実行されるコンピュータプログラム、外部から取得した各種データ、装置内部で生成した各種データ等が記憶される。 The storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the device, and the like.
 記憶部102に記憶されるコンピュータプログラムは、制御対象の装置の動作を制御するための制御プログラムPG1、粉体処理装置4Aにより処理される粉体の粒子径と、粉体処理装置4Aに関する制御パラメータとの関係を学習させるための学習プログラムPG2等を含む。 The computer program stored in the storage unit 102 includes a control program PG1 for controlling the operation of the device to be controlled, a particle size of the powder processed by the powder processing device 4A, and control parameters related to the powder processing device 4A. Includes a learning program PG2 and the like for learning the relationship with.
 制御プログラムPG1及び学習プログラムPG2を含むコンピュータプログラムは、コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体M1により提供されてもよい。記録媒体M1は、例えば、CD-ROM、USBメモリ、コンパクトフラッシュ(登録商標)、SD(Secure Digital)カード、マイクロSDカード、などの可搬型メモリである。制御部101は、図に示していない読取装置を用いて、記録媒体M1から各種プログラムを読み取り、読み取った各種プログラムを記憶部102に記憶させる。 The computer program including the control program PG1 and the learning program PG2 may be provided by the non-temporary recording medium M1 in which the computer program is readablely recorded. The recording medium M1 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD (Secure Digital) card, or a micro SD card. The control unit 101 reads various programs from the recording medium M1 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
 本実施の形態では、制御部101が学習プログラムPG2を実行することにより、制御装置100は学習フェーズに移行する。学習フェーズは、例えば制御装置100の導入時に実施される。また、学習フェーズは、操作部106を通じてユーザの指示を受付けた場合、若しくは定期的なタイミングで実施されるものであってもよい。 In the present embodiment, when the control unit 101 executes the learning program PG2, the control device 100 shifts to the learning phase. The learning phase is carried out, for example, when the control device 100 is introduced. Further, the learning phase may be executed when a user's instruction is received through the operation unit 106 or at a regular timing.
 学習フェーズにおいて、制御部101は、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410(処理室)から粉体を取り出す際の吐出・吸引流量を含む計測データと、粉体処理装置4Aから得られる粉体の粒子径データとを取得する。これらの計測データ及び粒子径データは、事前に収集されていてもよく、学習フェーズへの移行後に収集されてもよい。制御部101は、収集した計測データ及び粒子径データを教師データに用いて、粉体処理装置4Aから得られる粉体の粒子径と粉体処理装置4Aに関する制御パラメータとの関係を学習することにより、学習モデル200を生成する。ここで、粉体処理装置4Aに関する制御パラメータは、粉体処理装置4Aの動作を直接的に制御するための制御パラメータ(例えば、粉砕ロータ413の回転速度、及び分級ロータ415の回転速度)を含む。更に、粉体処理装置4Aに関する制御パラメータは、粉体処理装置4Aに付随する原料供給機2、熱風発生機3、集塵機6、ブロワ7の動作を制御するための制御パラメータを含んでもよい。本実施の形態では、粉体処理装置4Aから得られる粒子径と、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、及び粉体処理装置4Aの処理室から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータとの間の関係を学習する構成について説明する。 In the learning phase, the control unit 101 includes the rotation speed of the crushing rotor 413 included in the powder processing apparatus 4A, the rotation speed of the classification rotor 415, and the discharge / suction flow rate when the powder is taken out from the casing 410 (processing chamber). The measurement data and the particle size data of the powder obtained from the powder processing apparatus 4A are acquired. These measurement data and particle size data may be collected in advance or may be collected after the transition to the learning phase. The control unit 101 uses the collected measurement data and particle size data as teacher data to learn the relationship between the particle size of the powder obtained from the powder processing device 4A and the control parameters related to the powder processing device 4A. , Generate a learning model 200. Here, the control parameters relating to the powder processing apparatus 4A include control parameters for directly controlling the operation of the powder processing apparatus 4A (for example, the rotation speed of the crushing rotor 413 and the rotation speed of the classification rotor 415). .. Further, the control parameters related to the powder processing device 4A may include control parameters for controlling the operations of the raw material supply machine 2, the hot air generator 3, the dust collector 6, and the blower 7 attached to the powder processing device 4A. In the present embodiment, the particle size obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413 included in the powder processing device 4A, the rotation speed of the classification rotor 415, and the powder from the processing chamber of the powder processing device 4A. The configuration for learning the relationship with the control parameters that control the discharge / suction flow rate when taking out the body will be described.
 学習フェーズにおいて生成された学習モデル200は記憶部102に記憶される。学習モデル200は、その定義情報によって定義される。学習モデル200の定義情報は、例えば、学習モデル200の構造情報、ノード間の重み及びバイアスなどのパラメータを含む。 The learning model 200 generated in the learning phase is stored in the storage unit 102. The learning model 200 is defined by its definition information. The definition information of the learning model 200 includes, for example, the structural information of the learning model 200, parameters such as weights and biases between nodes.
 また、本実施の形態では、制御部101が制御プログラムPG1を実行することにより、制御装置100は運用フェーズに移行する。運用フェーズは、学習モデル200の実行後に実施される。 Further, in the present embodiment, the control device 100 shifts to the operation phase when the control unit 101 executes the control program PG1. The operation phase is carried out after the execution of the learning model 200.
 運用フェーズにおいて、制御装置100は、粉体処理装置4Aを含む装置の動作を制御する。このとき、制御部101は、ユーザが所望する粒子径(希望粒子径)の入力を受付けてもよい。制御部101は、受付けた粒子径のデータを学習モデル200に入力し、学習モデル200を用いた演算を実行することにより、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及び粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を取得する。制御部101は、学習モデル200から得られる演算結果に基づき、制御対象の装置の動作を制御する。 In the operation phase, the control device 100 controls the operation of the device including the powder processing device 4A. At this time, the control unit 101 may accept the input of the particle diameter (desired particle diameter) desired by the user. The control unit 101 inputs the received particle size data into the learning model 200 and executes an operation using the learning model 200 to obtain the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the powder. Acquires the calculation result related to the control parameters that control the discharge / suction flow rate when taking out. The control unit 101 controls the operation of the device to be controlled based on the calculation result obtained from the learning model 200.
 入力部103は、制御対象の装置を接続するための接続インタフェースを備える。入力部103に接続される装置は、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7を含む。入力部103が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。入力部103には、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7から送出されるデータが入力される。入力部103に入力されるデータには、重量センサS1、粒子径センサS2、流量センサS3、温度センサS4、粉砕ロータ413用の回転速度センサS5、及び分級ロータ415用の回転速度センサS6によって計測される計測データが含まれる。 The input unit 103 includes a connection interface for connecting the device to be controlled. The device connected to the input unit 103 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7. The connection interface included in the input unit 103 may be a wired interface or a wireless interface. Data sent from the raw material supply machine 2, the hot air generator 3, the powder processing device 4A, the cyclone 5, the dust collector 6, and the blower 7 are input to the input unit 103. The data input to the input unit 103 is measured by the weight sensor S1, the particle size sensor S2, the flow rate sensor S3, the temperature sensor S4, the rotation speed sensor S5 for the crushing rotor 413, and the rotation speed sensor S6 for the classification rotor 415. The measurement data to be performed is included.
 本実施の形態では、制御対象の装置を入力部103に接続する構成としたが、センサS1~S6の少なくとも一部が直接的に入力部103に接続されてもよい。この場合、センサS1~S6から出力される計測データは、制御対象の装置を介さずに、直接的に入力部103に入力される。また、センサS1~S6が通信インタフェースを有する場合、制御装置100は、後述する通信部105を通じて計測データを取得してもよい。 In the present embodiment, the device to be controlled is connected to the input unit 103, but at least a part of the sensors S1 to S6 may be directly connected to the input unit 103. In this case, the measurement data output from the sensors S1 to S6 is directly input to the input unit 103 without going through the device to be controlled. Further, when the sensors S1 to S6 have a communication interface, the control device 100 may acquire measurement data through the communication unit 105 described later.
 出力部104は、制御対象の装置を接続する接続インタフェースを備える。出力部104に接続される装置は、原料供給機2、熱風発生機3、粉体処理装置4A、サイクロン5、集塵機6、及びブロワ7を含む。出力部104が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。制御部101は、出力部104を通じて制御指令を出力することにより、制御対象の装置の動作を制御する。例えば、粉砕ロータ413の回転速度を制御する場合、制御部101は、粉砕ロータ413の駆動部である粉砕モータ413Mに対する制御指令を生成し、出力部104を通じて粉体処理装置4Aへ出力することにより、粉砕ロータ413の回転速度を制御する。分級ロータ415の回転速度を制御する場合も同様であり、制御部101は、分級ロータ415の駆動部である分級モータ415Mに対する制御指令を生成し、出力部104を通じて粉体処理装置4Aへ出力することにより、分級ロータ415の回転速度を制御する。また、粉体処理装置4Aが備えるケーシング410からの吐出・吸引流量を制御する場合、制御部101は、ブロワ7に対する制御指令を生成し、出力部104を通じてブロワ7へ出力することにより、ケーシング410からの吐出・吸引流量を制御する。 The output unit 104 includes a connection interface for connecting the device to be controlled. The device connected to the output unit 104 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4A, a cyclone 5, a dust collector 6, and a blower 7. The connection interface included in the output unit 104 may be a wired interface or a wireless interface. The control unit 101 controls the operation of the device to be controlled by outputting a control command through the output unit 104. For example, when controlling the rotation speed of the crushing rotor 413, the control unit 101 generates a control command for the crushing motor 413M, which is a driving unit of the crushing rotor 413, and outputs the control command to the powder processing apparatus 4A through the output unit 104. , Control the rotation speed of the crushing rotor 413. The same applies to the case of controlling the rotation speed of the classification rotor 415, and the control unit 101 generates a control command for the classification motor 415M which is a drive unit of the classification rotor 415 and outputs the control command to the powder processing device 4A through the output unit 104. Thereby, the rotation speed of the classification rotor 415 is controlled. Further, when controlling the discharge / suction flow rate from the casing 410 included in the powder processing apparatus 4A, the control unit 101 generates a control command for the blower 7 and outputs the control command to the blower 7 through the output unit 104, whereby the casing 410. Controls the discharge / suction flow rate from.
 通信部105は、各種の通信データを送受信する通信インタフェースを備える。通信部105が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLAN(Local Area Network)の通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE(Long Term Evolution)等の通信規格に準じた通信インタフェースであってもよい。 The communication unit 105 includes a communication interface for transmitting and receiving various communication data. The communication interface included in the communication unit 105 is, for example, a communication interface conforming to the communication standard of LAN (Local Area Network) used in WiFi (registered trademark) and Ethernet (registered trademark). Alternatively, a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution) may be used.
 通信部105は、例えば、粉体処理システム1のユーザが使用する端末装置500と通信を行う。通信部105は、粉体処理システム1の遠隔操作を受付けるために、端末装置500から送信される操作データ又は設定データを受信してもよい。制御部101は、通信部105を通じて、端末装置500から送信される操作データ又は設定データを受信した場合、受信した操作データ又は設定データに応じた処理を実行する。例えば、ユーザが所望する粒子径のデータを受信した場合、制御部101は、学習モデル200を用いた演算を実行し、粉体処理装置4Aに関する制御パラメータを取得する処理を行ってもよい。また、制御部101は、端末装置500に表示させるユーザインタフェース画面の画面データを生成し、生成した画面データを通信部105を通じて端末装置500へ送信してもよい。 The communication unit 105 communicates with, for example, the terminal device 500 used by the user of the powder processing system 1. The communication unit 105 may receive the operation data or the setting data transmitted from the terminal device 500 in order to accept the remote operation of the powder processing system 1. When the control unit 101 receives the operation data or the setting data transmitted from the terminal device 500 through the communication unit 105, the control unit 101 executes a process according to the received operation data or the setting data. For example, when the user receives the data of the desired particle size, the control unit 101 may execute the calculation using the learning model 200 and perform the process of acquiring the control parameters related to the powder processing apparatus 4A. Further, the control unit 101 may generate screen data of the user interface screen to be displayed on the terminal device 500, and may transmit the generated screen data to the terminal device 500 through the communication unit 105.
 操作部106は、キーボードやマウスなどの入力インタフェースを備えており、各種操作及び各種設定を受付ける。制御部101は、操作部106を通じて受付けた各種操作及び各種設定に基づき、適宜の処理を行い、必要に応じて設定情報を記憶部102に記憶させる。なお、本実施の形態では、制御装置100が操作部106を備える構成としたが、操作部106は必須ではなく、外部に接続されたコンピュータ(例えば、端末装置500)を通じて操作を受付ける構成であってもよい。 The operation unit 106 is provided with an input interface such as a keyboard and a mouse, and accepts various operations and various settings. The control unit 101 performs appropriate processing based on various operations and various settings received through the operation unit 106, and stores the setting information in the storage unit 102 as necessary. In the present embodiment, the control device 100 is provided with the operation unit 106, but the operation unit 106 is not indispensable, and the operation is received through a computer (for example, the terminal device 500) connected to the outside. You may.
 表示部107は、液晶パネル又は有機EL(Electro-Luminescence)パネル等の表示パネルを備えており、ユーザに対して報知すべき情報を表示する。表示部107は、例えば、通信部105を通じて受信した各種センサS1~S6の計測データを表示してもよく、操作部106を通じて受付けた各種操作及び各種設定に基づく情報を表示してもよい。また、表示部107は、学習モデル200による演算結果を表示してもよい。なお、本実施の形態では、制御装置100が表示部107を備える構成としたが、表示部107は必須ではなく、ユーザに報知すべき情報を外部のコンピュータ(例えば、端末装置500)へ出力し、出力先のコンピュータに情報を表示させてもよい。 The display unit 107 includes a display panel such as a liquid crystal panel or an organic EL (Electro-Luminescence) panel, and displays information to be notified to the user. The display unit 107 may display, for example, the measurement data of the various sensors S1 to S6 received through the communication unit 105, or may display information based on various operations and various settings received through the operation unit 106. Further, the display unit 107 may display the calculation result by the learning model 200. In the present embodiment, the control device 100 is configured to include the display unit 107, but the display unit 107 is not essential and outputs information to be notified to the user to an external computer (for example, the terminal device 500). , The information may be displayed on the output destination computer.
 本実施の形態では、制御装置100を単一のコンピュータとして説明したが、単一のコンピュータである必要はなく、複数のコンピュータにより構成されてもよく、複数の仮想コンピュータにより構成されてもよい。 In the present embodiment, the control device 100 has been described as a single computer, but it does not have to be a single computer, and may be composed of a plurality of computers or a plurality of virtual computers.
 図4は端末装置500の内部構成を示すブロック図である。端末装置500は、パーソナルコンピュータ、スマートフォン、タブレット端末などのコンピュータであり、制御部501、記憶部502、通信部503、操作部504、及び表示部505を備える。 FIG. 4 is a block diagram showing the internal configuration of the terminal device 500. The terminal device 500 is a computer such as a personal computer, a smartphone, or a tablet terminal, and includes a control unit 501, a storage unit 502, a communication unit 503, an operation unit 504, and a display unit 505.
 制御部501は、例えば、CPU、ROM、RAMなどを備える。制御部501が備えるROMには、端末装置500が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部501内のCPUは、ROMに記憶された制御プログラムや後述する記憶部502に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御する。また、制御部501は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えてもよい。制御部501が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。 The control unit 501 includes, for example, a CPU, a ROM, a RAM, and the like. The ROM included in the control unit 501 stores a control program or the like that controls the operation of each hardware unit included in the terminal device 500. The CPU in the control unit 501 executes a control program stored in the ROM and various computer programs stored in the storage unit 502 described later, and controls the operation of each hardware unit. Further, the control unit 501 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number. Data and the like used during execution of the calculation are temporarily stored in the RAM included in the control unit 501.
 記憶部502は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部502には、制御部501によって実行されるコンピュータプログラム、外部から取得した各種データ、装置内部で生成した各種データ等が記憶される。記憶部502に記憶されるコンピュータプログラムは、端末装置500から制御装置100にアクセスするためのアプリケーションプログラムを含んでもよい。 The storage unit 502 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 502 stores a computer program executed by the control unit 501, various data acquired from the outside, various data generated inside the device, and the like. The computer program stored in the storage unit 502 may include an application program for accessing the control device 100 from the terminal device 500.
 通信部503は、各種データを送受信する通信インタフェースを備える。通信部503が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLANの通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE等の通信規格に準じた通信インタフェースであってもよい。 The communication unit 503 includes a communication interface for transmitting and receiving various data. The communication interface included in the communication unit 503 is, for example, a communication interface conforming to the LAN communication standard used in WiFi (registered trademark) and Ethernet (registered trademark). Alternatively, a communication interface conforming to communication standards such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, and LTE may be used.
 通信部503は、例えば、粉体処理システム1の制御装置100と通信を行う。端末装置500が通信部503を通じて受信するデータは、制御装置100のインタフェース画面を表示部505に表示させるための画面データ、粉体処理装置4Aを含む装置の設定状態及び制御状態を示すデータ等を含む。ここで、設定状態を示すデータには、粉砕ロータ413の回転速度に関する設定値、分級ロータ415の回転速度に関する設定値、及びブロワ7による吐出・吸引流量に関する設定値等が含まれる。また、制御状態を示すデータには、粉砕ロータ413の回転速度に関する計測値、分級ロータ415の回転速度に関する計測値、ブロワ7による吐出・吸引流量に関する計測値、及び粉体処理装置4Aを含む装置から出力される警報情報等が含まれる。通信部503にて受信したデータは制御部501へ出力される。端末装置500が通信部503を通じて送信するデータは、粉体処理システム1を遠隔操作する際の操作データ又は設定データ等を含む。 The communication unit 503 communicates with, for example, the control device 100 of the powder processing system 1. The data received by the terminal device 500 through the communication unit 503 includes screen data for displaying the interface screen of the control device 100 on the display unit 505, data indicating the setting state and control state of the device including the powder processing device 4A, and the like. Including. Here, the data indicating the set state includes a set value regarding the rotation speed of the crushing rotor 413, a set value regarding the rotation speed of the classification rotor 415, a set value regarding the discharge / suction flow rate by the blower 7, and the like. The data indicating the control state includes a measured value related to the rotation speed of the crushing rotor 413, a measured value related to the rotation speed of the classification rotor 415, a measured value related to the discharge / suction flow rate by the blower 7, and a powder processing device 4A. It includes alarm information and the like output from. The data received by the communication unit 503 is output to the control unit 501. The data transmitted by the terminal device 500 through the communication unit 503 includes operation data, setting data, and the like when the powder processing system 1 is remotely controlled.
 操作部504は、キーボードやマウスなどの入力インタフェースを備えており、各種操作及び各種設定を受付ける。制御部501は、操作部504を通じて受付けた各種操作及び各種設定に基づき、適宜の処理を行い、必要に応じて設定情報を記憶部502に記憶させる。 The operation unit 504 is equipped with an input interface such as a keyboard and a mouse, and accepts various operations and various settings. The control unit 501 performs appropriate processing based on various operations and various settings received through the operation unit 504, and stores the setting information in the storage unit 502 as necessary.
 表示部505は、液晶パネル又は有機ELパネル等の表示パネルを備えており、ユーザに対して報知すべき情報を表示する。表示部505は、例えば、通信部503にて受信した画面データに基づき、制御装置100のインタフェース画面を表示する。また、表示部505は、通信部503にて受信した粉体処理装置4Aを含む装置の設定状態及び制御状態を示すデータに基づき、粉体処理装置4Aを含む装置の設定状態及び制御状態を表示してもよい。 The display unit 505 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays information to be notified to the user. The display unit 505 displays the interface screen of the control device 100, for example, based on the screen data received by the communication unit 503. Further, the display unit 505 displays the setting state and the control state of the device including the powder processing device 4A based on the data indicating the setting state and the control state of the device including the powder processing device 4A received by the communication unit 503. You may.
 以下、制御装置100において用いられる学習モデル200について説明する。
 図5は実施の形態1における学習モデル200の構成例を示す模式図である。学習モデル200は、例えば、深層学習を含む機械学習の学習モデルであり、ニューラルネットワークによって構成されている。学習モデル200は、入力層201、中間層202A,202B、及び出力層203を備える。図5の例では、2つの中間層202A,202Bを記載しているが、中間層の数は2つに限定されず、3つ以上であってもよい。
Hereinafter, the learning model 200 used in the control device 100 will be described.
FIG. 5 is a schematic diagram showing a configuration example of the learning model 200 according to the first embodiment. The learning model 200 is, for example, a learning model for machine learning including deep learning, and is configured by a neural network. The learning model 200 includes an input layer 201, intermediate layers 202A and 202B, and an output layer 203. In the example of FIG. 5, two intermediate layers 202A and 202B are described, but the number of intermediate layers is not limited to two and may be three or more.
 入力層201、中間層202A,202B、及び出力層203には、1つまたは複数のノードが存在し、各層のノードは、前後の層に存在するノードと一方向に所望の重みおよびバイアスで結合されている。学習モデル200の入力層201には、入力層201が備えるノードの数と同数のデータが入力される。本実施の形態において、入力層201のノードに入力されるデータは、ユーザが所望する粒子径(希望粒子径)のデータである。ここで、入力層201のノードに入力される粒子径のデータの一例は、メジアン径である。メジアン径に限らず、モード径であってもよく、各種算術平均値であってもよい。更に、入力層201のノードに与える粒子径のデータは、メジアン径、モード径、各種算術平均値などの単一の値に限らず、D10,D50,D90のそれぞれの値であってもよく、D10,D50,D90のそれぞれについて設定された範囲(すなわち、粒子径に関してユーザが許容する範囲の上限値及び下限値)であってもよい。 The input layer 201, the intermediate layers 202A, 202B, and the output layer 203 have one or more nodes, and the nodes of each layer are connected to the nodes existing in the previous and next layers in one direction with a desired weight and bias. Has been done. The same number of data as the number of nodes included in the input layer 201 is input to the input layer 201 of the learning model 200. In the present embodiment, the data input to the node of the input layer 201 is the data of the particle diameter (desired particle diameter) desired by the user. Here, an example of the particle diameter data input to the node of the input layer 201 is the median diameter. The diameter is not limited to the median, and may be a mode diameter or various arithmetic mean values. Further, the particle diameter data given to the node of the input layer 201 is not limited to a single value such as the median diameter, the mode diameter, and various arithmetic mean values, but may be each value of D10, D50, and D90. It may be a range set for each of D10, D50, and D90 (that is, an upper limit value and a lower limit value of a range allowed by the user with respect to the particle size).
 学習モデル200に入力された粒子径のデータは、入力層201を構成するノードを通じて、最初の中間層202Aが備えるノードへ出力される。最初の中間層202Aに入力されたデータは、中間層202Aを構成するノードを通じて、次の中間層202Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層203による演算結果が得られるまで次々と後の層に伝達される。ノード間を結合する重み、バイアス等のパラメータは、所定の学習アルゴリズムによって学習される。各種パラメータを学習する学習アルゴリズムには、例えば深層学習の学習アルゴリズムが用いられる。本実施の形態では、粉体処理装置4Aから得られる粒子径に関する粒子径データ(すなわち、粒子径センサS2により計測される粒子径のデータ)と、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410から粉体を取り出す際の吐出・吸引流量を含む計測データとを教師データとして、所定の学習アルゴリズムによってノード間の重み及びバイアスを含む各種パラメータを学習することができる。 The particle size data input to the learning model 200 is output to the node included in the first intermediate layer 202A through the nodes constituting the input layer 201. The data input to the first intermediate layer 202A is output to the nodes included in the next intermediate layer 202B through the nodes constituting the intermediate layer 202A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 203 is obtained. Parameters such as weights and biases that connect the nodes are learned by a predetermined learning algorithm. As a learning algorithm for learning various parameters, for example, a learning algorithm for deep learning is used. In the present embodiment, the particle size data regarding the particle size obtained from the powder processing device 4A (that is, the particle size data measured by the particle size sensor S2) and the rotation of the crushing rotor 413 included in the powder processing device 4A. Various parameters including weights and biases between nodes are learned by a predetermined learning algorithm using the measurement data including the speed, the rotation speed of the classification rotor 415, and the discharge / suction flow rate when taking out the powder from the casing 410 as training data. can do.
 出力層203は、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層203を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉砕ロータ413の回転速度がG1、分級ロータ415の回転速度がC1、吐出・吸引流量がV1である確率P1を出力し、第2ノードから、粉砕ロータ413の回転速度がG2、分級ロータ415の回転速度がC2、吐出・吸引流量がV2である確率P2を出力し、…、第nノードから粉砕ロータ413の回転速度がGn、分級ロータ415の回転速度がCn、吐出・吸引流量がVnである確率Pnを出力してもよい。出力層203を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 203 outputs calculation results related to control parameters that control the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 203 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the crushing rotor 413 is G1, the rotation speed of the classification rotor 415 is C1, and the discharge. The probability P1 that the suction flow rate is V1 is output, and the rotation speed P2 of the crushing rotor 413 is G2, the rotation speed of the classification rotor 415 is C2, and the discharge / suction flow rate is V2 is output from the second node. ..., The probability Pn that the rotation speed of the crushing rotor 413 is Gn, the rotation speed of the classification rotor 415 is Cn, and the discharge / suction flow rate is Vn may be output from the nth node. The number of nodes constituting the output layer 203 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100は、粉体処理装置4Aから得られる粒子径に関する粒子径データと、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及び粉体処理装置4Aのケーシング410からの吐出・吸引流量を含む計測データとを収集し、これらのデータを教師データに用いて、上述したような学習モデル200を生成する。 The control device 100 includes particle size data regarding the particle size obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410 of the powder processing device 4A. The measurement data including the above is collected, and these data are used as the teacher data to generate the learning model 200 as described above.
 図6は制御装置100が収集するデータの一例を示す概念図である。制御装置100の制御部101は、入力部103を通じて、粒子径センサS2、粉砕ロータ413の回転速度センサS5、分級ロータ415の回転速度センサS6、及び流量センサS3から計測データを取得し、取得したデータをタイムスタンプと共に記憶部102に記憶させ、教師データに用いるデータを収集する。図6は制御装置100が収集したデータの一例を示している。図6に示すデータのうち、1つ目のレコードは、粉砕ロータ413の回転速度の実測値が4749.6rpm、分級ロータ415の回転速度の実測値が3195.1rpm、吐出・吸引流量の実測値が2281.2m3 /hであった場合、D10,D50,D90の実測値がそれぞれ0.71μm、2.09μm、9.06μmであったことを示している。2つ目以降のレコードについても同様であり、粉体処理システム1が稼働しているときの粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量の実測値が、粉体処理装置4Aから得られる粉体の粒子径に関するデータ(D10,D50,D90)に関連付けられて記憶部102に記憶される。なお、図6の例では、5秒間隔でデータを収集した例を示しているが、データを収集する時間間隔は5秒に限らず、任意に設定すればよい。 FIG. 6 is a conceptual diagram showing an example of data collected by the control device 100. The control unit 101 of the control device 100 acquires and acquires measurement data from the particle size sensor S2, the rotation speed sensor S5 of the crushing rotor 413, the rotation speed sensor S6 of the classification rotor 415, and the flow rate sensor S3 through the input unit 103. The data is stored in the storage unit 102 together with the time stamp, and the data used for the teacher data is collected. FIG. 6 shows an example of the data collected by the control device 100. Among the data shown in FIG. 6, the first record shows that the actual measurement value of the rotation speed of the crushing rotor 413 is 4749.6 rpm, the actual measurement value of the rotation speed of the classification rotor 415 is 3195.1 rpm, and the actual measurement value of the discharge / suction flow rate. When was 2281.2 m 3 / h, it indicates that the measured values of D10, D50, and D90 were 0.71 μm, 2.09 μm, and 9.06 μm, respectively. The same applies to the second and subsequent records, which are the actual measurement values of the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410 when the powder processing system 1 is operating. Is stored in the storage unit 102 in association with the data (D10, D50, D90) regarding the particle size of the powder obtained from the powder processing apparatus 4A. Although the example of FIG. 6 shows an example in which data is collected at intervals of 5 seconds, the time interval for collecting data is not limited to 5 seconds and may be set arbitrarily.
 制御部101は、収集した上記データを教師データに用いて、粉体処理装置4Aから得られる粉体の粒子径と、粉体処理装置4Aに関する制御パラメータとの関係を学習し、上述したような学習モデル200を生成する。 The control unit 101 uses the collected data as the teacher data to learn the relationship between the particle size of the powder obtained from the powder processing apparatus 4A and the control parameters related to the powder processing apparatus 4A, as described above. The learning model 200 is generated.
 以下、学習フェーズにおける制御装置100の動作について説明する。
 図7は制御装置100による学習モデル200の生成手順を説明するフローチャートである。制御装置100の制御部101は、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410から粉体を取り出す際の吐出・吸引流量を含む計測データと、粉体処理装置4Aから得られる粉体の粒子径データとを収集する(ステップS101)。収集した計測データ及び粒子径データは、タイムスタンプと共に、記憶部102に記憶される。
Hereinafter, the operation of the control device 100 in the learning phase will be described.
FIG. 7 is a flowchart illustrating a procedure for generating the learning model 200 by the control device 100. The control unit 101 of the control device 100 includes measurement data including the rotation speed of the crushing rotor 413 provided in the powder processing device 4A, the rotation speed of the classification rotor 415, and the discharge / suction flow rate when the powder is taken out from the casing 410. The particle size data of the powder obtained from the powder processing apparatus 4A is collected (step S101). The collected measurement data and particle size data are stored in the storage unit 102 together with the time stamp.
 計測データ及び粒子径データの収集後、制御部101は、記憶部102に記憶されているデータから、一組の教師データを選択する(ステップS102)。すなわち、制御部101は、粉砕ロータ413及び分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量の実測値と、そのときに得られた粉体の粒子径の値(D10,D50,D90)とを一組だけ選択する。 After collecting the measurement data and the particle size data, the control unit 101 selects a set of teacher data from the data stored in the storage unit 102 (step S102). That is, the control unit 101 has the measured values of the rotation speeds of the crushing rotor 413 and the classification rotor 415, the discharge / suction flow rate from the casing 410, and the powder particle diameter values obtained at that time (D10, D50, Select only one set with D90).
 次いで、制御部101は、選択した教師データに含まれる粒子径の値を学習モデル200へ入力し(ステップS103)、学習モデル200による演算を実行する(ステップS104)。すなわち、制御部101は、学習モデル200の入力層201を構成するノードに粒子径の値を入力し、中間層202A,202Bにおいてノード間の重み及びバイアスを用いた演算を行い、演算結果を出力層203のノードから出力する処理を行う。なお、学習が開始される前の初期段階では、学習モデル200を記述する定義情報には初期値が与えられているものとする。 Next, the control unit 101 inputs the value of the particle diameter included in the selected teacher data into the learning model 200 (step S103), and executes the calculation by the learning model 200 (step S104). That is, the control unit 101 inputs the value of the particle diameter to the nodes constituting the input layer 201 of the learning model 200, performs the calculation using the weights and biases between the nodes in the intermediate layers 202A and 202B, and outputs the calculation result. The process of outputting from the node of layer 203 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 200 is given an initial value.
 次いで、制御部101は、ステップS104で得られた演算結果を評価し(ステップS105)、学習が完了したか否かを判断する(ステップS106)。具体的には、制御部101は、ステップS104で得られる演算結果と教師データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。制御部101は、最急降下法などの勾配降下法により誤差関数を最適化(最小化又は最大化)する課程で、誤差関数が閾値以下(又は閾値以上)となった場合、学習が完了したと判断する。なお、過学習の問題を避けるために、交差検定、早期打ち切りなどの手法を取り入れ、適切なタイミングにて学習を終了させてもよい。 Next, the control unit 101 evaluates the calculation result obtained in step S104 (step S105), and determines whether or not the learning is completed (step S106). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S104 and the teacher data. The control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function is below the threshold value (or above the threshold value), the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
 学習が完了してないと判断した場合(S106:NO)、制御部101は、学習モデル200のノード間の重み及びバイアスを更新して(ステップS107)、処理をステップS102へ戻し、別の教師データを用いた学習を継続する。制御部101は、学習モデル200の出力層203から入力層201に向かって、ノード間の重み及びバイアスを順次更新する誤差逆伝搬法を用いて、各ノード間の重み及びバイアスを更新することができる。 When it is determined that the learning is not completed (S106: NO), the control unit 101 updates the weights and biases between the nodes of the learning model 200 (step S107), returns the process to step S102, and another teacher. Continue learning with the data. The control unit 101 may update the weights and biases between the nodes by using the error back propagation method in which the weights and biases between the nodes are sequentially updated from the output layer 203 to the input layer 201 of the learning model 200. it can.
 学習が完了したと判断した場合(S106:YES)、制御部101は、学習済みの学習モデル200として記憶部102に記憶させ(ステップS108)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S106: YES), the control unit 101 stores the learned learning model 200 in the storage unit 102 (step S108), and ends the process according to this flowchart.
 以上のように、本実施の形態に係る制御装置100は、学習フェーズにおいて、粉体処理装置4Aから得られる粒子径に関する粒子径データと、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410から粉体を取り出す際の吐出・吸引流量を含む計測データとを収集する。制御装置100は、収集したデータを教師データとして用いることにより、ユーザが所望する粒子径の入力に応じて、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410に対する吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する学習モデル200を生成できる。 As described above, in the learning phase, the control device 100 according to the present embodiment includes particle size data regarding the particle size obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413, and the rotation speed of the classification rotor 415. And the measurement data including the discharge / suction flow rate when the powder is taken out from the casing 410 is collected. By using the collected data as teacher data, the control device 100 uses the collected data as the teacher data, and according to the input of the particle size desired by the user, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate to the casing 410. It is possible to generate a learning model 200 that outputs the calculation result related to the control parameter that controls.
 なお、本実施の形態では、制御装置100において学習モデル200を生成する構成としたが、学習モデル200を生成する外部サーバ(不図示)を設け、外部サーバにて学習モデル200を生成してもよい。この場合、制御装置100は、通信等により、外部サーバから学習モデル200を取得し、取得した学習モデル200を記憶部102に記憶させればよい。 In the present embodiment, the control device 100 is configured to generate the learning model 200, but even if an external server (not shown) for generating the learning model 200 is provided and the learning model 200 is generated by the external server. Good. In this case, the control device 100 may acquire the learning model 200 from the external server by communication or the like, and store the acquired learning model 200 in the storage unit 102.
 次に、運用フェーズにおける制御装置100の動作を説明する。なお、運用フェーズにおいては、学習モデル200は学習済みであるとする。 Next, the operation of the control device 100 in the operation phase will be described. In the operation phase, it is assumed that the learning model 200 has already been learned.
 図8は制御装置100による制御手順を説明するフローチャートである。制御装置100の制御部101は、操作部106を通じて、ユーザが所望する粒子径(希望粒子径)の入力を受付ける(ステップS121)。ここで、制御部101は、ユーザが所望する粒子径として、D50の値を受付けてもよい。また、制御部101は、D50の値に代えて、D10,D50,D90のそれぞれの値を受付けてもよく、D10,D50,D90のそれぞれについて上限値及び下限値を受付けてもよい。すなわち、学習モデル200が備える入力層201の構成に応じて、粒子径のデータを入力すればよい。 FIG. 8 is a flowchart illustrating a control procedure by the control device 100. The control unit 101 of the control device 100 receives an input of a particle size (desired particle size) desired by the user through the operation unit 106 (step S121). Here, the control unit 101 may accept the value of D50 as the particle diameter desired by the user. Further, the control unit 101 may accept the respective values of D10, D50, and D90 instead of the value of D50, and may accept the upper limit value and the lower limit value for each of D10, D50, and D90. That is, the particle size data may be input according to the configuration of the input layer 201 included in the learning model 200.
 次いで、制御部101は、受付けた粒子径のデータを学習モデル200の入力層201へ入力し、学習モデル200による演算を実行する(ステップS122)。このとき、制御部101は、受付けた粒子径のデータを入力層201のノードに与える。入力層201のノードに与えられたデータは、隣接する中間層202Aのノードへ出力される。中間層202Aではノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は後段の中間層202Bへ出力される。中間層202Bにおいて、更に、ノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は出力層203の各ノードへ出力される。出力層203の各ノードは、粉体処理装置4Aの制御パラメータに関する演算結果を出力する。具体的には、出力層203の各ノードは、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。 Next, the control unit 101 inputs the received particle size data to the input layer 201 of the learning model 200, and executes the calculation by the learning model 200 (step S122). At this time, the control unit 101 gives the received particle size data to the node of the input layer 201. The data given to the node of the input layer 201 is output to the node of the adjacent intermediate layer 202A. In the intermediate layer 202A, an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer 202B in the subsequent stage. In the intermediate layer 202B, an operation using an activation function including weights and biases between nodes is further performed, and the operation result is output to each node of the output layer 203. Each node of the output layer 203 outputs the calculation result regarding the control parameter of the powder processing apparatus 4A. Specifically, each node of the output layer 203 outputs a calculation result regarding control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
 次いで、制御部101は、学習モデル200から演算結果を取得し(ステップS123)、制御に用いる制御パラメータを決定する(ステップS124)。学習モデル200の出力層203は、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。より具体的には、出力層203は、粉砕ロータ413の回転速度がGi、分級ロータ415の回転速度がCi、吐出・吸引流量がViである確率Pi(i=1~n)を各ノードから出力する。制御部101は、この確率が最も高い粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量の組み合わせを特定することにより、制御に用いる制御パラメータを決定する。 Next, the control unit 101 acquires the calculation result from the learning model 200 (step S123) and determines the control parameters used for control (step S124). The output layer 203 of the learning model 200 outputs calculation results related to control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410. More specifically, in the output layer 203, the probability Pi (i = 1 to n) that the rotation speed of the crushing rotor 413 is Gi, the rotation speed of the classification rotor 415 is Ci, and the discharge / suction flow rate is Vi is obtained from each node. Output. The control unit 101 determines the control parameters used for control by specifying the combination of the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, which have the highest probability.
 次いで、制御部101は、ステップS124において決定した制御パラメータに基づき、制御を実行する(ステップS125)。すなわち、制御部101は、粉砕ロータ413及び分級ロータ415の回転速度がステップS124において決定した値となるように、粉砕モータ413M及び分級モータ415Mに対する制御指令を生成し、出力部104を通じて粉体処理装置4Aへ出力する。また、制御部101は、ケーシング410からの吐出・吸引流量がステップS124において決定した値となるように、ブロワ7に対する制御指令を生成し、出力部104を通じてブロワ7へ出力する。 Next, the control unit 101 executes control based on the control parameters determined in step S124 (step S125). That is, the control unit 101 generates a control command for the crushing motor 413M and the classification motor 415M so that the rotation speeds of the crushing rotor 413 and the classification rotor 415 become the values determined in step S124, and powder processing is performed through the output unit 104. Output to device 4A. Further, the control unit 101 generates a control command for the blower 7 so that the discharge / suction flow rate from the casing 410 becomes the value determined in step S124, and outputs the control command to the blower 7 through the output unit 104.
 以上のように、本実施の形態に係る制御装置100は、ユーザが所望する粒子径の入力を受付けることにより、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータを決定することができる。すなわち、本実施の形態では、現場技術者の経験や勘に依存することなく、粉体処理装置4Aに関する制御パラメータを決定できる。制御装置100は、所望の粒子径を有する粉体が得られるように、決定した制御パラメータに基づく制御を実行する。 As described above, the control device 100 according to the present embodiment receives the input of the particle size desired by the user, thereby performing the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge from the casing 410. The control parameters that control the suction flow rate can be determined. That is, in the present embodiment, the control parameters related to the powder processing apparatus 4A can be determined without depending on the experience and intuition of the field engineer. The control device 100 executes control based on the determined control parameters so that a powder having a desired particle size can be obtained.
 本実施の形態では、ニューラルネットワークによって構成される機械学習の学習モデル200を用いて制御パラメータに関する演算結果を取得する構成について説明したが、学習モデル200は特定の手法を用いて得られるモデルに限定されない。
 例えば、深層学習によるニューラルネットワークに代えて、パーセプトロン、畳み込みニューラルネットワーク、再帰型ニューラルネットワーク、残差ネットワーク、自己組織化マップ等による学習モデルであってもよい。
 また、上記のニューラルネットワークによる学習モデルに代えて、線形回帰、ロジスティック回帰、サポートベクターマシン等を含む回帰分析手法、決定木、回帰木、ランダムフォレスト、勾配ブースティング木等の探索木を用いた手法、単純ベイズ等を含むベイズ推定法、AR(Auto Regressive)、MA(Moving Average)、ARIMA(Auto Regressive Integrated Moving Average)、状態空間モデル等を含む時系列予測手法、K近傍法等を含むクラスタリング手法、ブースティング、バギング等を含むアンサンブル学習を用いた手法、階層型クラスタリング、非階層型クラスタリング、トピックモデル等を含むクラスタリング手法、アソシエーション分析、強調フィルタリング等を含むその他の手法により学習された学習モデルであってもよい。
 更に、PLS(Partial Least Squares)回帰、重回帰分析、主成分分析、因子分析、クラスター分析等を含む多変量分析を用いて学習モデルを構築してもよい。
In the present embodiment, a configuration for acquiring calculation results related to control parameters using a machine learning learning model 200 configured by a neural network has been described, but the learning model 200 is limited to a model obtained by using a specific method. Not done.
For example, instead of the neural network by deep learning, a learning model by a perceptron, a convolutional neural network, a recurrent neural network, a residual network, a self-organizing map, or the like may be used.
In addition, instead of the above learning model by the neural network, a regression analysis method including linear regression, logistic regression, support vector machine, etc., and a method using a search tree such as a decision tree, a regression tree, a random forest, and a gradient boosting tree. , Bayesian estimation method including simple bays, AR (Auto Regressive), MA (Moving Average), ARIMA (Auto Regressive Integrated Moving Average), time series prediction method including state space model, clustering method including K neighborhood method, etc. With learning models learned by methods using ensemble learning including boosting, bagging, etc., hierarchical clustering, non-hierarchical clustering, clustering methods including topic models, association analysis, emphasis filtering, etc. There may be.
Further, a learning model may be constructed using multivariate analysis including PLS (Partial Least Squares) regression, multiple regression analysis, principal component analysis, factor analysis, cluster analysis and the like.
(実施の形態2)
 実施の形態2では、ピンミル(例えば、ホソカワミクロン株式会社製ファインインパクトミル)への適用例について説明する。なお、実施の形態2における粉体処理システム1は、粉体処理装置4Aに代えて、ピンミル(図9に示す粉体処理装置4B)を備えるが、その他の構成については実施の形態1と同様であるため、その詳細な説明については省略することとする。
(Embodiment 2)
In the second embodiment, an example of application to a pin mill (for example, a fine impact mill manufactured by Hosokawa Micron Co., Ltd.) will be described. The powder processing system 1 in the second embodiment includes a pin mill (powder processing device 4B shown in FIG. 9) instead of the powder processing device 4A, but the other configurations are the same as those in the first embodiment. Therefore, the detailed description thereof will be omitted.
 図9は実施の形態2に係る粉体処理装置4Bの構成を示す模式的断面図である。粉体処理装置4Bは、その内部において粉体処理を行う円筒形状のケーシング420を備える。このケーシング420には、原料投入口421、固定式の粉砕ロータ422、回転式の粉砕ロータ423、粉体取出口424等が設けられている。 FIG. 9 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4B according to the second embodiment. The powder processing apparatus 4B includes a cylindrical casing 420 that performs powder processing inside the powder processing apparatus 4B. The casing 420 is provided with a raw material input port 421, a fixed crushing rotor 422, a rotary crushing rotor 423, a powder outlet 424, and the like.
 ケーシング420の素材には、実施の形態1で説明した粉体処理装置4Aのケーシングと同様の材料が用いられるとよい。すなわち、SS400、S25C、S45C、SPHCなどの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。 As the material of the casing 420, it is preferable that the same material as the casing of the powder processing apparatus 4A described in the first embodiment is used. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
 また、ケーシング420の内面には、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 Further, on the inner surface of the casing 420, in order to improve the durability of the device, plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
 ケーシング420には、原料供給機2から供給される粉体原料をケーシング420内に投入するための原料投入口421が設けられている。この原料投入口421は、例えば粉砕ロータ422,423よりも上側に設けられる。 The casing 420 is provided with a raw material input port 421 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 420. The raw material input port 421 is provided above, for example, the crushing rotors 422 and 423.
 粉砕ロータ422は、固定式のロータであり、ケーシング420内に固定された円盤422Aと、粉砕ロータ423側に向かって突出する複数のピン422Bとを備える。一方、粉砕ロータ423は、回転式のロータであり、回転円盤423Aと、粉砕ロータ422側に向かって突出する複数のピン423Bとを備え、粉砕モータ413M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。粉砕ロータ423のピン423Bは、回転円盤423Aが回転した際に、固定式の粉砕ロータ422のピン422Bと衝突しないように位置決めされている。なお、本実施の形態では、粉砕ロータ422,423が備えるピン422B,423Bの形状、寸法、配置、個数、及び素材は、要求される製品粉体の粒子径や円形度等に応じて適宜設計される。 The crushing rotor 422 is a fixed rotor, and includes a disk 422A fixed in the casing 420 and a plurality of pins 422B protruding toward the crushing rotor 423 side. On the other hand, the crushing rotor 423 is a rotary rotor, which includes a rotary disk 423A and a plurality of pins 423B protruding toward the crushing rotor 422 side, and is desired by the power of a crushing motor 413M (see FIG. 3). It is configured to rotate at a rotational speed. The pin 423B of the crushing rotor 423 is positioned so as not to collide with the pin 422B of the fixed crushing rotor 422 when the rotary disk 423A rotates. In the present embodiment, the shapes, dimensions, arrangement, number, and materials of the pins 422B and 423B included in the crushing rotors 422 and 423 are appropriately designed according to the required particle size and circularity of the product powder. Will be done.
 粉砕ロータ423は、粉砕モータ413Mの動力によって回転し、ケーシング420内に旋回する気流を発生させると共に、ピン422B,423Bの作用により、ケーシング420内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料を粉砕する。 The crushing rotor 423 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 420, and the powder raw materials introduced into the casing 420 are impacted, compressed, and abraded by the action of the pins 422B and 423B. The powder raw material is crushed by giving mechanical energy such as crushing and shearing.
 粉砕ロータ422,423の素材は、従来から粉体処理装置の粉砕ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、SUS630などを用いることができる。また、ピン422B,423Bについては、衝撃力に耐え得るように、超硬合金のチップを付けたり、磨耗性及び強靭性を備えたセラミックスやサーメットなどの金属とセラミックスとの複合物を用いてもよい。 As the material of the crushing rotors 422 and 423, known materials conventionally used for the crushing rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used. Further, for the pins 422B and 423B, a cemented carbide tip may be attached so as to withstand the impact force, or a composite of metal and ceramics such as ceramics having wear resistance and toughness or cermet may be used. Good.
 更に、粉砕ロータ422,423の表面は、装置の耐久性向上のために、ハードクロムメッキなどのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理、SUS630の焼き入れ硬化処理などが施されていてもよい。また、粉砕ロータ422,423の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。 Further, the surface of the crushing rotor 422,423 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and diamond structure in order to improve the durability of the device. Abrasion resistant treatment such as carbon vapor deposition, quenching hardening treatment of SUS630, and the like may be performed. Further, the surfaces of the crushing rotors 422 and 423 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
 粉体取出口424には、粉体輸送路TP3等を介して、サイクロン5、集塵機6、ブロワ7が接続されている。粉砕ロータ422,423によって粉砕された粉体は、気流と共に粉体取出口424から取り出される。 A cyclone 5, a dust collector 6, and a blower 7 are connected to the powder outlet 424 via a powder transport path TP3 or the like. The powder crushed by the crushing rotors 422 and 423 is taken out from the powder outlet 424 together with the air flow.
 制御装置100は、希望粒子径の入力に対して、粉体処理装置4Bの制御パラメータに関する演算結果として出力する学習モデルを生成するために、回転速度センサS5によって計測される粉砕ロータ423の回転速度、流量センサS3によって計測される吐出・吸引流量、及び粒子径センサS2によって計測される粒子径データを教師データとして収集する。 The control device 100 generates a learning model that outputs as a calculation result related to the control parameters of the powder processing device 4B in response to the input of the desired particle size, so that the rotation speed of the crushing rotor 423 measured by the rotation speed sensor S5 is generated. , The discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are collected as teacher data.
 制御装置100の制御部101は、収集した教師データを用いて、ユーザが所望する粒子径の入力に応じて、粉砕ロータ423の回転速度、粉体取出口424から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する学習モデル210(図10を参照)を生成する。学習モデル210の生成手順は、実施の形態1と同様であるため、その説明を省略する。なお、学習モデル210は、制御装置100によって生成されてもよく、外部のサーバ装置(不図示)によって生成されてもよい。 Using the collected teacher data, the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the rotation speed of the crushing rotor 423, and the discharge when the powder is taken out from the powder outlet 424. A learning model 210 (see FIG. 10) that outputs calculation results related to control parameters that control the suction flow rate is generated. Since the procedure for generating the learning model 210 is the same as that in the first embodiment, the description thereof will be omitted. The learning model 210 may be generated by the control device 100 or by an external server device (not shown).
 図10は実施の形態2における学習モデル210の構成例を示す模式図である。学習モデル210は、実施の形態1において説明した学習モデル200と同様に、それぞれが1又は複数のノードを備えた入力層211、中間層212A,212B、及び出力層213を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 10 is a schematic diagram showing a configuration example of the learning model 210 according to the second embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 210 includes an input layer 211, intermediate layers 212A, 212B, and an output layer 213, each of which has one or more nodes. The number of intermediate layers is not limited to two, and may be three or more.
 実施の形態2に係る学習モデル210は、ユーザが所望する粒子径(希望粒子径)の入力に対して、粉砕ロータ423の回転速度、及びケーシング420からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力するように構成される。 The learning model 210 according to the second embodiment relates to a control parameter for controlling the rotation speed of the crushing rotor 423 and the discharge / suction flow rate from the casing 420 with respect to the input of the particle diameter (desired particle diameter) desired by the user. It is configured to output the calculation result.
 制御装置100は、学習モデル210を用いた演算を行う場合、ユーザが所望する粒子径(希望粒子径)を学習モデル210に入力する。学習モデル210に入力された粒子径のデータは、入力層211を構成するノードを通じて、最初の中間層212Aが備えるノードへ出力される。最初の中間層212Aに入力されたデータは、中間層212Aを構成するノードを通じて、次の中間層212Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層213による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an calculation using the learning model 210, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 210. The particle size data input to the learning model 210 is output to the node included in the first intermediate layer 212A through the nodes constituting the input layer 211. The data input to the first intermediate layer 212A is output to the nodes included in the next intermediate layer 212B through the nodes constituting the intermediate layer 212A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 213 is obtained.
 出力層213は、粉砕ロータ423の回転速度、及びケーシング420から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層213を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉砕ロータ423の回転速度がG1、吐出・吸引流量がV1である確率P1を出力し、第2ノードから、粉砕ロータ423の回転速度がG2、吐出・吸引流量がV2である確率P2を出力し、…、第nノードから、粉砕ロータ423の回転速度がGn、吐出・吸引流量がVnである確率Pnを出力してもよい。出力層213を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 213 outputs the calculation result regarding the rotation speed of the crushing rotor 423 and the control parameters for controlling the discharge / suction flow rate when the powder is taken out from the casing 420. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 213 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the crushing rotor 423 is G1 and the discharge / suction flow rate is V1. Is output, and the probability P2 that the rotation speed of the crushing rotor 423 is G2 and the discharge / suction flow rate is V2 is output from the second node, ..., The rotation speed of the crushing rotor 423 is Gn, discharge / discharge from the nth node. The probability Pn that the suction flow rate is Vn may be output. The number of nodes constituting the output layer 213 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層213から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉砕ロータ423の回転速度、及び吐出・吸引流量の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、粉砕モータ413M、ブロワ7の動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 specifies the combination having the highest probability among the probabilities of being output from the output layer 213 (in the present embodiment, the combination of the rotation speed of the crushing rotor 423 and the discharge / suction flow rate). By doing so, the control parameters used for control are determined. The control unit 101 generates a control command for controlling the operation of the crushing motor 413M and the blower 7 based on the determined control parameters, and outputs the control command to each device through the output unit 104.
 以上のように、実施の形態2では、ピンミル(粉体処理装置4B)に関して、ユーザが所望する粒子径の入力に応じて、粉砕ロータ423の回転速度、粉体取出口424から粉体を取り出す際の吐出・吸引流量を制御するための制御パラメータに関する演算結果を出力する学習モデル210を生成する。また、学習モデル210を用いることにより、粉砕ロータ423の回転速度、ケーシング420からの吐出・吸引流量を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の粒子径を有する粉体が得られるように、学習モデル210の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the second embodiment, with respect to the pin mill (powder processing apparatus 4B), the powder is taken out from the rotation speed of the crushing rotor 423 and the powder outlet 424 according to the input of the particle size desired by the user. A learning model 210 that outputs calculation results related to control parameters for controlling the discharge / suction flow rate at the time is generated. Further, by using the learning model 210, calculation results regarding control parameters for controlling the rotation speed of the crushing rotor 423 and the discharge / suction flow rate from the casing 420 can be obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 210 so that the powder having a desired particle size can be obtained.
(実施の形態3)
 実施の形態3では、衝撃式粉砕機(例えば、ホソカワミクロン株式会社製グラシス(登録商標))への適用例について説明する。なお、実施の形態3における粉体処理システム1は、粉体処理装置4Aに代えて、衝撃式粉砕機(図11に示す粉体処理装置4C)を備えるが、その他の構成については実施の形態1と同様であるため、その詳細な説明については省略することとする。
(Embodiment 3)
In the third embodiment, an example of application to an impact crusher (for example, Grassis (registered trademark) manufactured by Hosokawa Micron Co., Ltd.) will be described. The powder processing system 1 in the third embodiment includes an impact type crusher (powder processing device 4C shown in FIG. 11) instead of the powder processing device 4A, but the other configurations are the embodiment. Since it is the same as 1, the detailed description thereof will be omitted.
 図11は実施の形態3に係る粉体処理装置4Cの構成を示す模式的断面図である。粉体処理装置4Cは、その内部において粉体処理を行う円筒形状のケーシング430を備える。このケーシング430には、原料投入口431、粉砕ロータ432、ライナ433、粉体取出口434等が設けられている。 FIG. 11 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4C according to the third embodiment. The powder processing apparatus 4C includes a cylindrical casing 430 that performs powder processing inside the powder processing apparatus 4C. The casing 430 is provided with a raw material input port 431, a crushing rotor 432, a liner 433, a powder outlet 434, and the like.
 ケーシング430の素材には、実施の形態1で説明した粉体処理装置4Aのケーシングと同様の材料が用いられるとよい。すなわち、SS400、S25C、S45C、SPHCなどの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。 As the material of the casing 430, it is preferable to use the same material as the casing of the powder processing apparatus 4A described in the first embodiment. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
 また、ケーシング430の内面には、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 Further, on the inner surface of the casing 430, in order to improve the durability of the device, plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
 ケーシング430には、原料供給機2から供給される粉体原料をケーシング430内に投入するための原料投入口431が設けられている。この原料投入口431は、例えば粉砕ロータ432よりも上側に設けられる。原料供給機2から供給される粉体原料は、例えば原料供給路TP1内のスクリューフィーダ(不図示)によって搬送され、原料投入口431よりケーシング430内に投入される。また、ケーシング430内には冷媒を導入してもよい。冷媒は、例えばケーシング430の周面に設けた冷媒導入口や粉砕ロータ432の回転軸を通じて導入されるとよい。 The casing 430 is provided with a raw material input port 431 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 430. The raw material input port 431 is provided above, for example, the crushing rotor 432. The powder raw material supplied from the raw material supply machine 2 is conveyed by, for example, a screw feeder (not shown) in the raw material supply path TP1 and is charged into the casing 430 from the raw material input port 431. Further, a refrigerant may be introduced into the casing 430. The refrigerant may be introduced, for example, through a refrigerant introduction port provided on the peripheral surface of the casing 430 or a rotating shaft of the crushing rotor 432.
 粉砕ロータ432は、回転軸に沿って同軸に配される複数の回転円盤432A,432A,…,432Aを備え、粉砕モータ413M(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。回転円盤432Aの周面には、三角形、波形、くさび形の溝が設けられている。ケーシング430の内周面であって、回転円盤432Aの周面と対向する位置にはライナ433が配されている。ライナ433は、粉砕ロータ432の回転軸方向に沿った中心軸を有する筒状の部材であり、この筒状の部材の内周面には、三角形、波形、くさび形の溝が設けられている。 The crushing rotor 432 includes a plurality of rotating disks 432A, 432A, ..., 432A arranged coaxially along the rotation axis, and is rotated at a desired rotation speed by the power of the crushing motor 413M (see FIG. 3). It is configured in. The peripheral surface of the rotating disk 432A is provided with triangular, corrugated, and wedge-shaped grooves. A liner 433 is arranged on the inner peripheral surface of the casing 430 at a position facing the peripheral surface of the rotating disk 432A. The liner 433 is a tubular member having a central axis along the rotation axis direction of the crushing rotor 432, and a triangular, corrugated, and wedge-shaped groove is provided on the inner peripheral surface of the tubular member. ..
 粉砕ロータ432及びライナ433の素材は、従来から用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、SUS630などを用いることができる。また、衝撃力に耐え得るように、超硬合金のチップを付けたり、磨耗性及び強靭性を備えたセラミックスやサーメットなどの金属とセラミックスとの複合物を用いてもよい。 As the material of the crushing rotor 432 and the liner 433, known materials that have been conventionally used may be used. For example, SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used. Further, a cemented carbide chip may be attached so as to withstand an impact force, or a composite of a metal and a ceramic such as ceramics or cermet having wear resistance and toughness may be used.
 更に、粉砕ロータ432及びライナ433の表面は、装置の耐久性向上のために、ハードクロムメッキなどのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理、SUS630の焼き入れ硬化処理などが施されていてもよい。また、粉砕ロータ432及びライナ433の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。 Further, the surfaces of the crushing rotor 432 and the liner 433 are subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and diamond structure in order to improve the durability of the device. Abrasion resistant treatment such as carbon vapor deposition of SUS630, quenching hardening treatment of SUS630, and the like may be performed. Further, the surfaces of the crushing rotor 432 and the liner 433 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
 粉砕ロータ432は、粉砕モータ413Mの動力によって回転し、ケーシング430内に旋回する気流を発生させると共に、粉砕ロータ432及びライナ433の作用により、ケーシング430内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料を粉砕する。 The crushing rotor 432 is rotated by the power of the crushing motor 413M to generate a swirling airflow in the casing 430, and the powder raw material introduced into the casing 430 is impacted and compressed by the action of the crushing rotor 432 and the liner 433. , Grinding, shearing and other mechanical energy to crush the powder raw material.
 粉体取出口434には、粉体輸送路TP3等を介して、サイクロン5、集塵機6、ブロワ7が接続されている。粉砕ロータ432及びライナ433によって粉砕された粉体は、気流と共に粉体取出口434から取り出される。 A cyclone 5, a dust collector 6, and a blower 7 are connected to the powder outlet 434 via a powder transport path TP3 or the like. The powder crushed by the crushing rotor 432 and the liner 433 is taken out from the powder outlet 434 together with the air flow.
 制御装置100は、希望粒子径の入力に対して、粉体処理装置4Cの制御パラメータに関する演算結果として出力する学習モデルを生成するために、回転速度センサS5によって計測される粉砕ロータ432の回転速度、流量センサS3によって計測される吐出・吸引流量、及び粒子径センサS2によって計測される粒子径データを教師データとして収集する。 The control device 100 generates a learning model that outputs as a calculation result related to the control parameters of the powder processing device 4C in response to the input of the desired particle size, so that the rotation speed of the crushing rotor 432 measured by the rotation speed sensor S5 is generated. , The discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are collected as teacher data.
 制御装置100の制御部101は、収集した教師データを用いて、ユーザが所望する粒子径の入力に応じて、粉砕ロータ432の回転速度、粉体取出口434から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する学習モデルを生成する。学習モデルは、制御装置100によって生成されてもよく、外部のサーバ装置(不図示)によって生成されてもよい。
 なお、実施の形態3で生成される学習モデルの構成、及び生成手順は、実施の形態2と同様であるため、その説明を省略することとする。
The control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the rotation speed of the crushing rotor 432, and the discharge when the powder is taken out from the powder outlet 434. Generate a learning model that outputs the calculation results related to the control parameters that control the suction flow rate. The learning model may be generated by the control device 100 or by an external server device (not shown).
Since the configuration and generation procedure of the learning model generated in the third embodiment are the same as those in the second embodiment, the description thereof will be omitted.
 以上のように、実施の形態3では、粉体処理装置4Cに関して、ユーザが所望する粒子径の入力に応じて、粉砕ロータ432の回転速度、粉体取出口434から粉体を取り出す際の吐出・吸引流量を制御するための制御パラメータに関する演算結果を出力する学習モデルを生成する。また、学習モデルを用いることにより、粉砕ロータ432の回転速度、ケーシング430からの吐出・吸引流量を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の粒子径を有する粉体が得られるように、学習モデルの演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the third embodiment, with respect to the powder processing apparatus 4C, the rotation speed of the crushing rotor 432 and the discharge when the powder is taken out from the powder outlet 434 according to the input of the particle size desired by the user. -Generate a learning model that outputs the calculation results related to the control parameters for controlling the suction flow rate. Further, by using the learning model, calculation results regarding control parameters for controlling the rotation speed of the crushing rotor 432 and the discharge / suction flow rate from the casing 430 can be obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model so that the powder having a desired particle size can be obtained.
(実施の形態4)
 実施の形態4では、媒体攪拌型の粉体処理装置(例えば、ホソカワミクロン株式会社製プルビス(登録商標))への適用例について説明する。なお、実施の形態4における粉体処理システム1は、粉体処理装置4Aに代えて、媒体攪拌型の粉体処理装置(図12に示す粉体処理装置4D)を備えるが、その他の構成については実施の形態1と同様であるため、その詳細な説明については省略することとする。
(Embodiment 4)
In the fourth embodiment, an example of application to a medium stirring type powder processing apparatus (for example, Purvis (registered trademark) manufactured by Hosokawa Micron Co., Ltd.) will be described. The powder processing system 1 according to the fourth embodiment includes a medium stirring type powder processing device (powder processing device 4D shown in FIG. 12) instead of the powder processing device 4A, but has other configurations. Is the same as that of the first embodiment, and therefore detailed description thereof will be omitted.
 図12は実施の形態4に係る粉体処理装置4Dの構成を示す模式的断面図である。粉体処理装置4Dは、その内部において粉体処理を行う円筒形状のケーシング440を備える。このケーシング440には、原料投入口441、ガス導入口442、粉砕部443、分級ロータ444、粉体取出口445、アジテータ446等が設けられている。 FIG. 12 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4D according to the fourth embodiment. The powder processing apparatus 4D includes a cylindrical casing 440 that performs powder processing inside the powder processing apparatus 4D. The casing 440 is provided with a raw material input port 441, a gas introduction port 442, a crushing unit 443, a classification rotor 444, a powder outlet 445, an agitator 446, and the like.
 ケーシング440の素材には、実施の形態1で説明した粉体処理装置4Dのケーシングと同様の材料が用いられるとよい。すなわち、SS400、S25C、S45C、SPHCなどの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。 As the material of the casing 440, it is preferable that the same material as the casing of the powder processing apparatus 4D described in the first embodiment is used. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
 また、ケーシング440の内面には、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 Further, on the inner surface of the casing 440, in order to improve the durability of the device, plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
 ケーシング440には、原料供給機2から供給される粉体原料をケーシング440内に投入するための原料投入口441が設けられている。この原料投入口441は、例えば粉砕部443よりも上側に設けられる。原料供給機2から供給される粉体原料は、例えば原料供給路TP1内のスクリューフィーダ(不図示)によって搬送され、原料投入口441よりケーシング440内に投入される。 The casing 440 is provided with a raw material input port 441 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 440. The raw material input port 441 is provided above, for example, the crushing section 443. The powder raw material supplied from the raw material supply machine 2 is conveyed by, for example, a screw feeder (not shown) in the raw material supply path TP1 and is charged into the casing 440 from the raw material input port 441.
 実施の形態4に係る粉体処理装置4Dでは、ガス導入口442を通じて圧縮空気などの気体をケーシング440内に導入することによって、ケーシング440の内部に気流を発生させる。また、粉体処理装置4Dは、媒体であるボール(若しくはビーズ)を攪拌するアジテータ446を有する粉砕部443を備える。アジテータ446は、攪拌モータ446Mの動力によって所望の回転速度にて回転するように構成されている。ここで、攪拌モータ446Mは、粉体処理システム1が備える駆動部の1つである。ケーシング440の内部に投入された粉体原料は媒体表面を被覆する状態となる。粉砕部443では、アジテータ446を回転することで媒体を攪拌し、媒体表面を被覆する粉体原料に衝撃、圧縮、せん断、摩砕の作用を付与することによって、粉体原料を粉砕することができる。粉砕された粉体は、気流と共に搬送され、装置上部に設けた分級ロータ444によって分級される。 In the powder processing apparatus 4D according to the fourth embodiment, an air flow is generated inside the casing 440 by introducing a gas such as compressed air into the casing 440 through the gas introduction port 442. Further, the powder processing apparatus 4D includes a crushing unit 443 having an agitator 446 that agitates balls (or beads) as a medium. The agitator 446 is configured to rotate at a desired rotation speed by the power of the stirring motor 446M. Here, the stirring motor 446M is one of the driving units included in the powder processing system 1. The powder raw material charged into the casing 440 is in a state of covering the surface of the medium. In the crushing section 443, the medium is agitated by rotating the agitator 446, and the powder raw material covering the surface of the medium is given impact, compression, shearing, and grinding to crush the powder raw material. it can. The crushed powder is conveyed together with the air flow and is classified by the classification rotor 444 provided on the upper part of the apparatus.
 分級ロータ444の構成は、実施の形態1と同様である。すなわち、分級ロータ444は、放射状に配される複数の分級羽根444Aを備えたロータであり、分級モータ415Mの動力によって所望の回転速度にて回転するように構成されている。分級モータの回転速度は、回転速度センサS6(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。分級ロータ444は、高速回転による遠心力により、ケーシング440内で処理された粉体のうち所定粒子径未満の粉体のみを通過させ、通過させた粉体のみを粉体取出口445へ導く。一方、分級ロータ444を通過できない粉体は、ケーシング440内を循環し、繰り返し処理される。 The configuration of the classification rotor 444 is the same as that of the first embodiment. That is, the classification rotor 444 is a rotor provided with a plurality of classification blades 444A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M. The rotation speed of the classification motor is measured by the rotation speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). The classification rotor 444 passes only powder having a particle size smaller than a predetermined particle size among the powders processed in the casing 440 by centrifugal force due to high-speed rotation, and guides only the passed powder to the powder outlet 445. On the other hand, the powder that cannot pass through the classification rotor 444 circulates in the casing 440 and is repeatedly processed.
 ここで、粉体取出口445を通過する粉体の粒子径は、アジテータ446の回転速度、分級ロータ444の回転速度、及び吐出・吸引流量を制御することによって設定することができる。 Here, the particle size of the powder passing through the powder outlet 445 can be set by controlling the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate.
 制御装置100は、希望粒子径の入力に対して、粉体処理装置4Dに関する制御パラメータを演算結果として出力する学習モデル220を生成するために、回転速度センサS5によって計測されるアジテータ446の回転速度、回転速度センサS6によって計測される分級ロータ444の回転速度、流量センサS3によって計測される吐出・吸引流量、及び粒子径センサS2によって計測される粒子径データを教師データとして収集する。 The control device 100 generates a learning model 220 that outputs control parameters related to the powder processing device 4D as a calculation result in response to an input of a desired particle size, so that the rotation speed of the agitator 446 measured by the rotation speed sensor S5 is generated. , The rotation speed of the classification rotor 444 measured by the rotation speed sensor S6, the discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are collected as teacher data.
 制御装置100の制御部101は、収集した教師データを用いて、ユーザが所望する粒子径の入力に応じて、アジテータ446の回転速度、分級ロータ444の回転速度、粉体取出口445から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する学習モデル220(図13を参照)を生成する。学習モデル220の生成手順は、実施の形態1と同様であるため、その説明を省略する。なお、学習モデル220は、制御装置100によって生成されてもよく、外部のサーバ装置(不図示)によって生成されてもよい。 Using the collected teacher data, the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the powder from the powder outlet 445. Generates a learning model 220 (see FIG. 13) that outputs calculation results related to control parameters that control the discharge / suction flow rate when taking out. Since the procedure for generating the learning model 220 is the same as that in the first embodiment, the description thereof will be omitted. The learning model 220 may be generated by the control device 100 or may be generated by an external server device (not shown).
 図13は実施の形態4における学習モデル220の構成例を示す模式図である。学習モデル220は、実施の形態1において説明した学習モデル200と同様に、それぞれが1又は複数のノードを備えた入力層221、中間層222A,222B、及び出力層223を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 13 is a schematic diagram showing a configuration example of the learning model 220 in the fourth embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 220 includes an input layer 221 having one or a plurality of nodes, intermediate layers 222A and 222B, and an output layer 223, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 実施の形態4に係る学習モデル220は、ユーザが所望する粒子径(希望粒子径)の入力に対して、アジテータ446の回転速度、分級ロータ444の回転速度、及びケーシング440からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力するように構成される。 The learning model 220 according to the fourth embodiment has the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate from the casing 440 in response to the input of the particle diameter (desired particle diameter) desired by the user. It is configured to output the calculation result related to the control parameters that control.
 制御装置100は、学習モデル220を用いた演算を行う場合、ユーザが所望する粒子径(希望粒子径)を学習モデル220に入力する。学習モデル220に入力された粒子径のデータは、入力層221を構成するノードを通じて、最初の中間層222Aが備えるノードへ出力される。最初の中間層222Aに入力されたデータは、中間層222Aを構成するノードを通じて、次の中間層222Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層223による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an operation using the learning model 220, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 220. The particle size data input to the learning model 220 is output to the node included in the first intermediate layer 222A through the nodes constituting the input layer 221. The data input to the first intermediate layer 222A is output to the node included in the next intermediate layer 222B through the nodes constituting the intermediate layer 222A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 223 is obtained.
 出力層223は、アジテータ446の回転速度、分級ロータ444の回転速度、及びケーシング440から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層223を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、アジテータ446の回転速度がA1、分級ロータ444の回転速度がC1、吐出・吸引流量がV1である確率P1を出力し、第2ノードから、アジテータ446の回転速度がA2、分級ロータ444の回転速度がC2、吐出・吸引流量がV2である確率P2を出力し、…、第nノードから、アジテータ446の回転速度がAn、分級ロータ444の回転速度がCn、吐出・吸引流量がVnである確率Pnを出力してもよい。出力層223を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 223 outputs calculation results related to control parameters that control the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate when the powder is taken out from the casing 440. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 223 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the agitator 446 is A1, the rotation speed of the classification rotor 444 is C1, and discharge. The probability P1 that the suction flow rate is V1 is output, and the rotation speed of the agitator 446 is A2, the rotation speed of the classification rotor 444 is C2, and the probability P2 that the discharge / suction flow rate is V2 is output from the second node. From the nth node, the probability Pn that the rotation speed of the agitator 446 is An, the rotation speed of the classification rotor 444 is Cn, and the discharge / suction flow rate is Vn may be output. The number of nodes constituting the output layer 223 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層223から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、アジテータ446の回転速度、分級ロータ444の回転速度、及び吐出・吸引流量の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、攪拌モータ446M、分級モータ415M、ブロワ7の動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 223 (in this embodiment, the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate). The control parameters used for control are determined by specifying the combination of). The control unit 101 generates a control command for controlling the operation of the stirring motor 446M, the classification motor 415M, and the blower 7 based on the determined control parameters, and outputs the control command to each device through the output unit 104.
 以上のように、実施の形態4では、粉体処理装置4Dに関して、ユーザが所望する粒子径の入力に応じて、アジテータ446の回転速度、分級ロータ444の回転速度、粉体取出口445から粉体を取り出す際の吐出・吸引流量を制御するための制御パラメータに関する演算結果を出力する学習モデル220を生成する。また、学習モデル220を用いることにより、アジテータ446の回転速度、分級ロータ444の回転速度、ケーシング440からの吐出・吸引流量を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の粒子径を有する粉体が得られるように、学習モデル220の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the fourth embodiment, regarding the powder processing apparatus 4D, the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the powder from the powder outlet 445 are obtained according to the input of the particle size desired by the user. A learning model 220 that outputs calculation results related to control parameters for controlling the discharge / suction flow rate when taking out the body is generated. Further, by using the learning model 220, calculation results regarding control parameters for controlling the rotation speed of the agitator 446, the rotation speed of the classification rotor 444, and the discharge / suction flow rate from the casing 440 can be obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 220 so that the powder having a desired particle size can be obtained.
(実施の形態5)
 実施の形態1では、ケーシング410内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料を粉砕する粉体処理装置4Aについて説明したが、機械式の粉体処理装置4Aに代えて、ケーシング内に導入するジェット気流の作用により粉砕処理を行う気流式の粉体処理装置(例えば、ホソカワミクロン株式会社製ミクロンジェット(登録商標)T型)に本願発明を適用してもよい。
 実施の形態5では、気流式の粉体処理装置への適用例について説明する。なお、実施の形態5における粉体処理システム1は、機械式の粉体処理装置4Aに代えて、気流式の粉体処理装置4E(図14を参照)を備えるが、その他の構成については実施の形態1と同様であるため、その詳細な説明については省略することとする。
(Embodiment 5)
In the first embodiment, the powder processing apparatus 4A for crushing the powder raw material by applying mechanical energy such as impact, compression, grinding, and shearing to the powder raw material introduced into the casing 410 has been described. In place of the powder processing apparatus 4A of the above, the present invention is applied to an airflow type powder processing apparatus (for example, Micron Jet (registered trademark) T type manufactured by Hosokawa Micron Co., Ltd.) that performs pulverization treatment by the action of a jet airflow introduced into a casing. May be applied.
In the fifth embodiment, an example of application to an airflow type powder processing apparatus will be described. The powder processing system 1 according to the fifth embodiment includes a flow-type powder processing device 4E (see FIG. 14) instead of the mechanical powder processing device 4A, but other configurations are implemented. Since it is the same as the first form of the above, the detailed description thereof will be omitted.
 図14は実施の形態5に係る粉体処理装置4Eの構成を示す模式的断面図である。粉体処理装置4Eは、その内部において粉体処理を行う円筒形状のケーシング450を備える。このケーシング450には、原料投入口451、エジェクタガス導入口452、粉砕ガス導入口453、衝突板454、分級ロータ455、粉体取出口456等が設けられている。 FIG. 14 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4E according to the fifth embodiment. The powder processing apparatus 4E includes a cylindrical casing 450 that performs powder processing inside the powder processing apparatus 4E. The casing 450 is provided with a raw material input port 451, an ejector gas introduction port 452, a crushed gas introduction port 453, a collision plate 454, a classification rotor 455, a powder outlet 456, and the like.
 ケーシング450の素材には、実施の形態1で説明した粉体処理装置4Aのケーシングと同様の材料が用いられるとよい。すなわち、SS400、S25C、S45C、SPHCなどの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。 As the material of the casing 450, it is preferable that the same material as the casing of the powder processing apparatus 4A described in the first embodiment is used. That is, iron-based steel materials such as SS400, S25C, S45C, and SPHC, stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, metals such as stainless casting materials such as SCS13 and FC14, ceramics, glass and the like. Should be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
 また、ケーシング450の内面には、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。 Further, on the inner surface of the casing 450, in order to improve the durability of the device, plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, carbon of diamond structure Abrasion resistant treatment such as thermal spraying may be applied.
 ケーシング450には、原料供給機2から供給される粉体原料をケーシング450内に投入するための原料投入口451が設けられている。この原料投入口451は、例えばエジェクタガス導入口452よりも上側に設けられる。原料供給機2から供給される粉体原料は、例えば原料供給路TP1内のスクリューフィーダ(不図示)によって搬送され、原料投入口451よりケーシング450内に投入される。 The casing 450 is provided with a raw material input port 451 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 450. The raw material input port 451 is provided above, for example, the ejector gas introduction port 452. The powder raw material supplied from the raw material supply machine 2 is conveyed by, for example, a screw feeder (not shown) in the raw material supply path TP1 and is charged into the casing 450 from the raw material input port 451.
 実施の形態5に係る粉体処理装置4Eでは、エジェクタガス導入口452及び粉砕ガス導入口453を通じて、圧縮空気などの気体をケーシング450内に導入することによって、ケーシング450の内部にてジェット気流を発生させる。原料投入口451より投入された粉体原料は、ケーシング450内のジェット気流によって吸引加速され、衝突板454に衝突することにより粉砕される。または、ジェット気流によって吸引加速された粉体同士が衝突することにより粉砕される。ケーシング450内には、粉砕圧力を常時若しくは定期的なタイミング(例えば、5秒間隔)にて計測するための圧力センサ(不図示)が設けられる。 In the powder processing apparatus 4E according to the fifth embodiment, a gas such as compressed air is introduced into the casing 450 through the ejector gas introduction port 452 and the crushed gas introduction port 453, thereby causing a jet stream inside the casing 450. generate. The powder raw material charged from the raw material charging port 451 is suction-accelerated by the jet stream in the casing 450 and is crushed by colliding with the collision plate 454. Alternatively, the powders sucked and accelerated by the jet stream collide with each other to be crushed. Inside the casing 450, a pressure sensor (not shown) for measuring the crushing pressure at a constant or regular timing (for example, at 5-second intervals) is provided.
 ジェット気流の作用によって粉砕された粉体は、気流と共に搬送され、装置上部に設けた分級ロータ455によって分級される。粉砕された粉体を分級ロータ455へ導くために、衝突板454の周囲に円筒状のガイドリング457を設けてもよい。 The powder crushed by the action of the jet stream is conveyed together with the stream and classified by the classification rotor 455 provided on the upper part of the device. A cylindrical guide ring 457 may be provided around the collision plate 454 to guide the crushed powder to the classification rotor 455.
 分級ロータ455の構成は、実施の形態1と同様である。すなわち、分級ロータ455は、放射状に配される複数の分級羽根455Aを備えたロータであり、分級モータ415Mの動力によって所望の回転速度にて回転するように構成されている。分級モータの回転速度は、回転速度センサS6(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。分級ロータ455は、高速回転による遠心力により、ケーシング450内で処理された粉体のうち所定粒子径未満の粉体のみを通過させ、通過させた粉体のみを粉体取出口456へ導く。 The configuration of the classification rotor 455 is the same as that of the first embodiment. That is, the classification rotor 455 is a rotor provided with a plurality of classification blades 455A arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 415M. The rotation speed of the classification motor is measured by the rotation speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). The classification rotor 455 passes only powder having a particle size smaller than a predetermined particle size among the powder processed in the casing 450 by centrifugal force due to high-speed rotation, and guides only the passed powder to the powder outlet 456.
 ここで、分級ロータ455を通過する粉体の粒子径は、分級ロータ455の回転速度等を制御することによって設定することができる。すなわち、分級ロータ455の回転速度を制御することによって、ケーシング450内から所定粒子径未満の粉体を取り出すことができる。一方、分級ロータ455を通過できない粉体は、ケーシング450内を循環し、繰り返し処理される。 Here, the particle size of the powder passing through the classification rotor 455 can be set by controlling the rotation speed of the classification rotor 455 and the like. That is, by controlling the rotation speed of the classification rotor 455, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 450. On the other hand, the powder that cannot pass through the classification rotor 455 circulates in the casing 450 and is repeatedly processed.
 制御装置100は、希望粒子径の入力に対して、粉体処理装置4Eの制御パラメータに関する演算結果を出力する学習モデル230を生成するために、粉砕ガス導入口453に設けられた圧力センサ(不図示)によって計測される粉砕圧力、回転速度センサS6によって計測される分級ロータ455の回転速度、流量センサS3によって計測される吐出・吸引流量、及び粒子径センサS2によって計測される粒子径データを教師データとして収集する。 The control device 100 is a pressure sensor (non-standard) provided in the crushed gas introduction port 453 in order to generate a learning model 230 that outputs a calculation result regarding the control parameters of the powder processing device 4E in response to the input of the desired particle size. The crushing pressure measured by (shown), the rotation speed of the classification rotor 455 measured by the rotation speed sensor S6, the discharge / suction flow rate measured by the flow rate sensor S3, and the particle size data measured by the particle size sensor S2 are trained. Collect as data.
 制御装置100の制御部101は、収集した教師データを用いて、ユーザが所望する粒子径の入力に応じて、ケーシング450内の粉砕圧力、分級ロータ455の回転速度、粉体取出口456から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する学習モデル230(図15を参照)を生成する。学習モデル230の生成手順は、実施の形態1と同様であるため、その説明を省略する。なお、学習モデル230は、制御装置100によって生成されてもよく、外部のサーバ装置(不図示)によって生成されてもよい。 Using the collected teacher data, the control unit 101 of the control device 100 uses the collected teacher data to input the particle size desired by the user, the crushing pressure in the casing 450, the rotation speed of the classification rotor 455, and the powder from the powder outlet 456. A learning model 230 (see FIG. 15) that outputs calculation results related to control parameters that control the discharge / suction flow rate when the body is taken out is generated. Since the procedure for generating the learning model 230 is the same as that in the first embodiment, the description thereof will be omitted. The learning model 230 may be generated by the control device 100 or may be generated by an external server device (not shown).
 図15は実施の形態5における学習モデル230の構成例を示す模式図である。学習モデル230は、実施の形態1において説明した学習モデル200と同様に、それぞれが1又は複数のノードを備えた入力層231、中間層232A,232B、及び出力層233を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 15 is a schematic diagram showing a configuration example of the learning model 230 according to the fifth embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 230 includes an input layer 231 having one or a plurality of nodes, intermediate layers 232A and 232B, and an output layer 233, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 実施の形態5に係る学習モデル230は、ユーザが所望する粒子径(希望粒子径)の入力に対して、ケーシング450内の粉砕圧力、分級ロータ455の回転速度、及びケーシング450からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力するように構成される。 In the learning model 230 according to the fifth embodiment, the crushing pressure in the casing 450, the rotation speed of the classification rotor 455, and the discharge / suction from the casing 450 are obtained in response to the input of the particle diameter (desired particle diameter) desired by the user. It is configured to output the calculation result related to the control parameters that control the flow rate.
 制御装置100は、学習モデル230を用いた演算を行う場合、ユーザが所望する粒子径(希望粒子径)を学習モデル230に入力する。学習モデル230に入力された粒子径のデータは、入力層231を構成するノードを通じて、最初の中間層232Aが備えるノードへ出力される。最初の中間層232Aに入力されたデータは、中間層232Aを構成するノードを通じて、次の中間層232Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層233による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an calculation using the learning model 230, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 230. The particle size data input to the learning model 230 is output to the node included in the first intermediate layer 232A through the nodes constituting the input layer 231. The data input to the first intermediate layer 232A is output to the node included in the next intermediate layer 232B through the nodes constituting the intermediate layer 232A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 233 is obtained.
 出力層233は、粉砕ガス導入口453の粉砕圧力、分級ロータ455の回転速度、及びケーシング450から粉体を取り出す際の吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層233を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉砕ガス導入口453の粉砕圧力がB1、分級ロータ455の回転速度がC1、吐出・吸引流量がV1である確率P1を出力し、第2ノードから、粉砕ガス導入口453の粉砕圧力がB2、分級ロータ455の回転速度がC2、吐出・吸引流量がV2である確率P2を出力し、…、第nノードから、粉砕ガス導入口453の粉砕圧力がBn、分級ロータ455の回転速度がCn、吐出・吸引流量がVnである確率Pnを出力してもよい。出力層233を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 233 outputs calculation results related to control parameters that control the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the discharge / suction flow rate when the powder is taken out from the casing 450. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 233 is composed of n nodes from the first node to the nth node, and from the first node, the crushing pressure of the crushing gas introduction port 453 is B1, and the rotation speed of the classification rotor 455 is C1. , The probability P1 that the discharge / suction flow rate is V1 is output, and the probability P2 that the crushing pressure of the crushing gas introduction port 453 is B2, the rotation speed of the classification rotor 455 is C2, and the discharge / suction flow rate is V2 from the second node. , ..., The probability Pn that the crushing pressure of the crushing gas introduction port 453 is Bn, the rotation speed of the classification rotor 455 is Cn, and the discharge / suction flow rate is Vn may be output from the nth node. The number of nodes constituting the output layer 233 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層233から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉砕ガス導入口453の粉砕圧力、分級ロータ455の回転速度、及び吐出・吸引流量の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、ケーシング450内にジェット気流を生じさせる圧縮空気等の粉砕圧力、分級モータ415M、ブロワ7の動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 233 (in the present embodiment, the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the discharge). -By specifying the combination of suction flow rates), the control parameters used for control are determined. Based on the determined control parameters, the control unit 101 generates control commands for controlling the crushing pressure of compressed air or the like that generates a jet stream in the casing 450, the operation of the classification motor 415M, and the blower 7, and each of them is generated through the output unit 104. Output to the device.
 以上のように、実施の形態5では、気流式の粉体処理装置4Eに関して、ユーザが所望する粒子径の入力に応じて、粉砕ガス導入口453の粉砕圧力、分級ロータ455の回転速度、粉体取出口456から粉体を取り出す際の吐出・吸引流量を制御するための制御パラメータに関する演算結果を出力する学習モデル230を生成する。また、学習モデル230を用いることにより、粉砕ガス導入口453の粉砕圧力、分級ロータ455の回転速度、ケーシング450からの吐出・吸引流量を制御するための制御パラメータに関する演算結果が得られる。制御装置100は、所望の粒子径を有する粉体が得られるように、学習モデル230の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, in the fifth embodiment, regarding the air flow type powder processing apparatus 4E, the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the powder are obtained according to the input of the particle size desired by the user. A learning model 230 is generated that outputs calculation results related to control parameters for controlling the discharge / suction flow rate when the powder is taken out from the body take-out port 456. Further, by using the learning model 230, calculation results regarding the crushing pressure of the crushing gas introduction port 453, the rotation speed of the classification rotor 455, and the control parameters for controlling the discharge / suction flow rate from the casing 450 can be obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 230 so that the powder having a desired particle size can be obtained.
(実施の形態6)
 実施の形態6では、粉体処理装置4Aに関して、ユーザが所望する粒子径の入力に対し、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410からの吐出・吸引流量、原料供給機2による粉体原料の供給量、及びケーシング410内の温度を制御する制御パラメータに関する演算結果を出力する学習モデル240の構成について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 6)
In the sixth embodiment, regarding the powder processing apparatus 4A, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the discharge / suction flow rate from the casing 410, and the raw material supply machine with respect to the input of the particle size desired by the user. The configuration of the learning model 240 that outputs the calculation results regarding the control parameters that control the supply amount of the powder raw material and the temperature in the casing 410 according to No. 2 will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図16は実施の形態6における学習モデル240の構成例を示す模式図である。学習モデル240は、実施の形態1において説明した学習モデル200と同様に、それぞれが1又は複数のノードを備えた入力層241、中間層242A,242B、及び出力層243を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 16 is a schematic diagram showing a configuration example of the learning model 240 in the sixth embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 240 includes an input layer 241 having one or a plurality of nodes, intermediate layers 242A and 242B, and an output layer 243, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 実施の形態6に係る学習モデル240は、ユーザが所望する粒子径(希望粒子径)の入力に対して、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410からの吐出・吸引流量、原料供給機2による粉体原料の供給量、及びケーシング410内の温度を制御する制御パラメータに関する演算結果を出力するように構成される。粉体原料の供給量は、単位時間あたりの供給量(すなわち供給速度)であってもよい。 In the learning model 240 according to the sixth embodiment, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410 are obtained in response to the input of the particle diameter (desired particle diameter) desired by the user. , The calculation result regarding the control parameter for controlling the supply amount of the powder raw material by the raw material supply machine 2 and the temperature in the casing 410 is output. The supply amount of the powder raw material may be the supply amount per unit time (that is, the supply rate).
 このような学習モデル240は、粉体処理装置4Aから得られる粒子径に関する粒子径データ(粒子径センサS2により計測される粒子径のデータ)と、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410から粉体を取り出す際の吐出・吸引流量、重量センサS1により得られる粉体原料の供給量、及び温度センサS4により得られるケーシング410内の温度を含む計測データとを教師データに用いて、粒子径と制御パラメータとの間の関係を学習することにより生成される。なお、粉体原料の供給量は、単位時間あたりの供給量(すなわち供給速度)であってもよい。また、粉体原料の供給量及びケーシング410内の温度の何れか一方のみを制御パラメータとして採用してもよい。学習モデル240は、制御装置100によって生成されてもよく、外部のサーバ装置(不図示)によって生成されてもよい。 In such a learning model 240, the particle size data (particle size data measured by the particle size sensor S2) regarding the particle size obtained from the powder processing device 4A and the rotation of the crushing rotor 413 included in the powder processing device 4A Includes speed, rotational speed of classifying rotor 415, discharge / suction flow rate when taking out powder from casing 410, supply amount of powder raw material obtained by weight sensor S1, and temperature in casing 410 obtained by temperature sensor S4. It is generated by learning the relationship between the particle size and the control parameters using the measured data as the teacher data. The supply amount of the powder raw material may be the supply amount per unit time (that is, the supply rate). Further, only one of the supply amount of the powder raw material and the temperature inside the casing 410 may be adopted as the control parameter. The learning model 240 may be generated by the control device 100 or by an external server device (not shown).
 制御装置100は、学習モデル240を用いた演算を行う場合、ユーザが所望する粒子径(希望粒子径)を学習モデル240に入力する。学習モデル240に入力された粒子径のデータは、入力層241を構成するノードを通じて、最初の中間層242Aが備えるノードへ出力される。最初の中間層242Aに入力されたデータは、中間層242Aを構成するノードを通じて、次の中間層242Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層243による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs an operation using the learning model 240, the control device 100 inputs the particle diameter (desired particle diameter) desired by the user into the learning model 240. The particle size data input to the learning model 240 is output to the node included in the first intermediate layer 242A through the nodes constituting the input layer 241. The data input to the first intermediate layer 242A is output to the node included in the next intermediate layer 242B through the nodes constituting the intermediate layer 242A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 243 is obtained.
 出力層243は、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410から粉体を取り出す際の吐出・吸引流量、粉体原料の供給量、及びケーシング410内の温度を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層243を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉砕ロータ413の回転速度がG1、分級ロータ415の回転速度がC1、吐出・吸引流量がV1、粉体原料の供給量がF1、ケーシング410内の温度がT1である確率P1を出力し、第2ノードから、粉砕ロータ413の回転速度がG2、分級ロータ415の回転速度がC2、吐出・吸引流量がV2、粉体原料の供給量がF2、ケーシング410内の温度がT2である確率P2を出力し、…、第nノードから、粉砕ロータ413の回転速度がGn、分級ロータ415の回転速度がCn、吐出・吸引流量がVn、粉体原料の供給量がFn、ケーシング410内の温度がTnである確率Pnを出力してもよい。出力層243を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 243 controls the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the discharge / suction flow rate when taking out powder from the casing 410, the supply amount of the powder raw material, and the temperature inside the casing 410. Outputs the calculation result related to the parameter. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 243 is composed of n nodes from the first node to the nth node, and the rotation speed of the crushing rotor 413 is G1, the rotation speed of the classification rotor 415 is C1, and the discharge is performed from the first node. The probability P1 that the suction flow rate is V1, the supply amount of the powder raw material is F1, and the temperature inside the casing 410 is T1 is output, and the rotation speed of the crushing rotor 413 is G2 and the rotation speed of the classification rotor 415 is from the second node. Is C2, the discharge / suction flow rate is V2, the supply amount of the powder raw material is F2, the probability P2 that the temperature inside the casing 410 is T2 is output, and ..., The rotation speed of the crushing rotor 413 is Gn from the nth node. You may output the probability Pn that the rotation speed of the classification rotor 415 is Cn, the discharge / suction flow rate is Vn, the supply amount of the powder raw material is Fn, and the temperature in the casing 410 is Tn. The number of nodes constituting the output layer 243 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層243から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉砕ロータ413の回転速度、分級ロータ415の回転速度、吐出・吸引流量、粉体原料の供給量、及びケーシング410内の温度の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、粉砕モータ413M、分級モータ415M、ブロワ7、原料供給機2、熱風発生機3のそれぞれの動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 243 (in the present embodiment, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate). , The supply amount of the powder raw material, and the combination of the temperature in the casing 410), the control parameters used for the control are determined. Based on the determined control parameters, the control unit 101 generates control commands for controlling the operations of the crushing motor 413M, the classification motor 415M, the blower 7, the raw material supply machine 2, and the hot air generator 3, and each of them is generated through the output unit 104. Output to the device.
 以上のように、実施の形態6に係る学習モデル240を用いた場合、粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410からの吐出・吸引流量に加え、粉体原料の供給量及びケーシング410内の温度を制御する制御パラメータに関する演算結果が得られる。制御装置100は、所望の粒子径を有する粉体が得られるように、学習モデル240の演算結果に基づき、粉体処理システム1の動作を制御することができる。 As described above, when the learning model 240 according to the sixth embodiment is used, in addition to the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, the supply amount of the powder raw material. And the calculation result regarding the control parameter for controlling the temperature in the casing 410 is obtained. The control device 100 can control the operation of the powder processing system 1 based on the calculation result of the learning model 240 so that the powder having a desired particle size can be obtained.
 実施の形態6では、機械式の粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the sixth embodiment, an application example to the mechanical powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態7)
 実施の形態7では、粉体処理装置4Aに関して、ユーザが所望する粒子径と、粉体の円形度、粉体原料の水分含有量、粉体処理装置4Aの駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度、及び環境湿度の少なくとも1つとの入力に対し、演算結果を出力する学習モデル250について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 7)
In the seventh embodiment, regarding the powder processing apparatus 4A, the particle size desired by the user, the circularity of the powder, the water content of the powder raw material, the driving power or driving current of the powder processing apparatus 4A, and the heat medium temperature. , The learning model 250 that outputs the calculation result with respect to the input of at least one of the medium weight, the environmental temperature, and the environmental humidity will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図17は実施の形態7における学習モデル250の構成例を示す模式図である。学習モデル250は、実施の形態1において説明した学習モデル200と同様に、それぞれが1又は複数のノードを備えた入力層251、中間層252A,252B、及び出力層253を備える。中間層の数は2つに限定されず、3つ以上であってもよい。 FIG. 17 is a schematic diagram showing a configuration example of the learning model 250 according to the seventh embodiment. Similar to the learning model 200 described in the first embodiment, the learning model 250 includes an input layer 251 having one or a plurality of nodes, intermediate layers 252A and 252B, and an output layer 253, respectively. The number of intermediate layers is not limited to two, and may be three or more.
 実施の形態7に係る学習モデル250は、ユーザが所望する粒子径(希望粒子径)と、粉体の円形度、粉体原料の水分含有量、粉体処理装置4Aの駆動電力又は駆動電流、粉体処理装置4Aに導入する流体の温度(熱媒温度)、媒体攪拌型の粉体処理装置における媒体の重量(媒体重量)、環境温度、及び環境湿度の少なくとも1つとの入力に対して、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力するように構成される。 In the learning model 250 according to the seventh embodiment, the particle size (desired particle size) desired by the user, the circularity of the powder, the water content of the powder raw material, the driving power or the driving current of the powder processing apparatus 4A, For input of at least one of the temperature of the fluid (heat medium temperature) to be introduced into the powder processing apparatus 4A, the weight of the medium (medium weight) in the medium stirring type powder processing apparatus, the environmental temperature, and the environmental humidity. It is configured to output calculation results related to control parameters that control the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
 このような学習モデル250は、粉体処理装置4Aから得られる粒子径に関する粒子径データと、粉体の円形度、粉体原料の水分含有量、粉体処理装置4Aの駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度、及び環境湿度の少なくとも1つに関するデータと、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410から粉体を取り出す際の吐出・吸引流量を含む計測データとを教師データに用いて、入出力の関係を学習することにより生成される。ここで、粉体の円形度は、例えば(粒子の投影面積と等しい投影面積を有する円の周長)/(粒子の周長)によって表される値であり、公知の計測装置を用いて収集することができる。粉体原料の水分含有量は、例えば質量%によって表される値であり、赤外線水分計などの公知の計測装置を用いて収集することができる。粉体処理装置4Aの駆動電力及び駆動電流は、粉体処理装置4Aの内部において計測される値を取得すればよい。熱媒温度は、粉体処理装置4Aの内部において計測される値を用いればよく、媒体重量は、事前に計測された値を用いればよい。環境温度及び環境湿度は、粉体処理装置4Aが設定されている周囲環境の温度及び湿度であり、公知の温度センサ及び湿度センサを用いて収集することができる。学習モデル250は、制御装置100によって生成されてもよく、外部のサーバ装置(不図示)によって生成されてもよい。 In such a learning model 250, the particle size data regarding the particle size obtained from the powder processing device 4A, the circularity of the powder, the water content of the powder raw material, the driving power or the driving current of the powder processing device 4A, Data on at least one of heat medium temperature, medium weight, environmental temperature, and environmental humidity, and the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the casing 410 included in the powder processing apparatus 4A. It is generated by learning the relationship between input and output using the measurement data including the discharge / suction flow rate at the time as the teacher data. Here, the circularity of the powder is a value represented by, for example, (perimeter of a circle having a projected area equal to the projected area of the particles) / (perimeter of the particles), and is collected using a known measuring device. can do. The water content of the powder raw material is a value represented by, for example,% by mass, and can be collected using a known measuring device such as an infrared moisture meter. The drive power and drive current of the powder processing device 4A may be obtained by acquiring values measured inside the powder processing device 4A. The heat medium temperature may be a value measured inside the powder processing apparatus 4A, and the medium weight may be a value measured in advance. The environmental temperature and humidity are the temperature and humidity of the ambient environment in which the powder processing apparatus 4A is set, and can be collected by using a known temperature sensor and humidity sensor. The learning model 250 may be generated by the control device 100 or by an external server device (not shown).
 制御装置100は、学習モデル250を用いた演算を行う場合、ユーザが所望する粉体の粒子径(希望粒子径)と、ユーザが所望する粉体の円形度、ユーザが所望する粉体の水分含有量、ユーザが設定する粉体処理装置4Aの駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度の実測値、環境湿度の実測値の少なくとも1つとを学習モデル250に入力する。学習モデル250に入力されたデータは、入力層251を構成するノードを通じて、最初の中間層252Aが備えるノードへ出力される。最初の中間層252Aに入力されたデータは、中間層252Aを構成するノードを通じて、次の中間層252Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層253による演算結果が得られるまで次々と後の層に伝達される。 When the control device 100 performs the calculation using the learning model 250, the particle size (desired particle size) of the powder desired by the user, the circularity of the powder desired by the user, and the moisture content of the powder desired by the user At least one of the content, the driving power or driving current of the powder processing apparatus 4A set by the user, the heat medium temperature, the medium weight, the measured value of the environmental temperature, and the measured value of the environmental humidity is input to the learning model 250. The data input to the learning model 250 is output to the nodes included in the first intermediate layer 252A through the nodes constituting the input layer 251. The data input to the first intermediate layer 252A is output to the node included in the next intermediate layer 252B through the nodes constituting the intermediate layer 252A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 253 is obtained.
 出力層253は、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410から粉体を取り出す際の吐出・吸引流量、粉体原料の供給量、及びケーシング410内の温度を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層253を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉砕ロータ413の回転速度がG1、分級ロータ415の回転速度がC1、吐出・吸引流量がV1である確率P1を出力し、第2ノードから、粉砕ロータ413の回転速度がG2、分級ロータ415の回転速度がC2、吐出・吸引流量がV2である確率P2を出力し、…、第nノードから、粉砕ロータ413の回転速度がGn、分級ロータ415の回転速度がCn、吐出・吸引流量がVnである確率Pnを出力してもよい。出力層253を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。 The output layer 253 controls the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, the discharge / suction flow rate when powder is taken out from the casing 410, the supply amount of the powder raw material, and the temperature inside the casing 410. Outputs the calculation result related to the control parameter. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 253 is composed of n nodes from the first node to the nth node, and the rotation speed of the crushing rotor 413 is G1, the rotation speed of the classification rotor 415 is C1, and the discharge is performed from the first node. The probability P1 that the suction flow rate is V1 is output, and the rotation speed P2 of the crushing rotor 413 is G2, the rotation speed of the classification rotor 415 is C2, and the discharge / suction flow rate is V2 is output from the second node. ..., The probability Pn that the rotation speed of the crushing rotor 413 is Gn, the rotation speed of the classification rotor 415 is Cn, and the discharge / suction flow rate is Vn may be output from the nth node. The number of nodes constituting the output layer 253 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
 制御装置100の制御部101は、出力層253から出力される確率のうち、確率が最も高い組み合わせ(本実施の形態では、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及び吐出・吸引流量の組み合わせ)を特定することにより、制御に用いる制御パラメータを決定する。制御部101は、決定した制御パラメータに基づき、粉砕モータ413M、分級モータ415M、ブロワ7のそれぞれの動作を制御する制御指令を生成し、出力部104を通じて各装置へ出力する。 The control unit 101 of the control device 100 has the highest probability of being output from the output layer 253 (in this embodiment, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction). By specifying the combination of flow rates), the control parameters used for control are determined. Based on the determined control parameters, the control unit 101 generates control commands for controlling the operations of the crushing motor 413M, the classification motor 415M, and the blower 7, and outputs the control commands to each device through the output unit 104.
 以上のように、実施の形態7に係る学習モデル250を用いた場合、ユーザが所望する粉体の粒子径、ユーザが所望する粉体の円形度、ユーザが所望する粉体の水分含有量、ユーザが設定する粉体処理装置4Aの駆動電力又は駆動電流等を条件として粉体を生成することができる。 As described above, when the learning model 250 according to the seventh embodiment is used, the particle size of the powder desired by the user, the circularity of the powder desired by the user, the water content of the powder desired by the user, and the like. The powder can be generated on condition of the drive power or drive current of the powder processing apparatus 4A set by the user.
 なお、実施の形態7に係る学習モデル250は、ユーザが所望する粒子径と、粉体の円形度、粉体原料の水分含有量、粉体処理装置4Aの駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度、及び環境湿度の少なくとも1つとの入力に対して、演算結果を出力する構成としたが、含塵濃度、粉体の組成、粉体の湿分、圧力、音圧若しくは周波数の少なくとも1つを更に入力する構成としてもよい。 In the learning model 250 according to the seventh embodiment, the particle size desired by the user, the circularity of the powder, the water content of the powder raw material, the driving power or driving current of the powder processing apparatus 4A, and the heat medium temperature , The composition is such that the calculation result is output for the input of at least one of the medium weight, the environmental temperature, and the environmental humidity, but the dust content concentration, the powder composition, the powder moisture, the pressure, the sound pressure, or the like. At least one of the frequencies may be further input.
 また、実施の形態7に係る学習モデル250は、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する構成としたが、これらの制御パラメータに加え、粉体原料の供給量、及びケーシング410内の温度の少なくとも1つを制御する制御パラメータに関する演算結果を出力する構成であってもよい。 Further, the learning model 250 according to the seventh embodiment is configured to output calculation results regarding control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410. However, in addition to these control parameters, the configuration may be such that the calculation result regarding the control parameter that controls at least one of the supply amount of the powder raw material and the temperature in the casing 410 is output.
 また、学習モデル250へ入力する制御パラメータの少なくとも1つを時系列的に変化させる場合、学習モデル250はリカレントニューラルネットワークにより構築されるモデルを採用すればよい。 Further, when at least one of the control parameters input to the learning model 250 is changed in time series, the learning model 250 may adopt a model constructed by the recurrent neural network.
 実施の形態7では、機械式の粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the seventh embodiment, an application example to the mechanical powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態8)
 実施の形態8では、粉体処理装置4Aに関して、粉体原料の種別に応じて学習モデル200を生成する構成について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 8)
In the eighth embodiment, the configuration for generating the learning model 200 according to the type of the powder raw material will be described with respect to the powder processing apparatus 4A.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 実施の形態8に係る制御装置100は、粉体原料の種別毎に、粉体処理装置4Aから得られる粉体の粒子径データと、粉体処理装置4Aが備える粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410から粉体を取り出す際の吐出・吸引流量を含む計測データとを収集する。図18は実施の形態8におけるデータの収集例を示す概念図である。制御装置100の制御部101は、入力部103を通じて、粒子径センサS2、粉砕ロータ413の回転速度センサS5、分級ロータ415の回転速度センサS6、及び流量センサS3から計測データを取得し、取得したデータをタイムスタンプや粉体原料の種別に関する情報と共に記憶部102に記憶させる。ここで、粉体原料の種別に関する情報とは、粉体原料の種別名を示す文字情報であってもよく、粉体原料の種別を特定できる任意の識別子であってもよい。粉体原料の種別に関する情報は、データの収集前若しくはデータの収集後に操作部106を通じて受付ければよい。図18の例は、トナー原料、黒鉛、二酸化マンガン(MnO2 )といった粉体原料の種別毎にデータを収集し、記憶部102に記憶させた状態を示している。 The control device 100 according to the eighth embodiment has the powder particle size data obtained from the powder processing device 4A, the rotation speed of the crushing rotor 413 included in the powder processing device 4A, and the classification for each type of powder raw material. The rotation speed of the rotor 415 and the measurement data including the discharge / suction flow rate when the powder is taken out from the casing 410 are collected. FIG. 18 is a conceptual diagram showing an example of collecting data in the eighth embodiment. The control unit 101 of the control device 100 acquires measurement data from the particle size sensor S2, the rotation speed sensor S5 of the crushing rotor 413, the rotation speed sensor S6 of the classification rotor 415, and the flow rate sensor S3 through the input unit 103. The data is stored in the storage unit 102 together with the time stamp and information on the type of the powder raw material. Here, the information regarding the type of the powder raw material may be character information indicating the type name of the powder raw material, or may be an arbitrary identifier that can specify the type of the powder raw material. Information on the type of powder raw material may be received through the operation unit 106 before data collection or after data collection. The example of FIG. 18 shows a state in which data is collected for each type of powder raw material such as toner raw material, graphite, and manganese dioxide (MnO 2 ) and stored in the storage unit 102.
 制御部101は、粉体原料の種別毎に収集したデータを教師データに用いて、学習モデル200を生成する。 The control unit 101 uses the data collected for each type of powder raw material as the teacher data to generate the learning model 200.
 図19は実施の形態8に係る学習モデル200の生成手順を説明するフローチャートである。制御装置100の制御部101は、学習モデル200の生成に先立ち、粉体原料の種別に関する情報を受付ける(ステップS401)。制御部101は、例えば、粉体原料の種別をユーザに問い合わせる画面を表示部107に表示させ、表示させた画面を通じて、粉体原料の種別に関する情報を受付けることができる。また、制御部101は、粉体原料の種別に関する問い合わせを通信部105より端末装置500へ送信し、端末装置500からの返信を受信することにより、粉体原料の種別に関する情報を受付けてもよい。 FIG. 19 is a flowchart illustrating a procedure for generating the learning model 200 according to the eighth embodiment. The control unit 101 of the control device 100 receives information regarding the type of the powder raw material prior to the generation of the learning model 200 (step S401). For example, the control unit 101 displays a screen for inquiring the user about the type of the powder raw material on the display unit 107, and can receive information on the type of the powder raw material through the displayed screen. Further, the control unit 101 may receive information on the type of the powder raw material by transmitting an inquiry about the type of the powder raw material from the communication unit 105 to the terminal device 500 and receiving a reply from the terminal device 500. ..
 次いで、制御部101は、ステップS401で受付けた種別に関連付けて記憶されているデータを記憶部102から読込む(ステップS402)。制御部101は、読込んだデータから、教師データに用いるデータを選択する(ステップS403)。すなわち、制御部101は、読込んだデータから、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量の実測値と、そのときに得られた粉体の粒子径の値(D10,D50,D90)とを一組だけ選択する。 Next, the control unit 101 reads the data stored in association with the type received in step S401 from the storage unit 102 (step S402). The control unit 101 selects the data to be used for the teacher data from the read data (step S403). That is, the control unit 101 uses the read data to measure the rotational speed of the crushing rotor 413, the rotational speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, and the powder obtained at that time. Only one set of particle size values (D10, D50, D90) is selected.
 次いで、制御部101は、選択した教師データに含まれる粒子径の値を学習モデル200へ入力し(ステップS404)、学習モデル200による演算を実行する(ステップS405)。すなわち、制御部101は、学習モデル200の入力層201を構成するノードに粒子径の値を入力し、中間層202A,202Bにおいてノード間の重み及びバイアスを用いた演算を行い、演算結果を出力層203のノードから出力する処理を行う。なお、学習が開始される前の初期段階では、学習モデル200を記述する定義情報には初期値が与えられているものとする。 Next, the control unit 101 inputs the value of the particle diameter included in the selected teacher data into the learning model 200 (step S404), and executes the calculation by the learning model 200 (step S405). That is, the control unit 101 inputs the value of the particle diameter to the nodes constituting the input layer 201 of the learning model 200, performs the calculation using the weights and biases between the nodes in the intermediate layers 202A and 202B, and outputs the calculation result. The process of outputting from the node of layer 203 is performed. In the initial stage before the start of learning, it is assumed that the definition information describing the learning model 200 is given an initial value.
 次いで、制御部101は、ステップS405で得られた演算結果を評価し(ステップS406)、学習が完了したか否かを判断する(ステップS407)。具体的には、制御部101は、ステップS405で得られた演算結果と教師データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。制御部101は、最急降下法などの勾配降下法により誤差関数を最適化(最小化又は最大化)する課程で、誤差関数が閾値以下(又は閾値以上)となった場合、学習が完了したと判断する。なお、過学習の問題を避けるために、交差検定、早期打ち切りなどの手法を取り入れ、適切なタイミングにて学習を終了させてもよい。 Next, the control unit 101 evaluates the calculation result obtained in step S405 (step S406), and determines whether or not the learning is completed (step S407). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S405 and the teacher data. .. The control unit 101 is in the process of optimizing (minimizing or maximizing) the error function by a gradient descent method such as the steepest descent method, and when the error function is below the threshold value (or above the threshold value), the learning is completed. to decide. In order to avoid the problem of overfitting, techniques such as cross-validation and early stopping may be adopted to end learning at an appropriate timing.
 学習が完了してないと判断した場合(S407:NO)、制御部101は、学習モデル200のノード間の重み及びバイアスを更新して(ステップS408)、処理をステップS403へ戻し、別の教師データを用いた学習を継続する。制御部101は、学習モデル200の出力層203から入力層201に向かって、ノード間の重み及びバイアスを順次更新する誤差逆伝搬法を用いて、各ノード間の重み及びバイアスを更新することができる。 When it is determined that the learning is not completed (S407: NO), the control unit 101 updates the weights and biases between the nodes of the learning model 200 (step S408), returns the process to step S403, and another teacher. Continue learning with the data. The control unit 101 may update the weights and biases between the nodes by using the error back propagation method in which the weights and biases between the nodes are sequentially updated from the output layer 203 to the input layer 201 of the learning model 200. it can.
 学習が完了したと判断した場合(S407:YES)、制御部101は、粉体原料の種別に関する情報に関連付けて、学習済みの学習モデル200を記憶部102に記憶させ(ステップS409)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S407: YES), the control unit 101 stores the learned learning model 200 in the storage unit 102 in association with the information regarding the type of the powder raw material (step S409), and this flowchart. Ends the processing by.
 以上のように、実施の形態8に係る制御装置100は、粉体原料の種別に応じた学習モデル200を生成できる。実施の形態8における学習モデル200は、実施の形態1と同様であるが、学習モデル200に代えて、実施の形態2~7において説明した学習モデル210~250を粉体原料の種別毎に生成してもよい。 As described above, the control device 100 according to the eighth embodiment can generate the learning model 200 according to the type of the powder raw material. The learning model 200 in the eighth embodiment is the same as that in the first embodiment, but instead of the learning model 200, the learning models 210 to 250 described in the second to seventh embodiments are generated for each type of powder raw material. You may.
 なお、本実施の形態では、制御装置100において学習モデル200を生成する構成としたが、学習モデル200を生成する外部サーバ(不図示)を設け、外部サーバにて学習モデル200を生成してもよい。この場合、制御装置100は、通信等により、外部サーバから学習モデル200を取得し、取得した学習モデル200を記憶部102に記憶させればよい。 In the present embodiment, the control device 100 is configured to generate the learning model 200, but even if an external server (not shown) for generating the learning model 200 is provided and the learning model 200 is generated by the external server. Good. In this case, the control device 100 may acquire the learning model 200 from the external server by communication or the like, and store the acquired learning model 200 in the storage unit 102.
 図20は制御装置100による制御手順を説明するフローチャートである。制御装置100の制御部101は、操作部106を通じて、粉体原料の種別に関する情報、及びユーザが所望する粒子径の入力を受付ける(ステップS421)。 FIG. 20 is a flowchart illustrating a control procedure by the control device 100. The control unit 101 of the control device 100 receives information regarding the type of the powder raw material and input of the particle size desired by the user through the operation unit 106 (step S421).
 次いで、制御部101は、受付けた粉体原料の種別に応じた学習モデル200を記憶部102から読み出す(ステップS422)。制御部101は、受付けた粒子径のデータをステップS422で読み出した学習モデル200の入力層201へ入力し、学習モデル200による演算を実行する(ステップS423)。このとき、制御部101は、受付けた粒子径のデータを入力層201のノードに与え、中間層202A,202Bによる演算を実行する。学習モデル200の出力層203は、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。 Next, the control unit 101 reads out the learning model 200 according to the type of the received powder raw material from the storage unit 102 (step S422). The control unit 101 inputs the received particle size data to the input layer 201 of the learning model 200 read out in step S422, and executes the calculation by the learning model 200 (step S423). At this time, the control unit 101 gives the received particle size data to the node of the input layer 201, and executes the calculation by the intermediate layers 202A and 202B. The output layer 203 of the learning model 200 outputs calculation results related to control parameters for controlling the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410.
 次いで、制御部101は、学習モデル200から演算結果を取得し(ステップS424)、制御に用いる制御パラメータを決定する(ステップS425)。制御部101は、演算結果として出力される確率に基づき、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及び吐出・吸引流量の組み合わせを決定すればよい。 Next, the control unit 101 acquires the calculation result from the learning model 200 (step S424) and determines the control parameters used for control (step S425). The control unit 101 may determine a combination of the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate based on the probability of being output as the calculation result.
 次いで、制御部101は、ステップS425において決定した制御パラメータに基づき、制御を実行する(ステップS426)。すなわち、制御部101は、粉砕ロータ413及び分級ロータ415の回転速度がステップS425において決定した値となるように、粉砕モータ413M及び分級モータ415Mに対する制御指令を生成し、出力部104を通じて粉体処理装置4Aへ出力する。また、制御部101は、ケーシング410からの吐出・吸引流量がステップS425において決定した値となるように、ブロワ7に対する制御指令を生成し、出力部104を通じてブロワ7へ出力する。 Next, the control unit 101 executes control based on the control parameters determined in step S425 (step S426). That is, the control unit 101 generates control commands for the crushing motor 413M and the classification motor 415M so that the rotation speeds of the crushing rotor 413 and the classification rotor 415 become the values determined in step S425, and powder processing is performed through the output unit 104. Output to device 4A. Further, the control unit 101 generates a control command for the blower 7 so that the discharge / suction flow rate from the casing 410 becomes the value determined in step S425, and outputs the control command to the blower 7 through the output unit 104.
 以上のように、本実施の形態に係る制御装置100は、粉体原料の種別に応じた学習モデル200を用いて、制御パラメータを決定することができる。制御装置100は、所望の粒子径を有する粉体が得られるように、決定した制御パラメータに基づく制御を実行することができる。 As described above, the control device 100 according to the present embodiment can determine the control parameters by using the learning model 200 according to the type of the powder raw material. The control device 100 can perform control based on the determined control parameters so that a powder having a desired particle size can be obtained.
 なお、本実施の形態では、粉体原料の種別毎に生成した学習モデル200を用いて、制御パラメータを決定する構成としたが、実施の形態2~7において説明した学習モデル210~250を粉体原料の種別毎に生成し、生成した学習モデル210~250を用いて、制御パラメータを決定する構成としてもよい。 In the present embodiment, the control parameters are determined using the learning model 200 generated for each type of powder raw material. However, the learning models 210 to 250 described in the second to seventh embodiments are used as powder. The control parameters may be determined by generating for each type of body material and using the generated learning models 210 to 250.
 実施の形態8では、機械式の粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the eighth embodiment, an application example to the mechanical powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態9)
 実施の形態9では、学習モデル200の再学習手順について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 9)
In the ninth embodiment, the re-learning procedure of the learning model 200 will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図21は学習モデル200の再学習手順を説明するフローチャートである。実施の形態1において説明したように、運用フェーズにおいて、制御装置100の制御部101は、ユーザが所望する粒子径(希望粒子径)の入力を受付け、受付けた粒子径のデータを学習モデル200へ入力することにより、制御パラメータに関する演算結果を取得する。制御部101は、学習モデル200から取得した演算結果に基づき、粉体処理システム1を構成する各装置の動作を制御する。制御部101は、運用フェーズにおいて、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を含む計測データと、粉体処理装置4Aから得られる粉体の粒子径データとを収集してもよい。収集した計測データ及び粒子径データは、タイムスタンプと共に、記憶部102に記憶される。 FIG. 21 is a flowchart illustrating a re-learning procedure of the learning model 200. As described in the first embodiment, in the operation phase, the control unit 101 of the control device 100 accepts the input of the particle diameter (desired particle diameter) desired by the user, and transfers the received particle diameter data to the learning model 200. By inputting, the calculation result related to the control parameter is acquired. The control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 200. In the operation phase, the control unit 101 includes measurement data including the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, and the powder particles obtained from the powder processing apparatus 4A. Diameter data and may be collected. The collected measurement data and particle size data are stored in the storage unit 102 together with the time stamp.
 制御部101は、運用フェーズ開始後の適宜のタイミングにて、粒子径データが示す粒子径(すなわち、粒子径の実測値)と、ユーザの希望粒子径とを比較する(ステップS501)。学習モデル200への入力がD50の値のみである場合、制御部101は、実測値として得られたD50の値と、希望粒子径として入力されたD50の値とを比較すればよい。また、学習モデル200への入力がD10,D50,D90の値(若しくは、それらの上限値及び下限値)である場合、制御部101は、実測値として得られたD10,D50,D90の値と、希望粒子径として入力されたD10,D50,D90の値(若しくは、それらの上限値及び下限値)とを比較すればよい。制御部101は、比較結果に基づき、再学習を実行するか否かを判断する(ステップS502)。 The control unit 101 compares the particle size indicated by the particle size data (that is, the actually measured value of the particle size) with the desired particle size of the user at an appropriate timing after the start of the operation phase (step S501). When the input to the learning model 200 is only the value of D50, the control unit 101 may compare the value of D50 obtained as the actually measured value with the value of D50 input as the desired particle size. When the input to the learning model 200 is the value of D10, D50, D90 (or the upper limit value and the lower limit value thereof), the control unit 101 sets the value of D10, D50, D90 obtained as the measured value. , The values of D10, D50, and D90 (or their upper and lower limit values) input as the desired particle size may be compared. The control unit 101 determines whether or not to execute re-learning based on the comparison result (step S502).
 粒子径の実測値が希望粒子径に近い場合(例えば、両者の差が10%未満である場合)、制御部101は、再学習を実行しないと判断し(S502:NO)、本フローチャートによる処理を終了する。 When the measured value of the particle size is close to the desired particle size (for example, when the difference between the two is less than 10%), the control unit 101 determines that re-learning is not executed (S502: NO), and processes according to this flowchart. To finish.
 一方、粒子径の実測値が希望粒子径に近くない場合(例えば、両者の差が10%以上である場合)、制御部101は、再学習を実行すると判断する(S502:YES)。 On the other hand, when the measured value of the particle size is not close to the desired particle size (for example, when the difference between the two is 10% or more), the control unit 101 determines that the re-learning is executed (S502: YES).
 再学習を実行すると判断した場合、制御部101は、運用開始後に収集したデータを記憶部102から読み出し(ステップS503)、教師データを選択する(ステップS504)。なお、ステップS503以降の再学習手順は、粉体処理システム1が稼働していないタイミングにて実行すればよい。 When it is determined to execute re-learning, the control unit 101 reads the data collected after the start of operation from the storage unit 102 (step S503) and selects the teacher data (step S504). The re-learning procedure after step S503 may be executed at a timing when the powder processing system 1 is not operating.
 制御部101は、選択した教師データに含まれる粒子径の値を学習モデル200へ入力し(ステップS505)、学習モデル200による演算を実行する(ステップS506)。すなわち、制御部101は、学習モデル200の入力層201を構成するノードに粒子径の値を入力し、中間層202A,202Bにおいてノード間の重み及びバイアスを用いた演算を行い、演算結果を出力層203のノードから出力する処理を行う。 The control unit 101 inputs the value of the particle diameter included in the selected teacher data into the learning model 200 (step S505), and executes the calculation by the learning model 200 (step S506). That is, the control unit 101 inputs the value of the particle diameter to the nodes constituting the input layer 201 of the learning model 200, performs the calculation using the weights and biases between the nodes in the intermediate layers 202A and 202B, and outputs the calculation result. The process of outputting from the node of layer 203 is performed.
 次いで、制御部101は、ステップS506の演算により得られる演算結果を評価し(ステップS507)、学習が完了したか否かを判断する(ステップS508)。具体的には、制御部101は、ステップS506で得られる演算結果と教師データとに基づく誤差関数(目的関数、損失関数、コスト関数ともいう)を用いて、演算結果を評価することができる。 Next, the control unit 101 evaluates the calculation result obtained by the calculation in step S506 (step S507), and determines whether or not the learning is completed (step S508). Specifically, the control unit 101 can evaluate the calculation result by using an error function (also referred to as an objective function, a loss function, or a cost function) based on the calculation result obtained in step S506 and the teacher data.
 学習が完了してないと判断した場合(S508:NO)、制御部101は、学習モデル200のノード間の重み及びバイアスを更新して(ステップS509)、処理をステップS504へ戻し、別の教師データを用いた学習を継続する。制御部101は、学習モデル200の出力層203から入力層201に向かって、ノード間の重み及びバイアスを順次更新する誤差逆伝搬法を用いて、各ノード間の重み及びバイアスを更新することができる。 When it is determined that the learning is not completed (S508: NO), the control unit 101 updates the weights and biases between the nodes of the learning model 200 (step S509), returns the process to step S504, and another teacher. Continue learning with the data. The control unit 101 may update the weights and biases between the nodes by using the error back propagation method in which the weights and biases between the nodes are sequentially updated from the output layer 203 to the input layer 201 of the learning model 200. it can.
 学習が完了したと判断した場合(S508:YES)、制御部101は、学習済みの学習モデル200として記憶部102に記憶させ(ステップS510)、本フローチャートによる処理を終了する。 When it is determined that the learning is completed (S508: YES), the control unit 101 stores the learned learning model 200 in the storage unit 102 (step S510), and ends the process according to this flowchart.
 以上のように、本実施の形態に係る制御装置100は、学習モデル200の再学習を必要に応じて実行するので、運用フェーズの開始後においても、粉体処理システム1による粉体処理の精度を高めることができる。 As described above, since the control device 100 according to the present embodiment relearns the learning model 200 as necessary, the accuracy of powder processing by the powder processing system 1 even after the start of the operation phase. Can be enhanced.
 なお、実施の形態9では、学習モデル200の再学習手順について説明したが、実施の形態2~7において説明した学習モデル210~250、実施の形態8で説明した粉体原料の種別毎の学習モデル200についても、同様の手順にて再学習することが可能である。 Although the re-learning procedure of the learning model 200 has been described in the ninth embodiment, the learning models 210 to 250 described in the second to seventh embodiments and the learning for each type of the powder raw material described in the eighth embodiment have been described. The model 200 can also be relearned by the same procedure.
 実施の形態9では、機械式の粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the ninth embodiment, an application example to the mechanical powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態10)
 実施の形態10では、粉体処理装置4Aにおける制御パラメータの調整手順について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 10)
In the tenth embodiment, the procedure for adjusting the control parameters in the powder processing apparatus 4A will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図22は制御パラメータの調整手順を説明するフローチャートである。実施の形態1において説明したように、運用フェーズにおいて、制御装置100の制御部101は、ユーザが所望する粒子径(希望粒子径)の入力を受付け、受付けた粒子径のデータを学習モデル200へ入力することにより、制御パラメータに関する演算結果を取得する。制御部101は、学習モデル200から取得した演算結果に基づき、粉体処理システム1を構成する各装置の動作を制御する。制御部101は、運用フェーズにおいて、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量を含む計測データと、粉体処理装置4Aから得られる粉体の粒子径データとを収集してもよい。収集した計測データ及び粒子径データは、タイムスタンプと共に、記憶部102に記憶される。 FIG. 22 is a flowchart illustrating a control parameter adjustment procedure. As described in the first embodiment, in the operation phase, the control unit 101 of the control device 100 accepts the input of the particle diameter (desired particle diameter) desired by the user, and transfers the received particle diameter data to the learning model 200. By inputting, the calculation result related to the control parameter is acquired. The control unit 101 controls the operation of each device constituting the powder processing system 1 based on the calculation result acquired from the learning model 200. In the operation phase, the control unit 101 includes measurement data including the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the discharge / suction flow rate from the casing 410, and the powder particles obtained from the powder processing apparatus 4A. Diameter data and may be collected. The collected measurement data and particle size data are stored in the storage unit 102 together with the time stamp.
 制御部101は、運用フェーズ開始後の適宜のタイミングにて、粒子径データが示す粒子径(すなわち、粒子径の実測値)と、ユーザの希望粒子径とを比較する(ステップS601)。学習モデル200への入力がD50の値のみである場合、制御部101は、実測値として得られたD50の値と、希望粒子径として入力されたD50の値とを比較すればよい。また、学習モデル200への入力がD10,D50,D90の値(若しくは、それらの上限値及び下限値)である場合、制御部101は、実測値として得られたD10,D50,D90の値と、希望粒子径として入力されたD10,D50,D90の値(若しくは、それらの上限値及び下限値)とを比較すればよい。制御部101は、比較結果に基づき、制御パラメータを調整するか否かを判断する(ステップS602)。 The control unit 101 compares the particle diameter indicated by the particle diameter data (that is, the actually measured value of the particle diameter) with the desired particle diameter of the user at an appropriate timing after the start of the operation phase (step S601). When the input to the learning model 200 is only the value of D50, the control unit 101 may compare the value of D50 obtained as the actually measured value with the value of D50 input as the desired particle size. When the input to the learning model 200 is the value of D10, D50, D90 (or the upper limit value and the lower limit value thereof), the control unit 101 sets the value of D10, D50, D90 obtained as the measured value. , The values of D10, D50, and D90 (or their upper and lower limit values) input as the desired particle size may be compared. The control unit 101 determines whether or not to adjust the control parameter based on the comparison result (step S602).
 粒子径の実測値が希望粒子径に近い場合(例えば、両者の差が10%未満である場合)、制御部101は、制御パラメータを調整しないと判断し(S602:NO)、本フローチャートによる処理を終了する。 When the measured value of the particle size is close to the desired particle size (for example, when the difference between the two is less than 10%), the control unit 101 determines that the control parameter is not adjusted (S602: NO), and processes according to this flowchart. To finish.
 一方、粒子径の実測値が希望粒子径に近くない場合(例えば、両者の差が10%以上である場合)、制御部101は、制御パラメータを調整すると判断する(S602:YES)。 On the other hand, when the measured value of the particle size is not close to the desired particle size (for example, when the difference between the two is 10% or more), the control unit 101 determines that the control parameter is adjusted (S602: YES).
 制御パラメータを調整すると判断した場合、制御部101は、ステップS602の比較結果に応じて制御パラメータを調整し(ステップS603)、調整後の制御パラメータに基づき粉体処理装置4Aを含む装置の動作を制御する(ステップS604)。例えば、粒子径の実測値が希望粒子径より小さい場合、制御部101は、粉砕ロータ413及び分級ロータ415の回転速度が現在の値より低くなるように、かつ、吐出・吸引流量が現在の値より大きくなるように制御パラメータの調整を行い、調整後の制御パラメータに基づき粉体処理装置4Aを含む装置の動作を制御する。また、粒子径の実測値が希望粒子径より大きい場合、制御部101は、粉砕ロータ413及び分級ロータ415の回転速度が現在の値より高くなるように、かつ、吐出・吸引流量が現在の値より小さくなるように制御パラメータの調整を行い、調整後の制御パラメータに基づき粉体処理装置4Aを含む装置の動作を制御する。 When it is determined that the control parameter is to be adjusted, the control unit 101 adjusts the control parameter according to the comparison result in step S602 (step S603), and operates the device including the powder processing device 4A based on the adjusted control parameter. Control (step S604). For example, when the measured value of the particle size is smaller than the desired particle size, the control unit 101 makes the rotation speeds of the crushing rotor 413 and the classification rotor 415 lower than the current values, and the discharge / suction flow rate is the current value. The control parameters are adjusted so as to be larger, and the operation of the device including the powder processing device 4A is controlled based on the adjusted control parameters. When the measured value of the particle size is larger than the desired particle size, the control unit 101 sets the rotation speeds of the crushing rotor 413 and the classification rotor 415 to be higher than the current values, and the discharge / suction flow rate is the current value. The control parameters are adjusted so as to be smaller, and the operation of the device including the powder processing device 4A is controlled based on the adjusted control parameters.
 以上のように、本実施の形態では、粉体処理システム1の稼働中に粒子径の実測値とユーザの希望粒子径との間に一定以上の乖離が生じた場合、その乖離が小さくなるように制御パラメータを調整することができる。 As described above, in the present embodiment, when a deviation of a certain amount or more occurs between the measured value of the particle size and the particle size desired by the user during the operation of the powder processing system 1, the deviation is reduced. Control parameters can be adjusted to.
 実施の形態10では、機械式の粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the tenth embodiment, an application example to the mechanical powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
(実施の形態11)
 実施の形態11では、端末装置500から粉体処理装置4Aを含む装置の動作を制御する構成について説明する。
 なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。
(Embodiment 11)
In the eleventh embodiment, a configuration for controlling the operation of the device including the powder processing device 4A from the terminal device 500 will be described.
Since the overall configuration of the powder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
 図23は端末装置500及び制御装置100が実行する処理の手順を説明するフローチャートである。端末装置500の制御部501は、通信部503を通じて、制御装置100にアクセスする(ステップS701)。 FIG. 23 is a flowchart illustrating a procedure of processing executed by the terminal device 500 and the control device 100. The control unit 501 of the terminal device 500 accesses the control device 100 through the communication unit 503 (step S701).
 制御装置100の制御部101は、粉体処理装置4Aが稼働していないときに端末装置500からアクセスを受付けた場合、例えば、ユーザが所望する粒子径の入力を受付けるための入力画面に係る画面データを生成し(ステップS702)、生成した画面データを通信部105より端末装置500へ送信する(ステップS703)。なお、粉体処理装置4Aが稼働しているときに端末装置500からアクセスを受付けた場合、制御部101は、以下で説明するステップS703以降の処理を実行すればよい。 When the control unit 101 of the control device 100 receives access from the terminal device 500 when the powder processing device 4A is not operating, for example, a screen related to an input screen for receiving an input of a particle size desired by the user. Data is generated (step S702), and the generated screen data is transmitted from the communication unit 105 to the terminal device 500 (step S703). When an access is received from the terminal device 500 while the powder processing device 4A is operating, the control unit 101 may execute the processes after step S703 described below.
 端末装置500の制御部501は、制御装置100から送信される入力画面の画面データを通信部503より受信する(ステップS704)。制御部501は、受信した画面データに基づき入力画面を表示部505に表示し(ステップS705)、ユーザが所望する粒子径の入力を受付ける(ステップS706)。 The control unit 501 of the terminal device 500 receives the screen data of the input screen transmitted from the control device 100 from the communication unit 503 (step S704). The control unit 501 displays the input screen on the display unit 505 based on the received screen data (step S705), and receives the input of the particle size desired by the user (step S706).
 図24は入力画面の一例を示す模式図である。この入力画面は、D10,D50,D90のそれぞれに対して、下限値及び上限値を受付けるための画面を示している。D10,D50,D90のそれぞれの下限値及び上限値を受付ける構成に代えて、ユーザが所望するD10,D50,D90の値を受付けてもよく、D50の値(メジアン径)のみを受付けてもよい。制御部501は、ステップS706において受付けた粒子径のデータを制御装置100へ送信する(ステップS707)。 FIG. 24 is a schematic diagram showing an example of an input screen. This input screen shows a screen for accepting a lower limit value and an upper limit value for each of D10, D50, and D90. Instead of the configuration in which the lower and upper limits of D10, D50, and D90 are accepted, the values of D10, D50, and D90 desired by the user may be accepted, or only the value of D50 (median diameter) may be accepted. .. The control unit 501 transmits the particle size data received in step S706 to the control device 100 (step S707).
 制御装置100の制御部101は、端末装置500から送信される粒子径のデータを通信部105より受信する(ステップS708)。制御部101は、受信した粒子径のデータを例えば学習モデル200に入力し、学習モデル200による演算を実行する(ステップS709)。次いで、制御部101は、学習モデル200から演算結果を取得し(ステップS710)、演算結果に基づき制御パラメータを決定する(ステップS711)。制御部101は、決定した制御パラメータに基づき、粉体処理装置4Aを含む装置の動作を制御する(ステップS712)。 The control unit 101 of the control device 100 receives the particle size data transmitted from the terminal device 500 from the communication unit 105 (step S708). The control unit 101 inputs the received particle size data into, for example, the learning model 200, and executes the calculation by the learning model 200 (step S709). Next, the control unit 101 acquires the calculation result from the learning model 200 (step S710), and determines the control parameter based on the calculation result (step S711). The control unit 101 controls the operation of the device including the powder processing device 4A based on the determined control parameter (step S712).
 粉体処理システム1の稼働中、制御部101は、粉体処理装置4Aより得られる粉体の粒子径、粉砕ロータ413及び分級ロータ415の回転速度、並びに、ケーシング410からの吐出・吸引流量についての計測データを入力部103より随時取得する。制御部101は、適宜のタイミングにて、上記計測データの少なくとも1つと、粉体処理システム1の全体図とを含むモニタリング画面の画面データを生成する(ステップS713)。制御部101は、生成した画面データを通信部105より端末装置500へ送信する(ステップS714)。 During the operation of the powder processing system 1, the control unit 101 determines the particle size of the powder obtained from the powder processing device 4A, the rotation speeds of the crushing rotor 413 and the classification rotor 415, and the discharge / suction flow rate from the casing 410. The measurement data of is acquired from the input unit 103 at any time. The control unit 101 generates screen data of the monitoring screen including at least one of the above measurement data and an overall view of the powder processing system 1 at an appropriate timing (step S713). The control unit 101 transmits the generated screen data from the communication unit 105 to the terminal device 500 (step S714).
 端末装置500の制御部501は、制御装置100から送信される画面データを通信部503より受信する(ステップS715)。制御部501は、受信した画面データに基づき、モニタリング画面を表示部505に表示する(ステップS716)。図25はモニタリング画面の一例を示す模式図である。図25に示した例は、粉体処理装置4Aから得られる粒子径の計測データ(すなわち、粒子径センサS2により計測された粒子径の実測値)と、粉体処理システム1の全体図とを含むモニタリング画面を表示部505に表示した状態を示している。粒子径の計測データに代えて、若しくは、粒子径の計測データと共に、粉砕ロータ413の回転速度、分級ロータ415の回転速度、及びケーシング410からの吐出・吸引流量の計測データをモニタリング画面に表示してもよい。更に、ユーザにより入力された希望粒子径、学習モデル200の演算結果に基づき設定された粉砕ロータ413の回転速度、分級ロータ415の回転速度、ケーシング410からの吐出・吸引流量の値などをモニタリング画面に表示してもよい。 The control unit 501 of the terminal device 500 receives the screen data transmitted from the control device 100 from the communication unit 503 (step S715). The control unit 501 displays the monitoring screen on the display unit 505 based on the received screen data (step S716). FIG. 25 is a schematic view showing an example of the monitoring screen. In the example shown in FIG. 25, the measurement data of the particle size obtained from the powder processing device 4A (that is, the actually measured value of the particle size measured by the particle size sensor S2) and the overall view of the powder processing system 1 are shown. The state in which the including monitoring screen is displayed on the display unit 505 is shown. Instead of the particle size measurement data, or together with the particle size measurement data, the rotation speed of the crushing rotor 413, the rotation speed of the classification rotor 415, and the measurement data of the discharge / suction flow rate from the casing 410 are displayed on the monitoring screen. You may. Further, the monitoring screen monitors the desired particle size input by the user, the rotation speed of the crushing rotor 413 set based on the calculation result of the learning model 200, the rotation speed of the classification rotor 415, the value of the discharge / suction flow rate from the casing 410, and the like. It may be displayed in.
 以上のように、本実施の形態では、端末装置500を用いて粉体処理システム1を遠隔操作できると共に、粉体処理システム1の稼働状況を端末装置500にて監視することができる。 As described above, in the present embodiment, the powder processing system 1 can be remotely controlled by using the terminal device 500, and the operating status of the powder processing system 1 can be monitored by the terminal device 500.
 実施の形態11では、機械式の粉体処理装置4Aに対する適用例を説明したが、粉体処理装置4B~4Eについて同様の手法を適用できることは勿論のことである。 In the eleventh embodiment, an application example to the mechanical powder processing apparatus 4A has been described, but it goes without saying that the same method can be applied to the powder processing apparatus 4B to 4E.
 今回開示された実施形態は、全ての点において例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 例えば、本発明は、実施の形態1~11に記載した粉体処理装置4A~4Eに限らず、衝撃式粉砕機、せん断型粉砕機、気流式粉砕機、摩砕型粉砕機、媒体撹拌型粉砕機、スクリーンミル、ビーズミル、ボールミル、ピンミル、及びジェットミルに分類される粉体処理装置(すなわち、粉砕機能を少なくとも備えた粉体処理装置)に適用することが可能である。 For example, the present invention is not limited to the powder processing devices 4A to 4E described in the first to eleventh embodiments, but the impact type crusher, the shear type crusher, the air flow type crusher, the grinding type crusher, and the medium stirring type. It can be applied to powder processing devices classified into crushers, screen mills, bead mills, ball mills, pin mills, and jet mills (that is, powder processing devices having at least a crushing function).
 また、実施の形態1~11では、粉体処理装置4A~4Eに対して気体を導入する構成としたが、気体に代えて液体を導入する構成としてもよい。この場合、流量センサS3として、液体の流量を計測するセンサが用いられるとよい。また、ブロワ7に代えて、ポンプが用いられてもよい。 Further, in the first to eleventh embodiments, the gas is introduced into the powder processing devices 4A to 4E, but a liquid may be introduced instead of the gas. In this case, as the flow rate sensor S3, a sensor that measures the flow rate of the liquid may be used. Further, a pump may be used instead of the blower 7.
 1…粉体処理システム、2…原料供給機、3…熱風発生機、4A~4E…粉体処理装置、5…サイクロン、6…集塵機、7…ブロワ、410…ケーシング、411…原料投入口、412…気体導入口、413…粉砕ロータ、414…ガイドリング、415…分級ロータ、416…粉体取出口、S1…重量センサ、S2…粒子径センサ、S3…流量センサ、S4…温度センサ、S5…回転速度センサ、S6…回転速度センサ、100…制御装置、101…制御部、102…記憶部、103…入力部、104…出力部、105…通信部、106…操作部、107…表示部、500…端末装置、501…制御部、502…記憶部、503…通信部、504…操作部、505…表示部
 
1 ... Powder processing system, 2 ... Raw material supply machine, 3 ... Hot air generator, 4A-4E ... Powder processing device, 5 ... Cyclone, 6 ... Dust collector, 7 ... Blower, 410 ... Casing, 411 ... Raw material input port, 412 ... Gas inlet, 413 ... Crushing rotor, 414 ... Guide ring, 415 ... Classification rotor, 416 ... Powder outlet, S1 ... Weight sensor, S2 ... Particle size sensor, S3 ... Flow sensor, S4 ... Temperature sensor, S5 ... Rotation speed sensor, S6 ... Rotation speed sensor, 100 ... Control device, 101 ... Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Output unit, 105 ... Communication unit, 106 ... Operation unit, 107 ... Display unit , 500 ... Terminal device, 501 ... Control unit, 502 ... Storage unit, 503 ... Communication unit, 504 ... Operation unit, 505 ... Display unit

Claims (28)

  1.  コンピュータを用いて、
     粉体原料を粉砕する機能を少なくも備える粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体の粒子径データとを取得し、
     取得した計測データと粒子径データとを教師データに用いて、ユーザが所望する粒子径の入力に応じて、前記粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力する学習モデルを生成する
     学習モデルの生成方法。
    Using a computer
    With respect to the powder processing apparatus having at least a function of crushing the powder raw material, measurement data indicating the operating state of the powder processing apparatus and particle size data of the powder obtained from the powder processing apparatus are acquired.
    A learning model that uses the acquired measurement data and particle size data as training data and outputs calculation results for control parameters that control the operating state of the powder processing device in response to the input of the particle size desired by the user. How to generate a training model.
  2.  前記粉体処理装置は、前記粉体原料を粉砕する粉砕ロータ、及び粉体を分級する分級ロータを備え、
     前記計測データは、前記粉砕ロータの回転速度、前記分級ロータの回転速度、及び前記粉体処理装置の処理室から粉体を取り出す際の吐出・吸引流量を含み、
     前記粒子径の入力に応じて、前記粉砕ロータの回転速度、前記分級ロータの回転速度、及び前記処理室からの吐出・吸引流量に関する制御パラメータについての演算結果を出力する学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The powder processing apparatus includes a crushing rotor for crushing the powder raw material and a classification rotor for classifying the powder.
    The measurement data includes the rotation speed of the crushing rotor, the rotation speed of the classification rotor, and the discharge / suction flow rate when the powder is taken out from the processing chamber of the powder processing apparatus.
    A claim for generating a learning model that outputs calculation results for control parameters related to the rotation speed of the crushing rotor, the rotation speed of the classification rotor, and the discharge / suction flow rate from the processing chamber in response to the input of the particle size. The method for generating a learning model according to 1.
  3.  前記粉体処理装置は、前記粉体原料を粉砕する粉砕ロータを備え、
     前記計測データは、前記粉砕ロータの回転速度、及び前記粉体処理装置の処理室から粉体を取り出す際の吐出・吸引流量を含み、
     前記粒子径の入力に応じて、前記粉砕ロータの回転速度及び前記処理室からの吐出・吸引流量に関する制御パラメータについての演算結果を出力する学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The powder processing apparatus includes a crushing rotor for crushing the powder raw material.
    The measurement data includes the rotation speed of the crushing rotor and the discharge / suction flow rate when the powder is taken out from the processing chamber of the powder processing apparatus.
    The generation of the learning model according to claim 1, which generates a learning model that outputs calculation results for control parameters related to the rotation speed of the crushing rotor and the discharge / suction flow rate from the processing chamber in response to the input of the particle size. Method.
  4.  前記粉体処理装置は、媒体を攪拌するアジテータ、及び粉体を分級する分級ロータを備え、
     前記計測データは、前記アジテータの回転速度、前記分級ロータの回転速度、及び前記粉体処理装置の処理室から粉体を取り出す際の吐出・吸引流量を含み、
     前記粒子径の入力に応じて、前記アジテータの回転速度、前記分級ロータの回転速度及び前記処理室からの吐出・吸引流量に関する制御パラメータについての演算結果を出力する学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The powder processing apparatus includes an agitator for stirring the medium and a classification rotor for classifying the powder.
    The measurement data includes the rotation speed of the agitator, the rotation speed of the classification rotor, and the discharge / suction flow rate when the powder is taken out from the processing chamber of the powder processing apparatus.
    The first aspect of claim 1 is to generate a learning model that outputs calculation results of control parameters related to the rotation speed of the agitator, the rotation speed of the classification rotor, and the discharge / suction flow rate from the processing chamber in response to the input of the particle size. How to generate the described training model.
  5.  前記粉体処理装置は、粉体を分級する分級ロータを備え、
     前記計測データは、前記分級ロータの回転速度、前記粉体処理装置の処理室に導入する流体の粉砕圧力、及び前記処理室から粉体を取り出す際の吐出・吸引流量を含み、
     前記粒子径の入力に応じて、前記分級ロータの回転速度、前記流体の粉砕圧力、及び前記処理室からの吐出・吸引流量に関する制御パラメータについての演算結果を出力する学習モデルを生成する
     請求項1に記載の学習モデルの生成方法。
    The powder processing apparatus includes a classification rotor for classifying powder.
    The measurement data includes the rotation speed of the classification rotor, the crushing pressure of the fluid introduced into the processing chamber of the powder processing apparatus, and the discharge / suction flow rate when the powder is taken out from the processing chamber.
    Claim 1 to generate a learning model that outputs calculation results for control parameters related to the rotation speed of the classification rotor, the crushing pressure of the fluid, and the discharge / suction flow rate from the processing chamber in response to the input of the particle size. How to generate the training model described in.
  6.  前記粉体処理装置の処理室に供給する前記粉体原料の供給量及び前記処理室内の温度の少なくとも1つを更に含む計測データを教師データに用いて、前記供給量及び前記温度の少なくとも1つを更に含む制御パラメータに関する演算結果を出力する学習モデルを生成する
     請求項1から請求項5の何れか1つに記載の学習モデルの生成方法。
    Using the measurement data including at least one of the supply amount of the powder raw material and the temperature in the processing chamber to be supplied to the processing chamber of the powder processing apparatus as the teacher data, the supply amount and at least one of the temperatures are used. The method for generating a learning model according to any one of claims 1 to 5, wherein a learning model for outputting an operation result relating to a control parameter including the above is generated.
  7.  前記教師データは、前記粉体の円形度、前記粉体原料の水分含有量、前記粉体処理装置の駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度、及び環境湿度の少なくも1つを更に含み、
     ユーザが所望する粒子径と、前記円形度、前記水分含有量、前記駆動電力又は前記駆動電流、前記熱媒温度、前記媒体重量、前記環境温度、及び前記環境湿度の少なくとも1つとの入力に対し、前記制御パラメータに関する演算結果を出力する学習モデルを生成する
     請求項1から請求項6の何れか1つに記載の学習モデルの生成方法。
    The teacher data includes the circularity of the powder, the water content of the powder raw material, the driving power or driving current of the powder processing apparatus, the heat medium temperature, the medium weight, the environmental temperature, and at least 1 of the environmental humidity. Including one more
    For input of a particle size desired by the user and at least one of the circularity, the water content, the driving power or the driving current, the heat medium temperature, the medium weight, the environmental temperature, and the environmental humidity. The method for generating a learning model according to any one of claims 1 to 6, wherein a learning model that outputs a calculation result related to the control parameter is generated.
  8.  教師データに用いる計測データと粒子径データとを再取得し、
     再取得した前記計測データと前記粒子径データとを教師データに用いて、前記学習モデルを再学習する
     請求項1から請求項7の何れか1つに記載の学習モデルの生成方法。
    Re-acquire the measurement data and particle size data used for the teacher data,
    The method for generating a learning model according to any one of claims 1 to 7, wherein the re-acquired measurement data and the particle size data are used as teacher data to relearn the learning model.
  9.  ユーザが所望する粒子径の入力に応じて、前記制御パラメータに関する演算結果を出力する学習モデルを、粉体原料の種別に応じてそれぞれ生成する
     請求項1から請求項8の何れか1つに記載の学習モデルの生成方法。
    The method according to any one of claims 1 to 8, wherein a learning model that outputs a calculation result related to the control parameter according to the input of the particle size desired by the user is generated according to the type of the powder raw material. How to generate a learning model for.
  10.  前記粉体処理装置を含む系内に流れる流体は気体又は液体である
     請求項1から請求項9の何れか1つに記載の学習モデルの生成方法。
    The method for generating a learning model according to any one of claims 1 to 9, wherein the fluid flowing in the system including the powder processing apparatus is a gas or a liquid.
  11.  コンピュータに、
     粉体原料を粉砕する機能を少なくも備える粉体処理装置に関して、前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体の粒子径データとを取得し、
     取得した計測データと粒子径データとを教師データに用いて、ユーザが所望する粒子径の入力に応じて、前記粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力する学習モデルを生成する
     処理を実行させるためのコンピュータプログラム。
    On the computer
    With respect to the powder processing apparatus having at least a function of crushing the powder raw material, measurement data indicating the operating state of the powder processing apparatus and particle size data of the powder obtained from the powder processing apparatus are acquired.
    A learning model that uses the acquired measurement data and particle size data as training data and outputs calculation results for control parameters that control the operating state of the powder processing device in response to the input of the particle size desired by the user. A computer program to perform the process of generating.
  12.  ユーザが所望する粒子径が入力される入力層、
     粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力する出力層、及び
     前記粉体処理装置の動作状態を示す計測データと、前記粉体処理装置から得られる粉体の粒子径データとを教師データに用いて、前記粒子径と前記制御パラメータとの関係を学習してある中間層
     を備え、
     前記入力層にユーザが所望する粒子径が入力された場合、前記中間層にて演算し、前記粉体処理装置の動作状態を制御する制御パラメータについての演算結果を出力するようコンピュータを機能させる
     学習モデル。
    An input layer in which the particle size desired by the user is input,
    An output layer that outputs calculation results for control parameters that control the operating state of the powder processing apparatus, measurement data indicating the operating state of the powder processing apparatus, and a particle size of powder obtained from the powder processing apparatus. It is provided with an intermediate layer in which the relationship between the particle size and the control parameter is learned by using the data as the teacher data.
    When the particle size desired by the user is input to the input layer, the intermediate layer calculates and makes the computer function to output the calculation result for the control parameter that controls the operating state of the powder processing apparatus. model.
  13.  ユーザが所望する粒子径の入力を受付ける受付部と、
     粉体処理装置から得られる粉体の粒子径データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて、前記粉体の粒子径と、前記粉体処理装置の動作状態を制御する制御パラメータとの間の関係を学習してある学習モデルと、
     前記受付部にて受付けた粒子径のデータを前記学習モデルへ入力し、前記学習モデルによる演算を実行する演算処理部と、
     前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する制御部と
     を備える制御装置。
    A reception unit that accepts input of the particle size desired by the user,
    Using the particle size data of the powder obtained from the powder processing device and the measurement data indicating the operating state of the powder processing device as the teacher data, the particle size of the powder and the operation of the powder processing device are used. A learning model that has learned the relationship between the control parameters that control the state,
    An arithmetic processing unit that inputs the particle size data received by the reception unit into the learning model and executes an operation by the learning model.
    A control device including a control unit that controls the operation of the device including the powder processing device based on the calculation result of the learning model.
  14.  前記演算処理部は、粉体原料を粉砕する粉砕ロータの回転速度、粉体を分級する分級ロータの回転速度、前記粉体処理装置の処理室から粉体を取り出す際の吐出・吸引流量、媒体を攪拌するアジテータの回転速度、及び前記粉体処理装置の処理室に導入する流体の粉砕圧力の少なくとも1つを用いて前記関係を学習してある学習モデルに、前記受付部にて受付けた粒子径を入力することにより、前記学習モデルによる演算を実行し、
     前記制御部は、前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項13に記載の制御装置。
    The arithmetic processing unit includes the rotation speed of the crushing rotor for crushing the powder raw material, the rotation speed of the classification rotor for classifying the powder, the discharge / suction flow rate when taking out the powder from the processing chamber of the powder processing apparatus, and the medium. Particles received by the reception unit in a learning model in which the relationship has been learned using at least one of the rotation speed of the agitator for stirring and the crushing pressure of the fluid introduced into the processing chamber of the powder processing apparatus. By inputting the diameter, the calculation by the learning model is executed,
    The control device according to claim 13, wherein the control unit controls the operation of the device including the powder processing device based on the calculation result of the learning model.
  15.  前記演算処理部は、前記粉体処理装置の処理室に供給する粉体原料の供給量、及び前記処理室内の温度の少なくとも1つを更に含む計測データを用いて前記関係を学習してある学習モデルに、前記受付部にて受付けた粒子径を入力することにより、前記学習モデルによる演算を実行し、
     前記制御部は、前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項13又は請求項14に記載の制御装置。
    The arithmetic processing unit has learned the relationship by using measurement data including at least one of the supply amount of the powder raw material to be supplied to the processing chamber of the powder processing apparatus and the temperature in the processing chamber. By inputting the particle size received by the reception unit into the model, the calculation by the learning model is executed.
    The control device according to claim 13 or 14, wherein the control unit controls the operation of the device including the powder processing device based on the calculation result of the learning model.
  16.  前記受付部は、ユーザが所望する粒子径と、前記粉体の円形度、粉体原料の水分含有量、前記粉体処理装置の駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度、及び環境湿度の少なくも1つとを受付け、
     前記演算処理部は、前記粒子径、前記円形度、前記水分含有量、前記駆動電力又は前記駆動電流、前記熱媒温度、前記媒体重量、前記環境温度、及び前記環境湿度の少なくとも1つを更に含む教師データを用いて前記関係を学習してある学習モデルに、前記受付部にて受付けた値を入力することにより、前記学習モデルによる演算を実行し、
     前記制御部は、前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項13から請求項15の何れか1つに記載の制御装置。
    The receiving unit includes the particle size desired by the user, the circularity of the powder, the water content of the powder raw material, the driving power or driving current of the powder processing apparatus, the heat medium temperature, the medium weight, and the environmental temperature. And accept at least one of the environmental humidity,
    The arithmetic processing unit further adds at least one of the particle size, the circularity, the water content, the driving power or the driving current, the heat medium temperature, the medium weight, the environmental temperature, and the environmental humidity. By inputting the value received by the reception unit into the learning model in which the relationship is learned using the included teacher data, the calculation by the learning model is executed.
    The control device according to any one of claims 13 to 15, wherein the control unit controls the operation of the device including the powder processing device based on the calculation result of the learning model.
  17.  前記受付部は、粉体原料の種別を受付け、
     前記演算処理部は、前記粉体原料の種別毎に前記関係を学習してある複数の学習モデルから、前記受付部にて受付けた種別に対応する学習モデルを選択し、選択した学習モデルにユーザが所望する粒子径を含む値を入力することにより、前記学習モデルによる演算を実行し、
     前記制御部は、前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項13から請求項16の何れか1つに記載の制御装置。
    The reception section accepts the type of powder raw material,
    The arithmetic processing unit selects a learning model corresponding to the type received by the reception unit from a plurality of learning models in which the relationship is learned for each type of the powder raw material, and uses the selected learning model as the user. By inputting a value including the desired particle size, the calculation by the learning model is executed.
    The control device according to any one of claims 13 to 16, wherein the control unit controls the operation of the device including the powder processing device based on the calculation result of the learning model.
  18.  ユーザが所望する粉体の粒子径と、前記粉体処理装置から得られる粉体の粒子径データとを比較し、比較結果に応じて前記制御パラメータを調整する調整部
     を備え、
     前記制御部は、調整後の制御パラメータに基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項13から請求項17の何れか1つに記載の制御装置。
    It is provided with an adjusting unit that compares the particle size of the powder desired by the user with the particle size data of the powder obtained from the powder processing apparatus and adjusts the control parameter according to the comparison result.
    The control device according to any one of claims 13 to 17, wherein the control unit controls the operation of the device including the powder processing device based on the adjusted control parameters.
  19.  前記計測データの少なくとも1つ、前記粉体処理装置から得られる粉体の粒子径データ、及び前記粉体処理装置の全体図を含む画面データを生成する画面生成部と、
     生成した画面データを外部端末へ送信する送信部と
     を備える請求項13から請求項18の何れか1つに記載の制御装置。
    A screen generator that generates at least one of the measurement data, particle size data of the powder obtained from the powder processing apparatus, and screen data including an overall view of the powder processing apparatus.
    The control device according to any one of claims 13 to 18, further comprising a transmission unit that transmits the generated screen data to an external terminal.
  20.  ユーザが所望する粒子径の入力を受付け、
     受付けた粒子径のデータを、粉体処理装置から得られる粉体の粒子径データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて、前記粉体の粒子径と、前記粉体処理装置の動作状態を制御する制御パラメータとの間の関係を学習してある学習モデルへ入力し、
     前記学習モデルによる演算を実行し、
     前記学習モデルから得られる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     制御方法。
    Accepts input of particle size desired by the user,
    The received particle size data is used as the teacher data of the powder particle size data obtained from the powder processing device and the measurement data indicating the operating state of the powder processing device to obtain the powder particle size. , Input to the learning model that has learned the relationship with the control parameters that control the operating state of the powder processing apparatus.
    Execute the calculation by the learning model
    A control method for controlling the operation of an apparatus including the powder processing apparatus based on a calculation result obtained from the learning model.
  21.  受付けた粒子径のデータを、粉体原料を粉砕する粉砕ロータの回転速度、粉体を分級する分級ロータの回転速度、前記粉体処理装置の処理室から粉体を取り出す際の吐出・吸引流量、媒体を攪拌するアジテータの回転速度、及び前記粉体処理装置の処理室に導入する流体の粉砕圧力の少なくとも1つを用いて前記関係を学習してある学習モデルへ入力し、
     前記学習モデルから得られる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項20に記載の制御方法。
    Based on the received particle size data, the rotation speed of the crushing rotor that crushes the powder raw material, the rotation speed of the classification rotor that classifies the powder, and the discharge / suction flow rate when the powder is taken out from the processing chamber of the powder processing apparatus. , The rotation speed of the agitator that agitates the medium, and at least one of the crushing pressures of the fluid introduced into the processing chamber of the powder processing apparatus are used to input the relationship into a learning model that has been trained.
    The control method according to claim 20, wherein the operation of the device including the powder processing device is controlled based on the calculation result obtained from the learning model.
  22.  受付けた粒子径のデータを、前記粉体処理装置の処理室に供給する粉体原料の供給量、及び前記処理室内の温度の少なくとも1つを含む計測データを用いて前記関係を学習してある学習モデルへ入力し、
     前記学習モデルから得られる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項20又は請求項21に記載の制御方法。
    The relationship is learned by using the measurement data including at least one of the supply amount of the powder raw material to be supplied to the processing chamber of the powder processing apparatus and the temperature of the processing chamber from the received particle size data. Enter into the training model and
    The control method according to claim 20 or 21, wherein the operation of the device including the powder processing device is controlled based on the calculation result obtained from the learning model.
  23.  ユーザが所望する粒子径と、前記粉体の円形度、粉体原料の水分含有量、前記粉体処理装置の駆動電力又は駆動電流、熱媒温度、媒体重量、環境温度、及び環境湿度の少なくも1つとを受付け、
     受付けたデータを、前記粒子径、前記円形度、前記水分含有量、前記駆動電力又は前記駆動電流、前記熱媒温度、前記媒体重量、前記環境温度、及び前記環境湿度の少なくとも1つを更に含む教師データを用いて前記関係を学習してある学習モデルへ入力し、
     前記学習モデルから得られる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項20から請求項22の何れか1つに記載の制御方法。
    The particle size desired by the user, the circularity of the powder, the water content of the powder raw material, the driving power or driving current of the powder processing apparatus, the heat medium temperature, the medium weight, the environmental temperature, and the environmental humidity are low. Also accept one,
    The received data further includes at least one of the particle size, the circularity, the water content, the driving power or the driving current, the heat medium temperature, the medium weight, the environmental temperature, and the environmental humidity. Input the above relationship into a learning model that has been trained using the teacher data,
    The control method according to any one of claims 20 to 22, which controls the operation of the device including the powder processing device based on the calculation result obtained from the learning model.
  24.  粉体原料の種別を受付け、
     粉体原料の種別毎に前記関係を学習してある複数の学習モデルから、受付けた種別に対応する学習モデルを選択し、
     選択した学習モデルに前記データを入力することにより、前記学習モデルによる演算を実行し、
     前記学習モデルから得られる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項20から請求項23の何れか1つに記載の制御方法。
    Accepts the type of powder raw material,
    A learning model corresponding to the received type is selected from a plurality of learning models in which the above relationship is learned for each type of powder raw material.
    By inputting the data into the selected learning model, the calculation by the learning model is executed.
    The control method according to any one of claims 20 to 23, which controls the operation of the device including the powder processing device based on the calculation result obtained from the learning model.
  25.  ユーザが所望する粉体の粒子径と、前記粉体処理装置から得られる粉体の粒子径データとを比較し、
     比較結果に応じて前記制御パラメータを調整し、
     調整後の制御パラメータに基づき、前記粉体処理装置を含む装置の動作を制御する
     請求項20から請求項24の何れか1つに記載の制御方法。
    The particle size of the powder desired by the user is compared with the particle size data of the powder obtained from the powder processing apparatus.
    Adjust the control parameters according to the comparison result,
    The control method according to any one of claims 20 to 24, which controls the operation of the device including the powder processing device based on the adjusted control parameters.
  26.  前記粉体処理装置における計測データの少なくとも1つ、前記粉体処理装置から得られる粉体の粒子径データ、及び前記粉体処理装置の全体図を含む画面データを生し、
     生成した画面データを外部端末へ送信する
     請求項20から請求項25の何れか1つに記載の制御方法。
    At least one of the measurement data in the powder processing apparatus, the particle size data of the powder obtained from the powder processing apparatus, and the screen data including the overall view of the powder processing apparatus are generated.
    The control method according to any one of claims 20 to 25, wherein the generated screen data is transmitted to an external terminal.
  27.  前記粉体処理装置を含む装置は、前記粉体処理装置と、前記粉体処理装置に接続される原料供給機、熱風発生機、サイクロン、集塵機、及びブロワ若しくはポンプの少なくとも1つとを含む
     請求項20から請求項26の何れか1つに記載の制御方法。
    A device including the powder processing device includes the powder processing device and at least one of a raw material feeder, a hot air generator, a cyclone, a dust collector, and a blower or a pump connected to the powder processing device. The control method according to any one of 20 to 26.
  28.  コンピュータに、
     ユーザが所望する粒子径の入力を受付け、
     受付けた粒子径を、粉体処理装置から得られる粉体の粒子径データと、前記粉体処理装置の動作状態を示す計測データとを教師データに用いて、前記粉体の粒子径と、粉体処理装置の動作状態を制御する制御パラメータとの間の関係を学習してある学習モデルに入力することにより、前記学習モデルによる演算を実行し、
     前記学習モデルによる演算結果に基づき、前記粉体処理装置を含む装置の動作を制御する
     処理を実行させるためのコンピュータプログラム。
     
    On the computer
    Accepts input of particle size desired by the user,
    Using the particle size data of the powder obtained from the powder processing device and the measurement data indicating the operating state of the powder processing device as training data, the particle size of the powder and the powder received are used. By inputting the relationship between the control parameters that control the operating state of the body processing device into the learned learning model, the calculation by the learning model is executed.
    A computer program for executing a process of controlling the operation of the device including the powder processing device based on the calculation result of the learning model.
PCT/JP2019/022172 2019-06-04 2019-06-04 Learning model generation method, computer program, learning model, control device, and control method WO2020245915A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021524544A JPWO2020245915A1 (en) 2019-06-04 2019-06-04
PCT/JP2019/022172 WO2020245915A1 (en) 2019-06-04 2019-06-04 Learning model generation method, computer program, learning model, control device, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022172 WO2020245915A1 (en) 2019-06-04 2019-06-04 Learning model generation method, computer program, learning model, control device, and control method

Publications (1)

Publication Number Publication Date
WO2020245915A1 true WO2020245915A1 (en) 2020-12-10

Family

ID=73652033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022172 WO2020245915A1 (en) 2019-06-04 2019-06-04 Learning model generation method, computer program, learning model, control device, and control method

Country Status (2)

Country Link
JP (1) JPWO2020245915A1 (en)
WO (1) WO2020245915A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671919A (en) * 2021-08-20 2021-11-19 林周县众陶联供应链服务有限公司 Preparation control method of building ceramic batch type ball mill slurry
US20230083105A1 (en) * 2021-09-01 2023-03-16 Mill Industries, LLC Intelligent sensor-driven processing of organic matter for the smart home
CN116832912A (en) * 2023-09-01 2023-10-03 国能龙源环保有限公司 Method, device and equipment for determining steel ball addition amount of wet ball mill
CN118371331A (en) * 2024-06-25 2024-07-23 宁德时代新能源科技股份有限公司 Control method, device, equipment, medium and product of crushing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114282A (en) * 1992-04-24 1994-04-26 Ngk Insulators Ltd Method for controlling grain size distribution of crushing machine
JPH06327990A (en) * 1993-05-21 1994-11-29 Kobe Steel Ltd Control method of roller mill
JPH11104511A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd Crushing and pulverizing treatment system
JP2002287803A (en) * 2001-03-27 2002-10-04 Denso Corp Property adjusting method in manufacturing process of product
JP2003200079A (en) * 2001-12-28 2003-07-15 Kawasaki Heavy Ind Ltd Method and apparatus for operating stone crushing plant
JP2007175561A (en) * 2005-12-27 2007-07-12 Jfe Steel Kk Apparatus for manufacturing pulverized coal and its method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09141116A (en) * 1995-11-20 1997-06-03 Babcock Hitachi Kk Vibration estimation device of crusher and control device based on vibration estimation of crusher
JP3556616B2 (en) * 2001-06-07 2004-08-18 川崎重工業株式会社 Adaptive control method and apparatus in pulverized coal mill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114282A (en) * 1992-04-24 1994-04-26 Ngk Insulators Ltd Method for controlling grain size distribution of crushing machine
JPH06327990A (en) * 1993-05-21 1994-11-29 Kobe Steel Ltd Control method of roller mill
JPH11104511A (en) * 1997-09-30 1999-04-20 Kawasaki Heavy Ind Ltd Crushing and pulverizing treatment system
JP2002287803A (en) * 2001-03-27 2002-10-04 Denso Corp Property adjusting method in manufacturing process of product
JP2003200079A (en) * 2001-12-28 2003-07-15 Kawasaki Heavy Ind Ltd Method and apparatus for operating stone crushing plant
JP2007175561A (en) * 2005-12-27 2007-07-12 Jfe Steel Kk Apparatus for manufacturing pulverized coal and its method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113671919A (en) * 2021-08-20 2021-11-19 林周县众陶联供应链服务有限公司 Preparation control method of building ceramic batch type ball mill slurry
CN113671919B (en) * 2021-08-20 2023-02-24 西藏众陶联供应链服务有限公司 Preparation control method of building ceramic batch type ball mill slurry
US20230083105A1 (en) * 2021-09-01 2023-03-16 Mill Industries, LLC Intelligent sensor-driven processing of organic matter for the smart home
US12098108B2 (en) * 2021-09-01 2024-09-24 Chewie Labs Llc Intelligent sensor-driven processing of organic matter for the smart home
CN116832912A (en) * 2023-09-01 2023-10-03 国能龙源环保有限公司 Method, device and equipment for determining steel ball addition amount of wet ball mill
CN116832912B (en) * 2023-09-01 2023-11-28 国能龙源环保有限公司 Method, device and equipment for determining steel ball addition amount of wet ball mill
CN118371331A (en) * 2024-06-25 2024-07-23 宁德时代新能源科技股份有限公司 Control method, device, equipment, medium and product of crushing equipment

Also Published As

Publication number Publication date
JPWO2020245915A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2020245915A1 (en) Learning model generation method, computer program, learning model, control device, and control method
CN103331194B (en) Method of processing nepheline syenite powder to produce an ultra-fine grain size product
Kwade Wet comminution in stirred media mills—research and its practical application
CN103384563A (en) Heat treatment apparatus and method for manufacturing toner
AU2011297864B2 (en) Method for controlling a mill system having at least one mill, in particular an ore mill or cement mill
CN111047104B (en) Energy consumption optimization method of grinding system
Tang et al. Mechanism characteristic analysis and soft measuring method review for ball mill load based on mechanical vibration and acoustic signals in the grinding process
Chamayou et al. Air jet milling
Rezaeizadeh et al. Experimental observations of lifter parameters and mill operation on power draw and liner impact loading
JP2006293268A (en) Toner manufacturing apparatus and method
JP7311598B2 (en) LEARNING MODEL GENERATION METHOD, COMPUTER PROGRAM, LEARNING MODEL, CONTROL DEVICE, AND CONTROL METHOD
Bao et al. A distributed PCA-TSS based soft sensor for raw meal fineness in VRM system
JP7311571B2 (en) Diagnostic device, diagnostic method, and computer program for powder processing system
WO2020245914A1 (en) Computer program, server device, display system, and display method
JP7311599B2 (en) Diagnostic device, diagnostic method, and computer program for powder processing system
JP4794430B2 (en) Classifier
JPH08507465A (en) Control method for closed circuit dry crusher
Li et al. Data-driven control of ground-granulated blast-furnace slag production based on ioem-elm
JP2003181316A (en) Medium agitation and crushing device and crushing treatment system having the device
Takeuchi et al. Development of a novel particle size control system for hammer milling
Li et al. Numerical investigation of flow similarity of rice grains in friction rice mill and establishment of scale-up rule
Nadeem et al. SVM-based predictive modelling of wet pelletization using experimental and GA-based synthetic data
JPH09958A (en) Condition estimating device for pulverizer
Srikantha Dath Optimization of a Floor Grinding Machine for Uniform Grinding Pattern
Altun et al. The use of impact bed breakage procedure in model fitting of dry stirred mill

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524544

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931624

Country of ref document: EP

Kind code of ref document: A1