JP6208970B2 - Power generation method - Google Patents

Power generation method Download PDF

Info

Publication number
JP6208970B2
JP6208970B2 JP2013080672A JP2013080672A JP6208970B2 JP 6208970 B2 JP6208970 B2 JP 6208970B2 JP 2013080672 A JP2013080672 A JP 2013080672A JP 2013080672 A JP2013080672 A JP 2013080672A JP 6208970 B2 JP6208970 B2 JP 6208970B2
Authority
JP
Japan
Prior art keywords
palm
coal
mass
mesh
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013080672A
Other languages
Japanese (ja)
Other versions
JP2014202448A (en
Inventor
誠司 立野
誠司 立野
保史 井上
保史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2013080672A priority Critical patent/JP6208970B2/en
Publication of JP2014202448A publication Critical patent/JP2014202448A/en
Application granted granted Critical
Publication of JP6208970B2 publication Critical patent/JP6208970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

本発明は大量に生産され廃棄されているパーム椰子の種子殻を効率的に利用する、流動層ボイラーを用いた発電方法に関する。   The present invention relates to a power generation method using a fluidized bed boiler that efficiently uses palm coconut seed shells produced and discarded in large quantities.

二酸化炭素などの排出量の増加に伴う地球の温暖化現象が、近年問題化している。この主な原因として、石油や石炭等の化石燃料の利用が考えられている。また、これら化石燃料の埋蔵量にも限界があり、石油や石炭に代わる各種のエネルギー源が種々検討されている。
上記エネルギー源として、バイオマスから得られるバイオ燃料が検討されているが、その原料となるトウモロコシ、サトウキビ、小麦などは食用としても利用されるため、生態系および経済バランスの点で最善の手法とはいえない。木屑、廃材、サトウキビの搾りかす等の廃棄バイオマスから固体燃料を作ることも試みられているが、嵩密度が小さく貯蔵効率や搬送効率が悪い、単位容積当たりの発熱量が小さいなどの理由により、その利用は限られている。
In recent years, the global warming phenomenon associated with an increase in emissions of carbon dioxide and the like has become a problem. The main reason for this is the use of fossil fuels such as oil and coal. In addition, the reserves of these fossil fuels are limited, and various energy sources to replace oil and coal are being studied.
Biofuels derived from biomass are being considered as the above energy sources, but corn, sugarcane, wheat, etc., which are used as raw materials, are also used for food, so what is the best method in terms of ecosystem and economic balance? I can't say that. Attempts have also been made to produce solid fuel from waste biomass such as wood chips, waste materials, and sugarcane pomace, but due to reasons such as low bulk density, poor storage and transport efficiency, and low calorific value per unit volume. Its use is limited.

一方、自然界には、食用には適さないが比較的油脂成分の含有量が多い果実(殊に種子)が存在する。その果実(種子)から油脂成分を搾り、石鹸や工業製品などに利用されているものは多く、例えば、種子からの油脂がヒマシ油の原料として利用されている唐胡麻{別名 ヒマ(蓖麻)};種子からの油脂成分が石鹸や蝋燭の原料として利用される南京黄櫨(別名 トウハゼ、カンテラギ);種子から搾った油脂が石鹸や蝋燭として利用されている南洋油桐(別名 タイワンアブラギリ、ジャトロファまたはヤトロファ);菜種(通称 油菜);油脂が工業用、せっけん、マーガリンなどに利用されるヤシ(椰子)(ヤシ科植物の総称。ココヤシ亜科、アレカ亜科、トウ亜科など);食料や飼料となるほか、デンプン(コーンスターチ)や油、バイオエタノールの原料としても重要であるトウモロコシ等が挙げられる。
上記椰子としてココ椰子加えて、パーム椰子があり、当該パーム椰子の果肉から圧搾されて得られるパーム油は大豆油に次ぐ世界第二位の生産量であり、マーガリン、ショートニング、ケーキ、インスタントラーメン、石鹸、界面活性剤などとして用途が広がり、その生産量は拡大している。搾油された果肉からは種子が分離され、該種子はその殻を剥き、中の胚乳から更にパーム核油が搾取される。
この種子の殻はパーム椰子種子殻とよばれ、燃焼時の発熱量は4400kcal/Kgと木屑と比較して高く、ハードグローブ係数が14と小さく粉砕しにくいものであり、パーム椰子の生産量の増大と共に年間400万トン程のパーム椰子種子殻が発生し、その処理が問題となっている。該パーム椰子種子殻は活性炭などへの利用がなされているが、その利用量は少ない。大量に処理する手段の一つとして、石炭との混合燃焼による火力発電が検討され、実証試験が行われている。
On the other hand, in nature, there are fruits (especially seeds) that are not edible but have a relatively high content of fat and oil components. Many oils and fats are extracted from the fruit (seed) and used in soaps and industrial products. For example, sesame seeds are used as a raw material for castor oil. }; Nanjing yellow cocoon (also known as Tohaze and Kanteragi), which uses oil and fat from seeds as a raw material for soap and candles; Nanyang oil paulownia (also known as Thai Wan Abagiri, Jatropha or Jatropha); rapeseed (commonly known as oil rape); palm (coconut palm) (generic term for palm family plants) where fats and oils are used for industrial use, soap, margarine, etc .; In addition, starch (corn starch), oil, and corn, which is important as a raw material for bioethanol, can be mentioned.
In addition to coco palm as the above palm, there is palm palm, and palm oil obtained by pressing from the palm palm pulp is the world's second largest production after soybean oil, margarine, shortening, cake, instant ramen, Applications are expanding as soaps and surfactants, and their production is expanding. Seeds are separated from the oiled pulp, the seeds are shelled, and palm kernel oil is further extracted from the endosperm.
This seed husk is called palm coconut seed husk, and the calorific value at the time of combustion is 4400 kcal / Kg, which is higher than that of wood chips. The hard glove coefficient is 14 and it is difficult to pulverize. With the increase, about 4 million tons of palm coconut seed husks are generated annually, and the treatment becomes a problem. The palm palm seed shell is used for activated carbon and the like, but its usage is small. As one of the means for processing in large quantities, thermal power generation using mixed combustion with coal has been studied and a demonstration test has been conducted.

特開2003−268394号公報JP 2003-268394 A

パーム椰子種子殻は、上記の通り硬く、粉砕が困難なため、微粉炭火力発電での混焼には不向きとされていた。混焼するためには予め微粉砕して粒径を小さくした後、石炭粉砕機で石炭と粉砕混合する方式が採用されていた。
当該方法は、両者が微粉砕され燃焼性の点では優れた方法であるが、パーム椰子種子殻を微粉砕するには、ハンマーミルや振動スクリーンを組み合わせた装置が必要であり、設備が大掛かりになりそのエネルギーコストが大きくなるだけでなく、更に、振動スクリーンの短時間での目詰まりが起こり、安定した連続運転が困難となり、実用性に問題があった。また、従来の竪型ミルでは、パーム椰子種子殻の密度の軽さや弾性に起因して、効率的な粉砕を困難にしていた(特許文献1)。
Palm palm seed husks are hard as described above and difficult to grind, and therefore are not suitable for co-firing in pulverized coal thermal power generation. In order to perform co-firing, a method of pulverizing and reducing the particle size in advance and then pulverizing and mixing with coal using a coal pulverizer has been adopted.
This method is a fine method in which both are finely pulverized and excellent in combustibility. However, in order to finely pulverize palm coconut seed shells, a device combined with a hammer mill and a vibrating screen is required, which requires a large amount of equipment. This not only increases the energy cost, but also causes the vibration screen to be clogged in a short time, making it difficult to perform stable continuous operation, resulting in problems in practical use. In addition, in the conventional vertical mill, efficient pulverization has been difficult due to lightness and elasticity of palm palm seed shells (Patent Document 1).

本発明者らは、パーム椰子種子殻を微粉炭と混焼して発電する方法について鋭意研究を重ねた結果、当該パーム椰子種子殻の未破砕物を石炭と共に粉砕機に投入して、石炭を所定粒径の粗粉炭に粉砕すれば、パーム椰子種子殻は石炭ほど粉砕されず比較的大きな粒径のまま残存するものの均一な混合物となって相分離が起こりにくく、更に、該混合物は、流動層ボイラーの火炉で効率的に燃焼して、燃焼効率が高いのみならず、NOx、SOxの発生が増えないことを見出し、本発明に至った。   As a result of intensive research on a method of generating electricity by co-firing palm coconut seed husk with pulverized coal, the present inventors put unpulverized palm coconut seed husk together with coal into a pulverizer to determine the predetermined coal. When pulverized into coarse-grained coal with a particle size, palm coconut seed husks are not pulverized as much as coal and remain as a relatively large particle size, but become a uniform mixture and phase separation is unlikely to occur. It was found that not only combustion efficiency is high but also NOx and SOx generation does not increase by efficiently burning in a boiler furnace, and the present invention has been achieved.

本発明は、前記知見に基づいて到達されたものであって、本発明によれば、石炭と未破砕のパーム椰子種子殻とを、上記未破砕のパーム椰子種子殻が、上記石炭100質量部に対して15〜500質量部となる割合で粉砕機に投入して、石炭の粒度が、メッシュ5mm×5mmの篩い残分5質量%未満、メッシュ1.78mm×1.78mmの篩い残分30〜70質量%となるように共粉砕し、得られた共粉砕物を流動層ボイラーの火炉に直接供給して燃焼させ、発生した蒸気で発電することを特徴とする発電方法が提供される。
上記発電方法の発明において、
1)前記流動層ボイラーとして循環流動層ボイラーを使用し、前記未破砕のパーム椰子種子殻の一部を、該循環流動層ボイラーの排ガス中の固体粒子を回収し、火炉に循環する固体粒子循環路に粉砕することなく供給して、固体粒子と共に火炉に供給すること、
2)前記共粉砕に供する前に、未破砕のパーム椰子種子殻を、メッシュ30mm×30mm〜メッシュ50mm×50mmの篩い通過分を回収して使用すること、
3)未破砕のパーム椰子種子殻が、その貯蔵場において、水分含量を15質量%以上に維持するように貯蔵されたものであること、
が好適である。
The present invention has been achieved based on the above knowledge, and according to the present invention, coal and uncrushed palm coconut seed shell are combined with 100 parts by mass of coal. was charged into the crusher so that the ratio of from 15 to 500 parts by mass relative to the particle size of the coal, sieve residue less than 5 wt% of the mesh 5 mm × 5 mm, residue sieve mesh 1.78 mm × 1.78 mm There is provided a power generation method characterized by co-pulverizing to 30 to 70% by mass, supplying the obtained co-ground product directly to a furnace of a fluidized bed boiler and burning it, and generating electric power with the generated steam. .
In the invention of the power generation method,
1) A circulating fluidized bed boiler is used as the fluidized bed boiler, and a solid particle circulation in which a part of the uncrushed palm palm seed husk is recovered and solid particles in the exhaust gas of the circulating fluidized bed boiler are recovered and circulated to a furnace. Supply to the furnace without crushing and supply to the furnace with solid particles,
2) Before subjecting to the co-grinding, use uncrushed palm palm seed husks by collecting the sieve passage of mesh 30 mm × 30 mm to mesh 50 mm × 50 mm,
3) The uncrushed palm palm seed husks are stored so that the water content is maintained at 15% by mass or more in the storage area;
Is preferred.

本発明によれば、大量に生産廃棄されるパーム椰子種子殻を、石炭との混焼火力発電に使用でき、無駄に廃棄することなく大量に消費することが可能となり、しかも二酸化炭素抑制につながるものである。
また、石炭を通常の粉砕度に粉砕する程度の低エネルギーで共粉砕することで、均一な混合状態での供給が可能であり、パーム椰子種子殻を微粉化するため多大なエネルギーを費やす必要もなく、しかも、火炉に投入後の燃焼効率も高く、更に、NOx、SOxの発生量も増えず、安定して発電を行うことができ、工業的に極めて優れた発明である。
According to the present invention, palm coconut seed husks that are produced and discarded in large quantities can be used for co-fired thermal power generation with coal, and can be consumed in large quantities without being wasted. It is.
Also, by co-pulverizing coal with low energy enough to pulverize to a normal degree of pulverization, it is possible to supply in a uniform mixed state, and it is necessary to spend a lot of energy to pulverize palm palm seed shells In addition, the combustion efficiency after being introduced into the furnace is high, and the generation amount of NOx and SOx does not increase, and power generation can be performed stably, which is an industrially excellent invention.

流動層ボイラー発電装置を用いて本発明を実施する態様を模式的に示す図。The figure which shows typically the aspect which implements this invention using a fluidized-bed boiler electric power generating apparatus. 実施例1における発生蒸気量を示す図である。It is a figure which shows the amount of generated steam in Example 1. FIG. 実施例1におけるNOx、SOx、煤塵の発生量を示すグラフである。3 is a graph showing the amount of NOx, SOx, and dust generated in Example 1. 実施例2における発生蒸気量を示す図である。It is a figure which shows the amount of generated steam in Example 2. FIG. 実施例2におけるNOx、SOx、煤塵の発生量を示すグラフである。It is a graph which shows the generation amount of NOx, SOx, and dust in Example 2. 比較例1における発生蒸気量を示す図である。It is a figure which shows the amount of generated steam in the comparative example 1. 比較例1におけるNOx、SOx、煤塵の発生量を示すグラフである。6 is a graph showing the amount of NOx, SOx, and dust generated in Comparative Example 1.

本発明の流動層ボイラー発電装置は、従来公知の装置であり、それらを何ら制限なく使用することができる。
代表的な流動層ボイラー発電装置は、混合燃料を供給する供給口と下部に流動床を有する火炉;火炉から高温の燃焼ガスを供給して熱交換により蒸気を発生させる対流伝熱部とを主構成とするものである。好適には、火炉からの燃焼ガスに同伴して排出される粒子を捕集するサイクロンと、該サイクロンで分離された粒子を前記火炉に戻す固体粒子循環路とを備えた循環流動層ボイラー発電装置が好ましい。更に、固体粒子循環路には、石炭以外の燃料、例えばタイヤ片や未粉砕或いは一部粉砕したパーム椰子種子殻を投入して火炉で燃焼させるための副燃料投入口を備える態様が好ましい。図1に代表的な循環流動層ボイラー発電装置を示す。
The fluidized bed boiler power generator of the present invention is a conventionally known device, and can be used without any limitation.
A typical fluidized bed boiler power generator mainly includes a supply port for supplying mixed fuel and a furnace having a fluidized bed at the lower part; a convection heat transfer unit for supplying high-temperature combustion gas from the furnace and generating steam by heat exchange. It is to be configured. Preferably, a circulating fluidized bed boiler power generator comprising a cyclone for collecting particles discharged accompanying combustion gas from a furnace and a solid particle circulation path for returning the particles separated by the cyclone to the furnace. Is preferred. Furthermore, it is preferable that the solid particle circulation path has a sub fuel inlet for introducing fuel other than coal, for example, tire pieces or unpulverized or partially pulverized palm coconut seed shells and burning them in a furnace. FIG. 1 shows a typical circulating fluidized bed boiler power generator.

生産地から輸送されたパーム椰子種子殻は、パーム椰子房、パーム椰子ファイバー、石、木屑等の異物を含んでいることが多く、これらの異物は、後工程で目詰まりを起こし、更には石炭との共粉砕や流動層ボイラーでの燃焼を妨げるので予め除去することが好ましい。除去方法は特に限定されないが、メッシュ30mm×30mm〜メッシュ50mm×50mm(JIS規格3553、JIS記号CR−S)の篩に未破砕のパーム椰子種子殻をかけ、通過分を回収する方法が簡便であり、しかも、十分な除去効果を有する。
また、未破砕のパーム椰子種子殻は、貯蔵場における貯蔵の際には、その水分含量を15質量%以上に維持することが、発塵対策の点で好ましい。当該含有水分は、散水スプレーを貯蔵場に設置し、散水スプレーへの水の供給量で制御する方法が好適である。
Palm coconut seed husks transported from the production area often contain foreign substances such as palm coconut bunches, palm coconut fiber, stones, and wood chips. These foreign substances cause clogging in the subsequent process, and further coal It is preferable to remove them in advance because they hinder co-grinding and combustion in a fluidized bed boiler. The removal method is not particularly limited, but a simple method is to apply an uncrushed palm palm seed shell to a sieve of mesh 30 mm × 30 mm to mesh 50 mm × 50 mm (JIS standard 3553, JIS symbol CR-S) and collect the passing portion. Moreover, it has a sufficient removal effect.
In addition, it is preferable from the viewpoint of dust generation that the uncrushed palm palm seed husk is maintained at a water content of 15% by mass or more when stored in a storage area. The water content is preferably controlled by installing a water spray in a storage area and controlling the amount of water supplied to the water spray.

上記処理で得られたパーム椰子種子殻は、石炭と共に粉砕機に投入され共粉砕、混合が行われる。この共粉砕により、上記石炭の粒度が、メッシュ5mm×5mmの篩い残分5質量%未満、メッシュ1.78mm×1.78mmの篩い残分30〜70質量%、好ましくは、40〜60質量%となるように共粉砕される。
一方、粉砕されにくいパーム椰子種子殻は、上記共粉砕後の粒径が、石炭と比較して一回り大きく、2.5〜10mm程度の粉砕に止まり、また、粉砕後の形状は不均一である。パーム椰子種子殻は、上記程度の粉砕状態において、粗粉炭との混合状態は均一で相分離せず、安定した燃焼を行うことができ、しかも燃焼効率も高い。
共粉砕された石炭とパーム椰子種子殻との混合比率は、通常、石炭100質量部に対してパーム椰子種子殻15〜500質量部である。上記パーム椰子種子殻との混合比率が、500質量部を超えるとボイラーの発生総熱量が低下する傾向がある。
後述するように、当該パーム椰子種子殻は、排ガス中の固体粒子を回収し火炉に循環する固体循環路に粉砕せずに投入して、副燃料とすることができる。その場合、上記共粉砕に供されるパーム椰子種子殻と副燃料のパーム椰子種子殻との合計量が、上記範囲内に納まるように使用することが好ましい。また、この場合、副燃料として使用するパーム椰子種子殻の割合は、全量の30質量%以下となるように調整することが好ましい。
Palm coconut seed shells obtained by the above treatment are put into a pulverizer together with coal and co-ground and mixed. Due to this co-grinding, the coal has a particle size of less than 5% by mass of mesh 5 mm × 5 mm sieve residue, 30-70% by mass of mesh 1.78 mm × 1.78 mm sieve residue, preferably 40-60% by mass. It is co-ground so that
On the other hand, the palm coconut seed shell, which is hard to be crushed, has a particle size after co-grinding that is slightly larger than that of coal, which is only about 2.5 to 10 mm, and the shape after pulverization is not uniform. is there. In the pulverized state of the above level, the palm palm seed husks are uniformly mixed with the coarse coal, do not undergo phase separation, can perform stable combustion, and have high combustion efficiency.
The mixing ratio of the co-ground coal and palm palm seed shell is usually 15 to 500 parts by weight of palm palm seed shell with respect to 100 parts by weight of coal. When the mixing ratio with the palm palm seed shell exceeds 500 parts by mass, the total amount of heat generated by the boiler tends to decrease.
As will be described later, the palm palm seed husk can be used as a secondary fuel by collecting solid particles in the exhaust gas and throwing them into a solid circulation path circulating in a furnace without being pulverized. In that case, it is preferable to use it so that the total amount of the palm cocoon seed husk used for the co-grinding and the palm coconut seed husk of the auxiliary fuel may fall within the above range. Moreover, in this case, it is preferable to adjust the ratio of palm coconut seed shells used as the auxiliary fuel to be 30% by mass or less of the total amount.

共粉砕に使用する粉砕機としては、ハンマークラッシャー等の公知のクラッシャーが特に制限なく使用され、石炭の粗粉炭化の制御は、通常、粉砕速度とクリアランスの調整で行われる。
上記共粉砕後の石炭の粒度の測定は、粉砕後の共粉砕物を任意の量、例えば、1kg程度を10回サンプリングし、それぞれサンプリングした共粉砕物をメッシュ5mm×5mmの篩いとメッシュ1.78mm×1.78mmの篩いに掛け、それぞれの篩い分けした共粉砕物について、石炭とPKSに目視で選り分け、それぞれの重量を測定し、平均値を求める方法を採用した。
尚、上記の粉砕の程度において、パーム椰子種子殻は、前記したように、共粉砕後の粒径が石炭と比較して一回り大きく、上記メッシュ1.78mm×1.78mmの篩い通過分は、ほとんど無視できる程度に少ない。
従って、共粉砕物中の石炭の粒度について、メッシュ5mm×5mmの篩い残より選別された石炭の質量(C5R)、メッシュ1.78mm×1.78mmの篩い残より選別された石炭の質量(C1.78R)、メッシュ1.78mm×1.78mmの篩い通過分の石炭の質量(C1.78P)としたとき、石炭のメッシュ5mm×5mmの篩い残の割合(CR)、及び、メッシュ1.78mm×1.78mmの篩い残の割合(CR1.78)は、以下の式で求めることができる。
CR=C5R/(C5R+C1.78R+C1.78P)×100
CR1.78=C1.78R/(C5R+C1.78R+C1.78P)×100
また、共粉砕物中のパーム椰子種子殻の粒度について、メッシュ5mm×5mmの篩い残より選別されたパーム椰子種子殻の質量(P5R)、メッシュ1.78mm×1.78mmの篩い残より選別されたパーム椰子種子殻の質量(P1.78R)としたとき、パーム椰子種子殻のメッシュ5mm×5mmの篩い残の割合(PR)、及び、メッシュ1.78mm×1.78mmの篩い残の割合(PR1.78)は、以下の式で求めることができる。
PR=P5R/(P5R+P1.78R)×100
PR1.78=P1.78R/(P5R+P1.78R)×100
As a pulverizer used for co-pulverization, a known crusher such as a hammer crusher is used without particular limitation, and control of coal coarse powder carbonization is usually performed by adjusting the pulverization speed and clearance.
The measurement of the particle size of the coal after the co-grinding is performed by sampling the co-pulverized product after pulverization in an arbitrary amount, for example, about 1 kg, 10 times. A method of obtaining an average value by applying a sieve of 78 mm × 1.78 mm and visually selecting the co-pulverized product obtained by sieving into coal and PKS, measuring the respective weights, and the like was adopted.
In addition, in the above-mentioned degree of pulverization, as described above, the palm coconut seed shell has a particle size after co-grinding that is slightly larger than that of coal, and the mesh passage of 1.78 mm × 1.78 mm is as follows. , Almost negligible.
Therefore, regarding the particle size of coal in the co-ground product, the mass of coal selected from the mesh residue of 5 mm × 5 mm (C 5R ), the mass of coal selected from the mesh residue of 1.78 mm × 1.78 mm ( C 1.78R ), when the mass of coal passing through a sieve with a mesh of 1.78 mm × 1.78 mm (C 1.78P ), the ratio of the remaining mesh of the coal mesh 5 mm × 5 mm (CR 5 ), and The ratio (CR 1.78 ) of the sieve residue of 1.78 mm × 1.78 mm mesh can be obtained by the following equation.
CR 5 = C 5R / (C 5R + C 1.78R + C 1.78P ) × 100
CR 1.78 = C 1.78R / (C 5R + C 1.78R + C 1.78P ) × 100
Moreover, about the particle size of the palm palm seed shell in a co-ground material, the mass (P 5R ) of the palm palm seed shell selected from the mesh residue of 5 mm × 5 mm, and the screen residue of the mesh 1.78 mm × 1.78 mm When the mass of the palm palm seed husk (P 1.78R ) is taken, the ratio of the palm cocoon seed shell mesh 5 mm × 5 mm sieve residue (PR 5 ) and the mesh 1.78 mm × 1.78 mm sieve residue The ratio (PR 1.78 ) can be obtained by the following equation.
PR 5 = P 5R / (P 5R + P 1.78R ) × 100
PR 1.78 = P 1.78R / (P 5R + P 1.78R ) × 100

共粉砕・混合された石炭とパーム椰子種子殻との混合燃料は、一旦燃料バンカーに貯蔵し、バンカーの下部に位置する給炭器から適宜流動層ボイラーの火炉下部に投入され燃焼に供することが好ましい。
本発明において、流動層ボイラーや蒸気管等の蒸気発生の構造、装置、部材、更には該蒸気による発電については、広く知られている公知の技術を何ら制限なく採用できる。
The mixed fuel of co-ground and mixed coal and palm coconut seed husks is temporarily stored in a fuel bunker and can be appropriately put into the lower part of the fluidized bed boiler furnace for combustion by a coal feeder located at the bottom of the bunker. preferable.
In the present invention, well-known and well-known techniques can be employed without any limitation with respect to the structure, devices, and members of steam generation such as fluidized bed boilers and steam pipes, as well as power generation using the steam.

本発明は、上記の通りの混合燃料を、直接火炉の流動層部へ供給して燃焼させるものであるが、当該燃焼時に、循環流動層ボイラーの排ガス中の固体粒子を回収し火炉に循環する固体循環路に、未破砕のパーム椰子種子殻を粉砕することなく副燃料として供給して、固体粒子と共に火炉に投入してもよい。また、上記固体粒子循環路への供給は、パーム椰子種子殻の他、例えばタイヤ片などの他の副燃料も使用することができる。   In the present invention, the mixed fuel as described above is directly supplied to the fluidized bed portion of the furnace and combusted. During the combustion, the solid particles in the exhaust gas of the circulating fluidized bed boiler are collected and circulated to the furnace. The uncrushed palm palm seed husk may be supplied to the solid circulation path as an auxiliary fuel without being crushed, and may be put into the furnace together with the solid particles. In addition to the palm coconut seed shell, other auxiliary fuel such as a tire piece can be used for the supply to the solid particle circulation path.

以下、本発明を、実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not restrict | limited at all by these Examples. In addition, not all combinations of features described in the embodiments are essential to the solution means of the present invention.

実施例1
図1に示す循環流動層ボイラーを使用して、パーム椰子種子殻の割合を、石炭100質量部に対して22質量部とし、ハンマークラッシャーで共粉砕した粉砕物を循環流動層ボイラーの火炉に直接供給して燃焼させた際の結果を図2、図3に示す。
粉砕機は、能力150トン/hrのハンマークラッシャーを使用し、石炭とパーム椰子種子殻を35トン/hrの粉砕量で共粉砕した。共粉粉砕物中の石炭とパーム椰子種子殻の比率は、石炭100質量部に対してパーム椰子種子殻は、20質量部であった。
共粉砕物中の石炭は、メッシュ5mm×5mmの篩い残分が1.5質量%であり、メッシュ1.78mm×1.78mmの篩い残分が52質量%であった。その際のパーム椰子種子殻は、石炭より一回り大きく、メッシュ5mm×5mmの篩い残分が38質量%であった。
図2に示すように、パーム椰子種子殻を混焼した場合、石炭専焼の場合と同様に所定の蒸気量を得ることができ、図3に示すように、NOx、SOx、煤塵の発生量に大きな変化がないことが確認できた。
尚、本実施例においては、発生するSOxのほとんどがSOであることから、図3にはSOxのうちSOの測定値のみを示した。以後の実施例及び比較例においても、同様に、SOの測定値のみを示すこととした。
Example 1
Using the circulating fluidized bed boiler shown in FIG. 1, the palm palm seed shell ratio is 22 parts by mass with respect to 100 parts by mass of coal, and the pulverized material co-ground with a hammer crusher is directly applied to the circulating fluidized bed boiler furnace. The results when supplied and burned are shown in FIGS.
The pulverizer used a hammer crusher with a capacity of 150 tons / hr, and co-ground coal and palm palm seed shells at a pulverization amount of 35 tons / hr. The ratio of coal and palm palm seed shell in the co-pulverized product was 20 parts by mass of palm palm seed shell with respect to 100 parts by mass of coal.
The coal in the co-ground product had a mesh residue of 5 mm × 5 mm of 1.5% by mass, and a mesh residue of 1.78 mm × 1.78 mm was 52% by mass. The palm palm seed shell at that time was one size larger than coal, and the mesh residue of 5 mm × 5 mm was 38% by mass.
As shown in FIG. 2, when palm palm seed husks are co-fired, a predetermined amount of steam can be obtained in the same manner as in the case of coal-only firing, and as shown in FIG. 3, the amount of NOx, SOx and dust generated is large. It was confirmed that there was no change.
In the present embodiment, since most of the SOx generated is SO 2, in FIG. 3 shows only the measurement values of SO 2 of the SOx. Similarly, in the following examples and comparative examples, only the measured value of SO 2 was shown.

実施例2
図1に示す循環式流動層ボイラーを使用して、パーム椰子種子殻の割合を、石炭100質量部に対して60質量部とし、ハンマークラッシャーで共粉砕した粉砕物を循環流動層ボイラーの火炉に直接供給して燃焼させた際の結果を図4、図5に示す。
粉砕機は、実施例1と同様のハンマークラッシャーを使用し、石炭とパーム椰子種子殻を35トン/hrの粉砕量で共粉砕した。共粉粉砕物中の石炭とパーム椰子種子殻の比率は、石炭100質量部に対してパーム椰子種子殻は、57質量部であった。
共粉砕物中の石炭は、メッシュ5mm×5mmの篩い残分が1.2質量%であり、メッシュ1.78mm×1.78mmの篩い残分が49質量%であった。その際のパーム椰子種子殻は、石炭より一回り大きく、メッシュ5mm×5mmの篩い残分が42質量%であった。
図4に示すように、石炭、パーム椰子種子殻およびタイヤチップを混焼した場合、石炭およびタイヤチップを混焼した場合と同様に所定の蒸気量を得ることができ、図5に示すように、NOx、SOx、煤塵の発生量に大きな変化がないことが確認できた。
Example 2
Using the circulating fluidized bed boiler shown in FIG. 1, the ratio of the palm palm seed shell is 60 parts by mass with respect to 100 parts by mass of coal, and the pulverized material co-ground with a hammer crusher is used as the furnace of the circulating fluidized bed boiler. The results when directly supplied and burned are shown in FIGS.
As the pulverizer, the same hammer crusher as in Example 1 was used, and coal and palm palm seed husk were co-ground at a pulverization amount of 35 tons / hr. The ratio of coal and palm palm seed husk in the co-pulverized product was 57 parts by mass of palm palm seed husk with respect to 100 parts by mass of coal.
The coal in the co-ground product had a mesh residue of 5 mm × 5 mm of 1.2% by mass and a mesh residue of 1.78 mm × 1.78 mm was 49% by mass. The palm palm seed shell at that time was one size larger than coal, and the mesh residue of 5 mm × 5 mm was 42% by mass.
As shown in FIG. 4, when coal, palm coconut seed husks and tire chips are co-fired, a predetermined amount of steam can be obtained in the same manner as when coal and tire chips are co-fired. As shown in FIG. It was confirmed that there was no significant change in the amount of SOx and SOx generated.

実施例3
図1に示す循環式流動層ボイラーを使用して、パーム椰子種子殻の割合を、石炭100質量部に対して60質量部とし、ハンマークラッシャーで共粉砕した粉砕物を循環流動層ボイラーの火炉に直接供給して燃焼させた。
粉砕機は、実施例1と同様のハンマークラッシャーを使用し、石炭とパーム椰子種子殻を35トン/hrの粉砕量で共粉砕した。石炭の粒度を変えたときの影響を確認するため、石炭の粗粉度を粗くした。共粉粉砕物中の石炭とパーム椰子種子殻の比率は、石炭100質量部に対してパーム椰子種子殻は、58質量部であった。
共粉砕物中の石炭は、メッシュ5mm×5mmの篩い残分が2.3質量%であり、メッシュ1.78mm×1.78mmの篩い残分が58質量%であった。その際のパーム椰子種子殻は、石炭より一回り大きく、メッシュ5mm×5mmの篩い残分が45質量%であった。
実施例2のときと同様に所定の蒸気量を得ることができ、NOx、SOx、煤塵の発生量に大きな変化がないことが確認できた。
Example 3
Using the circulating fluidized bed boiler shown in FIG. 1, the ratio of the palm palm seed shell is 60 parts by mass with respect to 100 parts by mass of coal, and the pulverized material co-ground with a hammer crusher is used as the furnace of the circulating fluidized bed boiler. Direct feeding and burning.
As the pulverizer, the same hammer crusher as in Example 1 was used, and coal and palm palm seed husk were co-ground at a pulverization amount of 35 tons / hr. In order to confirm the effect of changing the coal particle size, the coarseness of the coal was increased. The ratio of coal and palm palm seed shell in the co-pulverized product was 58 parts by mass of palm palm seed shell with respect to 100 parts by mass of coal.
The coal in the co-ground product had a mesh residue of 5 mm × 5 mm of 2.3% by mass and a mesh residue of 1.78 mm × 1.78 mm was 58% by mass. The palm palm seed shell at that time was one size larger than coal, and the sieve residue of 5 mm × 5 mm mesh was 45% by mass.
As in the case of Example 2, it was possible to obtain a predetermined amount of steam, and it was confirmed that there was no significant change in the amount of NOx, SOx, and dust generation.

実施例4
図1に示す循環式流動層ボイラーを使用して、パーム椰子種子殻の割合を、石炭100質量部に対して60質量部とし、ハンマークラッシャーで共粉砕した粉砕物を循環流動層ボイラーの火炉に直接供給して燃焼させた。
粉砕機は、実施例1と同様のハンマークラッシャーを使用し、石炭とパーム椰子種子殻を35トン/hrの粉砕量で共粉砕した。石炭の粒度を変えたときの影響を確認するため、石炭の粗粉度を細かくした。共粉粉砕物中の石炭とパーム椰子種子殻の比率は、石炭100質量部に対してパーム椰子種子殻は、55質量部であった。
共粉砕物中の石炭は、メッシュ5mm×5mmの篩い残分が0.6質量%であり、メッシュ1.78mm×1.78mmの篩い残分が43質量%であった。その際のパーム椰子種子殻は、石炭より一回り大きく、メッシュ5mm×5mmの篩い残分が38質量%であった。
実施例2のときと同様に所定の蒸気量を得ることができ、NOx、SOx、煤塵の発生量に大きな変化がないことが確認できた。
Example 4
Using the circulating fluidized bed boiler shown in FIG. 1, the ratio of the palm palm seed shell is 60 parts by mass with respect to 100 parts by mass of coal, and the pulverized material co-ground with a hammer crusher is used as the furnace of the circulating fluidized bed boiler. Direct feeding and burning.
As the pulverizer, the same hammer crusher as in Example 1 was used, and coal and palm palm seed husk were co-ground at a pulverization amount of 35 tons / hr. In order to confirm the effect of changing the coal particle size, the coarseness of the coal was refined. The ratio of coal to palm coconut seed shell in the co-pulverized product was 55 parts by mass with respect to 100 parts by mass of coal.
The coal in the co-ground product had a mesh residue of 5 mm × 5 mm of 0.6% by mass and a mesh residue of 1.78 mm × 1.78 mm was 43% by mass. The palm palm seed shell at that time was one size larger than coal, and the mesh residue of 5 mm × 5 mm was 38% by mass.
As in the case of Example 2, it was possible to obtain a predetermined amount of steam, and it was confirmed that there was no significant change in the amount of NOx, SOx, and dust generation.

比較例1
比較例として、図1に示す循環流動層ボイラーを使用して、石炭100質量部に対して22質量部の未粉砕のパーム椰子種子殻を粉砕することなく、固体粒子循環炉から副燃料として、固体粒子と共に火炉に投入し燃料させた際の結果を図6、図7に示す。
主燃料は、石炭のみとし、粉砕機は、実施例1と同様のハンマークラッシャーを使用し、石炭を30トン/hrの粉砕量で粉砕した。石炭の粒径は、メッシュ5mm×5mmの篩い残分が1.8質量%、メッシュ1.78mm×1.78mmの篩い残分が55質量%であった。
図6に示すように、パーム椰子種子殻を固体粒子循環路から投入した場合、石炭専焼の場合と同様に所定の蒸気量を得ることができたが、図7に示すように、SOx、煤塵の発生量は大きな変化がないが、NOxは、約30ppm上昇した。
Comparative Example 1
As a comparative example, using the circulating fluidized bed boiler shown in FIG. 1, without crushing 22 parts by mass of unpulverized palm palm seed shells with respect to 100 parts by mass of coal, as a secondary fuel from the solid particle circulating furnace, FIGS. 6 and 7 show the results when the fuel is introduced into the furnace together with the solid particles.
The main fuel was only coal, and the pulverizer used the same hammer crusher as in Example 1 to pulverize the coal at a pulverization amount of 30 tons / hr. As for the particle size of the coal, the sieve residue of mesh 5 mm × 5 mm was 1.8 mass%, and the sieve residue of mesh 1.78 mm × 1.78 mm was 55 mass%.
As shown in FIG. 6, when palm palm seed husks were introduced from the solid particle circulation path, a predetermined amount of steam could be obtained in the same manner as in the case of coal-fired, but as shown in FIG. The amount of NOx generated did not change greatly, but NOx increased by about 30 ppm.

Claims (4)

石炭と未破砕のパーム椰子種子殻とを、上記未破砕のパーム椰子種子殻が、上記石炭100質量部に対して15〜500質量部となる割合で粉砕機に投入して、該石炭の粒度が、メッシュ5mm×5mmの篩い残分5質量%未満、メッシュ1.78mm×1.78mmの篩い残分30〜70質量%となるように共粉砕し、得られた共粉砕物を流動層ボイラーの火炉に直接供給して燃焼させ、発生した蒸気で発電することを特徴とする発電方法。 The coal and uncrushed palm palm seed husk are charged into a pulverizer at a ratio of 15 to 500 parts by mass with respect to 100 parts by mass of the coal. Are co-pulverized so that the mesh residue is less than 5% by mass of 5 mm × 5 mm and the residue of 30-70% by mass of mesh 1.78 mm × 1.78 mm is obtained, and the obtained co-pulverized product is fluidized bed boiler. A power generation method characterized in that power is directly supplied to the furnace and burned, and power is generated with the generated steam. 前記流動層ボイラーとして循環流動層ボイラーを使用し、前記未破砕のパーム椰子種子殻の一部該循環流動層ボイラーの排ガス中の固体粒子を回収し火炉に循環する固体粒子循環路に粉砕することなく供給して、固体粒子と共に火炉に供給する請求項1に記載の発電方法。 A circulating fluidized bed boiler is used as the fluidized bed boiler , and a part of the uncrushed palm coconut seed shell and solid particles in the exhaust gas of the circulating fluidized bed boiler are collected and pulverized into a solid particle circulation path circulating in a furnace. The power generation method according to claim 1, wherein the electric power is supplied without being supplied to the furnace together with the solid particles. 前記共粉砕に供する前に、未破砕のパーム椰子種子殻を、メッシュ30mm×30mm〜メッシュ50mm×50mmの篩い通過分を回収して使用する請求項1又は2に記載の発電方法。 The power generation method according to claim 1 or 2 , wherein an uncrushed palm coconut seed shell is collected and used after passing through a sieve of mesh 30 mm x 30 mm to mesh 50 mm x 50 mm before being subjected to the co-grinding. 未破砕のパーム椰子種子殻が、その貯蔵場において、水分含量を15質量%以上に維持するように貯蔵されたものである請求項1〜の何れか一項に記載の発電方法。 The power generation method according to any one of claims 1 to 3 , wherein the uncrushed palm palm seed husk is stored so as to maintain a water content of 15 mass% or more in the storage field.
JP2013080672A 2013-04-08 2013-04-08 Power generation method Active JP6208970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013080672A JP6208970B2 (en) 2013-04-08 2013-04-08 Power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080672A JP6208970B2 (en) 2013-04-08 2013-04-08 Power generation method

Publications (2)

Publication Number Publication Date
JP2014202448A JP2014202448A (en) 2014-10-27
JP6208970B2 true JP6208970B2 (en) 2017-10-04

Family

ID=52353042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080672A Active JP6208970B2 (en) 2013-04-08 2013-04-08 Power generation method

Country Status (1)

Country Link
JP (1) JP6208970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826280A (en) * 2018-06-29 2018-11-16 无锡华光锅炉股份有限公司 A kind of circulating fluidized bed boiler using Indonesia coal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6198640B2 (en) * 2014-03-04 2017-09-20 株式会社神戸製鋼所 Petroleum coke blowing blast furnace operation method
CN104501200B (en) * 2014-11-19 2017-06-13 华中科技大学 Biomass micron fuel high-temperature cleaning combustion method based on adiabatic combustion condition
CN106200585B (en) * 2016-08-09 2018-10-16 韩连富 A kind of biomass power generation system and method based on Internet of Things
CN109140431B (en) * 2018-08-08 2020-06-23 百色百矿发电有限公司 Ignition method of circulating fluidized bed boiler
MY188677A (en) * 2019-06-04 2021-12-22 Erex Co Ltd Biomass fuel producing method and biomass fuel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05246550A (en) * 1992-03-04 1993-09-24 Mitsubishi Heavy Ind Ltd Fine particle storing device
JP2000240920A (en) * 1999-02-19 2000-09-08 Hitachi Zosen Corp Rdf combustion method and apparatus
JP2002349821A (en) * 2001-05-30 2002-12-04 Hitachi Ltd Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler
JP2005291539A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Preparatory treatment of biomass fuel, mixed combustion method, and mixed combustion device
JP4367768B2 (en) * 2004-03-31 2009-11-18 バブコック日立株式会社 Biomass fuel combustion method and apparatus
JP4946518B2 (en) * 2007-03-05 2012-06-06 東京電力株式会社 Solid biomass fuel supply system
JP4919844B2 (en) * 2007-03-16 2012-04-18 バブコック日立株式会社 Fuel adjustment device and fuel adjustment method
JP2009114296A (en) * 2007-11-06 2009-05-28 Akio Yamamoto Method for utilizing vegetable biomass and method for producing pellet charcoal
JP2009243812A (en) * 2008-03-31 2009-10-22 Chubu Electric Power Co Inc Boiler for power generation, and management method of composite fuel for boiler for power generation
JP5143037B2 (en) * 2009-02-02 2013-02-13 中国電力株式会社 Woody biomass supply method to fluidized bed boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826280A (en) * 2018-06-29 2018-11-16 无锡华光锅炉股份有限公司 A kind of circulating fluidized bed boiler using Indonesia coal

Also Published As

Publication number Publication date
JP2014202448A (en) 2014-10-27

Similar Documents

Publication Publication Date Title
JP6208970B2 (en) Power generation method
Vera et al. Experimental and economic study of a gasification plant fuelled with olive industry wastes
Makwana et al. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal
KR101772165B1 (en) Method for manufacturing biocrude-oil by torrefaction and fast pyrolysis
Noor et al. Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste
JP5432554B2 (en) Gasification system
Fono-Tamo et al. Characterisation of pulverised palm kernel shell for sustainable waste diversification
JP2008506086A (en) A system that separates heavy and light ash to reduce the content of unburned matter
Dziedzic et al. Impact of grinding coconut shell and agglomeration pressure on quality parameters of briquette
JPWO2018096663A1 (en) Biomass raw material decomposition apparatus and method for producing biomass pellet fuel
WO2008111766A1 (en) Apparatus and method for making fuel using forest residue
Fantozzi et al. Biomass feedstock for IGCC systems
JP2012177485A (en) Operation method of coal boiler and boiler facility
JP2016065201A (en) Fuel pellet and method for producing the same
KR20200041557A (en) Fried crumbs-based pellet manufacturing apparatus capable of recovering waste cooking oil and method using the same
WO2007066120A1 (en) Electrical power generation and oilseed processing method
KR20170089748A (en) Biomass molded fuel with high calorific value, apparatus and manufacturing method for thermoelectric power plant and steelworks using vegetable Oil generation by-product
JP2014181887A (en) Wet fuel fluid bed drying device and its drying method
JP2012046662A (en) Method for producing solid fuel and vertical roller mill
Martinov et al. Investigation of maize cobs crushing: Preparation for use as a fuel
León et al. Carya illinoinensis Husk Biomass Pellets as a Bioenergy Source in a Circular Economy Context
JP2012214578A (en) Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
RU2666417C2 (en) Installation for generation gas production
Pareek et al. Gasification of crop residue briquettes in an open core down-draft gasifier
Varshney et al. Experimental investigation on a biomass briquette based throatless downdraft gasifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170908

R150 Certificate of patent or registration of utility model

Ref document number: 6208970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150