WO2020245914A1 - Computer program, server device, display system, and display method - Google Patents
Computer program, server device, display system, and display method Download PDFInfo
- Publication number
- WO2020245914A1 WO2020245914A1 PCT/JP2019/022171 JP2019022171W WO2020245914A1 WO 2020245914 A1 WO2020245914 A1 WO 2020245914A1 JP 2019022171 W JP2019022171 W JP 2019022171W WO 2020245914 A1 WO2020245914 A1 WO 2020245914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- processing system
- powder processing
- display
- computer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000004590 computer program Methods 0.000 title claims abstract description 32
- 238000005259 measurement Methods 0.000 claims abstract description 82
- 230000008569 process Effects 0.000 claims abstract description 54
- 238000012545 processing Methods 0.000 claims abstract description 30
- 238000009700 powder processing Methods 0.000 claims description 227
- 239000000843 powder Substances 0.000 claims description 146
- 239000002245 particle Substances 0.000 claims description 106
- 239000002994 raw material Substances 0.000 claims description 89
- 238000004364 calculation method Methods 0.000 claims description 27
- 238000003860 storage Methods 0.000 claims description 25
- 230000005856 abnormality Effects 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 9
- 238000013329 compounding Methods 0.000 claims description 8
- 230000007613 environmental effect Effects 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 4
- 230000010485 coping Effects 0.000 claims description 2
- 238000007639 printing Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract description 34
- 239000008187 granular material Substances 0.000 abstract description 4
- 238000004891 communication Methods 0.000 description 49
- 238000012544 monitoring process Methods 0.000 description 41
- 239000000428 dust Substances 0.000 description 26
- 239000007789 gas Substances 0.000 description 26
- 239000000463 material Substances 0.000 description 17
- 238000010298 pulverizing process Methods 0.000 description 13
- 238000012986 modification Methods 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 6
- 238000005469 granulation Methods 0.000 description 5
- 230000003179 granulation Effects 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000005401 electroluminescence Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 102200082816 rs34868397 Human genes 0.000 description 3
- 102220342298 rs777367316 Human genes 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- -1 SUS304 and SUS316 Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/04—Manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Definitions
- the present invention relates to a computer program, a server device, a display system, and a display method.
- the powder processing process is composed of a combination of various processes such as storage, supply, transportation, pulverization, classification, and mixing (see, for example, Patent Document 1).
- various processes such as storage, supply, transportation, pulverization, classification, and mixing (see, for example, Patent Document 1).
- An object of the present invention is to provide a computer program, a server device, a display system, and a display method capable of providing a user with information to be monitored in a powder processing system.
- the computer program receives an ID input to a computer, and with respect to the powder processing system associated with the received ID, measurement obtained from at least one measuring instrument included in the powder processing system.
- This is a computer program for acquiring information and executing a process of displaying the acquired measurement information together with an overall view of the powder processing system.
- the server device includes an acquisition unit that acquires measurement information obtained from at least one measuring instrument included in the powder processing system from the powder processing system associated with the designated ID. It includes a generation unit that generates screen data including the acquired measurement information and an overall view of the powder processing system, and a transmission unit that transmits the screen data generated by the generation unit to an external device.
- the display system includes a server device and a client device that are communicably connected to each other, and the server device is the powder from a powder processing system associated with a designated ID.
- An acquisition unit that acquires measurement information obtained from at least one measuring instrument included in the processing system, a generation unit that generates screen data including the acquired measurement information and an overall view of the powder processing system, and the generation unit.
- the client device includes a transmission unit that transmits the generated screen data to the client device, and the client device obtains the measurement information based on the reception unit that receives the screen data transmitted from the server device and the received screen data. It is provided with a display unit that is displayed together with an overall view of the powder processing system.
- the display method according to one aspect of the present invention is obtained from at least one measuring instrument provided in the powder processing system with respect to the powder processing system associated with the received ID by receiving the input of the ID using a computer.
- the measurement information to be obtained is acquired, and the acquired measurement information is displayed together with the overall view of the powder processing system.
- FIG. It is a schematic diagram which shows the whole structure of the monitoring system which concerns on Embodiment 1.
- FIG. It is a schematic cross-sectional view which shows the structure of the powder processing apparatus.
- It is a block diagram which shows the internal structure of the server apparatus which concerns on Embodiment 1.
- FIG. It is a block diagram which shows the internal structure of a client device. It is a flowchart explaining the procedure of the process which a client apparatus and a server apparatus execute.
- It is a schematic diagram which shows an example of a login screen.
- It is a schematic diagram which shows the display example of a monitoring screen.
- It is a schematic diagram which shows the display switching example in the measurement data display column.
- FIG. 1 is a schematic diagram showing the overall configuration of the monitoring system according to the first embodiment.
- the monitoring system according to the first embodiment is a system for monitoring the operating status of the powder processing system 1, and includes a server device 100 and a client device 500 that are communicably connected to each other.
- the server device 100 is a computer device having an appropriate processing capacity.
- the server device 100 provides the legitimate user of the powder processing system 1 with information indicating the operating status of the powder processing system 1. Whether or not the powder processing system 1 is a legitimate user is determined by, for example, user authentication using a user ID and a password.
- the information provided by the server device 100 includes, for example, the rotation speed of the crushing rotor 43 (see FIG. 2) included in the powder processing device 4, the rotation speed of the classification rotor 45 (see FIG. 2), and the powder processing device 4. It includes information such as the discharge / suction flow rate when the powder is taken out from the processing chamber, and the particle size of the powder obtained from the powder processing apparatus 4.
- the information provided by the server device 100 may include information indicating the presence or absence of an abnormality in the powder processing system 1.
- the server device 100 may have a function of not only providing information to the client device 500 but also controlling the operation of the powder processing system 1 based on the information received from the client device 500.
- the client device 500 is a terminal device such as a smartphone, a tablet terminal, or a personal computer used by a user. It is assumed that the client device 500 is installed with an application program (display program PG5 shown in FIG. 4) for accessing the server device 100 and displaying information provided by the server device 100 after user authentication.
- display program PG5 shown in FIG. 4
- the client device 500 requests the user to input the user ID and password.
- the client device 500 transmits the user ID and password entered by the user to the server device 100.
- the server device 100 performs user authentication based on the received user ID and password, and determines whether or not the user of the client device 500 is a legitimate user of the powder processing system 1. When it is determined that the user is a legitimate user, the server device 100 provides the client device 500 with information indicating the operating status of the powder processing system 1.
- the client device 500 displays the information provided by the server device 100 on the display screen through the display program PG5.
- the powder processing system 1 is composed of, for example, a raw material supply machine 2, a hot air generator 3, a powder processing device 4, a cyclone 5, a dust collector 6, and a blower 7.
- a pump may be used instead of the blower 7.
- the raw material supply machine 2 is a device for supplying the powder raw material to the powder processing device 4.
- the powder raw material supplied by the raw material supply machine 2 to the powder processing device 4 is, for example, a raw material for fine powdered toner used for coloring paper in a copier or a laser printer.
- toner raw materials powder paints, battery materials, magnetic materials, dyes, resins, waxes, polymers, pharmaceuticals, catalysts, metal powders, silica, solder, cement, foods, inorganic materials, organic materials, or metal materials It may be a powder raw material for producing powder.
- the raw material supply machine 2 is connected to the powder processing device 4 via the raw material supply path TP1.
- a screw feeder 21 (see FIG. 2) for transporting the powder raw material is provided in the raw material supply path TP1.
- the screw feeder 21 is preferable when the powder raw material is a solid and the powder raw material is continuously charged at a constant speed.
- a double damper, a rotary valve, or the like may be used instead of the screw feeder 21.
- the hot air generated by the hot air generator 3 may be introduced into the raw material supply path TP1 and the powder raw material may be supplied to the powder processing apparatus 4 together with the hot air.
- the raw material feeder 2 performs weight control using a weight sensor S1 (see FIG.
- the supply amount of the powder raw material may be adjusted so as to be. Further, the raw material supply machine 2 supplies the powder raw material per unit time (that is, the supply speed) based on the output of the built-in timer (not shown) and the supply amount of the powder raw material measured by the weight sensor S1. May be measured.
- the weight sensor S1 may be provided not only in the raw material supply machine 2, but also in the powder processing device 4, the cyclone 5, and the dust collector 6.
- the hot air generator 3 is a device for generating hot air to be introduced into the powder processing device 4, and includes a heat source such as a heater, a blower, and a control device for controlling the temperature and air volume of the hot air.
- the hot air generator 3 is not limited to the above configuration, and a known configuration may be used. For example, a part of the hot air introduced into the powder processing apparatus 4 may be recovered and circulated between the hot air generator 3 and the powder processing apparatus 4.
- the hot air generator 3 is connected to the powder processing device 4 via the gas introduction path TP2.
- the hot air generated by the hot air generator 3 is introduced into the powder processing apparatus 4 via the gas introduction path TP2.
- the temperature of the hot air generated by the hot air generator 3 is appropriately set according to the powder processed by the powder processing apparatus 4. For example, hot air of about 200 ° C. to 600 ° C. may be generated to dry the powder processed by the powder processing apparatus 4.
- a configuration for introducing a gas containing hot air into the powder processing apparatus 4 will be described, but the fluid introduced into the powder processing apparatus 4 is not limited to the gas but may be a liquid.
- the powder processing device 4 is a device for producing powder having a particle size smaller than a predetermined particle size by crushing the powder raw material supplied from the raw material supply machine 2 and classifying the obtained powder.
- the powder processing apparatus 4 according to the present embodiment will be described as an apparatus that mainly performs a pulverization treatment for crushing a powder raw material and a classification treatment for classifying the pulverized powder, but the powder treatment apparatus 4 performs the pulverization treatment.
- the powder treatment is not limited to the pulverization treatment and the classification treatment.
- the powder processing apparatus 4 may perform, for example, a process of forming an irregular grain-shaped powder having an average particle diameter of 5 to 50 ⁇ m into a sphere, or a process of smoothing the unevenness of the particle surface. Further, the powder processing apparatus 4 may perform a process of drying the powder, a process of mixing two or more kinds of powder, and the like.
- the powder processed by the powder processing apparatus 4 is transported to the cyclone 5 via the powder transport path TP3.
- the particle size sensor S2 is installed in the middle of the powder transport path TP3 from the powder processing device 4 to the cyclone 5, and the particle size of the powder passing through the powder processing device 4 by the particle size sensor S2. Is measured at regular or regular timings (for example, every 5 seconds).
- the powder collected by the cyclone 5 is taken out to the product tank 8A and collected as a product.
- the particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90.
- D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively.
- the cumulative volume distribution is a distribution representing the relationship between the particle size ( ⁇ m) of the powder and the integration frequency (volume%) from the small diameter side.
- D50 is also generally referred to as an average particle diameter (median diameter).
- a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
- the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to the product tank 8A, and the dust collector 6 to the dust collector tank 8B are reached. It may be installed on a route or the like.
- a dust collector 6 is connected to the cyclone 5 via a dust collection path TP4.
- the dust collector 6 includes a bug filter for collecting fine powder or the like that has passed through the cyclone 5.
- the gas that has passed through the bug filter of the dust collector 6 flows to the blower 7 through the exhaust air passage TP5 and is discharged from the discharge port of the blower 7.
- the fine dust and the like collected by the bug filter of the dust collector 6 are taken out to the dust collecting tank 8B and collected.
- a blower 7 is connected to the dust collector 6 via an exhaust air passage TP5.
- the gas flow from the powder processing apparatus 4 to the cyclone 5 that is, the gas flow for extracting the powder from the powder processing apparatus 4
- the gas flow from the cyclone 5 to the dust collector 6 Form a flow.
- a flow rate sensor S3 (see FIG. 3) is installed in the middle of the exhaust passage TP5 from the dust collector 6 to the blower 7, and the discharge / suction flow rate when taking out the powder from the powder processing device 4 is measured. Measure at regular or regular timing (for example, every 5 seconds).
- the flow rate sensor S3 is installed in the raw material supply path TP1, the gas introduction path TP2, the powder transport path TP3, the dust collection path TP4, the discharge port of the blower 7, and the like. You may.
- FIG. 2 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4.
- the powder processing apparatus 4 includes a cylindrical casing 40 that performs powder processing inside the powder processing apparatus 4.
- the casing 40 is provided with a raw material input port 41, a gas introduction port 42, a crushing rotor 43, a guide ring 44, a classification rotor 45, a powder outlet 46, and the like.
- the material of the casing 40 a known material conventionally used for the casing of the powder processing apparatus may be used. Specifically, iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial), stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, and stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc. may be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
- iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial)
- stainless steel materials such as SUS304 and SUS316
- iron casting materials such as FC20 and FC40
- stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc.
- aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
- the inner surface of the casing 40 is subjected to plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied.
- the inner surface of the casing 40 is buffed, electrolytically polished, coated with PTFE (Polytetrafluoroethylene), or plated with nickel or the like. Treatment may be applied.
- PTFE Polytetrafluoroethylene
- the casing 40 is provided with a raw material input port 41 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 40.
- the raw material input port 41 is preferably provided at a position above the rotary disk 431 of the crushing rotor 43.
- the powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 40 from the raw material input port 41.
- the casing 40 is provided with a gas introduction port 42 for introducing hot air (gas) from the hot air generator 3 into the casing 40.
- the gas introduction port 42 is connected to the hot air generator 3 via the gas introduction path TP2.
- the position of the gas introduction port 42 is not particularly limited, but it is preferably provided at a position below the crushing rotor 43 so that the gas is introduced into the casing 40 via the rotating crushing rotor 43.
- the gas is introduced from the direction intersecting the rotation direction of the crushing rotor 43, but the gas may be introduced along the rotation direction of the crushing rotor 43.
- the gas introduced from the gas introduction port 42 forms an air flow that circulates while swirling inside the casing 40, and reaches the cyclone 5 and the dust collector 6 from the powder outlet 46 via the classification rotor 45 from the inside of the casing 40.
- the airflow in the casing 40 may be formed by suction by the blower 7 connected via the cyclone 5 and the dust collector 6, or may be formed by blowing (pressurizing) from the gas introduction port 42 side.
- the type of gas introduced into the casing 40 may be appropriately determined according to the target processed product. For example, air may be used, or an inert gas such as nitrogen or argon may be used to prevent oxidation.
- temperature sensors S4 may be provided at one or a plurality of locations in the casing 40 to control the temperature inside the casing 40.
- the temperature of the gas introduced into the casing 40 may be adjusted so that the exhaust temperature at the powder outlet 46 is 35 to 55 ° C. ..
- the temperature sensor S4 may be provided in the cyclone 5, the dust collector 6, the product tank 8A, the dust collecting tank 8B, or the like.
- the hot air from the hot air generator 3 is introduced into the casing 40, but using a cold air generator (not shown in the figure), the temperature is about ⁇ 20 ° C. to 5 ° C. in the casing 40. It may be configured to introduce the cold air of.
- the gas introduced into the casing 40 is preferably a dehumidified gas in order to prevent dew condensation.
- cold air adjusted to 0 to 15 ° C. may be used.
- a jacket portion may be provided around the casing 40.
- the jacket portion adjusts the internal temperature of the casing 40 by circulating and supplying a heat medium containing a heating fluid or a cooling fluid from a tank provided separately.
- the crushing rotor 43 is a rotor including a rotary disk 431 and a plurality of hammers 432 protruding upward from the upper peripheral edge of the rotary disk 431, and the rotation speed is adjusted to a desired speed by the power of the crushing motor 430 (see FIG. 3). It is configured to rotate.
- the crushing motor 430 is one of the driving units included in the powder processing system 1.
- the rotation speed of the crushing motor 430 is measured by the rotation speed sensor S5 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
- a plurality of hammers 432 of the crushing rotor 43 are arranged at equal intervals in the circumferential direction at the peripheral edge of the upper surface of the rotating disk 431.
- the shape, size, number, and material of the hammer 432 are appropriately designed according to the required particle size, circularity, and the like of the product powder.
- the rod-shaped hammer 432 is shown in FIG. 2, it may be a rectangular parallelepiped hammer or a trapezoidal hammer in a plan view. Further, instead of the hammer 432, a blade-like structure may be used.
- the crushing rotor 43 is rotated by the power of the crushing motor 430 to generate a swirling airflow in the casing 40, and by the action of the hammer 432, the powder raw material introduced into the casing 40 is impacted, compressed, and ground.
- the powder raw material is crushed by giving mechanical energy such as shearing.
- the crushing rotor 43 may perform surface treatment (particle design) such as spheroidization by applying mechanical energy that does not lead to crushing to the powder raw material and plastically deforming the raw material powder.
- the material of the crushing rotor 43 a known material conventionally used for the dispersion rotor of the powder processing apparatus may be used.
- SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used.
- a cemented carbide tip may be attached so that the hammer 432 can withstand an impact force, or a composite of a metal such as ceramics or cermet having wear resistance and toughness and ceramics may be used.
- the surface of the crushing rotor 43 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device.
- plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device.
- Abrasion resistant treatment such as SUS630 and quench hardening treatment of SUS630 may be performed.
- the surface of the crushing rotor 43 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
- the configuration of the hammer 432 protruding upward from the upper peripheral edge portion of the rotating disk 431 has been described, but a hammer protruding downward from the lower surface peripheral edge portion of the rotating disk 431 may be used.
- the hammer protruding downward in this way does not directly pulverize the powder raw materials in the casing 40, but can form a strong swirling airflow in the casing 40, so that the powder raw materials collide with each other.
- the powder raw material can be indirectly crushed.
- a crushing liner may be provided on the inner peripheral surface of the casing 40 at a position facing the hammer 432.
- the crushing liner is a tubular member having a central axis along the rotation axis direction of the crushing rotor 43, and even if a triangular, corrugated, or wedge-shaped groove is provided on the inner peripheral surface of the tubular member. Good.
- the guide ring 44 is a cylindrical member for generating a swirling air flow in the casing 40 and guiding the powder processed in the casing 40 to the classification rotor 45.
- the guide ring 44 is arranged coaxially with the crushing rotor 43 above the crushing rotor 43 and is fixed inside the casing 40.
- the method of fixing the guide ring 44 is not particularly limited, but it is necessary to fix the guide ring 44 without rotating inside the casing 40 during the operation of the powder processing apparatus 4. This is to control the flow state of the powder to be processed to an appropriate state inside the casing 40. In the example of FIG.
- the guide ring 44 whose inner diameter is continuously increased from the lower side to the upper side in the casing 40 is shown, but the guide ring whose inner diameter is continuously decreased toward the upper side is used. It may be a guide ring whose inner diameter does not change in the vertical direction.
- the classification rotor 45 is a rotor provided with a plurality of classification blades 451 arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 450 (see FIG. 3).
- the classification motor 450 is one of the drive units included in the powder processing system 1.
- the rotational speed of the classification motor 450 is measured by the rotational speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals).
- the classification rotor 45 is provided above the crushing rotor 43, and allows only powder having a particle size smaller than a predetermined particle size to pass through the powder processed in the casing 40 by centrifugal force due to high-speed rotation. Only the body is guided to the powder outlet 46.
- the particle size of the powder passing through the classification rotor 45 can be set by controlling the rotation speed of the classification rotor 45 and the like. That is, by controlling the rotation speed of the classification rotor 45, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 40. On the other hand, the powder that cannot pass through the classification rotor 45 circulates in the casing 40 and is repeatedly processed.
- the material of the classification rotor 45 a known material conventionally used for the classification rotor of the powder processing apparatus may be used.
- SS400, S25C, S45C, SUS304, SUS316, titanium, titanium alloy, aluminum alloy and the like can be used.
- the surface of the classification rotor 45 is specially subjected to heat hardening treatment such as carburizing and quenching, tungsten carbide spraying material treatment, plating treatment such as hard chrome plating, and heat curing treatment after spraying in order to improve the durability of the device.
- Abrasion resistant treatment such as thermal spray material treatment, metal vapor deposition performed under vacuum, and carbon vapor deposition of a diamond structure may be performed.
- the surface of the classification rotor 45 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
- the powder processing apparatus 4 is configured to include a crushing rotor 43 and a classification rotor 45.
- the crushing rotor 43 In the case of an air flow type in which a powder raw material is crushed by an air flow introduced into a casing 40, the crushing rotor 43. It does not have to be provided.
- a medium stirring type powder processing apparatus is used to stir balls (or beads) as a medium by rotating an agitator to crush the powder raw material. May be good.
- the powder processing apparatus 4 may be used as a classifier without using the crushing rotor 43. Further, since it is possible to introduce hot air from the hot air generator 3, the powder processing device 4 may be used as a dryer.
- the powder processing apparatus 4 may be used as a particle design apparatus by providing a coarse powder recovery port in the casing 40 and collecting the coarse powder. Further, a plurality of types of raw materials may be supplied to the casing 40 and used as a continuous mixer in which the plurality of types of raw materials are mixed in the casing 40.
- a dust content concentration sensor for measuring the dust content concentration and a powder composition are added to at least one of the devices including the powder processing device 4 or at least one of the paths between the devices.
- Measuring instruments such as a NIR sensor for measuring, a moisture sensor for measuring the moisture content of powder, a pressure sensor for measuring pressure, and a sound pressure / frequency sensor for measuring sound pressure or frequency may be provided.
- FIG. 3 is a block diagram showing an internal configuration of the server device 100 according to the first embodiment.
- the server device 100 includes a control unit 101, a storage unit 102, an input unit 103, an output unit 104, a communication unit 105, an operation unit 106, and a display unit 107.
- the control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the server device 100.
- the CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, to control the operation of each hardware unit, thereby as a control device according to the present invention.
- the RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
- the control unit 101 is configured to include a CPU, ROM, and RAM, but has a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, and volatile or non-volatile memory. It may be one or more arithmetic circuits or control circuits including the above. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
- a clock for outputting date and time information
- a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction
- a counter for counting the number.
- the storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like.
- the storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the device, and the like.
- the computer program stored in the storage unit 102 includes the control program PG1 for controlling the operation of the device to be controlled.
- the control unit 101 of the server device 100 executes a process of providing information to the client device 500, a process of controlling the operation of the device including the powder processing device 4, and the like.
- the computer program including the control program PG1 may be provided by a non-temporary recording medium M1 in which the computer program is readablely recorded.
- the recording medium M1 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD (Secure Digital) card, or a micro SD card.
- the control unit 101 reads various programs from the recording medium M1 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
- the input unit 103 includes a connection interface for connecting the device to be controlled.
- the device connected to the input unit 103 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4, a cyclone 5, a dust collector 6, and a blower 7.
- the connection interface included in the input unit 103 may be a wired interface or a wireless interface. Data sent from the raw material supply machine 2, the hot air generator 3, the powder processing device 4, the cyclone 5, the dust collector 6, and the blower 7 are input to the input unit 103.
- the data input to the input unit 103 is measured by the weight sensor S1, the particle size sensor S2, the flow rate sensor S3, the temperature sensor S4, the rotation speed sensor S5 for the crushing rotor 43, and the rotation speed sensor S6 for the classification rotor 45.
- the measurement data to be performed is included.
- the device to be controlled is connected to the input unit 103, but at least a part of the sensors S1 to S6 may be directly connected to the input unit 103.
- the measurement data output from the sensors S1 to S6 is directly input to the input unit 103 without going through the device to be controlled.
- the server device 100 may acquire measurement data through the communication unit 105 described later.
- the output unit 104 includes a connection interface for connecting the device to be controlled.
- the device connected to the output unit 104 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4, a cyclone 5, a dust collector 6, and a blower 7.
- the connection interface included in the output unit 104 may be a wired interface or a wireless interface.
- the control unit 101 controls the operation of the device to be controlled by outputting a control command through the output unit 104. For example, when controlling the rotation speed of the crushing rotor 43, the control unit 101 generates a control command for the crushing motor 430, which is a driving unit of the crushing rotor 43, and outputs the control command to the powder processing apparatus 4 through the output unit 104.
- Control the rotation speed of the crushing rotor 43 Control the rotation speed of the crushing rotor 43.
- the control unit 101 generates a control command for the classification motor 450 which is a drive unit of the classification rotor 45 and outputs the control command to the powder processing apparatus 4 through the output unit 104.
- the rotation speed of the classification rotor 45 is controlled.
- the control unit 101 when controlling the discharge / suction flow rate from the casing 40 included in the powder processing apparatus 4, the control unit 101 generates a control command for the blower 7 and outputs the control command to the blower 7 through the output unit 104, whereby the casing 40 Controls the discharge / suction flow rate from.
- the communication unit 105 includes a communication interface for transmitting and receiving various communication data.
- the communication interface included in the communication unit 105 is, for example, a communication interface conforming to the communication standard of LAN (Local Area Network) used in WiFi (registered trademark) and Ethernet (registered trademark).
- a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution) may be used.
- the communication unit 105 communicates with, for example, the client device 500 used by the user of the powder processing system 1.
- the communication unit 105 may receive the operation data or the setting data transmitted from the client device 500 in order to accept the remote operation of the powder processing system 1.
- the control unit 101 executes a process according to the received operation data or the setting data. Further, the control unit 101 may generate screen data of the user interface screen to be displayed on the client device 500, and may transmit the generated screen data to the client device 500 through the communication unit 105.
- the operation unit 106 is provided with an input interface such as a keyboard and a mouse, and accepts various operations and various settings.
- the control unit 101 performs appropriate processing based on various operations and various settings received through the operation unit 106, and stores the setting information in the storage unit 102 as necessary.
- the server device 100 is configured to include the operation unit 106, but the operation unit 106 is not indispensable, and the operation is received through a computer (for example, the client device 500) connected to the outside. You may.
- the display unit 107 includes a display panel such as a liquid crystal panel or an organic EL (Electro-Luminescence) panel, and displays information to be notified to the user.
- the display unit 107 may display, for example, the measurement data of the various sensors S1 to S6 received through the communication unit 105, or may display information based on various operations and various settings received through the operation unit 106.
- the server device 100 is configured to include the display unit 107, but the display unit 107 is not essential and outputs information to be notified to the user to an external computer (for example, the client device 500). , The information may be displayed on the output destination computer.
- the server device 100 has been described as a single computer, but it does not have to be a single computer, and may be composed of a plurality of computers or a plurality of virtual computers.
- FIG. 4 is a block diagram showing the internal configuration of the client device 500.
- the client device 500 is a computer such as a personal computer, a smartphone, or a tablet terminal, and includes a control unit 501, a storage unit 502, a communication unit 503, an operation unit 504, and a display unit 505.
- the control unit 501 includes, for example, a CPU, a ROM, a RAM, and the like.
- the ROM included in the control unit 501 stores a control program or the like that controls the operation of each hardware unit included in the client device 500.
- the CPU in the control unit 501 executes a control program stored in the ROM and various computer programs stored in the storage unit 502 described later, and controls the operation of each hardware unit.
- the control unit 501 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number. Data and the like used during execution of the calculation are temporarily stored in the RAM included in the control unit 501.
- the storage unit 502 includes a storage device that uses a hard disk, a flash memory, or the like.
- the storage unit 502 stores a computer program executed by the control unit 501, various data acquired from the outside, various data generated inside the device, and the like.
- the computer program stored in the storage unit 502 may include an application program for accessing the server device 100 from the client device 500.
- the computer program stored in the storage unit 102 includes a display program PG5 that accesses the server device 100 from the client device 500 and displays information provided by the server device 100.
- the computer program including the display program PG5 may be provided by a non-temporary recording medium M2 in which the computer program is readablely recorded.
- the recording medium M2 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD card, or a micro SD card.
- the control unit 501 reads various programs from the recording medium M2 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 502.
- the communication unit 503 includes a communication interface for transmitting and receiving various data.
- the communication interface included in the communication unit 503 is, for example, a communication interface conforming to the LAN communication standard used in WiFi (registered trademark) and Ethernet (registered trademark).
- a communication interface conforming to communication standards such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, and LTE may be used.
- the communication unit 503 communicates with, for example, the server device 100 of the powder processing system 1.
- the data received by the client device 500 through the communication unit 503 includes screen data for displaying the interface screen of the server device 100 on the display unit 505, data indicating a setting state and a control state of the device including the powder processing device 4.
- the data indicating the set state includes a set value regarding the rotation speed of the crushing rotor 43, a set value regarding the rotation speed of the classification rotor 45, a set value regarding the discharge / suction flow rate by the blower 7, and the like.
- the data indicating the control state includes a measured value related to the rotation speed of the crushing rotor 43, a measured value related to the rotation speed of the classification rotor 45, a measured value related to the discharge / suction flow rate by the blower 7, and a powder processing device 4. It includes alarm information and the like output from.
- the data received by the communication unit 503 is output to the control unit 501.
- the data transmitted by the client device 500 through the communication unit 503 includes operation data, setting data, and the like when the powder processing system 1 is remotely controlled.
- the operation unit 504 is equipped with an input interface such as a keyboard and a mouse, and accepts various operations and various settings.
- the control unit 501 performs appropriate processing based on various operations and various settings received through the operation unit 504, and stores the setting information in the storage unit 502 as necessary.
- the display unit 505 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays information to be notified to the user.
- the display unit 505 displays the interface screen of the server device 100, for example, based on the screen data received by the communication unit 503. Further, the display unit 505 displays the setting state and the control state of the device including the powder processing device 4 based on the data indicating the setting state and the control state of the device including the powder processing device 4 received by the communication unit 503. You may.
- FIG. 5 is a flowchart illustrating a procedure of processing executed by the client device 500 and the server device 100.
- the display program PG5 is started in the client device 500 (step S101).
- the control unit 501 displays, for example, a login screen for accepting the input of the user ID and password on the display unit 505, and accepts the input of the user ID and password on the displayed login screen (step S102).
- FIG. 6 is a schematic diagram showing an example of a login screen.
- the login screen 600 shown in FIG. 6 includes a user ID input field 601, a password input field 602, and a login button 603.
- the input fields 601, 602 and the login button 603 are arranged as components of a GUI (Graphical User Interface) that receives operation input using the operation unit 504.
- GUI Graphic User Interface
- the control unit 501 sends the input user ID and password from the communication unit 503 to the server. It is transmitted to the device 100 (step S103). At this time, the control unit 501 may encrypt the user ID and password to be transmitted.
- the server device 100 receives the user ID and password transmitted from the client device 500 in the communication unit 105 (step S104).
- the user ID and password received by the communication unit 105 are output to the control unit 101.
- the control unit 101 executes user authentication based on the user ID and password received through the communication unit 105 (step S105). That is, the control unit 101 may execute the user authentication by determining the difference between the user ID and password received from the client device 500 and the user ID and password stored in advance in the storage unit 102. If the user authentication is successful, the control unit 101 determines that the user of the client device 500 is a legitimate user of the powder processing system 1.
- the control unit 101 determines which powder processing system is the user based on the received user ID. You may judge. Therefore, the server device 100 may have a table in which the user ID is associated with the identifier of the powder processing system (or powder processing device) used by the user specified by the user ID.
- the control unit 101 acquires information from the powder processing system 1 (step S106).
- the information acquired by the control unit 101 includes, for example, measurement data of the rotation speed of the crushing rotor 43 included in the powder processing apparatus 4, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when the powder is taken out from the casing 40. At least one of is included.
- the rotation speeds of the crushing rotor 43 and the classification rotor 45 are measured values measured by the rotation speed sensors S5 and S6, respectively.
- the discharge / suction flow rate is a measured value measured by the flow rate sensor S3.
- the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate are examples of measurement information obtained from at least one measuring instrument included in the powder processing system 1.
- the procedure of acquiring information from the powder processing system 1 after executing the user authentication is set, but the server device 100 communicates with the powder processing system 1 at any time and starts from the powder processing system 1.
- Various information to be transmitted may be acquired at any time.
- the control unit 101 generates screen data of the display screen to be displayed on the client device 500 (step S107).
- the control unit 101 includes a monitoring screen 610 (FIG. 10) including at least one of measurement data regarding the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate, and an overall view of the powder processing system 1. 7) screen data is generated.
- the control unit 101 transmits the generated screen data from the communication unit 105 to the client device 500 (step S108).
- the client device 500 receives the screen data transmitted from the server device 100 by the communication unit 503 (step S109).
- the screen data received by the communication unit 503 is output to the control unit 501.
- the control unit 501 causes the display unit 505 to display the monitoring screen 610 based on the screen data received through the communication unit 503 (step S110).
- the client device 500 may acquire information to be displayed at any time by communicating with the server device 100 while the monitoring screen 610 is being displayed, and may update the monitoring screen 610 based on the acquired information.
- FIG. 7 is a schematic diagram showing a display example of the monitoring screen 610.
- the monitoring screen 610 shown in FIG. 7 shows a display example in a terminal device such as a smartphone.
- the monitoring screen 610 includes a system status display column 611, a measurement data display column 612, an overall system diagram display column 613, and an apparatus status display column 614.
- system status display column 611 information on the operating status of the entire system including the powder processing system 1, the server device 100, and the client device 500 is displayed.
- the operating status of the entire system for example, information on the communication status between the server device 100 and the client device 500 may be displayed, and information on whether or not the powder processing system 1 is processing may be displayed. May be good.
- “Comms Online” in the system status display column 611 indicates that the server device 100 and the client device 500 can communicate with each other, and “Processing” indicates that the powder processing system 1 is processing. If the server device 100 and the client device 500 cannot communicate with each other, “Comms Offline” is displayed. Further, when the powder processing system 1 is on standby, “Idling” is displayed, and when the powder processing system 1 is stopped, "Shutdown” is displayed.
- the measurement data display field 612 among the measurement values of various sensors including the sensors S1 to S6, the measurement values that the user should refer to are displayed.
- the measured value to be displayed in the measurement data display field 612 is appropriately set by the provider of the display program PG5 or the like.
- the measurement data display column 612 of FIG. 7 shows an example in which the measured value of the drive current supplied to the crushing rotor 43 and the measured value of the rotation speed of the crushing rotor 43 are displayed.
- the measured values of the drive current and the rotation speed are displayed as numerical data, and an example of graphically displaying them by an arcuate gauge graph is shown.
- the display in the measurement data display field 612 may be a display of only numerical data or a display of only a gauge graph.
- the gauge graph it may be a display such as a bar graph or a pie graph, or a display simulating a level meter.
- the measurement data display field 612 may be a GUI component that accepts a display switching operation using the operation unit 504.
- An example of the display switching operation is a flick operation.
- the display in the measurement data display field 612 is configured to switch from the measured value being displayed to another measured value when the display switching operation is accepted. The switching of the display in the measurement data display field 612 will be specifically described with reference to FIG.
- the overall view of the powder processing system 1 is schematically displayed in the system overall view display column 613.
- the user can easily grasp the device configuration by referring to the overall view displayed in the system overall view display column 613.
- the raw material supply machine 2 and the hot air generator 3 are provided upstream of the powder processing device 4, and the cyclone 5, the dust collector 6, and the blower 7 are provided downstream of the powder processing device 4.
- the overall view that is provided can be understood from the overall view that is provided.
- the location of the abnormality may be identifiable in the overall view.
- the device status display column 614 the status of the devices constituting the powder processing system 1 is displayed.
- the device to be displayed in the device status display column 614 is appropriately selected according to the operating status of the device and the running process.
- the example of FIG. 7 shows that the powder processing apparatus 4 is being processed and that the diagnosis result of the exhaust fan (blower 7) is normal.
- buttons 610B, 620B, 630B, and 640B are GUI components operated to switch the display contents of the monitoring screen 610.
- the highlight button 610B is a button operated when displaying information having a relatively high importance in the powder processing system 1.
- the monitoring screen 610 of FIG. 7 shows an example of a screen displayed on the display unit 505 of the client device 500 when the highlight button 610B is operated.
- Such a monitoring screen 610 may be a screen displayed on the display unit 505 as an initial screen after user authentication.
- the dashboard button 620B is a button operated when displaying the measured values of various sensors including the sensors S1 to S6.
- the dashboard button 620B is operated, the latest measured values obtained from various sensors are displayed in a list on the display unit 505. A specific example will be described with reference to FIG.
- the trend button 630B is a button operated when displaying the measured values of various sensors including the sensors S1 to S6 in chronological order.
- the display unit 505 displays time-series data of measured values obtained from various sensors. A specific example will be described with reference to FIG.
- the alert button 640B is a button operated when displaying the operating status of the powder processing system 1 in a list.
- the display unit 505 displays a list of operating conditions including an abnormality that has occurred in the powder processing system 1. A specific example will be described with reference to FIG.
- FIG. 8 is a schematic diagram showing another display example of the monitoring screen 610.
- the monitoring screen 610 of FIG. 8 shows a display example when an abnormality occurs in the powder processing system 1.
- the screen configuration of the monitoring screen 610 is the same as in the normal state, and includes a system status display column 611, a measurement data display column 612, an overall system diagram display column 613, and an apparatus status display column 614.
- the location of the abnormality in the powder processing system 1 is specified by the server device 100.
- the server device 100 can determine the presence or absence of an abnormality in the powder processing system 1 and identify the location where the abnormality occurs by using a known method. For example, the server device 100 may determine the presence or absence of an abnormality and identify the location where the abnormality occurs by comparing the measured values of various sensors including the sensors S1 to S6 with the threshold values set for each measured value.
- the server device 100 transmits to the client device 500 information indicating that the abnormality has occurred, information on the location where the abnormality has occurred, information on how to deal with the abnormality, and the like.
- the monitoring screen 610 displayed on the client device 500 is updated based on the information from the server device 100.
- the update of the monitoring screen 610 is executed by the control unit 501 based on the display program PG5.
- the monitoring screen 610 shown in FIG. 8 shows a display example when the server device 100 determines that the current is abnormal because the current of the crushing rotor 43 is higher than the preset threshold value.
- the device status display column 614 of the monitoring screen 610 it is displayed that the current of the crushing rotor 43 is abnormal, and the coping method is displayed. Further, the location where the abnormality has occurred is identifiablely displayed in the system overall diagram display column 613.
- FIG. 8 shows an example in which the powder processing apparatus 4 including the crushing rotor 43 is highlighted and displayed so as to be distinguishable from other normal apparatus. The highlighting is realized by using a known method such as drawing the target device with a thick line, drawing by changing the color, or drawing by blinking.
- FIG. 9 is a schematic diagram showing an example of display switching in the measurement data display field 612.
- the display content 612A is the display content first displayed in the measurement data display field 612 when the monitoring screen 610 is displayed.
- the display content 612A includes, for example, a measured value of the drive current supplied to the crushing rotor 43 and a measured value of the rotation speed of the crushing rotor 43.
- the display content 612B includes, for example, a measured value of the drive current supplied to the classification rotor 45 and a measured value of the rotation speed of the classification rotor 45.
- the display content 612C (or display content 612A) is displayed in the measurement data display field 612.
- the display content 612C includes, for example, a measured value of the discharge / suction flow rate when the powder is taken out from the casing 40 of the powder processing apparatus 4.
- the measured values of the discharge / suction flow rate are displayed as numerical data, and an example of graphically displaying them by a bar graph is shown.
- the display content 612D (or display content 612B) is displayed in the measurement data display field 612.
- the display content 612D includes, for example, information on the particle size measured for the powder obtained from the powder processing apparatus 4.
- each measured value of D10, D50, and D90 is displayed as numerical data, and each is graphically displayed by a bar graph.
- the display content 612E includes, for example, a measured value of the supply rate of the powder raw material by the raw material supply machine 2.
- the measured value of the supply speed is displayed as numerical data, and an example of graphically displaying it by a bar graph is shown.
- the drive current and rotation speed of the crushing rotor 43, the drive current and rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, the particle size information, and the supply speed of the powder raw material are measured.
- the form of sequentially displaying in the data display field 612 has been described, the measured values to be displayed in the measurement data display field 612, the order in which the measured values are displayed, and the like are not limited to the above, and can be set as appropriate. ..
- the client device 500 transmits a switching request to the dashboard screen 620 described with reference to FIG. 10 to the server device 100.
- the server device 100 generates screen data of the dashboard screen 620 in response to the switching request from the client device 500, and transmits the generated screen data to the client device 500.
- the client device 500 displays the dashboard screen 620 on the display unit 505 based on the screen data transmitted from the server device 100.
- FIG. 10 is a schematic diagram showing a display example of the dashboard screen 620.
- the dashboard screen 620 includes a particle size information display field 621, a crushing rotor information display field 622, a classification rotor information display field 623, and a blower information display field 624. Further, the dashboard screen 620 may include a system status display field 611 and various buttons 610B, 620B, 630B, 640B.
- the transmittance of the powder in the particle size sensor S2 the values of D10, D50, and D90 measured by the particle size sensor S2 are displayed. These values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information notifying that fact may be displayed. In the example of FIG. 10, since the transmittance of the particle size sensor S2 is lower than the preset lower limit value, it is shown that the character information “Low” indicating that fact is added.
- the transmittance of the particle size sensor S2 is a value measured by the particle size sensor S2 itself.
- the crushing rotor information display column 622 for example, on / off identification information of the crushing rotor 43, a measured value of the drive current supplied to the crushing rotor 43, a measured value of the rotation speed of the crushing rotor 43, and the like are displayed. These measured values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these measured values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information for notifying that fact may be displayed. In the example of FIG. 10, since the drive current of the crushing rotor 43 is higher than the preset upper limit value, it is shown that the character information of "High" indicating that fact is added.
- the classification rotor information display field 623 for example, on / off identification information of the classification rotor 45, a measured value of the drive current supplied to the classification rotor 45, a measured value of the rotation speed of the classification rotor 45, and the like are displayed. These measured values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these measured values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information for notifying that fact may be displayed.
- blower information display field 624 for example, on / off identification information of the blower 7, a measured value of the drive current supplied to the blower 7, the position of the damper when the blower 7 is operating, and the like are displayed. These values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these measured values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information for notifying that fact may be displayed.
- the dashboard screen 620 is configured to display information on the particle size, information on the crushing rotor 43, information on the classification rotor 45, and information on the blower 7, but the information displayed on the dashboard screen 620 is Not limited to the above.
- it may include information about the raw material supply machine 2, information about the hot air generator 3, information about the temperature and pressure inside the powder processing device 4, and the like.
- the client device 500 transmits a switching request to the trend screen 630 described with reference to FIG. 11 to the server device 100.
- the server device 100 generates screen data of the trend screen 630 in response to the switching request from the client device 500, and transmits the generated screen data to the client device 500.
- the client device 500 displays the trend screen 630 on the display unit 505 based on the screen data transmitted from the server device 100.
- FIG. 11 is a schematic diagram showing a display example of the trend screen 630.
- the trend screen 630 includes a graph selection field 631, a measured value display field 632, and a graph display field 633. Further, the trend screen 630 may include a system status display column 611 and various buttons 610B, 620B, 630B, 640B.
- the graph selection field 631 accepts selections regarding the target of graph display.
- the graph selection field 631 is composed of GUI components, and includes time selection buttons 631a to 631c and item selection buttons 631d.
- the number "8" is attached to the time selection button 631a as an index. This button instructs to display a graph based on the measurement data measured from 8 hours ago to the current time.
- the time selection buttons 631b and 631c are indexed with the numbers "24" and "72", respectively, these buttons are displayed from 24 hours ago and 72 hours ago to the current time, respectively. Instruct to display a graph based on the measured measurement data.
- the item selection button 631d is a button for selecting a target item for graph display.
- the target items include the drive current and rotation speed of the crushing rotor 43, the drive current and rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, the particle size, the supply speed of the powder raw material, and the like.
- the item selection button 631d When the item selection button 631d is operated, the target items are displayed in a list format, and the user accepts the selection of the item desired to be displayed from the displayed target items.
- the example of FIG. 11 shows that "8 hours" is selected by the time selection button 631a and the item of "classification rotor rotation speed" is selected by the item selection button 631d.
- the latest measured value is displayed in the measured value display column 632.
- the measured value displayed in the measured value display field 632 is a measured value corresponding to the item selected by the item selection button 631d.
- the latest measured value measured for the rotation speed of the classification rotor 45 is displayed in the measurement value display column 632. ..
- the graph display column 633 a graph showing the time change of the measured value is displayed.
- the horizontal axis of the graph displayed in the graph display field 633 represents the time from 8 hours ago (24 hours ago or 72 hours ago) to the current time, and the vertical axis represents the measured value measured for the selected item.
- the time selection button 631a representing "8 hours” is selected, and the "classification rotor rotation speed” is selected by the item selection button 631d. Therefore, in the graph display column 633, a graph showing the time change (trend) of the measured value from 8 hours ago to the current time is displayed with respect to the rotation speed of the classification rotor 45.
- the client device 500 transmits a switching request to the alert screen 640 described with reference to FIG. 12 to the server device 100.
- the server device 100 generates screen data of the alert screen 640 in response to the switching request from the client device 500, and transmits the generated screen data to the client device 500.
- the client device 500 displays the alert screen 640 on the display unit 505 based on the screen data transmitted from the server device 100.
- FIG. 12 is a schematic diagram showing a display example of the alert screen 640.
- the alert screen 640 includes a channel selection field 641 and an alert display field 642. Further, the alert screen 640 may include a system status display field 611 and various buttons 610B, 620B, 630B, 640B.
- the channel selection field 641 accepts the selection of the display target.
- the channel selection field 641 is composed of GUI components.
- this channel selection field 641 is operated, for example, the transmission rate of the particle size sensor S2, the drive current and rotation speed of the crushing rotor 43, the drive current and rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, Items such as particle size and supply speed of powder raw material are displayed in a list format.
- the channel selection field 641 accepts a selection for an item to be displayed from a plurality of items existing in the list. In the example of FIG. 12, since "all" is selected in the channel selection field 641, the display target is all items.
- alert information regarding the item selected in the channel selection field 641 is displayed in chronological order.
- the alert information includes information that distinguishes between normal and abnormal. That is, since the information displayed in the alert display field 642 includes items whose values are normal, it can be used as an operation history in the powder processing system 1.
- FIG. 12 shows that the raw material supply machine 2 and the powder processing device 4 were temporarily stopped because the current of the crushing rotor 43 became an abnormal value, and then recovered normally.
- the operation history information of the powder processing system 1 is displayed on the display unit 505 of the client device 500, but the operation history is displayed in the server device 100 or any storage device accessible from the client device 500.
- At least one of the process of storing the information of the above, the process of printing the information of the operation history, and the process of transmitting the information of the operation history by mail may be executed. Note that these processes may be executed by the control unit 101 of the server device 100, or may be executed by the control unit 501 of the client device 500.
- the server device 100 by accessing the server device 100 using the client device 500 in which the display program PG5 is installed, it is possible to acquire various information indicating the operating status of the powder processing system 1. It can be displayed together with the overall view of the powder processing system 1. Therefore, the user can acquire information on the operating status of the powder processing system 1 as necessary even when the powder processing system 1 and the server device 100 which is a control device thereof are not directly operated. Therefore, the state of the powder processing system 1 can be easily grasped.
- FIG. 13 is a schematic diagram showing an example of the input screen 650.
- the server device 100 generates screen data of the input screen 650 as shown in FIG. 13 when the access is received from the authenticated client device 500 and the powder processing system 1 is not operating.
- the screen data is transmitted to the client device 500.
- the control unit 501 of the client device 500 causes the display unit 505 to display the input screen 650 as shown in FIG. 13 based on the screen data received from the server device 100.
- the client device may request the server device 100 to switch to the input screen 650.
- the client device 500 can receive the screen data transmitted from the server device 100 in response to the switching request and display the input screen 650 based on the received screen data.
- the input screen 650 of FIG. 13 shows, as an example, a particle size input screen that accepts input of a particle size desired by the user.
- the input screen 650 includes a particle size input field 651, a send button 652, and a cancel button 653, which are arranged as GUI components.
- the particle size input field 651 accepts the input of the lower limit value and the upper limit value for each of D10, D50, and D90.
- the values of D10, D50, and D90 may be accepted, or only the value of D50 (median diameter) may be accepted.
- the send button 652 is a button for giving a transmission instruction
- the cancel button 653 is a button for ending the input without giving a transmission instruction.
- the input screen 650 shown in FIG. 13 is configured to accept the input of the particle size desired by the user, but is not limited to the particle size, the circularity of the powder desired by the user, and the environmental temperature of the powder processing system 1. , Environmental humidity of the powder processing system 1, water content of the powder raw material, electric power or current for driving the crushing rotor 43, and powder processing for at least one of the electric power or current for driving the classification rotor 45. It may be accepted as a condition regarding.
- the server device 100 determines the control parameters related to the powder processing system 1 based on the conditions transmitted from the client device 500.
- the server device 100 uses a learning model 200 (see FIG. 14) in which the relationship between the conditions related to powder processing and the control parameters related to the powder processing system is learned.
- the learning model 200 may be stored in the storage unit 102 of the server device 100, or may be stored in the storage unit (not shown) of an external server communicably connected to the server device 100. In the latter case, the server device 100 may transmit the conditions received from the client device 500 to the external server, and acquire the calculation result by the learning model 200 from the external server.
- FIG. 14 is a schematic diagram showing a configuration example of the learning model 200.
- the learning model 200 is, for example, a learning model for machine learning including deep learning, and is configured by a neural network.
- the learning model 200 includes an input layer 201, intermediate layers 202A and 202B, and an output layer 203.
- two intermediate layers 202A and 202B are described, but the number of intermediate layers is not limited to two and may be three or more.
- the input layer 201, the intermediate layers 202A, 202B, and the output layer 203 have one or more nodes, and the nodes of each layer are connected to the nodes existing in the previous and next layers in one direction with a desired weight and bias. Has been done.
- the same number of data as the number of nodes included in the input layer 201 is input to the input layer 201 of the learning model 200.
- the data input to the node of the input layer 201 is the data of the particle diameter (desired particle diameter) desired by the user.
- an example of the particle diameter data input to the node of the input layer 201 is the median diameter.
- the diameter is not limited to the median, and may be a mode diameter or various arithmetic mean values.
- the particle diameter data given to the node of the input layer 201 is not limited to a single value such as the median diameter, the mode diameter, and various arithmetic mean values, but may be each value of D10, D50, and D90. It may be a range set for each of D10, D50, and D90 (that is, an upper limit value and a lower limit value of a range allowed by the user with respect to the particle size).
- the particle size data input to the learning model 200 is output to the node included in the first intermediate layer 202A through the nodes constituting the input layer 201.
- the data input to the first intermediate layer 202A is output to the nodes included in the next intermediate layer 202B through the nodes constituting the intermediate layer 202A.
- the output is calculated using the activation function including the weights and biases set between the nodes.
- the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 203 is obtained. Parameters such as weights and biases that connect the nodes are learned by a predetermined learning algorithm.
- the particle size data related to the particle size obtained from the powder processing device 4 that is, the particle size data measured by the particle size sensor S2
- the rotation of the crushing rotor 43 included in the powder processing device 4 Various parameters including weights and biases between nodes are learned by a predetermined learning algorithm using the measurement data including the speed, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when taking out the powder from the casing 40 as training data. can do.
- the output layer 203 outputs calculation results related to control parameters that control the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40.
- the probability indicating the quality of the combination of the plurality of control parameters described above may be output.
- the output layer 203 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the crushing rotor 43 is G1, the rotation speed of the classification rotor 45 is C1, and the discharge.
- the probability Pn that the rotation speed of the crushing rotor 43 is Gn, the rotation speed of the classification rotor 45 is Cn, and the discharge / suction flow rate is Vn may be output from the nth node.
- the number of nodes constituting the output layer 203 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
- the learning model 200 shown in FIG. 14 is calculated with respect to control parameters including the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40 according to the input of the particle size desired by the user.
- control parameters including the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40 according to the input of the particle size desired by the user.
- the configuration is such that the result is output, the input / output relationship in the learning model 200 is not limited to the above example.
- FIG. 15 is a schematic diagram showing a first modification of the learning model 200.
- the particle size desired by the user the circularity of the powder desired by the user, the environmental temperature of the powder processing system 1, the environmental humidity of the powder processing system 1, and the water content of the powder raw material are contained.
- the power or current for driving the grinding rotor 43 and at least one input of the power or current for driving the classification rotor 45, the rotational speed of the grinding rotor 43, the rotational speed of the classification rotor 45, and A learning model that outputs calculation results related to control parameters including discharge / suction flow rate from the casing 40 is shown.
- FIG. 16 is a schematic diagram showing a second modification of the learning model 200.
- the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, and the supply amount of the powder raw material are obtained according to the input of the particle size desired by the user.
- a learning model that outputs the calculation result regarding the control parameter including the temperature in the casing 40 is shown.
- the input of the learning model 200 is the particle size desired by the user, the circularity of the powder desired by the user, the environmental temperature of the powder processing system 1, the environmental humidity of the powder processing system 1, and the powder.
- the water content of the raw material, the power or current for driving the grinding rotor 43, and the power or current for driving the classification rotor 45 are at least one, and the output of the learning model 200 is the rotation speed of the grinding rotor 43. It may be at least one of the rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, the supply amount of the powder raw material, and the temperature inside the casing 40.
- the learning model 200 may be prepared for each type of powder raw material, or may be prepared for each powder processing system 1. Further, a plurality of different learning models 200 may be used properly according to the size of the desired particle size.
- Such a learning model 200 is obtained from, for example, measurement data including the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when taking out the powder from the casing 40, and the powder processing apparatus 4.
- the particle size data of the powder to be obtained is collected, and the measurement data and the particle size data are used as teacher data to determine the particle size of the powder, the rotation speeds of the crushing rotor 43 and the classification rotor 45, and the discharge / suction flow rate. Obtained by learning the relationship with the included control parameters.
- the learning model 200 may be generated in the server device 100, or may be generated in the external server described above.
- FIG. 17 is a flowchart illustrating a procedure of processing executed by the client device 500 and the server device 100 in the second embodiment.
- the control unit 501 of the client device 500 receives the input of the desired particle size through the input screen 650 as shown in FIG. 13 (step S201).
- the control unit 501 transmits the information of the desired particle size received through the input screen 650 from the communication unit 503 to the server device 100 (step S202).
- the server device 100 receives the information on the desired particle size transmitted from the client device 500 by the communication unit 105 (step S203). Based on the received information on the desired particle size, the control unit 101 inputs the particle size data to the input layer 201 of the learning model 200 (step S204), and executes the calculation by the learning model 200 (step S205). At this time, the control unit 101 gives the received particle size data to the node of the input layer 201. The data given to the node of the input layer 201 is output to the node of the adjacent intermediate layer 202A. In the intermediate layer 202A, an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer 202B in the subsequent stage.
- each node of the output layer 203 outputs the calculation result regarding the control parameter of the powder processing apparatus 4. Specifically, each node of the output layer 203 outputs a calculation result regarding control parameters for controlling the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40.
- the control unit 101 acquires the calculation result from the learning model 200 (step S206) and determines the control parameters used for control (step S207).
- the control unit 101 determines the control parameters used for control by specifying the combination of the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40, which have the highest probability.
- control unit 101 executes control based on the control parameters determined in step S207 (step S208). That is, the control unit 101 generates a control command for the crushing motor 430 and the classification motor 450 so that the rotation speeds of the crushing rotor 43 and the classification rotor 45 become the values determined in step S207, and powder processing is performed through the output unit 104. Output to device 4. Further, the control unit 101 generates a control command for the blower 7 so that the discharge / suction flow rate from the casing 40 becomes the value determined in step S207, and outputs the control command to the blower 7 through the output unit 104.
- the server device 100 determines control parameters for controlling the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40, based on the particle size desired by the user. can do. That is, in the present embodiment, the control parameters related to the powder processing apparatus 4 can be determined without depending on the experience and intuition of the field engineer. The server device 100 executes control based on the determined control parameters so that a powder having a desired particle size can be obtained.
- the control unit 101 acquires information from the powder processing system 1 (step S209).
- the information acquired by the control unit 101 includes, for example, measurement data of the rotation speed of the crushing rotor 43 included in the powder processing apparatus 4, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when the powder is taken out from the casing 40. Is included.
- the rotation speeds of the crushing rotor 43 and the classification rotor 45 are measured values measured by the rotation speed sensors S5 and S6, respectively.
- the discharge / suction flow rate is a measured value measured by the flow rate sensor S3.
- the control unit 101 generates screen data of the display screen to be displayed on the client device 500 (step S210).
- the control unit 101 includes a monitoring screen 610 (FIG. 10) including at least one of measurement data regarding the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate, and an overall view of the powder processing system 1. 7) screen data is generated.
- the control unit 101 transmits the generated screen data from the communication unit 105 to the client device 500 (step S211).
- the client device 500 receives the screen data transmitted from the server device 100 by the communication unit 503 (step S212).
- the screen data received by the communication unit 503 is output to the control unit 501.
- the control unit 501 causes the display unit 505 to display the monitoring screen 610 based on the screen data received through the communication unit 503 (step S213).
- the client device 500 may acquire information to be displayed at any time by communicating with the server device 100 while the monitoring screen 610 is being displayed, and may update the monitoring screen 610 based on the acquired information.
- the monitoring screen 610 displayed on the display unit 505 of the client device 500 is the same as that shown in FIG. Further, in the second embodiment, the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40 are set according to the input of the desired particle size. It may be displayed at the same time.
- FIG. 18 is a schematic diagram showing a display example of the measured value in the second embodiment.
- the server device 100 can acquire the measured value obtained from the rotation speed sensor S5 and the set value based on the calculation result of the learning model 200 with respect to the rotation speed of the crushing rotor 43.
- the display program PG5 started in the client device 500 acquires information including the latest measured value obtained from the rotation speed sensor S5 and the set value by the learning model 200 from the server device 100, and obtains the above-mentioned monitoring screen 610 and dash. It may be displayed on the board screen 620.
- the example of FIG. 18 shows a state in which the latest measured value (6700 rpm) is displayed in the upper row and the set value (5383 rpm) by the learning model 200 is displayed in the lower row with respect to the rotation speed of the crushing rotor 43. Further, in the example of FIG. 18, the latest measured values are graphically displayed by an arc-shaped gauge graph. Inside this gauge graph, the operating limit range defined by the rating of the crushing rotor 43 is shown. The example of FIG. 18 shows that the crushing rotor 43 is driven at a rotation speed near the upper limit of the operation limit range.
- the server device 100 can acquire the measured value obtained from the rotation speed sensor S6 and the set value based on the calculation result of the learning model 200 with respect to the rotation speed of the classification rotor 45.
- the display program PG5 started in the client device 500 acquires information including the latest measured value obtained from the rotation speed sensor S6 and the set value by the learning model 200 from the server device 100, and obtains the above-mentioned monitoring screen 610 and dash. It may be displayed on the board screen 620.
- the rotation speed of the classification rotor 45 can be displayed by using numerical data, a gauge graph, or the like, similarly to the rotation speed of the crushing rotor 43.
- the server device 100 can acquire the measured value obtained from the flow rate sensor S3 and the set value based on the calculation result of the learning model 200 with respect to the discharge / suction flow rate from the casing 40.
- the display program PG5 activated in the client device 500 acquires information including the latest measured value obtained from the flow rate sensor S3 and the set value by the learning model 200 from the server device 100, and obtains the above-mentioned monitoring screen 610 and dashboard. It may be displayed on the screen 620.
- Example of FIG. 18 with respect discharge and suction flow rate shows a display state of the set value by the learning model 200 (14.2m 3 / min) in the lower ing. Further, in the example of FIG. 18, the latest measured values are graphically displayed by a bar graph. At the bottom of this bar graph, the operating limit range defined by the rating of the blower 7 is shown. The example of FIG. 18 shows that the blower 7 is driven so that the discharge / suction flow rate is close to the lower limit value of the operation limit range.
- the server device 100 can acquire the particle size obtained from the particle size sensor S2 and the desired particle size set by the user with respect to the particle size of the powder obtained from the powder processing device 4.
- the particle size obtained from the particle size sensor S2 is an example of powder measurement values measured for the powder processed by the powder processing system 1.
- the desired particle size set by the user is an example of the powder setting value for the desired powder set in the powder processing system.
- the particle size obtained from the particle size sensor S2 is, for example, the values of D10, D50, and D90.
- the desired particle size is, for example, a lower limit value and an upper limit value set by the user through the input screen 650.
- the display program PG5 activated in the client device 500 acquires information including the latest measured value obtained from the particle size sensor S2 and the desired particle size value input to the learning model 200 from the server device 100, and is described above. It may be displayed on the monitoring screen 610 and the dashboard screen 620.
- the latest measured value (1.6 ⁇ m) is set as the upper row, and the median value (1.7 ⁇ m) between the lower limit value and the upper limit value set as the desired particle size is set.
- the state displayed at the bottom is shown.
- the latest measured values are graphically displayed by an arc-shaped gauge graph. Inside this gauge graph, the assumed range is shown.
- the assumed range is a range defined by the lower limit value and the upper limit value of the desired particle size.
- the example of FIG. 18 shows that the powder processing system 1 is driven so that the measured value of D10 is near the lower limit of the assumed range.
- the degree of deviation between the measured value and the desired particle size may be displayed together.
- FIG. 18 shows an example in which the degree of deviation is displayed by the numerical values written in parentheses. The same applies to the values of D50 and D90.
- the powder processing system 1 can be operated under the conditions desired by the user, the conditions set by the user, the control parameters set by using the learning model 200, and the like. Can be displayed along with the measured values.
- the operation of the powder processing system 1 is controlled by giving the particle size from the client device 500, but an operation instruction including stopping the operation of the powder processing system 1 and changing the operating conditions is given. It may be output from the client device 500.
- the operation instruction is output to the powder processing system 1 via the server device 100, and the operation is stopped or the operation conditions are changed in the powder processing system 1.
- the powder raw material is subjected to mechanical energy such as impact, compression, grinding, and shearing to the powder raw material introduced into the casing 40.
- the mechanical crushing process for crushing has been described.
- the powder processing system 1 may perform an air flow type pulverization process.
- crushed air jet stream
- the crushing rotor 43 is unnecessary in the powder processing system 1 that performs the airflow type crushing process.
- various measuring instruments including a pressure sensor for measuring the pressure of crushing air (crushing pressure) are provided at one or a plurality of appropriate locations to monitor the process during processing. To.
- the client device 500 may acquire measurement information including the crushing pressure from the server device 100 and display the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Further, the client device 500 may acquire control parameters for controlling the crushing pressure from the server device 100 and display the acquired control parameters on the display unit 505.
- the server device 100 may determine the control parameters using, for example, a learning model configured to output calculation results for control parameters that control the crushing pressure in response to input of conditions relating to powder processing. it can. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
- the configuration in which both the crushing treatment and the classification treatment are performed has been described, but the configuration may be such that only one of the crushing treatment and the classification treatment is performed.
- the parameters related to the pulverization process (measurement information and control parameters) or the parameters related to the classification process (measurement information and control parameters) may be displayed on the display unit 505 of the client device 500.
- the powder raw material may be dried instead of the pulverization treatment and the classification treatment.
- a heat medium such as hot air is introduced into the casing 40 together with the powder raw material, and the powder raw material is dried by the action of the heat medium.
- a paddle may be provided in the casing 40, and the powder raw material in the casing 40 may be agitated by driving the paddle. In the following description, the paddle can be replaced by a screw.
- the crushing rotor 43 and the classification rotor 45 are unnecessary.
- a temperature sensor that measures the temperature of the heat medium
- a flow rate sensor that measures the flow rate of the heat medium
- a rotation speed sensor that measures the rotation speed of the paddle
- a pressure inside the casing 40 are measured.
- Various measuring instruments including a pressure sensor, a timer for measuring the operation time, and the like are provided at one or a plurality of appropriate locations, and these measuring instruments monitor the process being processed.
- the client device 500 acquires measurement information including the temperature of the heat medium, the flow rate of the heat medium, the rotation speed of the paddle, the pressure in the casing 40, the operation time, etc. from the server device 100, and obtains the acquired measurement information from the powder processing system. It may be displayed on the display unit 505 together with the overall view of 1. Further, the client device 500 acquires control parameters for controlling the temperature of the heat medium, the flow rate of the heat medium, the rotation speed of the paddle, the pressure in the casing 40, the operation time, and the like from the server device 100, and the acquired control parameters. May be displayed on the display unit 505.
- the server device 100 outputs a calculation result regarding control parameters that control the temperature of the heat medium, the flow rate of the heat medium, the rotation speed of the paddle, the pressure in the casing 40, the operation time, etc., in response to the input of the conditions related to the powder processing.
- the control parameters can be determined using the learning model configured to do so.
- the conditions related to powder processing to be input to the learning model are the moisture content of the desired powder (product powder), the processing capacity of the powder processing system 1, the moisture content of the powder raw material, the temperature, and the bulk density (true). Includes density or particle density), particle size, etc. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
- a mixing treatment in which two or more kinds of powder raw materials (or powder raw materials and liquid) are mixed may be performed.
- the raw materials to be processed are introduced into the casing 40, and the raw materials are mixed by rotating the paddle provided in the casing 40.
- the crushing rotor 43 and the classification rotor 45 are unnecessary.
- various measuring instruments including a rotation speed sensor for measuring the rotation speed of the paddle, a timer for measuring the operation time, and the like are provided at one or a plurality of appropriate places, and these measuring instruments are used. The process in process is monitored.
- the client device 500 may acquire measurement information including the rotation speed of the paddle, the operation time, and the like from the server device 100, and display the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Further, the client device 500 may acquire control parameters for controlling the rotation speed, operation time, etc. of the paddle from the server device 100, and display the acquired control parameters on the display unit 505.
- the server device 100 uses a learning model configured to output calculation results related to control parameters that control the rotation speed, operating time, etc. of the paddle in response to input of conditions related to powder processing, and obtains the above control parameters. Can be decided.
- the conditions for powder processing to be input to the learning model are the mixing degree, concentration, moisture content, mixing ratio of raw materials, mixing degree, and bulk density (true density or particle density) of the desired powder (product powder). , Fluidity, particle size, etc. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
- a composite treatment for binding two or more types of powder particles may be performed.
- a raw material containing particles to be treated is introduced into the casing 40, and a paddle provided in the casing 40 is rotated to combine two or more types of powder particles to perform compounding.
- the crushing rotor 43 and the classification rotor 45 are unnecessary.
- various measuring instruments including a rotation speed sensor for measuring the rotation speed of the paddle, a timer for measuring the operation time, and the like are provided at one or a plurality of appropriate places, and these measuring instruments are provided. Monitors the process in progress.
- the client device 500 may acquire measurement information including the rotation speed of the paddle, the operation time, and the like from the server device 100, and display the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Further, the client device 500 may acquire control parameters for controlling the rotation speed, operation time, etc. of the paddle from the server device 100, and display the acquired control parameters on the display unit 505.
- the server device 100 uses a learning model configured to output calculation results related to control parameters that control the rotation speed, operating time, etc. of the paddle in response to input of conditions related to powder processing, and obtains the above control parameters. Can be decided.
- the conditions related to powder processing to be input to the learning model are the degree of compounding of the desired powder (product powder), the degree of compounding of the powder raw material, the mixing ratio, the bulk density (true density or particle density), etc. including.
- the degree of compounding of the powder is, for example, BET (Brunauer, Emmett, Teller), NIR (Near Infrared), XRD (X-Ray Diffraction), TG-DTA (Thermogravimetry-Differential Thermal Analysis), MS (Mass Spectrometry), It is given by data such as SEM (Scanning Electron Microscope), FE-SEM (Field Emission-Transmission Electron Microscope), and TEM (Transmission Electron Microscope). Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
- a surface treatment such as smoothing of the powder surface may be performed.
- the raw material to be treated is introduced into the casing 40, and the surface treatment is performed by rotating the paddle provided in the casing 40.
- the crushing rotor 43 and the classification rotor 45 are unnecessary.
- various measuring instruments including a rotation speed sensor that measures the rotation speed of the paddle, a timer that measures the operating time, a dynamometer that measures the load power, and the like are placed at one or a plurality of appropriate locations. Provided, these instruments monitor the process in progress.
- the client device 500 acquires measurement information including the rotation speed of the paddle, the operating time, the load power, etc. from the server device 100 and displays the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Good. Further, the client device 500 may acquire control parameters for controlling the rotation speed, operating time, load power, etc. of the paddle from the server device 100, and display the acquired control parameters on the display unit 505.
- the server device 100 uses a learning model configured to output calculation results related to control parameters that control paddle rotation speed, operating time, load power, etc., in response to input of conditions related to powder processing. Control parameters can be determined.
- the conditions for powder processing to be input to the learning model are the circularity, bulk density, fluidity, BET value of the raw material, particle size, circularity, bulk density, and fluidity of the desired powder (product powder). Etc. are included. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
- a granulation treatment may be performed in which a powder raw material composed of one or more components is processed into granules larger than the raw material by using a binder or the like. ..
- the raw material and the binder to be treated are introduced into the casing 40, and the granulation treatment is performed by rotating the roll provided in the casing 40.
- a screw may be used instead of the roll.
- the crushing rotor 43 and the classification rotor 45 are unnecessary.
- the powder processing system 1 that performs granulation processing includes various measuring instruments including a rotation speed sensor that measures the rotation speed of the roll, a pressure sensor that measures the pressure inside the casing 40, a weight sensor that measures the amount of the binder added, and the like. Are provided at one or more appropriate locations, and these instruments monitor the process in progress.
- the client device 500 acquires measurement information including the rotation speed of the roll, the pressure in the casing 40, the amount of the binder added, and the like from the server device 100, and displays the acquired measurement information together with the overall view of the powder processing system 1. It may be displayed on 505. Further, the client device 500 acquires control parameters for controlling the rotation speed of the roll, the pressure in the casing 40, the amount of the binder added, and the like from the server device 100, and displays the acquired control parameters on the display unit 505. You may.
- the server device 100 is configured to output calculation results related to control parameters that control the rotation speed of the roll, the pressure in the casing 40, the amount of the binder added, and the like in response to the input of the conditions related to the powder processing.
- the model can be used to determine the control parameters.
- the conditions related to powder processing to be input to the learning model are the particle size, shape, bulk density, fluidity, hardness, BET value of the raw material, particle size, bulk density, and the desired powder (product powder). Fluidity, etc. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Crushing And Pulverization Processes (AREA)
Abstract
The present invention provides a computer program, server device, display system, and display method. A computer is caused to execute processes of: accepting an input of an ID; in relation to a granular material processing system which is associated with the accepted ID, acquiring measurement information obtained from at least one measurement device of the granular material processing system; and displaying the acquired measurement information together with an overall diagram of the granular material processing system.
Description
本発明は、コンピュータプログラム、サーバ装置、表示システム、及び表示方法に関する。
The present invention relates to a computer program, a server device, a display system, and a display method.
粉体処理プロセスは、貯蔵、供給、輸送、粉砕、分級、混合など種々のプロセスの組み合わせにより構成される(例えば、特許文献1を参照)。ユーザが望む品質を持った製品又は中間体を安定的に得るためには、各種プロセスの状態が適切であるか否かを適宜モニタリングする必要がある。
The powder processing process is composed of a combination of various processes such as storage, supply, transportation, pulverization, classification, and mixing (see, for example, Patent Document 1). In order to stably obtain a product or intermediate having the quality desired by the user, it is necessary to appropriately monitor whether or not the state of various processes is appropriate.
しかしながら、粉体処理プロセスの状態を示すパラメータは多種多様であり、粉体処理システムからは非常に数多くの計測値が出力される。このため、熟練者でない限り、処理中の特定のタイミングにおいて、どの計測値をモニタリングすべきであるのかをユーザが把握することは困難である。
However, there are various parameters that indicate the state of the powder processing process, and a large number of measured values are output from the powder processing system. For this reason, it is difficult for the user to grasp which measured value should be monitored at a specific timing during processing unless the user is an expert.
本発明は、粉体処理システムにおいてモニタリングすべき情報をユーザに提供できるコンピュータプログラム、サーバ装置、表示システム、及び表示方法を提供することを目的とする。
An object of the present invention is to provide a computer program, a server device, a display system, and a display method capable of providing a user with information to be monitored in a powder processing system.
本発明の一態様に係るコンピュータプログラムは、コンピュータに、IDの入力を受付け、受付けたIDに関連付けられている粉体処理システムに関して、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得し、取得した計測情報を前記粉体処理システムの全体図と共に表示する処理を実行させるためのコンピュータプログラムである。
The computer program according to one aspect of the present invention receives an ID input to a computer, and with respect to the powder processing system associated with the received ID, measurement obtained from at least one measuring instrument included in the powder processing system. This is a computer program for acquiring information and executing a process of displaying the acquired measurement information together with an overall view of the powder processing system.
本発明の一態様に係るサーバ装置は、指定されたIDに関連付けられている粉体処理システムから、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得する取得部と、取得した計測情報と前記粉体処理システムの全体図とを含む画面データを生成する生成部と、該生成部により生成した画面データを外部装置へ送信する送信部とを備える。
The server device according to one aspect of the present invention includes an acquisition unit that acquires measurement information obtained from at least one measuring instrument included in the powder processing system from the powder processing system associated with the designated ID. It includes a generation unit that generates screen data including the acquired measurement information and an overall view of the powder processing system, and a transmission unit that transmits the screen data generated by the generation unit to an external device.
本発明の一態様に係る表示システムは、互いに通信可能に接続されたサーバ装置とクライアント装置とを備え、前記サーバ装置は、指定されたIDに関連付けられている粉体処理システムから、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得する取得部と、取得した計測情報と前記粉体処理システムの全体図とを含む画面データを生成する生成部と、該生成部により生成した画面データを前記クライアント装置へ送信する送信部とを備え、前記クライアント装置は、前記サーバ装置から送信される画面データを受信する受信部と、受信した画面データに基づき、前記計測情報を前記粉体処理システムの全体図と共に表示する表示部とを備える。
The display system according to one aspect of the present invention includes a server device and a client device that are communicably connected to each other, and the server device is the powder from a powder processing system associated with a designated ID. An acquisition unit that acquires measurement information obtained from at least one measuring instrument included in the processing system, a generation unit that generates screen data including the acquired measurement information and an overall view of the powder processing system, and the generation unit. The client device includes a transmission unit that transmits the generated screen data to the client device, and the client device obtains the measurement information based on the reception unit that receives the screen data transmitted from the server device and the received screen data. It is provided with a display unit that is displayed together with an overall view of the powder processing system.
本発明の一態様に係る表示方法は、コンピュータを用いて、IDの入力を受付け、受付けたIDに関連付けられている粉体処理システムに関して、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得し、取得した計測情報を前記粉体処理システムの全体図と共に表示する。
The display method according to one aspect of the present invention is obtained from at least one measuring instrument provided in the powder processing system with respect to the powder processing system associated with the received ID by receiving the input of the ID using a computer. The measurement information to be obtained is acquired, and the acquired measurement information is displayed together with the overall view of the powder processing system.
本願によれば、粉体処理システムにおいてモニタリングすべき情報をユーザに提供できる。
According to the present application, it is possible to provide the user with information to be monitored in the powder processing system.
以下、本発明の実施形態の1つとして、粉砕処理及び分級処理を行う粉体処理装置を備えた粉体処理システムへの適用例について、図面を用いて具体的に説明する。
(実施の形態1)
図1は実施の形態1に係る監視システムの全体構成を示す模式図である。実施の形態1に係る監視システムは、粉体処理システム1の稼働状況を監視するためのシステムであり、互いに通信可能に接続されるサーバ装置100と、クライアント装置500とを備える。 Hereinafter, as one of the embodiments of the present invention, an application example to a powder processing system provided with a powder processing apparatus for performing pulverization treatment and classification treatment will be specifically described with reference to drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing the overall configuration of the monitoring system according to the first embodiment. The monitoring system according to the first embodiment is a system for monitoring the operating status of thepowder processing system 1, and includes a server device 100 and a client device 500 that are communicably connected to each other.
(実施の形態1)
図1は実施の形態1に係る監視システムの全体構成を示す模式図である。実施の形態1に係る監視システムは、粉体処理システム1の稼働状況を監視するためのシステムであり、互いに通信可能に接続されるサーバ装置100と、クライアント装置500とを備える。 Hereinafter, as one of the embodiments of the present invention, an application example to a powder processing system provided with a powder processing apparatus for performing pulverization treatment and classification treatment will be specifically described with reference to drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing the overall configuration of the monitoring system according to the first embodiment. The monitoring system according to the first embodiment is a system for monitoring the operating status of the
サーバ装置100は、適宜の処理能力を有するコンピュータ装置である。サーバ装置100は、粉体処理システム1の正当な利用者に対し、粉体処理システム1の稼働状況を示す情報を提供する。粉体処理システム1の正当な利用者であるか否かの判断は、例えばユーザIDとパスワードとを用いたユーザ認証によって行われる。サーバ装置100が提供する情報は、例えば、粉体処理装置4が備える粉砕ロータ43(図2を参照)の回転速度、分級ロータ45(図2を参照)の回転速度、粉体処理装置4の処理室から粉体を取り出す際の吐出・吸引流量、粉体処理装置4から得られる粉体の粒子径などの情報を含む。サーバ装置100が提供する情報は、粉体処理システム1における異常の有無を示す情報を含んでもよい。サーバ装置100は、クライアント装置500に情報を提供するだけでなく、クライアント装置500から受付けた情報に基づき、粉体処理システム1の動作を制御する機能を有していてもよい。
The server device 100 is a computer device having an appropriate processing capacity. The server device 100 provides the legitimate user of the powder processing system 1 with information indicating the operating status of the powder processing system 1. Whether or not the powder processing system 1 is a legitimate user is determined by, for example, user authentication using a user ID and a password. The information provided by the server device 100 includes, for example, the rotation speed of the crushing rotor 43 (see FIG. 2) included in the powder processing device 4, the rotation speed of the classification rotor 45 (see FIG. 2), and the powder processing device 4. It includes information such as the discharge / suction flow rate when the powder is taken out from the processing chamber, and the particle size of the powder obtained from the powder processing apparatus 4. The information provided by the server device 100 may include information indicating the presence or absence of an abnormality in the powder processing system 1. The server device 100 may have a function of not only providing information to the client device 500 but also controlling the operation of the powder processing system 1 based on the information received from the client device 500.
クライアント装置500は、ユーザによって使用されるスマートフォン、タブレット端末、パーソナルコンピュータなどの端末装置である。クライアント装置500には、サーバ装置100にアクセスし、ユーザ認証後にサーバ装置100から提供される情報を表示するためのアプリケーションプログラム(図4に示す表示プログラムPG5)がインストールされているものとする。クライアント装置500において表示プログラムPG5が起動された場合、クライアント装置500は、ユーザに対してユーザID及びパスワードの入力を要求する。クライアント装置500は、ユーザによって入力されたユーザID及びパスワードをサーバ装置100へ送信する。サーバ装置100は、受信したユーザID及びパスワードに基づき、ユーザ認証を行い、クライアント装置500のユーザが粉体処理システム1の正当な利用者であるか否かを判断する。正当な利用者であると判断した場合、サーバ装置100は、粉体処理システム1の稼働状況を示す情報をクライアント装置500に提供する。クライアント装置500は、サーバ装置100から提供される情報を、表示プログラムPG5を通じて表示画面に表示する。
The client device 500 is a terminal device such as a smartphone, a tablet terminal, or a personal computer used by a user. It is assumed that the client device 500 is installed with an application program (display program PG5 shown in FIG. 4) for accessing the server device 100 and displaying information provided by the server device 100 after user authentication. When the display program PG5 is started in the client device 500, the client device 500 requests the user to input the user ID and password. The client device 500 transmits the user ID and password entered by the user to the server device 100. The server device 100 performs user authentication based on the received user ID and password, and determines whether or not the user of the client device 500 is a legitimate user of the powder processing system 1. When it is determined that the user is a legitimate user, the server device 100 provides the client device 500 with information indicating the operating status of the powder processing system 1. The client device 500 displays the information provided by the server device 100 on the display screen through the display program PG5.
次に、粉体処理システム1の構成について説明する。
粉体処理システム1は、例えば、原料供給機2、熱風発生機3、粉体処理装置4、サイクロン5、集塵機6、及びブロワ7により構成される。ブロワ7に代えて、ポンプを用いてもよい。 Next, the configuration of thepowder processing system 1 will be described.
Thepowder processing system 1 is composed of, for example, a raw material supply machine 2, a hot air generator 3, a powder processing device 4, a cyclone 5, a dust collector 6, and a blower 7. A pump may be used instead of the blower 7.
粉体処理システム1は、例えば、原料供給機2、熱風発生機3、粉体処理装置4、サイクロン5、集塵機6、及びブロワ7により構成される。ブロワ7に代えて、ポンプを用いてもよい。 Next, the configuration of the
The
原料供給機2は、粉体原料を粉体処理装置4へ供給するための装置である。原料供給機2が粉体処理装置4へ供給する粉体原料は、例えば、コピー機やレーザープリンタで紙の着色に使われる微細な粉末状のトナーの原料である。トナー原料に限らず、粉体塗料、電池材料、磁性材料、染料、樹脂、ワックス、ポリマ、医薬品、触媒、金属粉、シリカ、はんだ、セメント、食品など、無機材料、有機材料、又は金属材料の粉体を製造するための粉体原料であってもよい。
The raw material supply machine 2 is a device for supplying the powder raw material to the powder processing device 4. The powder raw material supplied by the raw material supply machine 2 to the powder processing device 4 is, for example, a raw material for fine powdered toner used for coloring paper in a copier or a laser printer. Not limited to toner raw materials, powder paints, battery materials, magnetic materials, dyes, resins, waxes, polymers, pharmaceuticals, catalysts, metal powders, silica, solder, cement, foods, inorganic materials, organic materials, or metal materials It may be a powder raw material for producing powder.
原料供給機2は、原料供給路TP1を介して粉体処理装置4に接続されている。原料供給路TP1内には、粉体原料を搬送するためのスクリューフィーダ21(図2を参照)が設けられている。スクリューフィーダ21は、粉体原料が固体の場合であって、粉体原料を一定速度で連続的に投入する場合に好ましい。スクリューフィーダ21に代えて、ダブルダンパーやロータリーバルブ等を用いてもよい。また、熱風発生機3が発生させる熱風を原料供給路TP1に導入し、熱風と共に粉体原料を粉体処理装置4に供給してもよい。更に、原料供給機2は、ロードセルなどの重量センサS1(図3を参照)を用いて重量管理を行い、粉体処理装置4において連続処理を行う場合であっても、装置内滞留量が一定となるように粉体原料の供給量を調節してもよい。また、原料供給機2は、内蔵タイマ(不図示)の出力と、重量センサS1により計測される粉体原料の供給量とに基づき、単位時間当たりの粉体原料の供給量(すなわち供給速度)を計測してもよい。重量センサS1は、原料供給機2だけでなく、粉体処理装置4、サイクロン5、及び集塵機6に設けられてもよい。
The raw material supply machine 2 is connected to the powder processing device 4 via the raw material supply path TP1. A screw feeder 21 (see FIG. 2) for transporting the powder raw material is provided in the raw material supply path TP1. The screw feeder 21 is preferable when the powder raw material is a solid and the powder raw material is continuously charged at a constant speed. A double damper, a rotary valve, or the like may be used instead of the screw feeder 21. Further, the hot air generated by the hot air generator 3 may be introduced into the raw material supply path TP1 and the powder raw material may be supplied to the powder processing apparatus 4 together with the hot air. Further, the raw material feeder 2 performs weight control using a weight sensor S1 (see FIG. 3) such as a load cell, and the amount of retention in the device is constant even when continuous processing is performed in the powder processing device 4. The supply amount of the powder raw material may be adjusted so as to be. Further, the raw material supply machine 2 supplies the powder raw material per unit time (that is, the supply speed) based on the output of the built-in timer (not shown) and the supply amount of the powder raw material measured by the weight sensor S1. May be measured. The weight sensor S1 may be provided not only in the raw material supply machine 2, but also in the powder processing device 4, the cyclone 5, and the dust collector 6.
熱風発生機3は、粉体処理装置4に導入する熱風を発生させるための装置であり、加熱ヒータなどの熱源、送風機、及び熱風の温度及び風量を制御する制御装置などを備える。熱風発生機3は、上記の構成に限らず、公知の構成を用いればよい。例えば、粉体処理装置4に導入した熱風の一部を回収し、熱風発生機3と粉体処理装置4との間で循環させてもよい。
The hot air generator 3 is a device for generating hot air to be introduced into the powder processing device 4, and includes a heat source such as a heater, a blower, and a control device for controlling the temperature and air volume of the hot air. The hot air generator 3 is not limited to the above configuration, and a known configuration may be used. For example, a part of the hot air introduced into the powder processing apparatus 4 may be recovered and circulated between the hot air generator 3 and the powder processing apparatus 4.
熱風発生機3は、気体導入路TP2を介して粉体処理装置4に接続されている。熱風発生機3が発生させた熱風は、気体導入路TP2を介して、粉体処理装置4に導入される。熱風発生機3が発生させる熱風の温度は、粉体処理装置4で処理される粉体に応じて適宜設定される。例えば、粉体処理装置4で処理した粉体を乾燥させるために200℃~600℃程度の熱風を発生させてもよい。以下の説明では、粉体処理装置4に熱風を含む気体を導入する構成について説明するが、粉体処理装置4に導入する流体は、気体に限らず、液体であってもよい。
The hot air generator 3 is connected to the powder processing device 4 via the gas introduction path TP2. The hot air generated by the hot air generator 3 is introduced into the powder processing apparatus 4 via the gas introduction path TP2. The temperature of the hot air generated by the hot air generator 3 is appropriately set according to the powder processed by the powder processing apparatus 4. For example, hot air of about 200 ° C. to 600 ° C. may be generated to dry the powder processed by the powder processing apparatus 4. In the following description, a configuration for introducing a gas containing hot air into the powder processing apparatus 4 will be described, but the fluid introduced into the powder processing apparatus 4 is not limited to the gas but may be a liquid.
粉体処理装置4は、原料供給機2から供給される粉体原料を粉砕し、得られる粉体を分級することにより、所定粒子径未満の粉体を生成するための装置である。本実施の形態に係る粉体処理装置4は、主として、粉体原料を粉砕する粉砕処理と、粉砕した粉体を分級する分級処理とを行う装置として説明するが、粉体処理装置4が行う粉体処理は粉砕処理及び分級処理に限定されない。粉体処理装置4は、例えば平均粒子径が5~50μmの不規則粒形の粉体を球形化する処理、粒子表面の凹凸を平滑化する処理を行ってもよい。更に、粉体処理装置4は、粉体を乾燥する処理や2種類以上の粉体を混合する処理等を行ってもよい
The powder processing device 4 is a device for producing powder having a particle size smaller than a predetermined particle size by crushing the powder raw material supplied from the raw material supply machine 2 and classifying the obtained powder. The powder processing apparatus 4 according to the present embodiment will be described as an apparatus that mainly performs a pulverization treatment for crushing a powder raw material and a classification treatment for classifying the pulverized powder, but the powder treatment apparatus 4 performs the pulverization treatment. The powder treatment is not limited to the pulverization treatment and the classification treatment. The powder processing apparatus 4 may perform, for example, a process of forming an irregular grain-shaped powder having an average particle diameter of 5 to 50 μm into a sphere, or a process of smoothing the unevenness of the particle surface. Further, the powder processing apparatus 4 may perform a process of drying the powder, a process of mixing two or more kinds of powder, and the like.
粉体処理装置4にて処理された粉体は、粉体輸送路TP3を介してサイクロン5に輸送される。本実施の形態では、粉体処理装置4からサイクロン5に至る粉体輸送路TP3の中途に粒子径センサS2を設置し、粒子径センサS2により粉体処理装置4を通過する粉体の粒子径を常時若しくは定期的なタイミング(例えば5秒間隔)にて計測する。サイクロン5により収集される粉体は製品タンク8Aに取り出され、製品として回収される。
The powder processed by the powder processing apparatus 4 is transported to the cyclone 5 via the powder transport path TP3. In the present embodiment, the particle size sensor S2 is installed in the middle of the powder transport path TP3 from the powder processing device 4 to the cyclone 5, and the particle size of the powder passing through the powder processing device 4 by the particle size sensor S2. Is measured at regular or regular timings (for example, every 5 seconds). The powder collected by the cyclone 5 is taken out to the product tank 8A and collected as a product.
粒子径センサS2は、例えばレーザ回折・散乱法を用いて粒度分布を測定する装置であり、D10,D50,D90の値を出力する。ここで、D10,D50,D90は、それぞれ粒度分布における累積体積分布の小径側から累積10%、50%、90%に相当する粒子径を表す。累積体積分布とは、粉末の粒子径(μm)と、小径側からの積算頻度(体積%)との関係を表す分布である。D50は、一般には平均粒子径(メジアン径)ともいわれる。D10,D50,D90に代えて、粒子径の頻度分布において出現比率が最も大きい粒子径を表すモード径を用いてもよく、各種算術平均値(個数平均、長さ平均、面積平均、体積平均など)を用いてもよい。
なお、本実施の形態では、粉体輸送路TP3に粒子径センサS2を設置する構成としたが、原料供給機2、サイクロン5から製品タンク8Aに至る経路、集塵機6から集塵タンク8Bに至る経路等に設置されてもよい。 The particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90. Here, D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively. The cumulative volume distribution is a distribution representing the relationship between the particle size (μm) of the powder and the integration frequency (volume%) from the small diameter side. D50 is also generally referred to as an average particle diameter (median diameter). Instead of D10, D50, D90, a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
In the present embodiment, the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to theproduct tank 8A, and the dust collector 6 to the dust collector tank 8B are reached. It may be installed on a route or the like.
なお、本実施の形態では、粉体輸送路TP3に粒子径センサS2を設置する構成としたが、原料供給機2、サイクロン5から製品タンク8Aに至る経路、集塵機6から集塵タンク8Bに至る経路等に設置されてもよい。 The particle size sensor S2 is a device that measures the particle size distribution using, for example, a laser diffraction / scattering method, and outputs values of D10, D50, and D90. Here, D10, D50, and D90 represent particle diameters corresponding to cumulative 10%, 50%, and 90% from the small diameter side of the cumulative volume distribution in the particle size distribution, respectively. The cumulative volume distribution is a distribution representing the relationship between the particle size (μm) of the powder and the integration frequency (volume%) from the small diameter side. D50 is also generally referred to as an average particle diameter (median diameter). Instead of D10, D50, D90, a mode diameter representing the particle diameter having the largest appearance ratio in the frequency distribution of the particle diameter may be used, and various arithmetic average values (number average, length average, area average, volume average, etc.) may be used. ) May be used.
In the present embodiment, the particle size sensor S2 is installed in the powder transport path TP3, but the raw material supply machine 2, the path from the cyclone 5 to the
サイクロン5には、集塵経路TP4を介して集塵機6が接続されている。集塵機6は、サイクロン5を通過した微粉等を捕集するためのバグフィルタを備える。集塵機6のバグフィルタを通過した気体は、排風路TP5を通じてブロワ7へ流れ、ブロワ7の排出口から排出される。一方、集塵機6のバグフィルタにより捕集された微粉等は集塵タンク8Bに取り出され、回収される。
A dust collector 6 is connected to the cyclone 5 via a dust collection path TP4. The dust collector 6 includes a bug filter for collecting fine powder or the like that has passed through the cyclone 5. The gas that has passed through the bug filter of the dust collector 6 flows to the blower 7 through the exhaust air passage TP5 and is discharged from the discharge port of the blower 7. On the other hand, the fine dust and the like collected by the bug filter of the dust collector 6 are taken out to the dust collecting tank 8B and collected.
集塵機6には、排風路TP5を介してブロワ7が接続されている。このブロワ7を駆動することにより、粉体処理装置4からサイクロン5への気体の流れ(すなわち、粉体処理装置4から粉体を取り出す気体の流れ)、及びサイクロン5から集塵機6への気体の流れを形成する。本実施の形態では、集塵機6からブロワ7に至る排風路TP5の中途に流量センサS3(図3を参照)を設置し、粉体処理装置4から粉体を取り出す際の吐出・吸引流量を常時若しくは定期的なタイミング(例えば5秒間隔)にて計測する。排風路TP5に流量センサS3を設置する構成に代えて、原料供給路TP1、気体導入路TP2、粉体輸送路TP3、集塵経路TP4、ブロワ7の排出口等に流量センサS3を設置してもよい。
A blower 7 is connected to the dust collector 6 via an exhaust air passage TP5. By driving the blower 7, the gas flow from the powder processing apparatus 4 to the cyclone 5 (that is, the gas flow for extracting the powder from the powder processing apparatus 4) and the gas flow from the cyclone 5 to the dust collector 6 Form a flow. In the present embodiment, a flow rate sensor S3 (see FIG. 3) is installed in the middle of the exhaust passage TP5 from the dust collector 6 to the blower 7, and the discharge / suction flow rate when taking out the powder from the powder processing device 4 is measured. Measure at regular or regular timing (for example, every 5 seconds). Instead of installing the flow rate sensor S3 in the exhaust path TP5, the flow rate sensor S3 is installed in the raw material supply path TP1, the gas introduction path TP2, the powder transport path TP3, the dust collection path TP4, the discharge port of the blower 7, and the like. You may.
図2は粉体処理装置4の構成を示す模式的断面図である。粉体処理装置4は、その内部において粉体処理を行う円筒形状のケーシング40を備える。このケーシング40には、原料投入口41、気体導入口42、粉砕ロータ43、ガイドリング44、分級ロータ45、粉体取出口46等が設けられている。
FIG. 2 is a schematic cross-sectional view showing the configuration of the powder processing apparatus 4. The powder processing apparatus 4 includes a cylindrical casing 40 that performs powder processing inside the powder processing apparatus 4. The casing 40 is provided with a raw material input port 41, a gas introduction port 42, a crushing rotor 43, a guide ring 44, a classification rotor 45, a powder outlet 46, and the like.
ケーシング40の素材は、従来から粉体処理装置のケーシングに用いられている公知の材料を用いればよい。具体的には、SS400、S25C、S45C、SPHC(Steel Plate Hot Commercial)などの鉄系鋼材、SUS304、SUS316などのステンレス鋼材、FC20、FC40などの鉄鋳物材、SCS13、14などのステンレス鋳物材などの金属、あるいは、セラミックス、ガラスなどを用いればよい。また、内壁面に耐磨耗材を貼り付けるなどすれば、アルミニウム、その他木材や合成樹脂であってもよい。
As the material of the casing 40, a known material conventionally used for the casing of the powder processing apparatus may be used. Specifically, iron-based steel materials such as SS400, S25C, S45C, SPHC (Steel Plate Hot Commercial), stainless steel materials such as SUS304 and SUS316, iron casting materials such as FC20 and FC40, and stainless casting materials such as SCS13 and 14 Metal, ceramics, glass, etc. may be used. Further, aluminum, other wood, or synthetic resin may be used as long as an abrasion resistant material is attached to the inner wall surface.
ケーシング40の内面は、装置の耐久性向上のために、ハードクロムメッキ処理などのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。
In order to improve the durability of the equipment, the inner surface of the casing 40 is subjected to plating treatment such as hard chrome plating treatment, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition under vacuum, carbon vapor deposition of diamond structure, etc. Abrasion resistant treatment may be applied.
また、ケーシング40内において、トナーなどの低融点樹脂成分の粉体処理を行う場合、固着成分が製品に混入すると品質不良となる。そこで、処理粉体の付着又は固着による気流の乱れ、または、ケーシング40内の閉塞を防ぐために、ケーシング40の内面には、バフ研磨、電解研磨、PTFE(Polytetrafluoroethylene)などのコーティング、ニッケルなどのメッキ処理が施されてもよい。
Further, when powder treatment of a low melting point resin component such as toner is performed in the casing 40, if the fixed component is mixed in the product, the quality becomes poor. Therefore, in order to prevent turbulence of the air flow due to adhesion or fixation of the treated powder or blockage in the casing 40, the inner surface of the casing 40 is buffed, electrolytically polished, coated with PTFE (Polytetrafluoroethylene), or plated with nickel or the like. Treatment may be applied.
ケーシング40には、原料供給機2から供給される粉体原料をケーシング40内に投入するための原料投入口41が設けられている。この原料投入口41は、粉砕ロータ43の回転円盤431よりも上方の位置に設けられることが好ましい。原料供給機2から供給される粉体原料は、原料供給路TP1内のスクリューフィーダ21によって搬送され、原料投入口41よりケーシング40内に投入される。
The casing 40 is provided with a raw material input port 41 for charging the powder raw material supplied from the raw material supply machine 2 into the casing 40. The raw material input port 41 is preferably provided at a position above the rotary disk 431 of the crushing rotor 43. The powder raw material supplied from the raw material supply machine 2 is conveyed by the screw feeder 21 in the raw material supply path TP1 and is charged into the casing 40 from the raw material input port 41.
ケーシング40には、熱風発生機3による熱風(気体)をケーシング40内に導入するための気体導入口42が設けられている。気体導入口42は、気体導入路TP2を介して熱風発生機3に接続されている。この気体導入口42の位置は特に限定されないが、回転する粉砕ロータ43を介してケーシング40内に気体が導入されるように、粉砕ロータ43よりも下方の位置に設けられることが好ましい。本実施の形態では、粉砕ロータ43の回転方向と交差する方向から気体を導入する構成としたが、粉砕ロータ43の回転方向に沿って気体を導入する構成としてもよい。
The casing 40 is provided with a gas introduction port 42 for introducing hot air (gas) from the hot air generator 3 into the casing 40. The gas introduction port 42 is connected to the hot air generator 3 via the gas introduction path TP2. The position of the gas introduction port 42 is not particularly limited, but it is preferably provided at a position below the crushing rotor 43 so that the gas is introduced into the casing 40 via the rotating crushing rotor 43. In the present embodiment, the gas is introduced from the direction intersecting the rotation direction of the crushing rotor 43, but the gas may be introduced along the rotation direction of the crushing rotor 43.
気体導入口42から導入された気体は、ケーシング40内部を旋回しつつ循環する気流を形成すると共に、ケーシング40の内部から分級ロータ45を経て、粉体取出口46からサイクロン5及び集塵機6に到達する。ケーシング40内の気流は、サイクロン5及び集塵機6を介して接続されているブロワ7による吸引によって形成されてもよく、気体導入口42側からの吹き込み(加圧)によって形成されてもよい。ケーシング40内に導入される気体の種類は、目的とする処理品に応じて適宜決めればよい。例えば、空気を用いてもよく、酸化防止のために、窒素、アルゴンなどの不活性ガスを用いてもよい。
The gas introduced from the gas introduction port 42 forms an air flow that circulates while swirling inside the casing 40, and reaches the cyclone 5 and the dust collector 6 from the powder outlet 46 via the classification rotor 45 from the inside of the casing 40. To do. The airflow in the casing 40 may be formed by suction by the blower 7 connected via the cyclone 5 and the dust collector 6, or may be formed by blowing (pressurizing) from the gas introduction port 42 side. The type of gas introduced into the casing 40 may be appropriately determined according to the target processed product. For example, air may be used, or an inert gas such as nitrogen or argon may be used to prevent oxidation.
処理対象の粉体によっては、ケーシング40内の温度上昇により、粉体に軟化現象が生じ、粉体同士が融着して粒子径にばらつきが生じたり、収率が低下したりする場合がある。そこで、ケーシング40内の1又は複数箇所に温度センサS4(図3を参照)を設け、ケーシング40内の温度を管理してもよい。例えば、処理対象の粉体が例えば低融点のトナーの場合、粉体取出口46での排気温度が35~55℃となるように、ケーシング40内に導入する気体の温度を調節してもよい。
また、サイクロン5、集塵機6、製品タンク8A、集塵タンク8B等に温度センサS4を設けてもよい。 Depending on the powder to be treated, the temperature rise in thecasing 40 may cause a softening phenomenon in the powder, and the powders may be fused to each other to cause variations in particle size or decrease in yield. .. Therefore, temperature sensors S4 (see FIG. 3) may be provided at one or a plurality of locations in the casing 40 to control the temperature inside the casing 40. For example, when the powder to be processed is toner having a low melting point, for example, the temperature of the gas introduced into the casing 40 may be adjusted so that the exhaust temperature at the powder outlet 46 is 35 to 55 ° C. ..
Further, the temperature sensor S4 may be provided in the cyclone 5, thedust collector 6, the product tank 8A, the dust collecting tank 8B, or the like.
また、サイクロン5、集塵機6、製品タンク8A、集塵タンク8B等に温度センサS4を設けてもよい。 Depending on the powder to be treated, the temperature rise in the
Further, the temperature sensor S4 may be provided in the cyclone 5, the
また、本実施の形態では、ケーシング40内に熱風発生機3からの熱風を導入する構成としたが、図に示していない冷風発生機を用いて、ケーシング40内に-20℃~5℃程度の冷風を導入する構成としてもよい。この場合、結露防止のために、ケーシング40内に導入される気体は除湿された気体であることが好ましい。その他に、熱によって風味がなくなったり、変質し易い食品等を処理する場合には、0~15℃に調節された冷風空気を用いてもよい。
Further, in the present embodiment, the hot air from the hot air generator 3 is introduced into the casing 40, but using a cold air generator (not shown in the figure), the temperature is about −20 ° C. to 5 ° C. in the casing 40. It may be configured to introduce the cold air of. In this case, the gas introduced into the casing 40 is preferably a dehumidified gas in order to prevent dew condensation. In addition, when processing foods that lose their flavor due to heat or are easily deteriorated, cold air adjusted to 0 to 15 ° C. may be used.
更に、ケーシング40の内部温度を調節するために、ケーシング40の周囲にジャケット部を設けてもよい。ジャケット部は、別に設けたタンクから加熱流体または冷却流体を含む熱媒を循環供給することによって、ケーシング40の内部温度を調節する。
Further, in order to adjust the internal temperature of the casing 40, a jacket portion may be provided around the casing 40. The jacket portion adjusts the internal temperature of the casing 40 by circulating and supplying a heat medium containing a heating fluid or a cooling fluid from a tank provided separately.
粉砕ロータ43は、回転円盤431と、回転円盤431の上面周縁部から上向きに突出する複数のハンマ432とを備えるロータであり、粉砕モータ430(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、粉砕モータ430は、粉体処理システム1が備える駆動部の一つである。粉砕モータ430の回転速度は、回転速度センサS5(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。粉砕ロータ43のハンマ432は、回転円盤431の上面周縁部にて周方向に等間隔に複数配置される。なお、ハンマ432の形状、寸法、個数、及び素材は、要求される製品粉体の粒子径や円形度等に応じて適宜設計される。例えば、図2では、棒状のハンマ432を示しているが、直方体状のハンマであってもよく、平面視において台形状のハンマであってもよい。また、ハンマ432に代えて、刃物状の構造物を用いてもよい。
The crushing rotor 43 is a rotor including a rotary disk 431 and a plurality of hammers 432 protruding upward from the upper peripheral edge of the rotary disk 431, and the rotation speed is adjusted to a desired speed by the power of the crushing motor 430 (see FIG. 3). It is configured to rotate. Here, the crushing motor 430 is one of the driving units included in the powder processing system 1. The rotation speed of the crushing motor 430 is measured by the rotation speed sensor S5 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). A plurality of hammers 432 of the crushing rotor 43 are arranged at equal intervals in the circumferential direction at the peripheral edge of the upper surface of the rotating disk 431. The shape, size, number, and material of the hammer 432 are appropriately designed according to the required particle size, circularity, and the like of the product powder. For example, although the rod-shaped hammer 432 is shown in FIG. 2, it may be a rectangular parallelepiped hammer or a trapezoidal hammer in a plan view. Further, instead of the hammer 432, a blade-like structure may be used.
粉砕ロータ43は、粉砕モータ430の動力によって回転し、ケーシング40内に旋回する気流を発生させると共に、ハンマ432の作用により、ケーシング40内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与え、粉体原料を粉砕する。また、粉砕ロータ43は、粉砕に至らないような機械エネルギを粉体原料に与え、原料粉体を塑性変形させることにより、球状化などの表面処理(粒子設計)を行ってもよい。
The crushing rotor 43 is rotated by the power of the crushing motor 430 to generate a swirling airflow in the casing 40, and by the action of the hammer 432, the powder raw material introduced into the casing 40 is impacted, compressed, and ground. The powder raw material is crushed by giving mechanical energy such as shearing. Further, the crushing rotor 43 may perform surface treatment (particle design) such as spheroidization by applying mechanical energy that does not lead to crushing to the powder raw material and plastically deforming the raw material powder.
粉砕ロータ43の素材は、従来から粉体処理装置の分散ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、SUS630などを用いることができる。また、ハンマ432については、衝撃力に耐え得るように、超硬合金のチップを付けたり、磨耗性及び強靭性を備えたセラミックスやサーメットなどの金属とセラミックスとの複合物を用いてもよい。
As the material of the crushing rotor 43, a known material conventionally used for the dispersion rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, SUS630 and the like can be used. Further, for the hammer 432, a cemented carbide tip may be attached so that the hammer 432 can withstand an impact force, or a composite of a metal such as ceramics or cermet having wear resistance and toughness and ceramics may be used.
更に、粉砕ロータ43の表面は、装置の耐久性向上のために、ハードクロムメッキなどのメッキ処理、タングステンカーバイド溶射などの耐磨耗溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理、SUS630の焼き入れ硬化処理などが施されていてもよい。また、粉砕ロータ43の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。
Further, the surface of the crushing rotor 43 is subjected to plating treatment such as hard chrome plating, abrasion resistant thermal spraying material treatment such as tungsten carbide spraying, metal vapor deposition performed under vacuum, and carbon vapor deposition of diamond structure in order to improve the durability of the device. Abrasion resistant treatment such as SUS630 and quench hardening treatment of SUS630 may be performed. Further, the surface of the crushing rotor 43 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
本実施の形態では、回転円盤431の上面周縁部から上向きに突出したハンマ432の構成について説明したが、回転円盤431の下面周縁部から下向きに突出したハンマを用いてもよい。このように下向きに突出したハンマは、ケーシング40内の粉体原料を直接的に粉砕するものではないが、ケーシング40内に強い旋回気流を形成することができるため、粉体原料同士を衝突させて間接的に粉体原料を粉砕することができる。
In the present embodiment, the configuration of the hammer 432 protruding upward from the upper peripheral edge portion of the rotating disk 431 has been described, but a hammer protruding downward from the lower surface peripheral edge portion of the rotating disk 431 may be used. The hammer protruding downward in this way does not directly pulverize the powder raw materials in the casing 40, but can form a strong swirling airflow in the casing 40, so that the powder raw materials collide with each other. The powder raw material can be indirectly crushed.
また、ケーシング40の内周面であって、ハンマ432と対向する位置には粉砕ライナが設けられてもよい。粉砕ライナは、粉砕ロータ43の回転軸方向に沿った中心軸を有する筒状の部材であり、この筒状の部材の内周面には、三角形、波形、くさび形の溝が設けられてもよい。
Further, a crushing liner may be provided on the inner peripheral surface of the casing 40 at a position facing the hammer 432. The crushing liner is a tubular member having a central axis along the rotation axis direction of the crushing rotor 43, and even if a triangular, corrugated, or wedge-shaped groove is provided on the inner peripheral surface of the tubular member. Good.
ガイドリング44は、ケーシング40内に旋回する気流を発生させ、ケーシング40内で処理される粉体を分級ロータ45へ導くための円筒状の部材である。ガイドリング44は、粉砕ロータ43の上方にて粉砕ロータ43と同軸に配され、ケーシング40の内部に固定される。ガイドリング44の固定方法は特に限定されるものではないが、粉体処理装置4の動作中はケーシング40内部にて回転することなく固定される必要がある。これは、ケーシング40内部で、処理対象の粉体の流動状態を適切な状態に制御するためである。図2の例では、その内径がケーシング40内の下側から上側に向かって連続的に大きくなっているガイドリング44を示しているが、内径が上側に向かって連続的に小さくなるガイドリングであてもよく、内径が上下方向で変化しないガイドリングであってもよい。
The guide ring 44 is a cylindrical member for generating a swirling air flow in the casing 40 and guiding the powder processed in the casing 40 to the classification rotor 45. The guide ring 44 is arranged coaxially with the crushing rotor 43 above the crushing rotor 43 and is fixed inside the casing 40. The method of fixing the guide ring 44 is not particularly limited, but it is necessary to fix the guide ring 44 without rotating inside the casing 40 during the operation of the powder processing apparatus 4. This is to control the flow state of the powder to be processed to an appropriate state inside the casing 40. In the example of FIG. 2, the guide ring 44 whose inner diameter is continuously increased from the lower side to the upper side in the casing 40 is shown, but the guide ring whose inner diameter is continuously decreased toward the upper side is used. It may be a guide ring whose inner diameter does not change in the vertical direction.
分級ロータ45は、放射状に配される複数の分級羽根451を備えたロータであり、分級モータ450(図3を参照)の動力によって所望の回転速度にて回転するように構成されている。ここで、分級モータ450は、粉体処理システム1が備える駆動部の1つである。分級モータ450の回転速度は、回転速度センサS6(図3を参照)によって常時若しくは定期的なタイミング(例えば5秒間隔)にて計測される。分級ロータ45は、粉砕ロータ43の上方に設けられており、高速回転による遠心力により、ケーシング40内で処理された粉体のうち所定粒子径未満の粉体のみを通過させ、通過させた粉体のみを粉体取出口46へ導く。
The classification rotor 45 is a rotor provided with a plurality of classification blades 451 arranged radially, and is configured to rotate at a desired rotation speed by the power of the classification motor 450 (see FIG. 3). Here, the classification motor 450 is one of the drive units included in the powder processing system 1. The rotational speed of the classification motor 450 is measured by the rotational speed sensor S6 (see FIG. 3) at regular or periodic timings (for example, at 5-second intervals). The classification rotor 45 is provided above the crushing rotor 43, and allows only powder having a particle size smaller than a predetermined particle size to pass through the powder processed in the casing 40 by centrifugal force due to high-speed rotation. Only the body is guided to the powder outlet 46.
ここで、分級ロータ45を通過する粉体の粒子径は、分級ロータ45の回転速度等を制御することによって設定することができる。すなわち、分級ロータ45の回転速度を制御することによって、ケーシング40内から所定粒子径未満の粉体を取り出すことができる。一方、分級ロータ45を通過できない粉体は、ケーシング40内を循環し、繰り返し処理される。
Here, the particle size of the powder passing through the classification rotor 45 can be set by controlling the rotation speed of the classification rotor 45 and the like. That is, by controlling the rotation speed of the classification rotor 45, powder having a particle size smaller than a predetermined particle size can be taken out from the casing 40. On the other hand, the powder that cannot pass through the classification rotor 45 circulates in the casing 40 and is repeatedly processed.
分級ロータ45の素材は、従来から粉体処理装置の分級ロータに用いられている公知の材料を用いればよい。例えば、SS400、S25C、S45C、SUS304、SUS316、チタン、チタン合金、アルミ合金などを用いることができる。また、分級ロータ45の表面は、装置の耐久性向上のために、浸炭焼入れなどの熱硬化処理、タングステンカーバイド溶射材処理、ハードクロムメッキなどのメッキ処理、溶射後に熱硬化処理を施すための特殊溶射材処理、真空下で行う金属蒸着、ダイヤモンド構造の炭素蒸着などの耐磨耗処理が施されていてもよい。
As the material of the classification rotor 45, a known material conventionally used for the classification rotor of the powder processing apparatus may be used. For example, SS400, S25C, S45C, SUS304, SUS316, titanium, titanium alloy, aluminum alloy and the like can be used. Further, the surface of the classification rotor 45 is specially subjected to heat hardening treatment such as carburizing and quenching, tungsten carbide spraying material treatment, plating treatment such as hard chrome plating, and heat curing treatment after spraying in order to improve the durability of the device. Abrasion resistant treatment such as thermal spray material treatment, metal vapor deposition performed under vacuum, and carbon vapor deposition of a diamond structure may be performed.
また、分級ロータ45への粉体の付着や固着を防止するため、分級ロータ45の表面には、バフ研磨、電解研磨、PTFEなどのコーティング、ニッケルなどのメッキ処理が施されていてもよい。
Further, in order to prevent the powder from adhering to or sticking to the classification rotor 45, the surface of the classification rotor 45 may be buffed, electrolytically polished, coated with PTFE, or plated with nickel or the like.
本実施の形態に係る粉体処理装置4は、粉砕ロータ43及び分級ロータ45を備える構成としたが、例えばケーシング40に導入される気流により粉体原料を粉砕する気流式の場合、粉砕ロータ43を備えていなくてもよい。また、粉体処理装置4に代えて、媒体攪拌型の粉体処理装置を使用して、アジテータを回転させることによって媒体であるボール(若しくはビーズ)を攪拌し、粉体原料を粉砕する構成としてもよい。また、粉体処理装置4において粉砕ロータ43を使用せずに、分級機として利用してもよい。また、熱風発生機3から熱風を導入することが可能であるため、粉体処理装置4を乾燥機として利用してもよい。また、ケーシング40に粗粉回収口を設け、粗粉を回収することにより、粉体処理装置4を粒子設計装置として利用してもよい。更に、複数種の原料をケーシング40へ供給し、ケーシング40内で複数種の原料を混合する連続混合機として利用してもよい。
The powder processing apparatus 4 according to the present embodiment is configured to include a crushing rotor 43 and a classification rotor 45. For example, in the case of an air flow type in which a powder raw material is crushed by an air flow introduced into a casing 40, the crushing rotor 43. It does not have to be provided. Further, instead of the powder processing apparatus 4, a medium stirring type powder processing apparatus is used to stir balls (or beads) as a medium by rotating an agitator to crush the powder raw material. May be good. Further, the powder processing apparatus 4 may be used as a classifier without using the crushing rotor 43. Further, since it is possible to introduce hot air from the hot air generator 3, the powder processing device 4 may be used as a dryer. Further, the powder processing apparatus 4 may be used as a particle design apparatus by providing a coarse powder recovery port in the casing 40 and collecting the coarse powder. Further, a plurality of types of raw materials may be supplied to the casing 40 and used as a continuous mixer in which the plurality of types of raw materials are mixed in the casing 40.
また、粉体処理装置4を含む装置の少なくとも1つ、又は装置間の各経路の少なくとも1つに、上述した各種センサに加え、含塵濃度を計測する含塵濃度センサ、粉体の組成を計測するNIRセンサ、粉体の湿分を計測する湿分センサ、圧力を計測する圧力センサ、音圧若しくは周波数を計測する音圧・周波数センサ等の計測器が設けられてもよい。
Further, in addition to the various sensors described above, a dust content concentration sensor for measuring the dust content concentration and a powder composition are added to at least one of the devices including the powder processing device 4 or at least one of the paths between the devices. Measuring instruments such as a NIR sensor for measuring, a moisture sensor for measuring the moisture content of powder, a pressure sensor for measuring pressure, and a sound pressure / frequency sensor for measuring sound pressure or frequency may be provided.
次に、サーバ装置100及びクライアント装置500の構成について説明する。
図3は実施の形態1に係るサーバ装置100の内部構成を示すブロック図である。サーバ装置100は、制御部101、記憶部102、入力部103、出力部104、通信部105、操作部106、及び表示部107を備える。 Next, the configurations of theserver device 100 and the client device 500 will be described.
FIG. 3 is a block diagram showing an internal configuration of theserver device 100 according to the first embodiment. The server device 100 includes a control unit 101, a storage unit 102, an input unit 103, an output unit 104, a communication unit 105, an operation unit 106, and a display unit 107.
図3は実施の形態1に係るサーバ装置100の内部構成を示すブロック図である。サーバ装置100は、制御部101、記憶部102、入力部103、出力部104、通信部105、操作部106、及び表示部107を備える。 Next, the configurations of the
FIG. 3 is a block diagram showing an internal configuration of the
制御部101は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)などを備える。制御部101が備えるROMには、サーバ装置100が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部101内のCPUは、ROMに記憶された制御プログラムや後述する記憶部102に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御することによって、本発明に係る制御装置としての機能を実現する。制御部101が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。
The control unit 101 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. The ROM included in the control unit 101 stores a control program or the like that controls the operation of each hardware unit included in the server device 100. The CPU in the control unit 101 executes a control program stored in the ROM and various computer programs stored in the storage unit 102, which will be described later, to control the operation of each hardware unit, thereby as a control device according to the present invention. To realize the function of. The RAM included in the control unit 101 temporarily stores data and the like used during execution of the calculation.
制御部101は、CPU、ROM、及びRAMを備える構成としたが、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)、量子プロセッサ、揮発性又は不揮発性のメモリ等を備える1又は複数の演算回路又は制御回路であってもよい。また、制御部101は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えていてもよい。
The control unit 101 is configured to include a CPU, ROM, and RAM, but has a GPU (Graphics Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), quantum processor, and volatile or non-volatile memory. It may be one or more arithmetic circuits or control circuits including the above. Further, the control unit 101 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number.
記憶部102は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部102には、制御部101によって実行されるコンピュータプログラム、外部から取得した各種データ、装置内部で生成した各種データ等が記憶される。
The storage unit 102 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 102 stores a computer program executed by the control unit 101, various data acquired from the outside, various data generated inside the device, and the like.
記憶部102に記憶されるコンピュータプログラムは、制御対象の装置の動作を制御するための制御プログラムPG1を含む。サーバ装置100の制御部101は、制御プログラムPG1を実行することにより、クライアント装置500に対して情報を提供する処理や粉体処理装置4を含む装置の動作を制御する処理等を実行する。
The computer program stored in the storage unit 102 includes the control program PG1 for controlling the operation of the device to be controlled. By executing the control program PG1, the control unit 101 of the server device 100 executes a process of providing information to the client device 500, a process of controlling the operation of the device including the powder processing device 4, and the like.
制御プログラムPG1を含むコンピュータプログラムは、コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体M1により提供されてもよい。記録媒体M1は、例えば、CD-ROM、USBメモリ、コンパクトフラッシュ(登録商標)、SD(Secure Digital)カード、マイクロSDカード、などの可搬型メモリである。制御部101は、図に示していない読取装置を用いて、記録媒体M1から各種プログラムを読み取り、読み取った各種プログラムを記憶部102に記憶させる。
The computer program including the control program PG1 may be provided by a non-temporary recording medium M1 in which the computer program is readablely recorded. The recording medium M1 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD (Secure Digital) card, or a micro SD card. The control unit 101 reads various programs from the recording medium M1 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 102.
入力部103は、制御対象の装置を接続するための接続インタフェースを備える。入力部103に接続される装置は、原料供給機2、熱風発生機3、粉体処理装置4、サイクロン5、集塵機6、及びブロワ7を含む。入力部103が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。入力部103には、原料供給機2、熱風発生機3、粉体処理装置4、サイクロン5、集塵機6、及びブロワ7から送出されるデータが入力される。入力部103に入力されるデータには、重量センサS1、粒子径センサS2、流量センサS3、温度センサS4、粉砕ロータ43用の回転速度センサS5、及び分級ロータ45用の回転速度センサS6によって計測される計測データが含まれる。
The input unit 103 includes a connection interface for connecting the device to be controlled. The device connected to the input unit 103 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4, a cyclone 5, a dust collector 6, and a blower 7. The connection interface included in the input unit 103 may be a wired interface or a wireless interface. Data sent from the raw material supply machine 2, the hot air generator 3, the powder processing device 4, the cyclone 5, the dust collector 6, and the blower 7 are input to the input unit 103. The data input to the input unit 103 is measured by the weight sensor S1, the particle size sensor S2, the flow rate sensor S3, the temperature sensor S4, the rotation speed sensor S5 for the crushing rotor 43, and the rotation speed sensor S6 for the classification rotor 45. The measurement data to be performed is included.
本実施の形態では、制御対象の装置を入力部103に接続する構成としたが、センサS1~S6の少なくとも一部が直接的に入力部103に接続されてもよい。この場合、センサS1~S6から出力される計測データは、制御対象の装置を介さずに、直接的に入力部103に入力される。また、センサS1~S6が通信インタフェースを有する場合、サーバ装置100は、後述する通信部105を通じて計測データを取得してもよい。
In the present embodiment, the device to be controlled is connected to the input unit 103, but at least a part of the sensors S1 to S6 may be directly connected to the input unit 103. In this case, the measurement data output from the sensors S1 to S6 is directly input to the input unit 103 without going through the device to be controlled. Further, when the sensors S1 to S6 have a communication interface, the server device 100 may acquire measurement data through the communication unit 105 described later.
出力部104は、制御対象の装置を接続する接続インタフェースを備える。出力部104に接続される装置は、原料供給機2、熱風発生機3、粉体処理装置4、サイクロン5、集塵機6、及びブロワ7を含む。出力部104が備える接続インタフェースは、有線のインタフェースであってもよく、無線のインタフェースであってもよい。制御部101は、出力部104を通じて制御指令を出力することにより、制御対象の装置の動作を制御する。例えば、粉砕ロータ43の回転速度を制御する場合、制御部101は、粉砕ロータ43の駆動部である粉砕モータ430に対する制御指令を生成し、出力部104を通じて粉体処理装置4へ出力することにより、粉砕ロータ43の回転速度を制御する。分級ロータ45の回転速度を制御する場合も同様であり、制御部101は、分級ロータ45の駆動部である分級モータ450に対する制御指令を生成し、出力部104を通じて粉体処理装置4へ出力することにより、分級ロータ45の回転速度を制御する。また、粉体処理装置4が備えるケーシング40からの吐出・吸引流量を制御する場合、制御部101は、ブロワ7に対する制御指令を生成し、出力部104を通じてブロワ7へ出力することにより、ケーシング40からの吐出・吸引流量を制御する。
The output unit 104 includes a connection interface for connecting the device to be controlled. The device connected to the output unit 104 includes a raw material supply machine 2, a hot air generator 3, a powder processing device 4, a cyclone 5, a dust collector 6, and a blower 7. The connection interface included in the output unit 104 may be a wired interface or a wireless interface. The control unit 101 controls the operation of the device to be controlled by outputting a control command through the output unit 104. For example, when controlling the rotation speed of the crushing rotor 43, the control unit 101 generates a control command for the crushing motor 430, which is a driving unit of the crushing rotor 43, and outputs the control command to the powder processing apparatus 4 through the output unit 104. , Control the rotation speed of the crushing rotor 43. The same applies to the case of controlling the rotation speed of the classification rotor 45, and the control unit 101 generates a control command for the classification motor 450 which is a drive unit of the classification rotor 45 and outputs the control command to the powder processing apparatus 4 through the output unit 104. Thereby, the rotation speed of the classification rotor 45 is controlled. Further, when controlling the discharge / suction flow rate from the casing 40 included in the powder processing apparatus 4, the control unit 101 generates a control command for the blower 7 and outputs the control command to the blower 7 through the output unit 104, whereby the casing 40 Controls the discharge / suction flow rate from.
通信部105は、各種の通信データを送受信する通信インタフェースを備える。通信部105が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLAN(Local Area Network)の通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE(Long Term Evolution)等の通信規格に準じた通信インタフェースであってもよい。
The communication unit 105 includes a communication interface for transmitting and receiving various communication data. The communication interface included in the communication unit 105 is, for example, a communication interface conforming to the communication standard of LAN (Local Area Network) used in WiFi (registered trademark) and Ethernet (registered trademark). Alternatively, a communication interface conforming to a communication standard such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, LTE (Long Term Evolution) may be used.
通信部105は、例えば、粉体処理システム1のユーザが使用するクライアント装置500と通信を行う。通信部105は、粉体処理システム1の遠隔操作を受付けるために、クライアント装置500から送信される操作データ又は設定データを受信してもよい。制御部101は、通信部105を通じて、クライアント装置500から送信される操作データ又は設定データを受信した場合、受信した操作データ又は設定データに応じた処理を実行する。また、制御部101は、クライアント装置500に表示させるユーザインタフェース画面の画面データを生成し、生成した画面データを通信部105を通じてクライアント装置500へ送信してもよい。
The communication unit 105 communicates with, for example, the client device 500 used by the user of the powder processing system 1. The communication unit 105 may receive the operation data or the setting data transmitted from the client device 500 in order to accept the remote operation of the powder processing system 1. When the control unit 101 receives the operation data or the setting data transmitted from the client device 500 through the communication unit 105, the control unit 101 executes a process according to the received operation data or the setting data. Further, the control unit 101 may generate screen data of the user interface screen to be displayed on the client device 500, and may transmit the generated screen data to the client device 500 through the communication unit 105.
操作部106は、キーボードやマウスなどの入力インタフェースを備えており、各種操作及び各種設定を受付ける。制御部101は、操作部106を通じて受付けた各種操作及び各種設定に基づき、適宜の処理を行い、必要に応じて設定情報を記憶部102に記憶させる。なお、本実施の形態では、サーバ装置100が操作部106を備える構成としたが、操作部106は必須ではなく、外部に接続されたコンピュータ(例えば、クライアント装置500)を通じて操作を受付ける構成であってもよい。
The operation unit 106 is provided with an input interface such as a keyboard and a mouse, and accepts various operations and various settings. The control unit 101 performs appropriate processing based on various operations and various settings received through the operation unit 106, and stores the setting information in the storage unit 102 as necessary. In the present embodiment, the server device 100 is configured to include the operation unit 106, but the operation unit 106 is not indispensable, and the operation is received through a computer (for example, the client device 500) connected to the outside. You may.
表示部107は、液晶パネル又は有機EL(Electro-Luminescence)パネル等の表示パネルを備えており、ユーザに対して報知すべき情報を表示する。表示部107は、例えば、通信部105を通じて受信した各種センサS1~S6の計測データを表示してもよく、操作部106を通じて受付けた各種操作及び各種設定に基づく情報を表示してもよい。なお、本実施の形態では、サーバ装置100が表示部107を備える構成としたが、表示部107は必須ではなく、ユーザに報知すべき情報を外部のコンピュータ(例えば、クライアント装置500)へ出力し、出力先のコンピュータに情報を表示させてもよい。
The display unit 107 includes a display panel such as a liquid crystal panel or an organic EL (Electro-Luminescence) panel, and displays information to be notified to the user. The display unit 107 may display, for example, the measurement data of the various sensors S1 to S6 received through the communication unit 105, or may display information based on various operations and various settings received through the operation unit 106. In the present embodiment, the server device 100 is configured to include the display unit 107, but the display unit 107 is not essential and outputs information to be notified to the user to an external computer (for example, the client device 500). , The information may be displayed on the output destination computer.
本実施の形態では、サーバ装置100を単一のコンピュータとして説明したが、単一のコンピュータである必要はなく、複数のコンピュータにより構成されてもよく、複数の仮想コンピュータにより構成されてもよい。
In the present embodiment, the server device 100 has been described as a single computer, but it does not have to be a single computer, and may be composed of a plurality of computers or a plurality of virtual computers.
図4はクライアント装置500の内部構成を示すブロック図である。クライアント装置500は、パーソナルコンピュータ、スマートフォン、タブレット端末などのコンピュータであり、制御部501、記憶部502、通信部503、操作部504、及び表示部505を備える。
FIG. 4 is a block diagram showing the internal configuration of the client device 500. The client device 500 is a computer such as a personal computer, a smartphone, or a tablet terminal, and includes a control unit 501, a storage unit 502, a communication unit 503, an operation unit 504, and a display unit 505.
制御部501は、例えば、CPU、ROM、RAMなどを備える。制御部501が備えるROMには、クライアント装置500が備えるハードウェア各部の動作を制御する制御プログラム等が記憶される。制御部501内のCPUは、ROMに記憶された制御プログラムや後述する記憶部502に記憶された各種コンピュータプログラムを実行し、ハードウェア各部の動作を制御する。また、制御部501は、日時情報を出力するクロック、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ等の機能を備えてもよい。制御部501が備えるRAMには、演算の実行中に利用されるデータ等が一時的に記憶される。
The control unit 501 includes, for example, a CPU, a ROM, a RAM, and the like. The ROM included in the control unit 501 stores a control program or the like that controls the operation of each hardware unit included in the client device 500. The CPU in the control unit 501 executes a control program stored in the ROM and various computer programs stored in the storage unit 502 described later, and controls the operation of each hardware unit. Further, the control unit 501 may have functions such as a clock for outputting date and time information, a timer for measuring the elapsed time from giving the measurement start instruction to giving the measurement end instruction, and a counter for counting the number. Data and the like used during execution of the calculation are temporarily stored in the RAM included in the control unit 501.
記憶部502は、ハードディスク、フラッシュメモリなどを用いた記憶装置を備える。記憶部502には、制御部501によって実行されるコンピュータプログラム、外部から取得した各種データ、装置内部で生成した各種データ等が記憶される。記憶部502に記憶されるコンピュータプログラムは、クライアント装置500からサーバ装置100にアクセスするためのアプリケーションプログラムを含んでもよい。
The storage unit 502 includes a storage device that uses a hard disk, a flash memory, or the like. The storage unit 502 stores a computer program executed by the control unit 501, various data acquired from the outside, various data generated inside the device, and the like. The computer program stored in the storage unit 502 may include an application program for accessing the server device 100 from the client device 500.
記憶部102に記憶されるコンピュータプログラムは、クライアント装置500からサーバ装置100にアクセスし、サーバ装置100から提供される情報を表示する表示プログラムPG5を含む。
The computer program stored in the storage unit 102 includes a display program PG5 that accesses the server device 100 from the client device 500 and displays information provided by the server device 100.
表示プログラムPG5を含むコンピュータプログラムは、コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体M2により提供されてもよい。記録媒体M2は、例えば、CD-ROM、USBメモリ、コンパクトフラッシュ(登録商標)、SDカード、マイクロSDカード、などの可搬型メモリである。制御部501は、図に示していない読取装置を用いて、記録媒体M2から各種プログラムを読み取り、読み取った各種プログラムを記憶部502に記憶させる。
The computer program including the display program PG5 may be provided by a non-temporary recording medium M2 in which the computer program is readablely recorded. The recording medium M2 is, for example, a portable memory such as a CD-ROM, a USB memory, a compact flash (registered trademark), an SD card, or a micro SD card. The control unit 501 reads various programs from the recording medium M2 using a reading device (not shown in the figure), and stores the read various programs in the storage unit 502.
通信部503は、各種データを送受信する通信インタフェースを備える。通信部503が備える通信インタフェースは、例えば、WiFi(登録商標)やイーサネット(登録商標)で用いられるLANの通信規格に準じた通信インタフェースである。代替的に、Bluetooth(登録商標) 、ZigBee(登録商標)、3G、4G、5G、LTE等の通信規格に準じた通信インタフェースであってもよい。
The communication unit 503 includes a communication interface for transmitting and receiving various data. The communication interface included in the communication unit 503 is, for example, a communication interface conforming to the LAN communication standard used in WiFi (registered trademark) and Ethernet (registered trademark). Alternatively, a communication interface conforming to communication standards such as Bluetooth (registered trademark), ZigBee (registered trademark), 3G, 4G, 5G, and LTE may be used.
通信部503は、例えば、粉体処理システム1のサーバ装置100と通信を行う。クライアント装置500が通信部503を通じて受信するデータは、サーバ装置100のインタフェース画面を表示部505に表示させるための画面データ、粉体処理装置4を含む装置の設定状態及び制御状態を示すデータ等を含む。ここで、設定状態を示すデータには、粉砕ロータ43の回転速度に関する設定値、分級ロータ45の回転速度に関する設定値、及びブロワ7による吐出・吸引流量に関する設定値等が含まれる。また、制御状態を示すデータには、粉砕ロータ43の回転速度に関する計測値、分級ロータ45の回転速度に関する計測値、ブロワ7による吐出・吸引流量に関する計測値、及び粉体処理装置4を含む装置から出力される警報情報等が含まれる。通信部503にて受信したデータは制御部501へ出力される。クライアント装置500が通信部503を通じて送信するデータは、粉体処理システム1を遠隔操作する際の操作データ又は設定データ等を含む。
The communication unit 503 communicates with, for example, the server device 100 of the powder processing system 1. The data received by the client device 500 through the communication unit 503 includes screen data for displaying the interface screen of the server device 100 on the display unit 505, data indicating a setting state and a control state of the device including the powder processing device 4. Including. Here, the data indicating the set state includes a set value regarding the rotation speed of the crushing rotor 43, a set value regarding the rotation speed of the classification rotor 45, a set value regarding the discharge / suction flow rate by the blower 7, and the like. Further, the data indicating the control state includes a measured value related to the rotation speed of the crushing rotor 43, a measured value related to the rotation speed of the classification rotor 45, a measured value related to the discharge / suction flow rate by the blower 7, and a powder processing device 4. It includes alarm information and the like output from. The data received by the communication unit 503 is output to the control unit 501. The data transmitted by the client device 500 through the communication unit 503 includes operation data, setting data, and the like when the powder processing system 1 is remotely controlled.
操作部504は、キーボードやマウスなどの入力インタフェースを備えており、各種操作及び各種設定を受付ける。制御部501は、操作部504を通じて受付けた各種操作及び各種設定に基づき、適宜の処理を行い、必要に応じて設定情報を記憶部502に記憶させる。
The operation unit 504 is equipped with an input interface such as a keyboard and a mouse, and accepts various operations and various settings. The control unit 501 performs appropriate processing based on various operations and various settings received through the operation unit 504, and stores the setting information in the storage unit 502 as necessary.
表示部505は、液晶パネル又は有機ELパネル等の表示パネルを備えており、ユーザに対して報知すべき情報を表示する。表示部505は、例えば、通信部503にて受信した画面データに基づき、サーバ装置100のインタフェース画面を表示する。また、表示部505は、通信部503にて受信した粉体処理装置4を含む装置の設定状態及び制御状態を示すデータに基づき、粉体処理装置4を含む装置の設定状態及び制御状態を表示してもよい。
The display unit 505 includes a display panel such as a liquid crystal panel or an organic EL panel, and displays information to be notified to the user. The display unit 505 displays the interface screen of the server device 100, for example, based on the screen data received by the communication unit 503. Further, the display unit 505 displays the setting state and the control state of the device including the powder processing device 4 based on the data indicating the setting state and the control state of the device including the powder processing device 4 received by the communication unit 503. You may.
次に、画面例を参照しながら、クライアント装置500及びサーバ装置100が実行する処理の手順について説明する。
Next, the procedure of the processing executed by the client device 500 and the server device 100 will be described with reference to the screen example.
図5はクライアント装置500及びサーバ装置100が実行する処理の手順を説明するフローチャートである。クライアント装置500からサーバ装置100にアクセスする場合、クライアント装置500において、表示プログラムPG5が起動される(ステップS101)。表示プログラムPG5が起動された後、制御部501は、例えばユーザID及びパスワードの入力を受付けるログイン画面を表示部505に表示し、表示したログイン画面においてユーザID及びパスワードの入力を受付ける(ステップS102)。図6はログイン画面の一例を示す模式図である。図6に示すログイン画面600は、ユーザIDの入力欄601、パスワードの入力欄602、及びログインボタン603を備える。入力欄601,602及びログインボタン603は、操作部504を利用した操作入力を受付けるGUI(Graphical User Interface)のコンポーネントとして配置される。操作部504を用いて、入力欄601,602にそれぞれユーザID及びパスワードが入力され、ログインボタン603が押下操作された場合、制御部501は、入力されたユーザID及びパスワードを通信部503よりサーバ装置100へ送信する(ステップS103)。このとき、制御部501は、送信対象のユーザID及びパスワードを暗号化してもよい。
FIG. 5 is a flowchart illustrating a procedure of processing executed by the client device 500 and the server device 100. When accessing the server device 100 from the client device 500, the display program PG5 is started in the client device 500 (step S101). After the display program PG5 is started, the control unit 501 displays, for example, a login screen for accepting the input of the user ID and password on the display unit 505, and accepts the input of the user ID and password on the displayed login screen (step S102). .. FIG. 6 is a schematic diagram showing an example of a login screen. The login screen 600 shown in FIG. 6 includes a user ID input field 601, a password input field 602, and a login button 603. The input fields 601, 602 and the login button 603 are arranged as components of a GUI (Graphical User Interface) that receives operation input using the operation unit 504. When the user ID and password are input to the input fields 601 and 602 by using the operation unit 504 and the login button 603 is pressed, the control unit 501 sends the input user ID and password from the communication unit 503 to the server. It is transmitted to the device 100 (step S103). At this time, the control unit 501 may encrypt the user ID and password to be transmitted.
サーバ装置100は、クライアント装置500より送信されるユーザID及びパスワードを通信部105にて受信する(ステップS104)。通信部105にて受信したユーザID及びパスワードは、制御部101へ出力される。制御部101は、通信部105を通じて受信したユーザID及びパスワードに基づき、ユーザ認証を実行する(ステップS105)。すなわち、制御部101は、クライアント装置500から受信したユーザID及びパスワードと、記憶部102に予め記憶されているユーザID及びパスワードとの異同を判断することにより、ユーザ認証を実行すればよい。制御部101は、ユーザ認証に成功した場合、クライアント装置500のユーザが粉体処理システム1の正当な利用者であると判断する。また、サーバ装置100が複数の粉体処理システム(不図示)の稼働状況を管理している場合、制御部101は、受信したユーザIDに基づき、どの粉体処理システムの利用者であるのかを判断してもよい。このため、サーバ装置100は、ユーザIDと、ユーザIDにより特定されるユーザが使用している粉体処理システム(又は粉体処理装置)の識別子とを関連付けたテーブルを有していてもよい。
The server device 100 receives the user ID and password transmitted from the client device 500 in the communication unit 105 (step S104). The user ID and password received by the communication unit 105 are output to the control unit 101. The control unit 101 executes user authentication based on the user ID and password received through the communication unit 105 (step S105). That is, the control unit 101 may execute the user authentication by determining the difference between the user ID and password received from the client device 500 and the user ID and password stored in advance in the storage unit 102. If the user authentication is successful, the control unit 101 determines that the user of the client device 500 is a legitimate user of the powder processing system 1. Further, when the server device 100 manages the operating status of a plurality of powder processing systems (not shown), the control unit 101 determines which powder processing system is the user based on the received user ID. You may judge. Therefore, the server device 100 may have a table in which the user ID is associated with the identifier of the powder processing system (or powder processing device) used by the user specified by the user ID.
次いで、制御部101は、粉体処理システム1から情報を取得する(ステップS106)。制御部101が取得する情報には、例えば、粉体処理装置4が備える粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40から粉体を取り出す際の吐出・吸引流量の計測データの少なくとも1つが含まれる。ここで、粉砕ロータ43及び分級ロータ45の回転速度は、それぞれ回転速度センサS5,S6により計測される計測値である。また、吐出・吸引流量は、流量センサS3により計測される計測値である。これら粉砕ロータ43の回転速度、分級ロータ45の回転速度、及び吐出・吸引流量は、粉体処理システム1が備える少なくとも1つの計測器から得られる計測情報の一例である。
Next, the control unit 101 acquires information from the powder processing system 1 (step S106). The information acquired by the control unit 101 includes, for example, measurement data of the rotation speed of the crushing rotor 43 included in the powder processing apparatus 4, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when the powder is taken out from the casing 40. At least one of is included. Here, the rotation speeds of the crushing rotor 43 and the classification rotor 45 are measured values measured by the rotation speed sensors S5 and S6, respectively. The discharge / suction flow rate is a measured value measured by the flow rate sensor S3. The rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate are examples of measurement information obtained from at least one measuring instrument included in the powder processing system 1.
なお、図5のフローチャートでは、ユーザ認証の実行後に粉体処理システム1から情報を取得する手順としたが、サーバ装置100は、粉体処理システム1と随時通信を行い、粉体処理システム1から送信される各種情報を随時取得してもよい。
In the flowchart of FIG. 5, the procedure of acquiring information from the powder processing system 1 after executing the user authentication is set, but the server device 100 communicates with the powder processing system 1 at any time and starts from the powder processing system 1. Various information to be transmitted may be acquired at any time.
次いで、制御部101は、クライアント装置500において表示させる表示画面の画面データを生成する(ステップS107)。例えば、制御部101は、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及び吐出・吸引流量に関する計測データの少なくとも1つと、粉体処理システム1の全体図とを含むモニタリング画面610(図7を参照)の画面データを生成する。制御部101は、生成した画面データを通信部105よりクライアント装置500へ送信する(ステップS108)。
Next, the control unit 101 generates screen data of the display screen to be displayed on the client device 500 (step S107). For example, the control unit 101 includes a monitoring screen 610 (FIG. 10) including at least one of measurement data regarding the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate, and an overall view of the powder processing system 1. 7) screen data is generated. The control unit 101 transmits the generated screen data from the communication unit 105 to the client device 500 (step S108).
クライアント装置500は、サーバ装置100より送信される画面データを通信部503にて受信する(ステップS109)。通信部503にて受信した画面データは、制御部501へ出力される。制御部501は、通信部503を通じて受信した画面データに基づき、モニタリング画面610を表示部505に表示させる(ステップS110)。クライアント装置500は、モニタリング画面610の表示中にサーバ装置100と通信を行うことによって、表示すべき情報を随時取得し、取得した情報に基づきモニタリング画面610を更新してもよい。
The client device 500 receives the screen data transmitted from the server device 100 by the communication unit 503 (step S109). The screen data received by the communication unit 503 is output to the control unit 501. The control unit 501 causes the display unit 505 to display the monitoring screen 610 based on the screen data received through the communication unit 503 (step S110). The client device 500 may acquire information to be displayed at any time by communicating with the server device 100 while the monitoring screen 610 is being displayed, and may update the monitoring screen 610 based on the acquired information.
図7はモニタリング画面610の表示例を示す模式図である。図7に示すモニタリング画面610は、スマートフォンなどの端末装置における表示例を示している。モニタリング画面610は、システム状況表示欄611、計測データ表示欄612、システム全体図表示欄613、及び装置状況表示欄614を備える。
FIG. 7 is a schematic diagram showing a display example of the monitoring screen 610. The monitoring screen 610 shown in FIG. 7 shows a display example in a terminal device such as a smartphone. The monitoring screen 610 includes a system status display column 611, a measurement data display column 612, an overall system diagram display column 613, and an apparatus status display column 614.
システム状況表示欄611には、粉体処理システム1、サーバ装置100、及びクライアント装置500を含むシステム全体の稼働状況に関する情報が表示される。システム全体の稼働状況として、例えば、サーバ装置100とクライアント装置500との間の通信状況に関する情報を表示してもよく、粉体処理システム1が処理中であるか否かの情報を表示してもよい。システム状況表示欄611における「Comms Online」は、サーバ装置100とクライアント装置500とが通信可能であること、「Processing」は、粉体処理システム1が処理中であることを示している。なお、サーバ装置100とクライアント装置500とが通信不能である場合、「Comms Offline」と表示される。また、粉体処理システム1が待機中である場合、「Idling」と表示され、粉体処理システム1が停止中である場合、「Shutdown」と表示される。
In the system status display column 611, information on the operating status of the entire system including the powder processing system 1, the server device 100, and the client device 500 is displayed. As the operating status of the entire system, for example, information on the communication status between the server device 100 and the client device 500 may be displayed, and information on whether or not the powder processing system 1 is processing may be displayed. May be good. “Comms Online” in the system status display column 611 indicates that the server device 100 and the client device 500 can communicate with each other, and “Processing” indicates that the powder processing system 1 is processing. If the server device 100 and the client device 500 cannot communicate with each other, "Comms Offline" is displayed. Further, when the powder processing system 1 is on standby, "Idling" is displayed, and when the powder processing system 1 is stopped, "Shutdown" is displayed.
計測データ表示欄612には、センサS1~S6を含む各種センサの計測値のうち、ユーザが参照すべき計測値が表示される。計測データ表示欄612に表示する計測値は、表示プログラムPG5の提供者等により適宜設定される。図7の計測データ表示欄612では、粉砕ロータ43に供給されている駆動電流の計測値と、粉砕ロータ43の回転速度の計測値とを表示した例を示している。図7の例では、駆動電流及び回転速度の計測値を数値データとして表示すると共に、円弧状のゲージグラフによりグラフィカルに表示した例を示している。代替的に、計測データ表示欄612における表示は、数値データのみの表示であってもよく、ゲージグラフのみの表示であってもよい。ゲージグラフに代えて、棒グラフや円グラフ等の表示であってもよく、レベルメータを模擬した表示であってもよい。
In the measurement data display field 612, among the measurement values of various sensors including the sensors S1 to S6, the measurement values that the user should refer to are displayed. The measured value to be displayed in the measurement data display field 612 is appropriately set by the provider of the display program PG5 or the like. The measurement data display column 612 of FIG. 7 shows an example in which the measured value of the drive current supplied to the crushing rotor 43 and the measured value of the rotation speed of the crushing rotor 43 are displayed. In the example of FIG. 7, the measured values of the drive current and the rotation speed are displayed as numerical data, and an example of graphically displaying them by an arcuate gauge graph is shown. Alternatively, the display in the measurement data display field 612 may be a display of only numerical data or a display of only a gauge graph. Instead of the gauge graph, it may be a display such as a bar graph or a pie graph, or a display simulating a level meter.
計測データ表示欄612は、操作部504を用いた表示切替操作を受付けるGUIのコンポーネントであってもよい。表示切替操作の一例はフリック操作である。この場合、計測データ表示欄612における表示は、表示切替操作を受付けたときに、表示中の計測値から別の計測値に切り替わるように構成される。計測データ表示欄612における表示の切り替えについては、図9を参照して具体的に説明する。
The measurement data display field 612 may be a GUI component that accepts a display switching operation using the operation unit 504. An example of the display switching operation is a flick operation. In this case, the display in the measurement data display field 612 is configured to switch from the measured value being displayed to another measured value when the display switching operation is accepted. The switching of the display in the measurement data display field 612 will be specifically described with reference to FIG.
システム全体図表示欄613には、粉体処理システム1の全体図が模式的に表示される。ユーザは、システム全体図表示欄613に表示される全体図を参照することにより、装置構成を容易に把握することができる。例えば、図7に示す全体図からは、粉体処理装置4の上流に原料供給機2及び熱風発生機3が設けられており、粉体処理装置4の下流にサイクロン5、集塵機6及びブロワ7が設けられていることが全体図より把握できる。また、後述するように、粉体処理システム1において異常が発生した場合、異常発生箇所が全体図にて識別可能に表示されてもよい。
The overall view of the powder processing system 1 is schematically displayed in the system overall view display column 613. The user can easily grasp the device configuration by referring to the overall view displayed in the system overall view display column 613. For example, from the overall view shown in FIG. 7, the raw material supply machine 2 and the hot air generator 3 are provided upstream of the powder processing device 4, and the cyclone 5, the dust collector 6, and the blower 7 are provided downstream of the powder processing device 4. Can be understood from the overall view that is provided. Further, as will be described later, when an abnormality occurs in the powder processing system 1, the location of the abnormality may be identifiable in the overall view.
装置状況表示欄614には、粉体処理システム1を構成する装置の状況が表示される。装置状況表示欄614における表示対象の装置は、装置の稼働状況や実行中のプロセスに応じて適宜選択される。図7の例は、粉体処理装置4が処理中であること、排気ファン(ブロワ7)の診断結果が正常であったことを示している。
In the device status display column 614, the status of the devices constituting the powder processing system 1 is displayed. The device to be displayed in the device status display column 614 is appropriately selected according to the operating status of the device and the running process. The example of FIG. 7 shows that the powder processing apparatus 4 is being processed and that the diagnosis result of the exhaust fan (blower 7) is normal.
また、モニタリング画面610の下部には、ハイライトボタン610B、ダッシュボードボタン620B、トレンドボタン630B、及びアラートボタン640Bが設けられている。これらのボタン610B,620B,630B,640Bは、モニタリング画面610の表示内容を切り替えるために操作されるGUIのコンポーネントである。
Further, at the lower part of the monitoring screen 610, a highlight button 610B, a dashboard button 620B, a trend button 630B, and an alert button 640B are provided. These buttons 610B, 620B, 630B, and 640B are GUI components operated to switch the display contents of the monitoring screen 610.
ハイライトボタン610Bは、粉体処理システム1において比較的重要度が高い情報を表示させる際に操作されるボタンである。図7のモニタリング画面610は、ハイライトボタン610Bが操作された場合にクライアント装置500の表示部505に表示される画面の一例を示している。このようなモニタリング画面610は、ユーザ認証後の初期画面として表示部505に表示される画面であってもよい。
The highlight button 610B is a button operated when displaying information having a relatively high importance in the powder processing system 1. The monitoring screen 610 of FIG. 7 shows an example of a screen displayed on the display unit 505 of the client device 500 when the highlight button 610B is operated. Such a monitoring screen 610 may be a screen displayed on the display unit 505 as an initial screen after user authentication.
ダッシュボードボタン620Bは、センサS1~S6を含む各種センサの計測値を表示させる際に操作されるボタンである。ダッシュボードボタン620Bが操作された場合、表示部505には、各種センサから得られる最新の計測値が一覧で表示される。具体例については、図10を参照して説明する。
The dashboard button 620B is a button operated when displaying the measured values of various sensors including the sensors S1 to S6. When the dashboard button 620B is operated, the latest measured values obtained from various sensors are displayed in a list on the display unit 505. A specific example will be described with reference to FIG.
トレンドボタン630Bは、センサS1~S6を含む各種センサの計測値を時系列的に表示させる際に操作されるボタンである。トレンドボタン630Bが操作された場合、表示部505には、各種センサから得られる計測値の時系列データが表示される。具体例については、図11を参照して説明する。
The trend button 630B is a button operated when displaying the measured values of various sensors including the sensors S1 to S6 in chronological order. When the trend button 630B is operated, the display unit 505 displays time-series data of measured values obtained from various sensors. A specific example will be described with reference to FIG.
アラートボタン640Bは、粉体処理システム1の稼働状況を一覧で表示させる際に操作されるボタンである。アラートボタン640Bが操作された場合、表示部505には、粉体処理システム1において発生した異常を含む稼働状況が一覧表示される。具体例については、図12を参照して説明する。
The alert button 640B is a button operated when displaying the operating status of the powder processing system 1 in a list. When the alert button 640B is operated, the display unit 505 displays a list of operating conditions including an abnormality that has occurred in the powder processing system 1. A specific example will be described with reference to FIG.
図8はモニタリング画面610の他の表示例を示す模式図である。図8のモニタリング画面610は、粉体処理システム1において異常が発生した場合の表示例を示している。モニタリング画面610の画面構成は正常時と同様であり、システム状況表示欄611、計測データ表示欄612、システム全体図表示欄613、及び装置状況表示欄614を備える。
FIG. 8 is a schematic diagram showing another display example of the monitoring screen 610. The monitoring screen 610 of FIG. 8 shows a display example when an abnormality occurs in the powder processing system 1. The screen configuration of the monitoring screen 610 is the same as in the normal state, and includes a system status display column 611, a measurement data display column 612, an overall system diagram display column 613, and an apparatus status display column 614.
粉体処理システム1における異常発生箇所はサーバ装置100により特定される。サーバ装置100は、公知の手法を用いて、粉体処理システム1における異常の有無を判定し、異常発生箇所を特定することができる。例えば、サーバ装置100は、センサS1~S6を含む各種センサの計測値と、各計測値について設定した閾値とを比較することにより、異常の有無を判定し、異常発生箇所を特定すればよい。サーバ装置100は、粉体処理システム1において異常が発生した場合、異常が発生したことを示す情報、異常発生箇所の情報、対処方法に関する情報等をクライアント装置500へ送信する。
The location of the abnormality in the powder processing system 1 is specified by the server device 100. The server device 100 can determine the presence or absence of an abnormality in the powder processing system 1 and identify the location where the abnormality occurs by using a known method. For example, the server device 100 may determine the presence or absence of an abnormality and identify the location where the abnormality occurs by comparing the measured values of various sensors including the sensors S1 to S6 with the threshold values set for each measured value. When an abnormality occurs in the powder processing system 1, the server device 100 transmits to the client device 500 information indicating that the abnormality has occurred, information on the location where the abnormality has occurred, information on how to deal with the abnormality, and the like.
クライアント装置500に表示中のモニタリング画面610は、サーバ装置100からの情報に基づき更新される。モニタリング画面610の更新は、表示プログラムPG5に基づき、制御部501によって実行される。
The monitoring screen 610 displayed on the client device 500 is updated based on the information from the server device 100. The update of the monitoring screen 610 is executed by the control unit 501 based on the display program PG5.
図8に示すモニタリング画面610は、粉砕ロータ43の電流が予め設定された閾値よりも高くなったため、サーバ装置100において異常と判定された場合の表示例を示している。この場合、モニタリング画面610の装置状況表示欄614には、粉砕ロータ43の電流が異常である旨が表示され、その対処方法が表示される。また、システム全体図表示欄613には、異常発生箇所が識別可能に表示される。図8は、粉砕ロータ43を備える粉体処理装置4を強調表示し、他の正常な装置とは識別可能に表示した例を示している。強調表示は、例えば対象の装置を太線により描画する、色を変更して描画する、点滅させて描画する等の公知手法を用いて実現される。
The monitoring screen 610 shown in FIG. 8 shows a display example when the server device 100 determines that the current is abnormal because the current of the crushing rotor 43 is higher than the preset threshold value. In this case, in the device status display column 614 of the monitoring screen 610, it is displayed that the current of the crushing rotor 43 is abnormal, and the coping method is displayed. Further, the location where the abnormality has occurred is identifiablely displayed in the system overall diagram display column 613. FIG. 8 shows an example in which the powder processing apparatus 4 including the crushing rotor 43 is highlighted and displayed so as to be distinguishable from other normal apparatus. The highlighting is realized by using a known method such as drawing the target device with a thick line, drawing by changing the color, or drawing by blinking.
図9は計測データ表示欄612における表示切替例を示す模式図である。計測データ表示欄612において表示切替操作を受付けた場合、表示内容612A~612Eに示すように、計測データ表示欄612における表示内容が順番に切り替えられるように構成されている。表示内容612Aは、モニタリング画面610が表示されたときに計測データ表示欄612に最初に表示される表示内容である。表示内容612Aは、例えば、粉砕ロータ43に供給されている駆動電流の計測値と、粉砕ロータ43の回転速度の計測値とを含む。
FIG. 9 is a schematic diagram showing an example of display switching in the measurement data display field 612. When the display switching operation is accepted in the measurement data display field 612, the display contents in the measurement data display field 612 are sequentially switched as shown in the display contents 612A to 612E. The display content 612A is the display content first displayed in the measurement data display field 612 when the monitoring screen 610 is displayed. The display content 612A includes, for example, a measured value of the drive current supplied to the crushing rotor 43 and a measured value of the rotation speed of the crushing rotor 43.
表示内容612Aの表示中に表示切替操作を受付けた場合、計測データ表示欄612には、表示内容612Bが表示される。表示内容612Bは、例えば、分級ロータ45に供給されている駆動電流の計測値と、分級ロータ45の回転速度の計測値とを含む。
When the display switching operation is accepted while the display content 612A is being displayed, the display content 612B is displayed in the measurement data display field 612. The display content 612B includes, for example, a measured value of the drive current supplied to the classification rotor 45 and a measured value of the rotation speed of the classification rotor 45.
表示内容612Bの表示中に表示切替操作を受付けた場合、計測データ表示欄612には、表示内容612C(又は表示内容612A)が表示される。表示内容612Cは、例えば、粉体処理装置4のケーシング40から粉体を取り出す際の吐出・吸引流量の計測値を含む。図9の例では、吐出・吸引流量の計測値を数値データとして表示すると共に、棒グラフによりグラフィカルに表示した例を示している。
When the display switching operation is accepted while the display content 612B is being displayed, the display content 612C (or display content 612A) is displayed in the measurement data display field 612. The display content 612C includes, for example, a measured value of the discharge / suction flow rate when the powder is taken out from the casing 40 of the powder processing apparatus 4. In the example of FIG. 9, the measured values of the discharge / suction flow rate are displayed as numerical data, and an example of graphically displaying them by a bar graph is shown.
表示内容612Cの表示中に表示切替操作を受付けた場合、計測データ表示欄612には、表示内容612D(又は表示内容612B)が表示される。表示内容612Dは、例えば、粉体処理装置4から得られる粉体について計測された粒子径の情報を含む。図9の例では、D10,D50,D90のそれぞれの計測値を数値データとして表示すると共に、それぞれを棒グラフによりグラフィカルに表示した例を示している。
When the display switching operation is accepted while the display content 612C is being displayed, the display content 612D (or display content 612B) is displayed in the measurement data display field 612. The display content 612D includes, for example, information on the particle size measured for the powder obtained from the powder processing apparatus 4. In the example of FIG. 9, each measured value of D10, D50, and D90 is displayed as numerical data, and each is graphically displayed by a bar graph.
表示内容612Dの表示中に表示切替操作を受付けた場合、計測データ表示欄612には、表示内容612E(又は表示内容612C)が表示される。表示内容612Eは、例えば、原料供給機2による粉体原料の供給速度の計測値を含む。図9の例では、供給速度の計測値を数値データとして表示すると共に、棒グラフによりグラフィカルに表示した例を示している。
When the display switching operation is accepted while the display content 612D is being displayed, the display content 612E (or display content 612C) is displayed in the measurement data display field 612. The display content 612E includes, for example, a measured value of the supply rate of the powder raw material by the raw material supply machine 2. In the example of FIG. 9, the measured value of the supply speed is displayed as numerical data, and an example of graphically displaying it by a bar graph is shown.
図9の例では、粉砕ロータ43の駆動電流及び回転速度、分級ロータ45の駆動電流及び回転速度、ケーシング40からの吐出・吸引流量、粒子径の情報、並びに、粉体原料の供給速度を計測データ表示欄612に順次表示する形態について説明したが、計測データ表示欄612に表示する計測値や計測値を表示する順番等は上記に限定されるものではなく、適宜設定することが可能である。
In the example of FIG. 9, the drive current and rotation speed of the crushing rotor 43, the drive current and rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, the particle size information, and the supply speed of the powder raw material are measured. Although the form of sequentially displaying in the data display field 612 has been described, the measured values to be displayed in the measurement data display field 612, the order in which the measured values are displayed, and the like are not limited to the above, and can be set as appropriate. ..
次に、モニタリング画面610等においてダッシュボードボタン620Bが操作された場合に表示される画面について説明する。クライアント装置500は、モニタリング画面610等においてダッシュボードボタン620Bが操作された場合、図10を参照して説明するダッシュボード画面620への切替要求をサーバ装置100へ送信する。サーバ装置100は、クライアント装置500からの切替要求に応じて、ダッシュボード画面620の画面データを生成し、生成した画面データをクライアント装置500へ送信する。クライアント装置500は、サーバ装置100から送信されてくる画面データに基づき、ダッシュボード画面620を表示部505に表示する。
Next, the screen displayed when the dashboard button 620B is operated on the monitoring screen 610 or the like will be described. When the dashboard button 620B is operated on the monitoring screen 610 or the like, the client device 500 transmits a switching request to the dashboard screen 620 described with reference to FIG. 10 to the server device 100. The server device 100 generates screen data of the dashboard screen 620 in response to the switching request from the client device 500, and transmits the generated screen data to the client device 500. The client device 500 displays the dashboard screen 620 on the display unit 505 based on the screen data transmitted from the server device 100.
図10はダッシュボード画面620の表示例を示す模式図である。ダッシュボード画面620は、粒子径情報表示欄621、粉砕ロータ情報表示欄622、分級ロータ情報表示欄623、及びブロワ情報表示欄624を備える。また、ダッシュボード画面620は、システム状況表示欄611及び各種ボタン610B,620B,630B,640Bを備えてもよい。
FIG. 10 is a schematic diagram showing a display example of the dashboard screen 620. The dashboard screen 620 includes a particle size information display field 621, a crushing rotor information display field 622, a classification rotor information display field 623, and a blower information display field 624. Further, the dashboard screen 620 may include a system status display field 611 and various buttons 610B, 620B, 630B, 640B.
粒子径情報表示欄621では、例えば、粒子径センサS2における粉体の透過率、粒子径センサS2により計測されるD10,D50,D90の値などが表示される。これらの値は、数値データとして表示されると共に、円弧状のゲージグラフによりグラフィカルに表示される。また、これらの値を表示する際、予め設定される下限値よりも低い場合、若しくは予め設定される上限値よりも高い場合、その旨を報知する情報を表示してもよい。図10の例では、粒子径センサS2の透過率が予め設定される下限値より低いため、その旨を示す「Low」との文字情報が付加されていることを示している。なお、粒子径センサS2の透過率は、粒子径センサS2自身によって計測される値である。
In the particle size information display field 621, for example, the transmittance of the powder in the particle size sensor S2, the values of D10, D50, and D90 measured by the particle size sensor S2 are displayed. These values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information notifying that fact may be displayed. In the example of FIG. 10, since the transmittance of the particle size sensor S2 is lower than the preset lower limit value, it is shown that the character information “Low” indicating that fact is added. The transmittance of the particle size sensor S2 is a value measured by the particle size sensor S2 itself.
粉砕ロータ情報表示欄622では、例えば、粉砕ロータ43のオン/オフの識別情報、粉砕ロータ43に供給されている駆動電流の計測値、粉砕ロータ43の回転速度の計測値などが表示される。これらの計測値は、数値データとして表示されると共に、円弧状のゲージグラフによりグラフィカルに表示される。また、これらの計測値を表示する際、予め設定される下限値よりも低い場合、若しくは予め設定される上限値よりも高い場合、その旨を報知する情報を表示してもよい。図10の例では、粉砕ロータ43の駆動電流が予め設定される上限値より高いため、その旨を示す「High」との文字情報が付加されていることを示している。
In the crushing rotor information display column 622, for example, on / off identification information of the crushing rotor 43, a measured value of the drive current supplied to the crushing rotor 43, a measured value of the rotation speed of the crushing rotor 43, and the like are displayed. These measured values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these measured values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information for notifying that fact may be displayed. In the example of FIG. 10, since the drive current of the crushing rotor 43 is higher than the preset upper limit value, it is shown that the character information of "High" indicating that fact is added.
分級ロータ情報表示欄623では、例えば、分級ロータ45のオン/オフの識別情報、分級ロータ45に供給されている駆動電流の計測値、分級ロータ45の回転速度の計測値などが表示される。これらの計測値は、数値データとして表示されると共に、円弧状のゲージグラフによりグラフィカルに表示される。また、これらの計測値を表示する際、予め設定される下限値よりも低い場合、若しくは予め設定される上限値よりも高い場合、その旨を報知する情報を表示してもよい。
In the classification rotor information display field 623, for example, on / off identification information of the classification rotor 45, a measured value of the drive current supplied to the classification rotor 45, a measured value of the rotation speed of the classification rotor 45, and the like are displayed. These measured values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these measured values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information for notifying that fact may be displayed.
ブロワ情報表示欄624では、例えば、ブロワ7のオン/オフの識別情報、ブロワ7に供給されている駆動電流の計測値、ブロワ7が作動しているときのダンパーの位置などが表示される。これらの値は、数値データとして表示されると共に、円弧状のゲージグラフによりグラフィカルに表示される。また、これらの計測値を表示する際、予め設定される下限値よりも低い場合、若しくは予め設定される上限値よりも高い場合、その旨を報知する情報を表示してもよい。
In the blower information display field 624, for example, on / off identification information of the blower 7, a measured value of the drive current supplied to the blower 7, the position of the damper when the blower 7 is operating, and the like are displayed. These values are displayed as numerical data and graphically displayed by an arcuate gauge graph. Further, when displaying these measured values, if it is lower than the preset lower limit value or higher than the preset upper limit value, information for notifying that fact may be displayed.
本実施の形態では、ダッシュボード画面620において、粒子径に関する情報、粉砕ロータ43に関する情報、分級ロータ45に関する情報、ブロワ7に関する情報を表示する構成としたが、ダッシュボード画面620に表示する情報は上記に限定されない。例えば、原料供給機2に関する情報、熱風発生機3に関する情報、粉体処理装置4の内部の温度及び圧力の情報などを含んでもよい。
In the present embodiment, the dashboard screen 620 is configured to display information on the particle size, information on the crushing rotor 43, information on the classification rotor 45, and information on the blower 7, but the information displayed on the dashboard screen 620 is Not limited to the above. For example, it may include information about the raw material supply machine 2, information about the hot air generator 3, information about the temperature and pressure inside the powder processing device 4, and the like.
次に、モニタリング画面610等においてトレンドボタン630Bが操作された場合に表示される画面について説明する。クライアント装置500は、モニタリング画面610等においてトレンドボタン630Bが操作された場合、図11を参照して説明するトレンド画面630への切替要求をサーバ装置100へ送信する。サーバ装置100は、クライアント装置500からの切替要求に応じて、トレンド画面630の画面データを生成し、生成した画面データをクライアント装置500へ送信する。クライアント装置500は、サーバ装置100から送信されてくる画面データに基づき、トレンド画面630を表示部505に表示する。
Next, the screen displayed when the trend button 630B is operated on the monitoring screen 610 or the like will be described. When the trend button 630B is operated on the monitoring screen 610 or the like, the client device 500 transmits a switching request to the trend screen 630 described with reference to FIG. 11 to the server device 100. The server device 100 generates screen data of the trend screen 630 in response to the switching request from the client device 500, and transmits the generated screen data to the client device 500. The client device 500 displays the trend screen 630 on the display unit 505 based on the screen data transmitted from the server device 100.
図11はトレンド画面630の表示例を示す模式図である。トレンド画面630は、グラフ選択欄631、計測値表示欄632、及びグラフ表示欄633を備える。また、トレンド画面630は、システム状況表示欄611及び各種ボタン610B,620B,630B,640Bを備えてもよい。
FIG. 11 is a schematic diagram showing a display example of the trend screen 630. The trend screen 630 includes a graph selection field 631, a measured value display field 632, and a graph display field 633. Further, the trend screen 630 may include a system status display column 611 and various buttons 610B, 620B, 630B, 640B.
グラフ選択欄631ではグラフ表示の対象についての選択を受付ける。グラフ選択欄631は、GUIのコンポーネントにより構成されており、時間選択ボタン631a~631cと、項目選択ボタン631dとを備える。時間選択ボタン631aには数字の「8」がインデックスとして付されている。このボタンは、8時間前から現在時刻に至るまでに計測された計測データに基づきグラフ表示することを指示する。同様に、時間選択ボタン631b,631cにはそれぞれ数字の「24」、「72」がインデックスとして付されているので、これらのボタンは、それぞれ24時間前、72時間前から現在時刻に至るまでに計測された計測データに基づきグラフ表示することを指示する。項目選択ボタン631dは、グラフ表示の対象項目を選択するためのボタンである。対象項目は、粉砕ロータ43の駆動電流及び回転速度、分級ロータ45の駆動電流及び回転速度、ケーシング40からの吐出・吸引流量、粒子径、粉体原料の供給速度等を含む。項目選択ボタン631dが操作された場合、対象項目がリスト形式で表示され、表示された対象項目の中から、ユーザが表示を希望する項目の選択を受付ける。図11の例は、時間選択ボタン631aにより「8時間」が選択され、項目選択ボタン631dにより「分級ロータ回転速度」の項目が選択されたことを示している。
The graph selection field 631 accepts selections regarding the target of graph display. The graph selection field 631 is composed of GUI components, and includes time selection buttons 631a to 631c and item selection buttons 631d. The number "8" is attached to the time selection button 631a as an index. This button instructs to display a graph based on the measurement data measured from 8 hours ago to the current time. Similarly, since the time selection buttons 631b and 631c are indexed with the numbers "24" and "72", respectively, these buttons are displayed from 24 hours ago and 72 hours ago to the current time, respectively. Instruct to display a graph based on the measured measurement data. The item selection button 631d is a button for selecting a target item for graph display. The target items include the drive current and rotation speed of the crushing rotor 43, the drive current and rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, the particle size, the supply speed of the powder raw material, and the like. When the item selection button 631d is operated, the target items are displayed in a list format, and the user accepts the selection of the item desired to be displayed from the displayed target items. The example of FIG. 11 shows that "8 hours" is selected by the time selection button 631a and the item of "classification rotor rotation speed" is selected by the item selection button 631d.
計測値表示欄632には、最新の計測値が表示される。計測値表示欄632に表示される計測値は、項目選択ボタン631dにより選択された項目に対応する計測値である。図11の例では、項目選択ボタン631dにおいて分級ロータ45の回転速度が選択されているため、計測値表示欄632には、分級ロータ45の回転速度について計測された最新の計測値が表示される。
The latest measured value is displayed in the measured value display column 632. The measured value displayed in the measured value display field 632 is a measured value corresponding to the item selected by the item selection button 631d. In the example of FIG. 11, since the rotation speed of the classification rotor 45 is selected by the item selection button 631d, the latest measured value measured for the rotation speed of the classification rotor 45 is displayed in the measurement value display column 632. ..
グラフ表示欄633には、計測値の時間変化を示すグラフが表示される。グラフ表示欄633に表示されるグラフの横軸は8時間前(24時間前若しくは72時間前)から現在時刻までの時間を表し、縦軸は選択された項目について計測された計測値を表している。図11の例では、「8時間」を表す時間選択ボタン631aが選択され、項目選択ボタン631dにより「分級ロータ回転速度」が選択されている。このため、グラフ表示欄633には、分級ロータ45の回転速度に関して、8時間前から現在時刻に至るまでの計測値の時間変化(トレンド)を示すグラフが表示される。
In the graph display column 633, a graph showing the time change of the measured value is displayed. The horizontal axis of the graph displayed in the graph display field 633 represents the time from 8 hours ago (24 hours ago or 72 hours ago) to the current time, and the vertical axis represents the measured value measured for the selected item. There is. In the example of FIG. 11, the time selection button 631a representing "8 hours" is selected, and the "classification rotor rotation speed" is selected by the item selection button 631d. Therefore, in the graph display column 633, a graph showing the time change (trend) of the measured value from 8 hours ago to the current time is displayed with respect to the rotation speed of the classification rotor 45.
次に、モニタリング画面610等においてアラートボタン640Bが操作された場合に表示される画面について説明する。クライアント装置500は、モニタリング画面610等においてアラートボタン640Bが操作された場合、図12を参照して説明するアラート画面640への切替要求をサーバ装置100へ送信する。サーバ装置100は、クライアント装置500からの切替要求に応じて、アラート画面640の画面データを生成し、生成した画面データをクライアント装置500へ送信する。クライアント装置500は、サーバ装置100から送信されてくる画面データに基づき、アラート画面640を表示部505に表示する。
Next, the screen displayed when the alert button 640B is operated on the monitoring screen 610 or the like will be described. When the alert button 640B is operated on the monitoring screen 610 or the like, the client device 500 transmits a switching request to the alert screen 640 described with reference to FIG. 12 to the server device 100. The server device 100 generates screen data of the alert screen 640 in response to the switching request from the client device 500, and transmits the generated screen data to the client device 500. The client device 500 displays the alert screen 640 on the display unit 505 based on the screen data transmitted from the server device 100.
図12はアラート画面640の表示例を示す模式図である。アラート画面640は、チャネル選択欄641、及びアラート表示欄642を備える。また、アラート画面640は、システム状況表示欄611及び各種ボタン610B,620B,630B,640Bを備えてもよい。
FIG. 12 is a schematic diagram showing a display example of the alert screen 640. The alert screen 640 includes a channel selection field 641 and an alert display field 642. Further, the alert screen 640 may include a system status display field 611 and various buttons 610B, 620B, 630B, 640B.
チャネル選択欄641では表示対象の選択を受付ける。チャネル選択欄641は、GUIのコンポーネントにより構成されている。このチャネル選択欄641が操作された場合、例えば、粒子径センサS2の透過率、粉砕ロータ43の駆動電流及び回転速度、分級ロータ45の駆動電流及び回転速度、ケーシング40からの吐出・吸引流量、粒子径、粉体原料の供給速度等の項目がリスト形式で表示される。チャネル選択欄641は、リストに存在する複数の項目から表示対象の項目に対する選択を受付ける。図12の例では、チャネル選択欄641において「全て」が選択されているため、表示対象は全ての項目となる。
The channel selection field 641 accepts the selection of the display target. The channel selection field 641 is composed of GUI components. When this channel selection field 641 is operated, for example, the transmission rate of the particle size sensor S2, the drive current and rotation speed of the crushing rotor 43, the drive current and rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, Items such as particle size and supply speed of powder raw material are displayed in a list format. The channel selection field 641 accepts a selection for an item to be displayed from a plurality of items existing in the list. In the example of FIG. 12, since "all" is selected in the channel selection field 641, the display target is all items.
アラート表示欄642には、チャネル選択欄641にて選択された項目に関するアラート情報が時系列的に表示される。アラート情報には、正常及び異常を区別する情報が含まれる。すなわち、アラート表示欄642に表示される情報は、値が正常である項目を含むので、粉体処理システム1における運転履歴として活用できる。図12の例は、粉砕ロータ43の電流が異常な値となったため、原料供給機2及び粉体処理装置4が一時的に停止され、その後、正常に回復したことを示している。
In the alert display field 642, alert information regarding the item selected in the channel selection field 641 is displayed in chronological order. The alert information includes information that distinguishes between normal and abnormal. That is, since the information displayed in the alert display field 642 includes items whose values are normal, it can be used as an operation history in the powder processing system 1. The example of FIG. 12 shows that the raw material supply machine 2 and the powder processing device 4 were temporarily stopped because the current of the crushing rotor 43 became an abnormal value, and then recovered normally.
本実施の形態では、粉体処理システム1の運転履歴の情報をクライアント装置500の表示部505に表示する構成としたが、サーバ装置100又はクライアント装置500からアクセス可能な任意の記憶装置に運転履歴の情報を記憶させる処理、運転履歴の情報を印刷する処理、運転履歴の情報をメール発信する処理の少なくとも1つを実行してもよい。なお、これらの処理は、サーバ装置100の制御部101が実行してもよく、クライアント装置500の制御部501が実行してもよい。
In the present embodiment, the operation history information of the powder processing system 1 is displayed on the display unit 505 of the client device 500, but the operation history is displayed in the server device 100 or any storage device accessible from the client device 500. At least one of the process of storing the information of the above, the process of printing the information of the operation history, and the process of transmitting the information of the operation history by mail may be executed. Note that these processes may be executed by the control unit 101 of the server device 100, or may be executed by the control unit 501 of the client device 500.
以上のように、本実施の形態では、表示プログラムPG5がインストールされたクライアント装置500を用いてサーバ装置100へアクセスすることにより、粉体処理システム1の稼働状況を示す各種情報を取得することができ、粉体処理システム1の全体図と共に表示することができる。よって、ユーザは、粉体処理システム1及びその制御装置であるサーバ装置100を直接的に操作しない場合であっても、粉体処理システム1の稼働状況に関する情報を必要に応じて取得することができ、粉体処理システム1の状態を容易に把握することができる。
As described above, in the present embodiment, by accessing the server device 100 using the client device 500 in which the display program PG5 is installed, it is possible to acquire various information indicating the operating status of the powder processing system 1. It can be displayed together with the overall view of the powder processing system 1. Therefore, the user can acquire information on the operating status of the powder processing system 1 as necessary even when the powder processing system 1 and the server device 100 which is a control device thereof are not directly operated. Therefore, the state of the powder processing system 1 can be easily grasped.
(実施の形態2)
実施の形態2では、クライアント装置500から粉体処理システム1を遠隔操作する構成について説明する。
なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。 (Embodiment 2)
In the second embodiment, a configuration in which thepowder processing system 1 is remotely controlled from the client device 500 will be described.
Since the overall configuration of thepowder processing system 1 and the configuration of each device in the powder processing system 1 are the same as those in the first embodiment, the description thereof will be omitted.
実施の形態2では、クライアント装置500から粉体処理システム1を遠隔操作する構成について説明する。
なお、粉体処理システム1の全体構成、及び粉体処理システム1における各装置の構成については実施の形態1と同様であるため、その説明を省略することとする。 (Embodiment 2)
In the second embodiment, a configuration in which the
Since the overall configuration of the
実施の形態2では、クライアント装置500にて粉体処理に関する条件の入力を受付ける。図13は入力画面650の一例を示す模式図である。サーバ装置100は、認証済みのクライアント装置500からアクセスを受付けた場合であって、粉体処理システム1が稼働していないとき、図13に示すような入力画面650の画面データを生成し、生成した画面データをクライアント装置500へ送信する。クライアント装置500の制御部501は、サーバ装置100から受信した画面データに基づき、図13に示すような入力画面650を表示部505に表示させる。また、クライアント装置は、モニタリング画面610等の表示中に特定の操作を受付けた場合、サーバ装置100に対して入力画面650への切替要求を行ってもよい。クライアント装置500は、切替要求に応じてサーバ装置100から送信される画面データを受信し、受信した画面データ基づき入力画面650を表示させることができる。
In the second embodiment, the client device 500 accepts the input of the conditions related to the powder processing. FIG. 13 is a schematic diagram showing an example of the input screen 650. The server device 100 generates screen data of the input screen 650 as shown in FIG. 13 when the access is received from the authenticated client device 500 and the powder processing system 1 is not operating. The screen data is transmitted to the client device 500. The control unit 501 of the client device 500 causes the display unit 505 to display the input screen 650 as shown in FIG. 13 based on the screen data received from the server device 100. Further, when the client device receives a specific operation while displaying the monitoring screen 610 or the like, the client device may request the server device 100 to switch to the input screen 650. The client device 500 can receive the screen data transmitted from the server device 100 in response to the switching request and display the input screen 650 based on the received screen data.
図13の入力画面650は、一例として、ユーザが所望する粒子径の入力を受付ける粒子径入力画面を示している。この入力画面650は、GUIのコンポーネントとして配置される粒子径入力欄651、送信ボタン652、及びキャンセルボタン653を備える。粒子径入力欄651では、D10,D50,D90のそれぞれに対する下限値及び上限値の入力を受付ける。D10,D50,D90の下限値及び上限値を受付ける構成に代えて、D10,D50,D90の値を受付けてもよく、D50の値(メジアン径)のみを受付けてもよい。送信ボタン652は送信指示を与えるためのボタンであり、キャンセルボタン653は送信指示を与えることなく入力を終了させるためのボタンである。クライアント装置500は、送信ボタン652が操作された場合、粒子径入力欄651にて入力された粒子径の情報をサーバ装置100へ送信する。
The input screen 650 of FIG. 13 shows, as an example, a particle size input screen that accepts input of a particle size desired by the user. The input screen 650 includes a particle size input field 651, a send button 652, and a cancel button 653, which are arranged as GUI components. The particle size input field 651 accepts the input of the lower limit value and the upper limit value for each of D10, D50, and D90. Instead of the configuration in which the lower limit value and the upper limit value of D10, D50, and D90 are accepted, the values of D10, D50, and D90 may be accepted, or only the value of D50 (median diameter) may be accepted. The send button 652 is a button for giving a transmission instruction, and the cancel button 653 is a button for ending the input without giving a transmission instruction. When the transmission button 652 is operated, the client device 500 transmits the particle size information input in the particle size input field 651 to the server device 100.
なお、図13に示す入力画面650では、ユーザが所望する粒子径の入力を受付ける構成としたが、粒子径に限らず、ユーザが所望する粉体の円形度、粉体処理システム1の環境温度、粉体処理システム1の環境湿度、粉体原料の水分含有量、粉砕ロータ43を駆動する際の電力又は電流、及び分級ロータ45を駆動する際の電力又は電流の少なくとも1つを粉体処理に関する条件として受け付けてもよい。
The input screen 650 shown in FIG. 13 is configured to accept the input of the particle size desired by the user, but is not limited to the particle size, the circularity of the powder desired by the user, and the environmental temperature of the powder processing system 1. , Environmental humidity of the powder processing system 1, water content of the powder raw material, electric power or current for driving the crushing rotor 43, and powder processing for at least one of the electric power or current for driving the classification rotor 45. It may be accepted as a condition regarding.
サーバ装置100は、クライアント装置500から送信される条件に基づき、粉体処理システム1に関する制御パラメータを決定する。このとき、本実施の形態に係るサーバ装置100は、粉体処理に関する条件と、粉体処理システムに関する制御パラメータとの関係が学習された学習モデル200(図14を参照)を用いる。学習モデル200は、サーバ装置100の記憶部102に記憶されていてもよく、サーバ装置100と通信可能に接続される外部サーバの記憶部(不図示)に記憶されていてもよい。後者の場合、サーバ装置100は、クライアント装置500から受信した条件を外部サーバへ送信し、学習モデル200による演算結果を外部サーバから取得すればよい。
The server device 100 determines the control parameters related to the powder processing system 1 based on the conditions transmitted from the client device 500. At this time, the server device 100 according to the present embodiment uses a learning model 200 (see FIG. 14) in which the relationship between the conditions related to powder processing and the control parameters related to the powder processing system is learned. The learning model 200 may be stored in the storage unit 102 of the server device 100, or may be stored in the storage unit (not shown) of an external server communicably connected to the server device 100. In the latter case, the server device 100 may transmit the conditions received from the client device 500 to the external server, and acquire the calculation result by the learning model 200 from the external server.
図14は学習モデル200の構成例を示す模式図である。学習モデル200は、例えば、深層学習を含む機械学習の学習モデルであり、ニューラルネットワークによって構成されている。学習モデル200は、入力層201、中間層202A,202B、及び出力層203を備える。図14の例では、2つの中間層202A,202Bを記載しているが、中間層の数は2つに限定されず、3つ以上であってもよい。
FIG. 14 is a schematic diagram showing a configuration example of the learning model 200. The learning model 200 is, for example, a learning model for machine learning including deep learning, and is configured by a neural network. The learning model 200 includes an input layer 201, intermediate layers 202A and 202B, and an output layer 203. In the example of FIG. 14, two intermediate layers 202A and 202B are described, but the number of intermediate layers is not limited to two and may be three or more.
入力層201、中間層202A,202B、及び出力層203には、1つまたは複数のノードが存在し、各層のノードは、前後の層に存在するノードと一方向に所望の重みおよびバイアスで結合されている。学習モデル200の入力層201には、入力層201が備えるノードの数と同数のデータが入力される。本実施の形態において、入力層201のノードに入力されるデータは、ユーザが所望する粒子径(希望粒子径)のデータである。ここで、入力層201のノードに入力される粒子径のデータの一例は、メジアン径である。メジアン径に限らず、モード径であってもよく、各種算術平均値であってもよい。更に、入力層201のノードに与える粒子径のデータは、メジアン径、モード径、各種算術平均値などの単一の値に限らず、D10,D50,D90のそれぞれの値であってもよく、D10,D50,D90のそれぞれについて設定された範囲(すなわち、粒子径に関してユーザが許容する範囲の上限値及び下限値)であってもよい。
The input layer 201, the intermediate layers 202A, 202B, and the output layer 203 have one or more nodes, and the nodes of each layer are connected to the nodes existing in the previous and next layers in one direction with a desired weight and bias. Has been done. The same number of data as the number of nodes included in the input layer 201 is input to the input layer 201 of the learning model 200. In the present embodiment, the data input to the node of the input layer 201 is the data of the particle diameter (desired particle diameter) desired by the user. Here, an example of the particle diameter data input to the node of the input layer 201 is the median diameter. The diameter is not limited to the median, and may be a mode diameter or various arithmetic mean values. Further, the particle diameter data given to the node of the input layer 201 is not limited to a single value such as the median diameter, the mode diameter, and various arithmetic mean values, but may be each value of D10, D50, and D90. It may be a range set for each of D10, D50, and D90 (that is, an upper limit value and a lower limit value of a range allowed by the user with respect to the particle size).
学習モデル200に入力された粒子径のデータは、入力層201を構成するノードを通じて、最初の中間層202Aが備えるノードへ出力される。最初の中間層202Aに入力されたデータは、中間層202Aを構成するノードを通じて、次の中間層202Bが備えるノードへ出力される。このとき、ノード間において設定されている重み及びバイアスを含む活性化関数を用いて出力が算出される。以下同様にして、ノード間において設定されている重み及びバイアスを含む活性化関数を用いた演算を実行し、出力層203による演算結果が得られるまで次々と後の層に伝達される。ノード間を結合する重み、バイアス等のパラメータは、所定の学習アルゴリズムによって学習される。各種パラメータを学習する学習アルゴリズムには、例えば深層学習の学習アルゴリズムが用いられる。本実施の形態では、粉体処理装置4から得られる粒子径に関する粒子径データ(すなわち、粒子径センサS2により計測される粒子径のデータ)と、粉体処理装置4が備える粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40から粉体を取り出す際の吐出・吸引流量を含む計測データとを教師データとして、所定の学習アルゴリズムによってノード間の重み及びバイアスを含む各種パラメータを学習することができる。
The particle size data input to the learning model 200 is output to the node included in the first intermediate layer 202A through the nodes constituting the input layer 201. The data input to the first intermediate layer 202A is output to the nodes included in the next intermediate layer 202B through the nodes constituting the intermediate layer 202A. At this time, the output is calculated using the activation function including the weights and biases set between the nodes. Hereinafter, in the same manner, the calculation using the activation function including the weight and the bias set between the nodes is executed, and the calculation is transmitted to the subsequent layers one after another until the calculation result by the output layer 203 is obtained. Parameters such as weights and biases that connect the nodes are learned by a predetermined learning algorithm. As a learning algorithm for learning various parameters, for example, a learning algorithm for deep learning is used. In the present embodiment, the particle size data related to the particle size obtained from the powder processing device 4 (that is, the particle size data measured by the particle size sensor S2) and the rotation of the crushing rotor 43 included in the powder processing device 4 Various parameters including weights and biases between nodes are learned by a predetermined learning algorithm using the measurement data including the speed, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when taking out the powder from the casing 40 as training data. can do.
出力層203は、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。演算結果として、例えば、上述した複数の制御パラメータの組み合わせの良否を示す確率を出力してもよい。具体的には、出力層203を第1ノードから第nノードまでのn個のノードにより構成し、第1ノードから、粉砕ロータ43の回転速度がG1、分級ロータ45の回転速度がC1、吐出・吸引流量がV1である確率P1を出力し、第2ノードから、粉砕ロータ43の回転速度がG2、分級ロータ45の回転速度がC2、吐出・吸引流量がV2である確率P2を出力し、…、第nノードから粉砕ロータ43の回転速度がGn、分級ロータ45の回転速度がCn、吐出・吸引流量がVnである確率Pnを出力してもよい。出力層203を構成するノードの数や各ノードに割り当てる演算結果は、上述の例に限定されるものではなく、適宜設計することが可能である。
The output layer 203 outputs calculation results related to control parameters that control the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40. As the calculation result, for example, the probability indicating the quality of the combination of the plurality of control parameters described above may be output. Specifically, the output layer 203 is composed of n nodes from the first node to the nth node, and from the first node, the rotation speed of the crushing rotor 43 is G1, the rotation speed of the classification rotor 45 is C1, and the discharge. The probability P1 that the suction flow rate is V1 is output, and the rotation speed P2 of the crushing rotor 43 is G2, the rotation speed of the classification rotor 45 is C2, and the discharge / suction flow rate is V2 is output from the second node. ..., The probability Pn that the rotation speed of the crushing rotor 43 is Gn, the rotation speed of the classification rotor 45 is Cn, and the discharge / suction flow rate is Vn may be output from the nth node. The number of nodes constituting the output layer 203 and the calculation result assigned to each node are not limited to the above examples, and can be appropriately designed.
図14に示す学習モデル200は、ユーザが所望する粒子径の入力に応じて、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量を含む制御パラメータに関する演算結果を出力する構成としたが、学習モデル200における入出力の関係は上記の例に限定されるものではない。
The learning model 200 shown in FIG. 14 is calculated with respect to control parameters including the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40 according to the input of the particle size desired by the user. Although the configuration is such that the result is output, the input / output relationship in the learning model 200 is not limited to the above example.
図15は学習モデル200の第1変形例を示す模式図である。図15に示す学習モデル200は、ユーザが所望する粒子径、ユーザが所望する粉体の円形度、粉体処理システム1の環境温度、粉体処理システム1の環境湿度、粉体原料の水分含有量、粉砕ロータ43を駆動する際の電力又は電流、及び分級ロータ45を駆動する際の電力又は電流の少なくとも1つの入力に応じて、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量を含む制御パラメータに関する演算結果を出力する学習モデルを示している。
FIG. 15 is a schematic diagram showing a first modification of the learning model 200. In the learning model 200 shown in FIG. 15, the particle size desired by the user, the circularity of the powder desired by the user, the environmental temperature of the powder processing system 1, the environmental humidity of the powder processing system 1, and the water content of the powder raw material are contained. Depending on the amount, the power or current for driving the grinding rotor 43, and at least one input of the power or current for driving the classification rotor 45, the rotational speed of the grinding rotor 43, the rotational speed of the classification rotor 45, and A learning model that outputs calculation results related to control parameters including discharge / suction flow rate from the casing 40 is shown.
図16は学習モデル200の第2変形例を示す模式図である。図16に示す学習モデル200は、ユーザが所望する粒子径の入力に応じて、粉砕ロータ43の回転速度、分級ロータ45の回転速度、ケーシング40からの吐出・吸引流量、粉体原料の供給量、及びケーシング40内の温度を含む制御パラメータに関する演算結果を出力する学習モデルを示している。
FIG. 16 is a schematic diagram showing a second modification of the learning model 200. In the learning model 200 shown in FIG. 16, the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, and the supply amount of the powder raw material are obtained according to the input of the particle size desired by the user. , And a learning model that outputs the calculation result regarding the control parameter including the temperature in the casing 40 is shown.
図示は省略するが、学習モデル200の入力を、ユーザが所望する粒子径、ユーザが所望する粉体の円形度、粉体処理システム1の環境温度、粉体処理システム1の環境湿度、粉体原料の水分含有量、粉砕ロータ43を駆動する際の電力又は電流、及び分級ロータ45を駆動する際の電力又は電流の少なくとも1つとし、学習モデル200の出力を、粉砕ロータ43の回転速度、分級ロータ45の回転速度、ケーシング40からの吐出・吸引流量、粉体原料の供給量、及びケーシング40内の温度の少なくとも1つとしてもよい。
Although not shown, the input of the learning model 200 is the particle size desired by the user, the circularity of the powder desired by the user, the environmental temperature of the powder processing system 1, the environmental humidity of the powder processing system 1, and the powder. The water content of the raw material, the power or current for driving the grinding rotor 43, and the power or current for driving the classification rotor 45 are at least one, and the output of the learning model 200 is the rotation speed of the grinding rotor 43. It may be at least one of the rotation speed of the classification rotor 45, the discharge / suction flow rate from the casing 40, the supply amount of the powder raw material, and the temperature inside the casing 40.
更に、学習モデル200は、粉体原料の種別毎に用意されてもよく、粉体処理システム1毎に用意されてもよい。また、希望粒子径の大きさに応じて、異なる複数の学習モデル200を使い分けてもよい。
Further, the learning model 200 may be prepared for each type of powder raw material, or may be prepared for each powder processing system 1. Further, a plurality of different learning models 200 may be used properly according to the size of the desired particle size.
このような学習モデル200は、例えば、粉砕ロータ43の回転速度、分級ロータ45の回転速度、ケーシング40から粉体を取り出す際の吐出・吸引流量を含む計測データと、粉体処理装置4から得られる粉体の粒子径データとを収集し、計測データと粒子径データとを教師データに用いて、粉体の粒子径と、粉砕ロータ43及び分級ロータ45の回転速度、並びに吐出・吸引流量を含む制御パラメータとの関係を学習することにより得られる。学習モデル200はサーバ装置100において生成されてもよく、上述の外部サーバにおいて生成されてもよい。
Such a learning model 200 is obtained from, for example, measurement data including the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when taking out the powder from the casing 40, and the powder processing apparatus 4. The particle size data of the powder to be obtained is collected, and the measurement data and the particle size data are used as teacher data to determine the particle size of the powder, the rotation speeds of the crushing rotor 43 and the classification rotor 45, and the discharge / suction flow rate. Obtained by learning the relationship with the included control parameters. The learning model 200 may be generated in the server device 100, or may be generated in the external server described above.
以下、実施の形態2において、クライアント装置500及びサーバ装置100が実行する処理の手順について説明する。
Hereinafter, in the second embodiment, the procedure of the processing executed by the client device 500 and the server device 100 will be described.
図17は実施の形態2におけるクライアント装置500及びサーバ装置100が実行する処理の手順を説明するフローチャートである。クライアント装置500の制御部501は、図13に示すような入力画面650を通じて、希望粒子径の入力を受付ける(ステップS201)。制御部501は、入力画面650を通じて受付けた希望粒子径の情報を、通信部503よりサーバ装置100へ送信する(ステップS202)。
FIG. 17 is a flowchart illustrating a procedure of processing executed by the client device 500 and the server device 100 in the second embodiment. The control unit 501 of the client device 500 receives the input of the desired particle size through the input screen 650 as shown in FIG. 13 (step S201). The control unit 501 transmits the information of the desired particle size received through the input screen 650 from the communication unit 503 to the server device 100 (step S202).
サーバ装置100は、クライアント装置500から送信される希望粒子径の情報を通信部105にて受信する(ステップS203)。制御部101は、受信した希望粒子径の情報に基づき、粒子径のデータを学習モデル200の入力層201へ入力し(ステップS204)、学習モデル200による演算を実行する(ステップS205)。このとき、制御部101は、受付けた粒子径のデータを入力層201のノードに与える。入力層201のノードに与えられたデータは、隣接する中間層202Aのノードへ出力される。中間層202Aではノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は後段の中間層202Bへ出力される。中間層202Bにおいて、更に、ノード間の重み及びバイアスを含む活性化関数を用いた演算が行われ、演算結果は出力層203の各ノードへ出力される。出力層203の各ノードは、粉体処理装置4の制御パラメータに関する演算結果を出力する。具体的には、出力層203の各ノードは、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。
The server device 100 receives the information on the desired particle size transmitted from the client device 500 by the communication unit 105 (step S203). Based on the received information on the desired particle size, the control unit 101 inputs the particle size data to the input layer 201 of the learning model 200 (step S204), and executes the calculation by the learning model 200 (step S205). At this time, the control unit 101 gives the received particle size data to the node of the input layer 201. The data given to the node of the input layer 201 is output to the node of the adjacent intermediate layer 202A. In the intermediate layer 202A, an operation using an activation function including weights and biases between nodes is performed, and the operation result is output to the intermediate layer 202B in the subsequent stage. In the intermediate layer 202B, an operation using an activation function including weights and biases between nodes is further performed, and the operation result is output to each node of the output layer 203. Each node of the output layer 203 outputs the calculation result regarding the control parameter of the powder processing apparatus 4. Specifically, each node of the output layer 203 outputs a calculation result regarding control parameters for controlling the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40.
次いで、制御部101は、学習モデル200から演算結果を取得し(ステップS206)、制御に用いる制御パラメータを決定する(ステップS207)。学習モデル200の出力層203は、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量を制御する制御パラメータに関する演算結果を出力する。より具体的には、出力層203は、粉砕ロータ43の回転速度がGi、分級ロータ45の回転速度がCi、吐出・吸引流量がViである確率Pi(i=1~n)を各ノードから出力する。制御部101は、この確率が最も高い粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量の組み合わせを特定することにより、制御に用いる制御パラメータを決定する。
Next, the control unit 101 acquires the calculation result from the learning model 200 (step S206) and determines the control parameters used for control (step S207). The output layer 203 of the learning model 200 outputs calculation results related to control parameters that control the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40. More specifically, the output layer 203 sets the probability Pi (i = 1 to n) that the rotation speed of the crushing rotor 43 is Gi, the rotation speed of the classification rotor 45 is Ci, and the discharge / suction flow rate is Vi from each node. Output. The control unit 101 determines the control parameters used for control by specifying the combination of the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40, which have the highest probability.
次いで、制御部101は、ステップS207において決定した制御パラメータに基づき、制御を実行する(ステップS208)。すなわち、制御部101は、粉砕ロータ43及び分級ロータ45の回転速度がステップS207において決定した値となるように、粉砕モータ430及び分級モータ450に対する制御指令を生成し、出力部104を通じて粉体処理装置4へ出力する。また、制御部101は、ケーシング40からの吐出・吸引流量がステップS207において決定した値となるように、ブロワ7に対する制御指令を生成し、出力部104を通じてブロワ7へ出力する。
Next, the control unit 101 executes control based on the control parameters determined in step S207 (step S208). That is, the control unit 101 generates a control command for the crushing motor 430 and the classification motor 450 so that the rotation speeds of the crushing rotor 43 and the classification rotor 45 become the values determined in step S207, and powder processing is performed through the output unit 104. Output to device 4. Further, the control unit 101 generates a control command for the blower 7 so that the discharge / suction flow rate from the casing 40 becomes the value determined in step S207, and outputs the control command to the blower 7 through the output unit 104.
本実施の形態に係るサーバ装置100は、ユーザが所望する粒子径に基づき、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量を制御する制御パラメータを決定することができる。すなわち、本実施の形態では、現場技術者の経験や勘に依存することなく、粉体処理装置4に関する制御パラメータを決定できる。サーバ装置100は、所望の粒子径を有する粉体が得られるように、決定した制御パラメータに基づく制御を実行する。
The server device 100 according to the present embodiment determines control parameters for controlling the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40, based on the particle size desired by the user. can do. That is, in the present embodiment, the control parameters related to the powder processing apparatus 4 can be determined without depending on the experience and intuition of the field engineer. The server device 100 executes control based on the determined control parameters so that a powder having a desired particle size can be obtained.
次いで、制御部101は、粉体処理システム1から情報を取得する(ステップS209)。制御部101が取得する情報には、例えば、粉体処理装置4が備える粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40から粉体を取り出す際の吐出・吸引流量の計測データが含まれる。ここで、粉砕ロータ43及び分級ロータ45の回転速度は、それぞれ回転速度センサS5,S6により計測される計測値である。また、吐出・吸引流量は、流量センサS3により計測される計測値である。
Next, the control unit 101 acquires information from the powder processing system 1 (step S209). The information acquired by the control unit 101 includes, for example, measurement data of the rotation speed of the crushing rotor 43 included in the powder processing apparatus 4, the rotation speed of the classification rotor 45, and the discharge / suction flow rate when the powder is taken out from the casing 40. Is included. Here, the rotation speeds of the crushing rotor 43 and the classification rotor 45 are measured values measured by the rotation speed sensors S5 and S6, respectively. The discharge / suction flow rate is a measured value measured by the flow rate sensor S3.
次いで、制御部101は、クライアント装置500において表示させる表示画面の画面データを生成する(ステップS210)。例えば、制御部101は、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及び吐出・吸引流量に関する計測データの少なくとも1つと、粉体処理システム1の全体図とを含むモニタリング画面610(図7を参照)の画面データを生成する。制御部101は、生成した画面データを通信部105よりクライアント装置500へ送信する(ステップS211)。
Next, the control unit 101 generates screen data of the display screen to be displayed on the client device 500 (step S210). For example, the control unit 101 includes a monitoring screen 610 (FIG. 10) including at least one of measurement data regarding the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate, and an overall view of the powder processing system 1. 7) screen data is generated. The control unit 101 transmits the generated screen data from the communication unit 105 to the client device 500 (step S211).
クライアント装置500は、サーバ装置100より送信される画面データを通信部503にて受信する(ステップS212)。通信部503にて受信した画面データは、制御部501へ出力される。制御部501は、通信部503を通じて受信した画面データに基づき、モニタリング画面610を表示部505に表示させる(ステップS213)。クライアント装置500は、モニタリング画面610の表示中にサーバ装置100と通信を行うことによって、表示すべき情報を随時取得し、取得した情報に基づきモニタリング画面610を更新してもよい。
The client device 500 receives the screen data transmitted from the server device 100 by the communication unit 503 (step S212). The screen data received by the communication unit 503 is output to the control unit 501. The control unit 501 causes the display unit 505 to display the monitoring screen 610 based on the screen data received through the communication unit 503 (step S213). The client device 500 may acquire information to be displayed at any time by communicating with the server device 100 while the monitoring screen 610 is being displayed, and may update the monitoring screen 610 based on the acquired information.
クライアント装置500の表示部505に表示されるモニタリング画面610は図7に示すものと同様である。また、実施の形態2では、希望粒子径の入力に応じて、粉砕ロータ43の回転速度、分級ロータ45の回転速度、及びケーシング40からの吐出・吸引流量が設定されるので、これらの値を併せて表示してもよい。
The monitoring screen 610 displayed on the display unit 505 of the client device 500 is the same as that shown in FIG. Further, in the second embodiment, the rotation speed of the crushing rotor 43, the rotation speed of the classification rotor 45, and the discharge / suction flow rate from the casing 40 are set according to the input of the desired particle size. It may be displayed at the same time.
図18は実施の形態2における計測値の表示例を示す模式図である。サーバ装置100は、粉砕ロータ43の回転速度に関して、回転速度センサS5より得られる計測値と、学習モデル200の演算結果に基づく設定値とを取得することができる。クライアント装置500において起動される表示プログラムPG5は、回転速度センサS5より得られる最新の計測値と、学習モデル200による設定値とを含む情報をサーバ装置100から取得し、上述したモニタリング画面610及びダッシュボード画面620に表示させてもよい。
FIG. 18 is a schematic diagram showing a display example of the measured value in the second embodiment. The server device 100 can acquire the measured value obtained from the rotation speed sensor S5 and the set value based on the calculation result of the learning model 200 with respect to the rotation speed of the crushing rotor 43. The display program PG5 started in the client device 500 acquires information including the latest measured value obtained from the rotation speed sensor S5 and the set value by the learning model 200 from the server device 100, and obtains the above-mentioned monitoring screen 610 and dash. It may be displayed on the board screen 620.
図18の例は、粉砕ロータ43の回転速度に関して、最新の計測値(6700rpm)を上段に、学習モデル200による設定値(5383rpm)を下段に表示した状態を示している。また、図18の例では、最新の計測値を円弧状のゲージグラフによりグラフィカルに表示している。このゲージグラフの内側には、粉砕ロータ43の定格により規定される運転制限範囲が示されている。図18の例は、運転制限範囲の上限値付近の回転速度にて粉砕ロータ43が駆動されていることを示している。
The example of FIG. 18 shows a state in which the latest measured value (6700 rpm) is displayed in the upper row and the set value (5383 rpm) by the learning model 200 is displayed in the lower row with respect to the rotation speed of the crushing rotor 43. Further, in the example of FIG. 18, the latest measured values are graphically displayed by an arc-shaped gauge graph. Inside this gauge graph, the operating limit range defined by the rating of the crushing rotor 43 is shown. The example of FIG. 18 shows that the crushing rotor 43 is driven at a rotation speed near the upper limit of the operation limit range.
また、サーバ装置100は、分級ロータ45の回転速度に関して、回転速度センサS6より得られる計測値と、学習モデル200の演算結果に基づく設定値とを取得することができる。クライアント装置500において起動される表示プログラムPG5は、回転速度センサS6より得られる最新の計測値と、学習モデル200による設定値とを含む情報をサーバ装置100から取得し、上述したモニタリング画面610及びダッシュボード画面620に表示させてもよい。分級ロータ45の回転速度は、粉砕ロータ43の回転速度と同様に、数値データ及びゲージグラフ等を用いて表示することができる。
Further, the server device 100 can acquire the measured value obtained from the rotation speed sensor S6 and the set value based on the calculation result of the learning model 200 with respect to the rotation speed of the classification rotor 45. The display program PG5 started in the client device 500 acquires information including the latest measured value obtained from the rotation speed sensor S6 and the set value by the learning model 200 from the server device 100, and obtains the above-mentioned monitoring screen 610 and dash. It may be displayed on the board screen 620. The rotation speed of the classification rotor 45 can be displayed by using numerical data, a gauge graph, or the like, similarly to the rotation speed of the crushing rotor 43.
更に、サーバ装置100は、ケーシング40からの吐出・吸引流量に関して、流量センサS3より得られる計測値と、学習モデル200の演算結果に基づく設定値とを取得することができる。クライアント装置500において起動される表示プログラムPG5は、流量センサS3より得られる最新の計測値と、学習モデル200による設定値とを含む情報をサーバ装置100から取得し、上述したモニタリング画面610及びダッシュボード画面620に表示させてもよい。
Further, the server device 100 can acquire the measured value obtained from the flow rate sensor S3 and the set value based on the calculation result of the learning model 200 with respect to the discharge / suction flow rate from the casing 40. The display program PG5 activated in the client device 500 acquires information including the latest measured value obtained from the flow rate sensor S3 and the set value by the learning model 200 from the server device 100, and obtains the above-mentioned monitoring screen 610 and dashboard. It may be displayed on the screen 620.
図18の例は、吐出・吸引流量に関して、最新の計測値(10.4m3 /min)を上段に、学習モデル200による設定値(14.2m3 /min)を下段に表示した状態を示している。また、図18の例では、最新の計測値を棒グラフによりグラフィカルに表示している。この棒グラフの下側には、ブロワ7の定格により規定される運転制限範囲が示されている。図18の例は、運転制限範囲の下限値付近の吐出・吸引流量となるようにブロワ7が駆動されていることを示している。
Example of FIG. 18 with respect discharge and suction flow rate, the latest measured value (10.4m 3 / min) in the upper part, shows a display state of the set value by the learning model 200 (14.2m 3 / min) in the lower ing. Further, in the example of FIG. 18, the latest measured values are graphically displayed by a bar graph. At the bottom of this bar graph, the operating limit range defined by the rating of the blower 7 is shown. The example of FIG. 18 shows that the blower 7 is driven so that the discharge / suction flow rate is close to the lower limit value of the operation limit range.
更に、サーバ装置100は、粉体処理装置4から得られる粉体の粒子径に関して、粒子径センサS2より得られる粒子径と、ユーザにより設定された希望粒子径とを取得することができる。ここで、粒子径センサS2より得られる粒子径は、粉体処理システム1にて処理された粉体について計測された粉体計測値の一例である。また、ユーザにより設定された希望粒子径は、粉体処理システムに設定された希望粉体に関する粉体設定値の一例である。粒子径センサS2より得られる粒子径は、例えばD10,D50,D90の値である。希望粒子径は、例えば入力画面650を通じてユーザにより設定される下限値及び上限値である。クライアント装置500において起動される表示プログラムPG5は、粒子径センサS2より得られる最新の計測値と、学習モデル200に入力される希望粒子径の値とを含む情報をサーバ装置100から取得し、上述したモニタリング画面610及びダッシュボード画面620に表示させてもよい。
Further, the server device 100 can acquire the particle size obtained from the particle size sensor S2 and the desired particle size set by the user with respect to the particle size of the powder obtained from the powder processing device 4. Here, the particle size obtained from the particle size sensor S2 is an example of powder measurement values measured for the powder processed by the powder processing system 1. Further, the desired particle size set by the user is an example of the powder setting value for the desired powder set in the powder processing system. The particle size obtained from the particle size sensor S2 is, for example, the values of D10, D50, and D90. The desired particle size is, for example, a lower limit value and an upper limit value set by the user through the input screen 650. The display program PG5 activated in the client device 500 acquires information including the latest measured value obtained from the particle size sensor S2 and the desired particle size value input to the learning model 200 from the server device 100, and is described above. It may be displayed on the monitoring screen 610 and the dashboard screen 620.
図18の例は、粒子径(D10)に関して、最新の計測値(1.6μm)を上段に、希望粒子径として設定される下限値と上限値との間の中央値(1.7μm)を下段に表示した状態を示している。また、図18の例では、最新の計測値を円弧状のゲージグラフによりグラフィカルに表示している。このゲージグラフの内側には、想定範囲が示されている。想定範囲は、希望粒子径の下限値と上限値とにより規定される範囲である。図18の例は、D10の計測値が想定範囲の下限値付近となるように粉体処理システム1が駆動されていることを示している。また、計測値と希望粒子径(上述の中央値)との間の乖離度を併せて表示してもよい。図18は、括弧書きの数値により乖離度を表示した例を示している。D50,D90の値についても同様である。
In the example of FIG. 18, regarding the particle size (D10), the latest measured value (1.6 μm) is set as the upper row, and the median value (1.7 μm) between the lower limit value and the upper limit value set as the desired particle size is set. The state displayed at the bottom is shown. Further, in the example of FIG. 18, the latest measured values are graphically displayed by an arc-shaped gauge graph. Inside this gauge graph, the assumed range is shown. The assumed range is a range defined by the lower limit value and the upper limit value of the desired particle size. The example of FIG. 18 shows that the powder processing system 1 is driven so that the measured value of D10 is near the lower limit of the assumed range. Further, the degree of deviation between the measured value and the desired particle size (median value described above) may be displayed together. FIG. 18 shows an example in which the degree of deviation is displayed by the numerical values written in parentheses. The same applies to the values of D50 and D90.
以上のように、実施の形態2では、ユーザが希望する条件にて粉体処理システム1を稼働させることができ、ユーザにより設定された条件、若しくは学習モデル200を用いて設定された制御パラメータ等を計測値と共に表示することができる。
As described above, in the second embodiment, the powder processing system 1 can be operated under the conditions desired by the user, the conditions set by the user, the control parameters set by using the learning model 200, and the like. Can be displayed along with the measured values.
本実施の形態では、クライアント装置500から粒子径を与えることによって粉体処理システム1の動作を制御する構成としたが、粉体処理システム1の運転中止、及び運転条件の変更を含む運転指示をクライアント装置500から出力してもよい。運転指示は、サーバ装置100を介して粉体処理システム1へ出力され、粉体処理システム1において、運転中止又は運転条件の変更が行われる。
In the present embodiment, the operation of the powder processing system 1 is controlled by giving the particle size from the client device 500, but an operation instruction including stopping the operation of the powder processing system 1 and changing the operating conditions is given. It may be output from the client device 500. The operation instruction is output to the powder processing system 1 via the server device 100, and the operation is stopped or the operation conditions are changed in the powder processing system 1.
今回開示された実施形態は、全ての点において例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the claims.
(変形例1)
粉体処理システム1における粉体処理として、実施の形態1及び2では、ケーシング40内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与えることによって粉体原料を粉砕する機械式の粉砕処理について説明した。代替的に、粉体処理システム1において、気流式の粉砕処理を行ってもよい。気流式の粉砕処理では、粉体原料と共に粉砕エア(ジェット気流)がケーシング40内に導入され、導入された粉砕エアの作用によって粉体原料が粉砕される。気流式の粉砕処理を行う粉体処理システム1においては、粉砕ロータ43は不要である。気流式の粉砕処理を行う粉体処理システム1では、粉砕エアの圧力(粉砕圧力)を計測する圧力センサを含む各種計測器が1又は複数の適宜箇所に設けられ、処理中のプロセスがモニタリングされる。 (Modification example 1)
As the powder treatment in thepowder processing system 1, in the first and second embodiments, the powder raw material is subjected to mechanical energy such as impact, compression, grinding, and shearing to the powder raw material introduced into the casing 40. The mechanical crushing process for crushing has been described. Alternatively, the powder processing system 1 may perform an air flow type pulverization process. In the air flow type crushing process, crushed air (jet stream) is introduced into the casing 40 together with the powder raw material, and the powder raw material is crushed by the action of the introduced crushed air. The crushing rotor 43 is unnecessary in the powder processing system 1 that performs the airflow type crushing process. In the powder processing system 1 that performs airflow type pulverization processing, various measuring instruments including a pressure sensor for measuring the pressure of crushing air (crushing pressure) are provided at one or a plurality of appropriate locations to monitor the process during processing. To.
粉体処理システム1における粉体処理として、実施の形態1及び2では、ケーシング40内に導入された粉体原料に衝撃、圧縮、摩砕、剪断等の機械エネルギを与えることによって粉体原料を粉砕する機械式の粉砕処理について説明した。代替的に、粉体処理システム1において、気流式の粉砕処理を行ってもよい。気流式の粉砕処理では、粉体原料と共に粉砕エア(ジェット気流)がケーシング40内に導入され、導入された粉砕エアの作用によって粉体原料が粉砕される。気流式の粉砕処理を行う粉体処理システム1においては、粉砕ロータ43は不要である。気流式の粉砕処理を行う粉体処理システム1では、粉砕エアの圧力(粉砕圧力)を計測する圧力センサを含む各種計測器が1又は複数の適宜箇所に設けられ、処理中のプロセスがモニタリングされる。 (Modification example 1)
As the powder treatment in the
クライアント装置500は、粉砕圧力を含む計測情報をサーバ装置100から取得し、取得した計測情報を粉体処理システム1の全体図と共に表示部505に表示してもよい。また、クライアント装置500は、粉砕圧力を制御するための制御パラメータをサーバ装置100から取得し、取得した制御パラメータを表示部505に表示してもよい。サーバ装置100は、例えば、粉体処理に関する条件の入力に応じて、粉砕圧力を制御する制御パラメータに関する演算結果を出力するように構成された学習モデルを用いて、上記制御パラメータを決定することができる。学習モデルの内部構成は、実施の形態2と同様であるため、その説明を省略することとする。
The client device 500 may acquire measurement information including the crushing pressure from the server device 100 and display the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Further, the client device 500 may acquire control parameters for controlling the crushing pressure from the server device 100 and display the acquired control parameters on the display unit 505. The server device 100 may determine the control parameters using, for example, a learning model configured to output calculation results for control parameters that control the crushing pressure in response to input of conditions relating to powder processing. it can. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
また、実施の形態1及び2では、粉砕処理及び分級処理の双方を行う構成について説明したが、粉砕処理及び分級処理の何れか一方のみを行う構成としてもよい。この場合、粉砕処理に関するパラメータ(計測情報及び制御パラメータ)、若しくは分級処理に関するパラメータ(計測情報及び制御パラメータ)がクライアント装置500の表示部505に表示されるとよい。
Further, in the first and second embodiments, the configuration in which both the crushing treatment and the classification treatment are performed has been described, but the configuration may be such that only one of the crushing treatment and the classification treatment is performed. In this case, the parameters related to the pulverization process (measurement information and control parameters) or the parameters related to the classification process (measurement information and control parameters) may be displayed on the display unit 505 of the client device 500.
(変形例2)
粉体処理システム1において、粉砕処理及び分級処理に代えて、粉体原料の乾燥処理を行ってもよい。乾燥処理では、粉体原料と共に熱風などの熱媒がケーシング40内に導入され、熱媒の作用によって粉体原料を乾燥させる。また、効率良く乾燥させるために、ケーシング40内にパドルを設け、パドルを駆動することによりケーシング40内の粉体原料を攪拌させてもよい。以下の説明において、パドルはスクリューにより代替され得る。乾燥処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。乾燥処理を行う粉体処理システム1では、熱媒の温度を計測する温度センサ、熱媒の流量を計測する流量センサ、パドルの回転速度を計測する回転速度センサ、ケーシング40内の圧力を計測する圧力センサ、運転時間を計測するタイマ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 2)
In thepowder treatment system 1, the powder raw material may be dried instead of the pulverization treatment and the classification treatment. In the drying process, a heat medium such as hot air is introduced into the casing 40 together with the powder raw material, and the powder raw material is dried by the action of the heat medium. Further, in order to dry efficiently, a paddle may be provided in the casing 40, and the powder raw material in the casing 40 may be agitated by driving the paddle. In the following description, the paddle can be replaced by a screw. In the powder processing system 1 that performs the drying process, the crushing rotor 43 and the classification rotor 45 are unnecessary. In the powder processing system 1 that performs the drying process, a temperature sensor that measures the temperature of the heat medium, a flow rate sensor that measures the flow rate of the heat medium, a rotation speed sensor that measures the rotation speed of the paddle, and a pressure inside the casing 40 are measured. Various measuring instruments including a pressure sensor, a timer for measuring the operation time, and the like are provided at one or a plurality of appropriate locations, and these measuring instruments monitor the process being processed.
粉体処理システム1において、粉砕処理及び分級処理に代えて、粉体原料の乾燥処理を行ってもよい。乾燥処理では、粉体原料と共に熱風などの熱媒がケーシング40内に導入され、熱媒の作用によって粉体原料を乾燥させる。また、効率良く乾燥させるために、ケーシング40内にパドルを設け、パドルを駆動することによりケーシング40内の粉体原料を攪拌させてもよい。以下の説明において、パドルはスクリューにより代替され得る。乾燥処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。乾燥処理を行う粉体処理システム1では、熱媒の温度を計測する温度センサ、熱媒の流量を計測する流量センサ、パドルの回転速度を計測する回転速度センサ、ケーシング40内の圧力を計測する圧力センサ、運転時間を計測するタイマ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 2)
In the
クライアント装置500は、熱媒の温度、熱媒の流量、パドルの回転速度、ケーシング40内の圧力、運転時間などを含む計測情報をサーバ装置100から取得し、取得した計測情報を粉体処理システム1の全体図と共に表示部505に表示してもよい。また、クライアント装置500は、熱媒の温度、熱媒の流量、パドルの回転速度、ケーシング40内の圧力、運転時間などを制御するための制御パラメータをサーバ装置100から取得し、取得した制御パラメータを表示部505に表示してもよい。サーバ装置100は、粉体処理に関する条件の入力に応じて、熱媒の温度、熱媒の流量、パドルの回転速度、ケーシング40内の圧力、運転時間などを制御する制御パラメータに関する演算結果を出力するように構成された学習モデルを用いて、上記制御パラメータを決定することができる。ここで、学習モデルに入力する粉体処理に関する条件は、希望する粉体(製品粉体)の湿分、粉体処理システム1の処理能力、粉体原料の湿分、温度、かさ密度(真密度若しくは粒子密度)、粒子径等を含む。学習モデルの内部構成は、実施の形態2と同様であるため、その説明を省略することとする。
The client device 500 acquires measurement information including the temperature of the heat medium, the flow rate of the heat medium, the rotation speed of the paddle, the pressure in the casing 40, the operation time, etc. from the server device 100, and obtains the acquired measurement information from the powder processing system. It may be displayed on the display unit 505 together with the overall view of 1. Further, the client device 500 acquires control parameters for controlling the temperature of the heat medium, the flow rate of the heat medium, the rotation speed of the paddle, the pressure in the casing 40, the operation time, and the like from the server device 100, and the acquired control parameters. May be displayed on the display unit 505. The server device 100 outputs a calculation result regarding control parameters that control the temperature of the heat medium, the flow rate of the heat medium, the rotation speed of the paddle, the pressure in the casing 40, the operation time, etc., in response to the input of the conditions related to the powder processing. The control parameters can be determined using the learning model configured to do so. Here, the conditions related to powder processing to be input to the learning model are the moisture content of the desired powder (product powder), the processing capacity of the powder processing system 1, the moisture content of the powder raw material, the temperature, and the bulk density (true). Includes density or particle density), particle size, etc. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
(変形例3)
粉体処理システム1において、粉砕処理及び分級処理に代えて、2種類以上の粉体原料(若しくは粉体原料及び液体)を混合する混合処理を行ってもよい。混合処理では、処理対象の原料がケーシング40内に導入され、ケーシング内40に設けたパドルを回転させることによって、原料が混合される。混合処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。混合処理を行う粉体処理システム1では、パドルの回転速度を計測する回転速度センサ、運転時間を計測するタイマ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 3)
In thepowder treatment system 1, instead of the pulverization treatment and the classification treatment, a mixing treatment in which two or more kinds of powder raw materials (or powder raw materials and liquid) are mixed may be performed. In the mixing process, the raw materials to be processed are introduced into the casing 40, and the raw materials are mixed by rotating the paddle provided in the casing 40. In the powder processing system 1 that performs the mixing process, the crushing rotor 43 and the classification rotor 45 are unnecessary. In the powder processing system 1 that performs mixing processing, various measuring instruments including a rotation speed sensor for measuring the rotation speed of the paddle, a timer for measuring the operation time, and the like are provided at one or a plurality of appropriate places, and these measuring instruments are used. The process in process is monitored.
粉体処理システム1において、粉砕処理及び分級処理に代えて、2種類以上の粉体原料(若しくは粉体原料及び液体)を混合する混合処理を行ってもよい。混合処理では、処理対象の原料がケーシング40内に導入され、ケーシング内40に設けたパドルを回転させることによって、原料が混合される。混合処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。混合処理を行う粉体処理システム1では、パドルの回転速度を計測する回転速度センサ、運転時間を計測するタイマ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 3)
In the
クライアント装置500は、パドルの回転速度、運転時間などを含む計測情報をサーバ装置100から取得し、取得した計測情報を粉体処理システム1の全体図と共に表示部505に表示してもよい。また、クライアント装置500は、パドルの回転速度、運転時間などを制御するための制御パラメータをサーバ装置100から取得し、取得した制御パラメータを表示部505に表示してもよい。サーバ装置100は、粉体処理に関する条件の入力に応じて、パドルの回転速度、運転時間等を制御する制御パラメータに関する演算結果を出力するように構成された学習モデルを用いて、上記制御パラメータを決定することができる。ここで、学習モデルに入力する粉体処理に関する条件は、希望する粉体(製品粉体)の混合度、濃度、湿分、原料の混合比率、混合度、かさ密度(真密度若しくは粒子密度)、流動性、粒子径等を含む。学習モデルの内部構成は、実施の形態2と同様であるため、その説明を省略することとする。
The client device 500 may acquire measurement information including the rotation speed of the paddle, the operation time, and the like from the server device 100, and display the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Further, the client device 500 may acquire control parameters for controlling the rotation speed, operation time, etc. of the paddle from the server device 100, and display the acquired control parameters on the display unit 505. The server device 100 uses a learning model configured to output calculation results related to control parameters that control the rotation speed, operating time, etc. of the paddle in response to input of conditions related to powder processing, and obtains the above control parameters. Can be decided. Here, the conditions for powder processing to be input to the learning model are the mixing degree, concentration, moisture content, mixing ratio of raw materials, mixing degree, and bulk density (true density or particle density) of the desired powder (product powder). , Fluidity, particle size, etc. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
(変形例4)
粉体処理システム1において、粉砕処理及び分級処理に代えて、2種類以上の粉体粒子同士を結合させる複合化処理を行ってもよい。複合化処理では、処理対象の粒子を含む原料がケーシング40内に導入され、ケーシング40内に設けたパドルを回転させ、2種類以上の粉体粒子を結合させることによって複合化が行われる。複合化処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。複合化処理を行う粉体処理システム1では、パドルの回転速度を計測する回転速度センサ、運転時間を計測するタイマ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification example 4)
In thepowder treatment system 1, instead of the pulverization treatment and the classification treatment, a composite treatment for binding two or more types of powder particles may be performed. In the compounding treatment, a raw material containing particles to be treated is introduced into the casing 40, and a paddle provided in the casing 40 is rotated to combine two or more types of powder particles to perform compounding. In the powder processing system 1 that performs the compounding process, the crushing rotor 43 and the classification rotor 45 are unnecessary. In the powder processing system 1 that performs the compounding process, various measuring instruments including a rotation speed sensor for measuring the rotation speed of the paddle, a timer for measuring the operation time, and the like are provided at one or a plurality of appropriate places, and these measuring instruments are provided. Monitors the process in progress.
粉体処理システム1において、粉砕処理及び分級処理に代えて、2種類以上の粉体粒子同士を結合させる複合化処理を行ってもよい。複合化処理では、処理対象の粒子を含む原料がケーシング40内に導入され、ケーシング40内に設けたパドルを回転させ、2種類以上の粉体粒子を結合させることによって複合化が行われる。複合化処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。複合化処理を行う粉体処理システム1では、パドルの回転速度を計測する回転速度センサ、運転時間を計測するタイマ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification example 4)
In the
クライアント装置500は、パドルの回転速度、運転時間などを含む計測情報をサーバ装置100から取得し、取得した計測情報を粉体処理システム1の全体図と共に表示部505に表示してもよい。また、クライアント装置500は、パドルの回転速度、運転時間などを制御するための制御パラメータをサーバ装置100から取得し、取得した制御パラメータを表示部505に表示してもよい。サーバ装置100は、粉体処理に関する条件の入力に応じて、パドルの回転速度、運転時間等を制御する制御パラメータに関する演算結果を出力するように構成された学習モデルを用いて、上記制御パラメータを決定することができる。ここで、学習モデルに入力する粉体処理に関する条件は、希望する粉体(製品粉体)の複合化度、粉体原料の複合化度、混合比率、かさ密度(真密度若しくは粒子密度)等を含む。粉体の複合化度は、例えば、BET(Brunauer, Emmett, Teller)、NIR(Near Infrared)、XRD(X-Ray Diffraction)、TG-DTA(Thermogravimetry-Differential Thermal Analysis)、MS(Mass Spectrometry)、SEM(Scanning Electron Microscope)、FE-SEM(Field Emission-Transmission Electron Microscope)、TEM(Transmission Electron Microscope)等のデータによって与えられる。学習モデルの内部構成は、実施の形態2と同様であるため、その説明を省略することとする。
The client device 500 may acquire measurement information including the rotation speed of the paddle, the operation time, and the like from the server device 100, and display the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Further, the client device 500 may acquire control parameters for controlling the rotation speed, operation time, etc. of the paddle from the server device 100, and display the acquired control parameters on the display unit 505. The server device 100 uses a learning model configured to output calculation results related to control parameters that control the rotation speed, operating time, etc. of the paddle in response to input of conditions related to powder processing, and obtains the above control parameters. Can be decided. Here, the conditions related to powder processing to be input to the learning model are the degree of compounding of the desired powder (product powder), the degree of compounding of the powder raw material, the mixing ratio, the bulk density (true density or particle density), etc. including. The degree of compounding of the powder is, for example, BET (Brunauer, Emmett, Teller), NIR (Near Infrared), XRD (X-Ray Diffraction), TG-DTA (Thermogravimetry-Differential Thermal Analysis), MS (Mass Spectrometry), It is given by data such as SEM (Scanning Electron Microscope), FE-SEM (Field Emission-Transmission Electron Microscope), and TEM (Transmission Electron Microscope). Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
(変形例5)
粉体処理システム1において、粉砕処理及び分級処理に代えて、粉体表面の平滑化などの表面処理を行ってもよい。表面処理では、処理対象の原料がケーシング40内に導入され、ケーシング内40に設けたパドルを回転させることによって、表面処理が行われる。表面処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。表面処理を行う粉体処理システム1では、パドルの回転速度を計測する回転速度センサ、運転時間を計測するタイマ、負荷動力を計測する動力計等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 5)
In thepowder treatment system 1, instead of the pulverization treatment and the classification treatment, a surface treatment such as smoothing of the powder surface may be performed. In the surface treatment, the raw material to be treated is introduced into the casing 40, and the surface treatment is performed by rotating the paddle provided in the casing 40. In the powder processing system 1 that performs surface treatment, the crushing rotor 43 and the classification rotor 45 are unnecessary. In the powder processing system 1 that performs surface treatment, various measuring instruments including a rotation speed sensor that measures the rotation speed of the paddle, a timer that measures the operating time, a dynamometer that measures the load power, and the like are placed at one or a plurality of appropriate locations. Provided, these instruments monitor the process in progress.
粉体処理システム1において、粉砕処理及び分級処理に代えて、粉体表面の平滑化などの表面処理を行ってもよい。表面処理では、処理対象の原料がケーシング40内に導入され、ケーシング内40に設けたパドルを回転させることによって、表面処理が行われる。表面処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。表面処理を行う粉体処理システム1では、パドルの回転速度を計測する回転速度センサ、運転時間を計測するタイマ、負荷動力を計測する動力計等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 5)
In the
クライアント装置500は、パドルの回転速度、運転時間、負荷動力などを含む計測情報をサーバ装置100から取得し、取得した計測情報を粉体処理システム1の全体図と共に表示部505に表示してもよい。また、クライアント装置500は、パドルの回転速度、運転時間、負荷動力などを制御するための制御パラメータをサーバ装置100から取得し、取得した制御パラメータを表示部505に表示してもよい。サーバ装置100は、粉体処理に関する条件の入力に応じて、パドルの回転速度、運転時間、負荷動力等を制御する制御パラメータに関する演算結果を出力するように構成された学習モデルを用いて、上記制御パラメータを決定することができる。ここで、学習モデルに入力する粉体処理に関する条件は、希望する粉体(製品粉体)の円形度、かさ密度、流動性、原料のBET値、粒子径、円形度、かさ密度、流動性等を含む。学習モデルの内部構成は、実施の形態2と同様であるため、その説明を省略することとする。
Even if the client device 500 acquires measurement information including the rotation speed of the paddle, the operating time, the load power, etc. from the server device 100 and displays the acquired measurement information on the display unit 505 together with the overall view of the powder processing system 1. Good. Further, the client device 500 may acquire control parameters for controlling the rotation speed, operating time, load power, etc. of the paddle from the server device 100, and display the acquired control parameters on the display unit 505. The server device 100 uses a learning model configured to output calculation results related to control parameters that control paddle rotation speed, operating time, load power, etc., in response to input of conditions related to powder processing. Control parameters can be determined. Here, the conditions for powder processing to be input to the learning model are the circularity, bulk density, fluidity, BET value of the raw material, particle size, circularity, bulk density, and fluidity of the desired powder (product powder). Etc. are included. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
(変形例6)
粉体処理システム1において、粉砕処理及び分級処理に代えて、1又は複数の成分からなる粉体原料を、結合剤などを用いて、原料より大きな粒状に加工する造粒処理を行ってもよい。造粒処理では、処理対象の原料及び結合剤がケーシング40内に導入され、ケーシング40内に設けたロールを回転させることによって、造粒処理が行われる。ロールに代えて、スクリューを用いてもよい。造粒処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。造粒処理を行う粉体処理システム1では、ロールの回転速度を計測する回転速度センサ、ケーシング40内の圧力を計測する圧力センサ、結合剤の添加量を計測する重量センサ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 6)
In thepowder treatment system 1, instead of the pulverization treatment and the classification treatment, a granulation treatment may be performed in which a powder raw material composed of one or more components is processed into granules larger than the raw material by using a binder or the like. .. In the granulation treatment, the raw material and the binder to be treated are introduced into the casing 40, and the granulation treatment is performed by rotating the roll provided in the casing 40. A screw may be used instead of the roll. In the powder processing system 1 that performs the granulation treatment, the crushing rotor 43 and the classification rotor 45 are unnecessary. The powder processing system 1 that performs granulation processing includes various measuring instruments including a rotation speed sensor that measures the rotation speed of the roll, a pressure sensor that measures the pressure inside the casing 40, a weight sensor that measures the amount of the binder added, and the like. Are provided at one or more appropriate locations, and these instruments monitor the process in progress.
粉体処理システム1において、粉砕処理及び分級処理に代えて、1又は複数の成分からなる粉体原料を、結合剤などを用いて、原料より大きな粒状に加工する造粒処理を行ってもよい。造粒処理では、処理対象の原料及び結合剤がケーシング40内に導入され、ケーシング40内に設けたロールを回転させることによって、造粒処理が行われる。ロールに代えて、スクリューを用いてもよい。造粒処理を行う粉体処理システム1においては、粉砕ロータ43及び分級ロータ45は不要である。造粒処理を行う粉体処理システム1では、ロールの回転速度を計測する回転速度センサ、ケーシング40内の圧力を計測する圧力センサ、結合剤の添加量を計測する重量センサ等を含む各種計測器が1又は複数の適宜箇所に設けられ、これらの計測器によって処理中のプロセスがモニタリングされる。 (Modification 6)
In the
クライアント装置500は、ロールの回転速度、ケーシング40内の圧力、結合剤の添加量などを含む計測情報をサーバ装置100から取得し、取得した計測情報を粉体処理システム1の全体図と共に表示部505に表示してもよい。また、クライアント装置500は、ロールの回転速度、ケーシング40内の圧力、結合剤の添加量などを制御するための制御パラメータをサーバ装置100から取得し、取得した制御パラメータを表示部505に表示してもよい。サーバ装置100は、粉体処理に関する条件の入力に応じて、ロールの回転速度、ケーシング40内の圧力、結合剤の添加量等を制御する制御パラメータに関する演算結果を出力するように構成された学習モデルを用いて、上記制御パラメータを決定することができる。ここで、学習モデルに入力する粉体処理に関する条件とは、希望する粉体(製品粉体)の粒子径、形状、かさ密度、流動性、硬度、原料のBET値、粒子径、かさ密度、流動性等である。学習モデルの内部構成は、実施の形態2と同様であるため、その説明を省略することとする。
The client device 500 acquires measurement information including the rotation speed of the roll, the pressure in the casing 40, the amount of the binder added, and the like from the server device 100, and displays the acquired measurement information together with the overall view of the powder processing system 1. It may be displayed on 505. Further, the client device 500 acquires control parameters for controlling the rotation speed of the roll, the pressure in the casing 40, the amount of the binder added, and the like from the server device 100, and displays the acquired control parameters on the display unit 505. You may. The server device 100 is configured to output calculation results related to control parameters that control the rotation speed of the roll, the pressure in the casing 40, the amount of the binder added, and the like in response to the input of the conditions related to the powder processing. The model can be used to determine the control parameters. Here, the conditions related to powder processing to be input to the learning model are the particle size, shape, bulk density, fluidity, hardness, BET value of the raw material, particle size, bulk density, and the desired powder (product powder). Fluidity, etc. Since the internal configuration of the learning model is the same as that of the second embodiment, the description thereof will be omitted.
1…粉体処理システム、2…原料供給機、3…熱風発生機、4…粉体処理装置、5…サイクロン、6…集塵機、7…ブロワ、40…ケーシング、41…原料投入口、42…気体導入口、43…粉砕ロータ、44…ガイドリング、45…分級ロータ、46…粉体取出口、S1…重量センサ、S2…粒子径センサ、S3…流量センサ、S4…温度センサ、S5…回転速度センサ、S6…回転速度センサ、100…サーバ装置、101…制御部、102…記憶部、103…入力部、104…出力部、105…通信部、106…操作部、107…表示部、500…クライアント装置、501…制御部、502…記憶部、503…通信部、504…操作部、505…表示部
1 ... Powder processing system, 2 ... Raw material supply machine, 3 ... Hot air generator, 4 ... Powder processing device, 5 ... Cyclone, 6 ... Dust collector, 7 ... Blower, 40 ... Casing, 41 ... Raw material input port, 42 ... Gas inlet, 43 ... crushing rotor, 44 ... guide ring, 45 ... classification rotor, 46 ... powder outlet, S1 ... weight sensor, S2 ... particle size sensor, S3 ... flow rate sensor, S4 ... temperature sensor, S5 ... rotation Speed sensor, S6 ... Rotation speed sensor, 100 ... Server device, 101 ... Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Output unit, 105 ... Communication unit, 106 ... Operation unit, 107 ... Display unit, 500 ... client device, 501 ... control unit, 502 ... storage unit, 503 ... communication unit, 504 ... operation unit, 505 ... display unit
1 ... Powder processing system, 2 ... Raw material supply machine, 3 ... Hot air generator, 4 ... Powder processing device, 5 ... Cyclone, 6 ... Dust collector, 7 ... Blower, 40 ... Casing, 41 ... Raw material input port, 42 ... Gas inlet, 43 ... crushing rotor, 44 ... guide ring, 45 ... classification rotor, 46 ... powder outlet, S1 ... weight sensor, S2 ... particle size sensor, S3 ... flow rate sensor, S4 ... temperature sensor, S5 ... rotation Speed sensor, S6 ... Rotation speed sensor, 100 ... Server device, 101 ... Control unit, 102 ... Storage unit, 103 ... Input unit, 104 ... Output unit, 105 ... Communication unit, 106 ... Operation unit, 107 ... Display unit, 500 ... client device, 501 ... control unit, 502 ... storage unit, 503 ... communication unit, 504 ... operation unit, 505 ... display unit
Claims (19)
- コンピュータに、
IDの入力を受付け、
受付けたIDに関連付けられている粉体処理システムに関して、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得し、
取得した計測情報を前記粉体処理システムの全体図と共に表示する
処理を実行させるためのコンピュータプログラム。 On the computer
Accepts ID input,
With respect to the powder processing system associated with the received ID, measurement information obtained from at least one measuring instrument included in the powder processing system is acquired, and measurement information is acquired.
A computer program for executing a process of displaying the acquired measurement information together with an overall view of the powder processing system. - 前記コンピュータに、
前記計測情報をグラフィカルに表示する
処理を実行させるための請求項1に記載のコンピュータプログラム。 On the computer
The computer program according to claim 1, wherein a process for displaying the measurement information graphically is executed. - 前記計測情報は、粉砕ロータの回転速度、分級ロータの回転速度、製品粉体を取り出すための吐出・吸引流量、粉砕圧力、アジテータの回転速度、熱媒の温度、熱媒の流量、パドル若しくはスクリュー若しくはロールの回転速度、粉体を処理する処理室内の圧力、運転時間、負荷動力、及び結合剤の添加量のうち、少なくとも1つを含む
請求項1又は請求項2に記載のコンピュータプログラム。 The measurement information includes the rotation speed of the crushing rotor, the rotation speed of the classification rotor, the discharge / suction flow rate for taking out the product powder, the crushing pressure, the rotation speed of the agitator, the temperature of the heat medium, the flow rate of the heat medium, the paddle or the screw. The computer program according to claim 1 or 2, further comprising at least one of the rotation speed of the roll, the pressure in the processing chamber for processing the powder, the operating time, the load power, and the amount of the binder added. - 前記コンピュータに、
前記粉体処理システムが処理中であるか否かを識別可能に表示する
処理を実行させるための請求項1から請求項3の何れか1つに記載のコンピュータプログラム。 On the computer
The computer program according to any one of claims 1 to 3, for executing a process for identifiablely indicating whether or not the powder processing system is in the process of processing. - 前記コンピュータに、
前記粉体処理システムにおける異常の有無に係る情報を取得し、
取得した情報を表示する
処理を実行させるための請求項1から請求項4の何れか1つに記載のコンピュータプログラム。 On the computer
Obtain information on the presence or absence of abnormalities in the powder processing system
The computer program according to any one of claims 1 to 4, for executing a process of displaying the acquired information. - 前記コンピュータに、
前記粉体処理システムにおける異常発生箇所を前記全体図にて識別可能に表示する
処理を実行させるための請求項5に記載のコンピュータプログラム。 On the computer
The computer program according to claim 5, wherein a process for displaying an abnormality occurrence location in the powder processing system so as to be identifiable in the overall view is executed. - 前記コンピュータに、
前記粉体処理システムにて処理された粉体について計測された粉体計測値を取得し、
取得した粉体計測値を表示する
処理を実行させるための請求項1から請求項6の何れか1つに記載のコンピュータプログラム。 On the computer
Obtain the powder measurement value measured for the powder processed by the powder processing system, and obtain
The computer program according to any one of claims 1 to 6, for executing a process of displaying the acquired powder measurement value. - 前記コンピュータに、
前記粉体処理システムに設定された希望粉体に関する粉体設定値を取得し、
取得した粉体設定値を表示する
処理を実行させるための請求項7に記載のコンピュータプログラム。 On the computer
Obtain the powder set value for the desired powder set in the powder processing system,
The computer program according to claim 7, wherein a process for displaying the acquired powder setting value is executed. - 前記コンピュータに、
前記粉体計測値と前記粉体設定値との乖離度に関する情報を表示する
処理を実行させるための請求項8に記載のコンピュータプログラム。 On the computer
The computer program according to claim 8, wherein a process for displaying information on the degree of deviation between the measured powder value and the set powder value is executed. - 前記コンピュータに、
粉体処理に関する条件の入力に応じて、前記粉体処理システムの制御パラメータに関する演算結果を出力するように構成された学習モデルを有し、該学習モデルから出力される演算結果に基づき前記粉体処理システムの動作を制御する制御装置から、前記粉体処理システムの動作の制御に用いた制御パラメータを取得し、
取得した制御パラメータを表示する
処理を実行させるための請求項1から請求項9の何れか1つに記載のコンピュータプログラム。 On the computer
It has a learning model configured to output calculation results related to control parameters of the powder processing system in response to input of conditions related to powder processing, and the powder is based on the calculation results output from the learning model. The control parameters used for controlling the operation of the powder processing system are acquired from the control device that controls the operation of the processing system.
The computer program according to any one of claims 1 to 9, for executing a process of displaying the acquired control parameters. - 前記コンピュータに、
前記学習モデルに入力すべき条件を受付けるための受付画面を表示し、
表示した受付画面にて受付けた条件を前記制御装置へ送信する
処理を実行させるための請求項10に記載のコンピュータプログラム。 On the computer
Display the reception screen for accepting the conditions to be input to the learning model,
The computer program according to claim 10, wherein a process of transmitting the conditions received on the displayed reception screen to the control device is executed. - 前記条件は、希望粉体の粒子径、円形度、温度、湿分、かさ密度、流動性、混合度、複合化度、硬度、原料の粒子径、円形度、温度、湿分、かさ密度、流動性、混合度、複合化度、熱媒温度、媒体重量、前記粉体処理システムの処理能力、及び前記粉体処理システムの駆動部を駆動する際の電力又は電流、環境温度、及び環境湿度のうち、少なくとも1つを含む
請求項10又は請求項11に記載のコンピュータプログラム。 The above conditions are the particle size, circularity, temperature, moisture content, bulk density, fluidity, mixing degree, complexability, hardness, particle size of raw material, circularity, temperature, moisture content, bulk density, Fluidity, degree of mixing, degree of compounding, heat medium temperature, medium weight, processing capacity of the powder processing system, and power or current when driving the drive unit of the powder processing system, environmental temperature, and environmental humidity. The computer program according to claim 10 or 11, further comprising at least one of the above. - 前記コンピュータに、
前記粉体処理システムに関する運転履歴の情報を取得し、
取得した運転履歴の情報を表示する
処理を実行させるための請求項1から請求項12の何れか1つに記載のコンピュータプログラム。 On the computer
Obtaining operation history information related to the powder processing system,
The computer program according to any one of claims 1 to 12, for executing a process of displaying the acquired operation history information. - 前記コンピュータに、
前記運転履歴の情報を記憶装置に記憶させる処理、前記運転履歴の情報を印刷する処理、及び前記運転履歴の情報をメール発信する処理の少なくとも1つを実行させるための請求項13に記載のコンピュータプログラム。 On the computer
The computer according to claim 13, wherein at least one of a process of storing the operation history information in a storage device, a process of printing the operation history information, and a process of transmitting the operation history information by mail is executed. program. - 前記コンピュータに、
前記粉体処理システムにおいて発生した異常に対する対処方法を表示する
処理を実行させるための請求項1から請求項14の何れか1つに記載のコンピュータプログラム。 On the computer
The computer program according to any one of claims 1 to 14, for executing a process for displaying a coping method for an abnormality generated in the powder processing system. - 前記コンピュータに、
運転中止及び運転条件の変更を含む運転指示を前記粉体処理システムへ出力する
処理を実行させるための請求項1から請求項15の何れか1つに記載のコンピュータプログラム。 On the computer
The computer program according to any one of claims 1 to 15, for executing a process of outputting an operation instruction including a stop of operation and a change of operation conditions to the powder processing system. - 指定されたIDに関連付けられている粉体処理システムから、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得する取得部と、
取得した計測情報と前記粉体処理システムの全体図とを含む画面データを生成する生成部と、
該生成部により生成した画面データを外部装置へ送信する送信部と
を備えるサーバ装置。 An acquisition unit that acquires measurement information obtained from at least one measuring instrument included in the powder processing system from the powder processing system associated with the specified ID.
A generator that generates screen data including the acquired measurement information and an overall view of the powder processing system,
A server device including a transmission unit that transmits screen data generated by the generation unit to an external device. - 互いに通信可能に接続されたサーバ装置とクライアント装置とを備え、
前記サーバ装置は、
指定されたIDに関連付けられている粉体処理システムから、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得する取得部と、
取得した計測情報と前記粉体処理システムの全体図とを含む画面データを生成する生成部と、
該生成部により生成した画面データを前記クライアント装置へ送信する送信部と
を備え、
前記クライアント装置は、
前記サーバ装置から送信される画面データを受信する受信部と、
受信した画面データに基づき、前記計測情報を前記粉体処理システムの全体図と共に表示する表示部と
を備える表示システム。 It has a server device and a client device that are connected to each other so that they can communicate with each other.
The server device is
An acquisition unit that acquires measurement information obtained from at least one measuring instrument included in the powder processing system from the powder processing system associated with the specified ID.
A generator that generates screen data including the acquired measurement information and an overall view of the powder processing system,
It is provided with a transmission unit that transmits screen data generated by the generation unit to the client device.
The client device
A receiver that receives screen data transmitted from the server device,
A display system including a display unit that displays the measurement information together with an overall view of the powder processing system based on the received screen data. - コンピュータを用いて、
IDの入力を受付け、
受付けたIDに関連付けられている粉体処理システムに関して、該粉体処理システムが備える少なくとも1つの計測器から得られる計測情報を取得し、
取得した計測情報を前記粉体処理システムの全体図と共に表示する
表示方法。
Using a computer
Accepts ID input,
With respect to the powder processing system associated with the received ID, measurement information obtained from at least one measuring instrument included in the powder processing system is acquired, and measurement information is acquired.
A display method for displaying the acquired measurement information together with an overall view of the powder processing system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022171 WO2020245914A1 (en) | 2019-06-04 | 2019-06-04 | Computer program, server device, display system, and display method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022171 WO2020245914A1 (en) | 2019-06-04 | 2019-06-04 | Computer program, server device, display system, and display method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020245914A1 true WO2020245914A1 (en) | 2020-12-10 |
Family
ID=73652494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022171 WO2020245914A1 (en) | 2019-06-04 | 2019-06-04 | Computer program, server device, display system, and display method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020245914A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6450105A (en) * | 1987-08-20 | 1989-02-27 | Hitachi Ltd | Program generating device for plant monitoring controller |
JPH08266887A (en) * | 1995-03-31 | 1996-10-15 | Fuji Photo Film Co Ltd | Method and device for automatically measuring and controlling grain size in production of microcapsule |
JPH10201830A (en) * | 1997-01-24 | 1998-08-04 | Terumo Corp | Display device for sterilizing device |
JP2006297549A (en) * | 2005-04-21 | 2006-11-02 | Keio Gijuku | Method for arranged vapor deposition of metal nanoparticle and method for growing carbon nanotube using metal nanoparticle |
JP2017047378A (en) * | 2015-09-02 | 2017-03-09 | ホソカワミクロン株式会社 | Powder treatment apparatus and method for manufacturing toner |
-
2019
- 2019-06-04 WO PCT/JP2019/022171 patent/WO2020245914A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6450105A (en) * | 1987-08-20 | 1989-02-27 | Hitachi Ltd | Program generating device for plant monitoring controller |
JPH08266887A (en) * | 1995-03-31 | 1996-10-15 | Fuji Photo Film Co Ltd | Method and device for automatically measuring and controlling grain size in production of microcapsule |
JPH10201830A (en) * | 1997-01-24 | 1998-08-04 | Terumo Corp | Display device for sterilizing device |
JP2006297549A (en) * | 2005-04-21 | 2006-11-02 | Keio Gijuku | Method for arranged vapor deposition of metal nanoparticle and method for growing carbon nanotube using metal nanoparticle |
JP2017047378A (en) * | 2015-09-02 | 2017-03-09 | ホソカワミクロン株式会社 | Powder treatment apparatus and method for manufacturing toner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103384563B (en) | Heat treatment apparatus and method for manufacturing toner | |
WO2020245915A1 (en) | Learning model generation method, computer program, learning model, control device, and control method | |
CN109890507A (en) | Abrasive wire for Automatic Optimal roll off system monitors and controls equipment and corresponding method | |
CN103331194B (en) | Method of processing nepheline syenite powder to produce an ultra-fine grain size product | |
CN103608731B (en) | The Equipment for Heating Processing of powder particle and the production method of toner | |
Chamayou et al. | Air jet milling | |
Deng et al. | Discrete element method simulation of a conical screen mill: A continuous dry coating device | |
CN107405679B (en) | Cast sand cooler | |
CN111047104A (en) | Energy consumption optimization method of grinding system | |
WO2020245914A1 (en) | Computer program, server device, display system, and display method | |
Zeng et al. | DEM investigation of particle flow in a vertical rice mill: Influence of particle shape and rotation speed | |
Zuo et al. | Numerical study of the mixing process of binary-density particles in a bladed mixer | |
JP7311598B2 (en) | LEARNING MODEL GENERATION METHOD, COMPUTER PROGRAM, LEARNING MODEL, CONTROL DEVICE, AND CONTROL METHOD | |
Yokoyama et al. | Selection of fine grinding mills | |
JP7311571B2 (en) | Diagnostic device, diagnostic method, and computer program for powder processing system | |
JP7311599B2 (en) | Diagnostic device, diagnostic method, and computer program for powder processing system | |
CN217093523U (en) | Fluidized bed catalyst particle size distribution regulating and controlling device | |
WO2001098046A1 (en) | Grinding device for resin composition | |
Li et al. | Numerical investigation of flow similarity of rice grains in friction rice mill and establishment of scale-up rule | |
JP5468803B2 (en) | Crusher | |
JPH08131805A (en) | Production of fixed grain and device therefor | |
JP2011036783A (en) | Equipment and method for powder treatment | |
Pazhayattil et al. | Scaling-Up of Solid Orals: Granulation, Drying, Size Reduction, Blending, Compression, and Coating Technologies | |
Ramanathan | Process optimization of jet mills for metallurgical powder production | |
JP7476022B2 (en) | Toner manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932076 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19932076 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |