JP2002349821A - Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler - Google Patents

Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler

Info

Publication number
JP2002349821A
JP2002349821A JP2001161589A JP2001161589A JP2002349821A JP 2002349821 A JP2002349821 A JP 2002349821A JP 2001161589 A JP2001161589 A JP 2001161589A JP 2001161589 A JP2001161589 A JP 2001161589A JP 2002349821 A JP2002349821 A JP 2002349821A
Authority
JP
Japan
Prior art keywords
combustion
fluidized bed
powder
solid fuel
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001161589A
Other languages
Japanese (ja)
Inventor
Hirofumi Okazaki
洋文 岡崎
Masayuki Taniguchi
正行 谷口
Kenji Yamamoto
研二 山本
Shunichi Tsumura
俊一 津村
Yoshitaka Takahashi
芳孝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP2001161589A priority Critical patent/JP2002349821A/en
Publication of JP2002349821A publication Critical patent/JP2002349821A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent corrosion of a heat transfer pipe, increase a combustion gas temperature, increase thermal energy which can be recovered from a combustion device, and remodel a pulverized coal fired boiler into a boiler suitable for a multi-fuel combustion with the solid fuel and coal, in a method and a device to effect mixed combustion of solid fuel, containing much chloride, such as solid waste and biomass, and coal. SOLUTION: Solid fuel, such as solid waste and biomass, is burnt at a fluidized bed 11, situated at the lower part (the upper stream side) of a fuel device 10 at temperature lower than 800 deg.C suitable for desalting. Fuel, like coal, not containing much chloride is burnt at a powder combustion part 12 at the upper part (the downstream sided) of a combustion furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ごみなどの固
形廃棄物や木材や木屑などのバイオマスに代表される、
塩素系化合物を含む固体燃料と石炭を混合燃焼するのに
適した燃焼装置と燃焼方法、及び微粉炭ボイラを前記固
体燃料との混合燃焼に適した燃焼装置に改造する方法に
関する。
TECHNICAL FIELD The present invention relates to solid waste such as municipal waste and biomass such as wood and wood chips.
The present invention relates to a combustion apparatus and a combustion method suitable for mixing and burning a solid fuel containing a chlorine-based compound and coal, and a method for converting a pulverized coal boiler into a combustion apparatus suitable for mixed combustion with the solid fuel.

【0002】[0002]

【従来の技術】固形廃棄物は、家庭ごみ,事業所ごみ,
地方自治体及び事業所の浄化槽汚泥,工場で処理された
有機成分を含む廃棄物、例えば梱包材,古タイヤ,廃ケ
ーブル,廃プラスチック材,廃基板材等、多種多様であ
る。これらの固形廃棄物は塩素化合物を含み、燃焼によ
り塩化水素(HCl)が発生する。塩化水素は伝熱管な
どを腐食する。この塩化水素を除去する方法として例え
ば、特公昭60-25179号公報には、燃焼させた後の排ガス
中に生石灰(CaO)や消石灰(Ca(OH)2)を噴霧
し、塩化カルシウム(CaCl2)にして、フィルターで
捕集する方法が示される。脱塩剤として石灰石(CaC
3)を用いることもよく知られている。
2. Description of the Related Art Solid waste is household waste, business waste,
There are a wide variety of wastewater containing organic components treated in septic tanks of local governments and offices, and organic components processed in factories, such as packaging materials, old tires, waste cables, waste plastic materials, waste substrate materials, and the like. These solid wastes contain chlorine compounds and generate hydrogen chloride (HCl) by combustion. Hydrogen chloride corrodes heat transfer tubes. For example, Japanese Patent Publication No. 60-25179 discloses a method of removing hydrogen chloride by spraying quick lime (CaO) or slaked lime (Ca (OH) 2 ) into the exhaust gas after burning to remove calcium chloride (CaCl 2). ) Shows a method of collecting with a filter. Limestone (CaC
The use of O 3 ) is also well known.

【0003】脱塩剤には、アルカリ金属(Na,K,L
i等)の酸化物又は炭酸塩,アルカリ土類金属の酸化物
又は炭酸塩が用いられる。一般的にはアルカリ土類金属
の化合物である石灰石や消石灰,生石灰が使用される。
カルシウム化合物などの脱塩剤の最適な反応温度は45
0〜650℃であり、高温になると塩化カルシウムなど
の脱塩後の生成物は分解し、塩素がガスとして放出され
てしまう。このため、脱塩に適した燃焼方法として約8
00℃以下で安定燃焼が可能な流動層燃焼が主流であ
る。
[0003] Desalting agents include alkali metals (Na, K, L).
The oxides or carbonates of i) and alkaline earth metal oxides or carbonates are used. Generally, limestone, slaked lime, and quicklime which are compounds of alkaline earth metals are used.
The optimal reaction temperature for desalting agents such as calcium compounds is 45
When the temperature is high, the product after desalination such as calcium chloride is decomposed and chlorine is released as a gas. For this reason, about 8 combustion methods are suitable for desalination.
Fluidized bed combustion, which enables stable combustion at a temperature of 00 ° C. or less, is mainly used.

【0004】また、木材,モミ殻などに代表されるバイ
オマスは、自然エネルギーを利用した再生燃料のため、
地球上の炭酸ガス量の抑制が可能な燃料として注目され
ている。しかし、バイオマスは塩化物などのハロゲン類
を石炭よりも多く含んでいる。このため、石炭の代替燃
料とする場合、塩素や臭素,フッ素などのハロゲン元素
の固定化が課題となる。また、バイオマス燃料は季節毎
の供給量が異なるため、一定の発電量を得るには石炭と
の混合燃焼(以下、混焼という)が望ましい。この場
合、石炭と同じバーナからバイオマスを供給する方法が
一般的である。
[0004] Biomass, such as wood and fir husks, is a renewable fuel using natural energy.
It is attracting attention as a fuel that can control the amount of carbon dioxide on the earth. However, biomass contains more halogens such as chlorides than coal. For this reason, when it is used as an alternative fuel to coal, immobilization of halogen elements such as chlorine, bromine, and fluorine becomes a problem. In addition, since the supply amount of biomass fuel varies from season to season, mixed combustion with coal (hereinafter referred to as co-firing) is desirable to obtain a constant power generation amount. In this case, a method of supplying biomass from the same burner as coal is common.

【0005】[0005]

【発明が解決しようとする課題】上述の従来技術では、
固形廃棄物とバイオマスの少なくとも一方からなる固体
燃料と石炭とを混焼する場合に流動層燃焼を用いると、
燃焼ガスの温度は約800℃以下と低いため、熱回収で得
られる蒸気温度は低く、熱効率を上げることが出来な
い。また、通常の石炭燃焼で用いられる粉体燃焼(浮遊
燃焼)方式で前記の固体燃料と石炭を混焼すると、燃焼
ガスの温度は1200℃以上とできるため熱効率は上が
る。しかし、固形廃棄物やバイオマスに含まれる塩化物
などのハロゲン化物質から塩素などのハロゲン元素がガ
ス中に放出される。塩素等のハロゲン元素は塩化水素な
どの形で伝熱管を腐食する問題点がある。燃焼ガス中の
塩化水素濃度を抑制するには、例えば、バイオマスと石
炭との混焼の場合、発熱量中のバイオマスの割合を5〜
10%以下に制限する必要がある。
In the above-mentioned prior art,
When using fluidized bed combustion when co-firing coal and solid fuel consisting of at least one of solid waste and biomass,
Since the temperature of the combustion gas is as low as about 800 ° C. or less, the steam temperature obtained by heat recovery is low, and the thermal efficiency cannot be increased. Further, when the solid fuel and coal are co-fired in the powder combustion (floating combustion) method used in ordinary coal combustion, the temperature of the combustion gas can be set to 1200 ° C. or higher, so that the thermal efficiency increases. However, halogen elements such as chlorine are released into gas from halogenated substances such as chloride contained in solid waste and biomass. The halogen element such as chlorine has a problem of corroding the heat transfer tube in the form of hydrogen chloride or the like. In order to suppress the concentration of hydrogen chloride in the combustion gas, for example, in the case of co-firing of biomass and coal, the proportion of biomass in the calorific value should be 5 to 5.
It must be limited to 10% or less.

【0006】本発明の目的は、固形廃棄物とバイオマス
の少なくとも一方からなる固体燃料と石炭を混焼するに
あたり、固形廃棄物やバイオマスに含まれる塩化物など
のハロゲン化物質を固定化し、かつ、伝熱管の腐食を低
減し、かつ、燃焼装置から熱エネルギーを蒸気として得
るにあたり、伝熱管周囲の燃焼ガスの温度を高め、熱効
率を高めることができる燃焼装置及び燃焼方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to fix and transfer halogenated substances such as chlorides contained in solid waste and biomass when co-firing coal with solid fuel comprising at least one of solid waste and biomass. An object of the present invention is to provide a combustion device and a combustion method that can increase the temperature of combustion gas around a heat transfer tube and increase thermal efficiency when reducing corrosion of a heat tube and obtaining thermal energy as steam from the combustion device.

【0007】さらに、本発明の他の目的は、前記流動層
燃焼部や粉体燃焼部での未燃分やダイオキシン類の発生
を抑制する燃焼方法を提供することにある。
Still another object of the present invention is to provide a combustion method for suppressing the generation of unburned components and dioxins in the fluidized bed combustion section and the powder combustion section.

【0008】さらに、本発明の他の目的は、微粉炭ボイ
ラを固形廃棄物とバイオマスの少なくとも一方からなる
固体燃料と微粉炭との混合燃焼が可能なボイラに改造す
るに際し、固形廃棄物やバイオマスに含まれる塩化物な
どのハロゲン化物質を固定化し、かつ、伝熱管の腐食を
低減し、かつ、燃焼装置から熱エネルギーを蒸気として
得るにあたり、伝熱管周囲の燃焼ガスの温度を高め、熱
効率を高めることができるボイラへの改造方法を提供す
ることにある。
Another object of the present invention is to convert a pulverized coal boiler to a boiler capable of mixing and burning pulverized coal with a solid fuel comprising at least one of solid waste and biomass. In fixing halogenated substances, such as chlorides, contained in the heat transfer tube, reducing the heat transfer tube corrosion, and obtaining heat energy as steam from the combustion device, the temperature of the combustion gas around the heat transfer tube was raised to improve the heat efficiency. It is an object of the present invention to provide a boiler conversion method that can be enhanced.

【0009】[0009]

【課題を解決するための手段】本発明の燃焼装置は、固
形廃棄物とバイオマスの少なくとも一方からなる固体燃
料の流動層燃焼部と、前記流動層燃焼部の下流側に設け
られ、前記流動層燃焼部の燃焼ガスが流入する微粉炭の
粉体燃焼部と、前記粉体燃焼部の下流側に設けられ、前
記粉体燃焼部の燃焼ガスが流入する熱回収部とを有する
ことを特徴とする。
According to the present invention, there is provided a combustion apparatus comprising: a fluidized bed combustion section for solid fuel comprising at least one of solid waste and biomass; and a fluidized bed combustion section provided downstream of the fluidized bed combustion section. It has a powder combustion unit of pulverized coal into which the combustion gas of the combustion unit flows, and a heat recovery unit provided downstream of the powder combustion unit and into which the combustion gas of the powder combustion unit flows. I do.

【0010】固形廃棄物やバイオマスなどに多く含まれ
る塩化物は、流動層燃焼により低い温度で燃焼する。こ
の際、流動層燃焼の下流側に設けられる微粉炭の粉体燃
焼部で生成する石炭灰に含まれるアルカリ金属やアルカ
リ土類金属の酸化物や流動層内に供給される脱塩剤によ
り、塩化物は脱塩されて粒子として流動層から系外に排
出される。このため、流動層燃焼で発生する燃焼ガスに
含まれる塩素などのハロゲン元素は少ない。さらに、石
炭のように塩化物を多く含まない燃料は燃焼炉上部(下
流側)で粉体燃焼させる。粉体燃焼では流動層燃焼より
も熱負荷を高くできるため燃焼ガスの温度は高くなる
(通常、1200℃以上)。このため、熱回収部の伝熱
管の蒸気温度を高め、熱エネルギーの回収量を増すこと
が出来る。
Chloride, which is contained in large amounts in solid waste and biomass, burns at a low temperature by fluidized bed combustion. At this time, an alkali metal or alkaline earth metal oxide contained in coal ash generated in the pulverized coal combustion section provided on the downstream side of the fluidized bed combustion and a desalting agent supplied into the fluidized bed, The chloride is desalted and discharged out of the fluidized bed as particles. Therefore, the amount of halogen elements such as chlorine contained in the combustion gas generated in fluidized bed combustion is small. Further, a fuel which does not contain a large amount of chloride, such as coal, is subjected to powder combustion at the upper part (downstream side) of the combustion furnace. Since the heat load can be higher in powder combustion than in fluidized bed combustion, the temperature of the combustion gas becomes higher (usually 1200 ° C. or higher). For this reason, the steam temperature of the heat transfer tube of the heat recovery unit can be increased, and the amount of recovered heat energy can be increased.

【0011】また、本発明の燃焼装置は、前記流動層燃
焼部と粉体燃焼部の間に、粉体と燃焼ガスを分離する分
離器を設けても良い。
In the combustion apparatus according to the present invention, a separator for separating powder and combustion gas may be provided between the fluidized bed combustion section and the powder combustion section.

【0012】流動層内では、脱塩反応によりアルカリ金
属やアルカリ土類金属の塩化物(例えばCaCl2 )の
形で固定された塩素は、細かな粉体となる。分離器を設
けることで、脱塩反応により生成した粉体は流動層内か
ら粉体燃焼部に流出しにくくなる。このため、脱塩され
た塩素が粉体燃焼部で再分解し、伝熱管の腐食を引き起
こす危険性は小さくなる。
In the fluidized bed, chlorine fixed in the form of an alkali metal or alkaline earth metal chloride (eg, CaCl 2 ) by a desalination reaction becomes a fine powder. Providing the separator makes it difficult for the powder generated by the desalination reaction to flow out of the fluidized bed into the powder combustion section. For this reason, the risk that the desalted chlorine is re-decomposed in the powder combustion section and causes corrosion of the heat transfer tube is reduced.

【0013】さらに、本発明の燃焼装置は前記粉体燃焼
部の下流側に空気を供給する空気投入口を有するもので
も良い。粉体燃焼用のバーナと空気投入口から段階的に
空気を投入することで、粉体燃焼部の前半部分では空気
不足の還元状態で燃焼させることが出来る。空気不足の
燃焼では、燃料や空気中の窒素の反応で生成する窒素酸
化物は窒素に還元されるので、燃焼装置出口での窒素酸
化物の量を低減できる。なお、粉体燃焼部の後段では空
気投入口からの空気で完全燃焼し、未燃分やダイオキシ
ン類の低減を図ることが重要である。
Further, the combustion apparatus of the present invention may have an air inlet for supplying air downstream of the powder combustion section. By injecting air stepwise from a powder combustion burner and an air inlet, the first half of the powder combustion section can be burned in a reduced state with insufficient air. In air-deficient combustion, the amount of nitrogen oxides at the outlet of the combustion device can be reduced because nitrogen oxides generated by the reaction of fuel and nitrogen in the air are reduced to nitrogen. In the latter stage of the powder combustion section, it is important to completely burn with air from the air inlet and to reduce unburned components and dioxins.

【0014】また、本発明に係る固形廃棄物の燃焼装置
では、前記流動層燃焼部の流動層内の温度を800℃以
下に調整することが望ましい。前記脱塩剤はアルカリ金
属(Na,K,Li等)の酸化物又は炭酸塩,アルカリ
土類金属の酸化物又は炭酸塩が用いられる。一般的には
アルカリ土類金属の化合物である石灰石や消石灰,生石
灰が使用される。カルシウム化合物などの脱塩剤の最適
な反応温度は450〜650℃であり、高温になると塩
化カルシウムなどの脱塩後の生成物は分解し、塩素など
はガスとして放出されてしまう。このため、燃焼速度を
高め、かつ、塩素などのハロゲン元素固定のため、流動
層内の温度を800℃以下にする必要が生じる。
In the solid waste combustion apparatus according to the present invention, it is desirable that the temperature in the fluidized bed of the fluidized bed combustion section is adjusted to 800 ° C. or less. As the desalting agent, an oxide or carbonate of an alkali metal (Na, K, Li, or the like) or an oxide or carbonate of an alkaline earth metal is used. Generally, limestone, slaked lime, and quicklime, which are compounds of alkaline earth metals, are used. The optimum reaction temperature of a desalinating agent such as a calcium compound is 450 to 650 ° C. When the temperature is increased, a product after desalting such as calcium chloride is decomposed, and chlorine and the like are released as a gas. For this reason, it is necessary to reduce the temperature in the fluidized bed to 800 ° C. or lower in order to increase the burning rate and fix halogen elements such as chlorine.

【0015】流動層内の温度を低減する方法としては、
前記燃焼装置の熱交換部の下流から燃焼ガスの一部を引
き戻し、流動層燃焼部に供給する方法や、前記流動層燃
焼部と外部とを循環する流動媒体の流路に、流動媒体を
冷却する冷却部を設ける方法がある。
As a method of reducing the temperature in the fluidized bed,
A method of drawing back a part of the combustion gas from the downstream of the heat exchange section of the combustion device and supplying the combustion gas to the fluidized bed combustion section, or cooling the fluidized medium to a flow path of the fluidized medium circulating between the fluidized bed combustion section and the outside. There is a method of providing a cooling unit that performs cooling.

【0016】また、燃焼装置内での燃焼状態の変動によ
る未燃分の放出を抑制するため、前記粉体燃焼工程に供
給する空気量を前記粉体燃焼工程で生成される火炎の温
度,輝度,形状のいずれかの計測結果に基づき調整する
ことも可能である。粉体燃焼部でバーナから噴出する燃
料は燃焼炉下部の流動層で生成する燃焼ガス雰囲気下で
燃焼する。このため、バーナから燃料及び空気を一定量
で噴出させても、流動層の燃焼ガスの酸素濃度変動によ
り、火炎内の温度や輝度は変動する。この温度変動や輝
度変動を捉えることで、流動層での燃焼状態の変動を捉
え、その結果に基づき、前記粉体燃焼工程に供給する空
気量を調整することで、燃焼装置出口での酸素濃度の変
化や未燃分の放出を抑制することが出来る。
Further, in order to suppress the emission of unburned components due to fluctuations in the combustion state in the combustion device, the amount of air supplied to the powder combustion step is determined by changing the temperature and brightness of the flame generated in the powder combustion step. , Shape can be adjusted based on the measurement result. Fuel ejected from the burner in the powder combustion section burns under a combustion gas atmosphere generated in a fluidized bed at the bottom of the combustion furnace. For this reason, even if fuel and air are ejected from the burner in a fixed amount, the temperature and brightness in the flame fluctuate due to fluctuations in the oxygen concentration of the combustion gas in the fluidized bed. By capturing the temperature variation and the brightness variation, the variation in the combustion state in the fluidized bed is captured, and based on the result, the amount of air supplied to the powder combustion process is adjusted, so that the oxygen concentration at the outlet of the combustion device is adjusted. Changes and the emission of unburned components can be suppressed.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を図面と共に
説明する。 (第1の実施の形態)図1は本発明に係わる第1の実施
の形態を示す燃焼装置の概略図である。
Embodiments of the present invention will be described with reference to the drawings. (First Embodiment) FIG. 1 is a schematic view of a combustion apparatus showing a first embodiment according to the present invention.

【0018】燃焼装置10は、底部に流動層燃焼部11
を、上部に粉体燃焼部12を備えている。13は流動層
11に燃焼用空気を送り込む空気投入口、14は流動層
11の燃焼灰や流動媒体抜き出し用の排出管、15は流
動層11の燃料投入口、16は脱塩剤や流動媒体の投入
口である。なお、流動層11の燃料投入口15と脱塩剤
や流動媒体の投入口16は同一の投入口としてもかまわ
ない。17は粉体燃焼用のバーナ、18は燃焼用空気投
入口、19は燃焼装置上部に設けられた伝熱管である。
伝熱管では内部に水、または蒸気を通し、蒸気タービン
(図示せず)で燃焼ガスの熱エネルギーを回収する。燃
料は固形廃棄物やバイオマスなどの塩化物を含む燃料ホ
ッパ20と石炭用の燃料ホッパ21とに分かれる。塩化
物を含む燃料は燃料ホッパ20から燃料供給器22を介
し、燃料投入口15から供給される。流動層燃焼部11
には燃料のほか、流動媒体や脱塩剤がホッパ23から供
給される。流動媒体には砂などが用いられ、脱塩剤とし
てはアルカリ金属(Na,K,Li等)の酸化物又は炭
酸塩,アルカリ土類金属の酸化物又は炭酸塩が用いられ
る。一般的にはアルカリ土類金属の化合物である石灰石
や消石灰,生石灰が使用される。流動層下部の排出管1
4には流動媒体と燃焼灰、燃料中の塩化物を分離する分
離器24が接続され、流動媒体や未反応の脱塩剤は回収
され、再び投入口16から流動層に供給される。
The combustion apparatus 10 has a fluidized bed combustion section 11 at the bottom.
Is provided with a powder burning section 12 at the top. 13 is an air inlet for feeding combustion air into the fluidized bed 11, 14 is a discharge pipe for extracting combustion ash and fluidized medium from the fluidized bed 11, 15 is a fuel inlet for the fluidized bed 11, 16 is a desalinating agent or fluidized medium. It is the entrance of. In addition, the fuel inlet 15 of the fluidized bed 11 and the inlet 16 of the desalting agent or the fluid medium may be the same inlet. Reference numeral 17 denotes a burner for powder combustion, reference numeral 18 denotes a combustion air inlet, and reference numeral 19 denotes a heat transfer tube provided at an upper portion of the combustion device.
In the heat transfer tube, water or steam is passed through, and the heat energy of the combustion gas is recovered by a steam turbine (not shown). The fuel is divided into a fuel hopper 20 containing chlorides such as solid waste and biomass and a fuel hopper 21 for coal. The fuel containing chloride is supplied from a fuel hopper 20 via a fuel supply port 22 via a fuel supply device 22. Fluidized bed combustion section 11
In addition to the fuel, a fluid medium and a desalinating agent are supplied from the hopper 23. Sand or the like is used as a fluid medium, and an oxide or carbonate of an alkali metal (Na, K, Li, or the like) or an oxide or carbonate of an alkaline earth metal is used as a desalting agent. Generally, limestone, slaked lime, and quicklime, which are compounds of alkaline earth metals, are used. Discharge pipe 1 below fluidized bed
A separator 24 for separating the fluid medium, the combustion ash, and the chlorides in the fuel is connected to the fluid medium 4, and the fluid medium and the unreacted desalinating agent are recovered and supplied again to the fluidized bed from the inlet 16.

【0019】石炭は燃料ホッパ21から燃料供給器2
5,粉砕器26を介し粉体燃焼用バーナ17から燃焼用
空気の一部と共に燃焼炉内に投入される。燃焼用空気は
供給ブロア27から流動層下部の空気投入口13,燃焼
炉上部の粉体燃焼用バーナ17と空気投入口18を経て
燃焼炉内へ投入される。通常、燃焼用空気は燃焼炉全体
で燃料の完全燃焼に必要な空気量の1.2 〜2倍の量が
投入される。また、図2に示されるように燃焼用空気の
うち空気投入口18を省略し、供給ブロア27から流動
層下部の空気投入口13と燃焼炉上部の粉体燃焼用バー
ナ17を経て炉内へ投入することも可能である。
The coal is supplied from the fuel hopper 21 to the fuel feeder 2.
5, The powder is supplied from the burner 17 for powder combustion through the crusher 26 together with a part of the combustion air into the combustion furnace. The combustion air is supplied from the supply blower 27 into the combustion furnace through the air inlet 13 at the lower part of the fluidized bed, the powder burner 17 at the upper part of the combustion furnace, and the air inlet 18. Usually, the amount of combustion air is 1.2 to 2 times the amount of air required for complete combustion of fuel in the entire combustion furnace. As shown in FIG. 2, the air inlet 18 of the combustion air is omitted, and the air is supplied from the supply blower 27 into the furnace through the air inlet 13 below the fluidized bed and the powder burner 17 above the combustion furnace. It is also possible to throw in.

【0020】本実施例において、燃焼炉下部の流動層1
1では投入口15から供給する燃料を温度800℃以下
で燃焼させる。また、燃焼炉上部の粉体燃焼部12に設
けたバーナ17から供給する燃料は1200℃程度の流
動層よりも高い温度で燃焼させる。また、流動層11に
供給する燃料には塩化物が多く含まれる都市ごみなどの
固形廃棄物、もしくは木屑,木材,もみ殻などのバイオ
マスを用い、バーナ17から投入する燃料には石炭など
の塩化物を多く含まない燃料を用いることを特徴とす
る。
In this embodiment, the fluidized bed 1 at the lower part of the combustion furnace
In 1, fuel supplied from the inlet 15 is burned at a temperature of 800 ° C. or lower. Further, the fuel supplied from the burner 17 provided in the powder burning section 12 in the upper part of the combustion furnace is burned at a temperature higher than the fluidized bed of about 1200 ° C. The fuel supplied to the fluidized bed 11 is solid waste such as municipal waste containing a large amount of chlorides, or biomass such as wood chips, wood, and rice hulls, and the fuel supplied from the burner 17 is chloride such as coal. It is characterized by using a fuel that does not contain a large amount of substances.

【0021】固形廃棄物やバイオマスなどに多く含まれ
る塩化物は塩素としてガス中に放出される。この塩素は
塩化水素の形で伝熱管を腐食する問題点がある。このた
め、燃焼ガス中の塩化水素濃度を抑制するため、例え
ば、バイオマスと石炭との混焼の場合、発熱量中のバイ
オマスの割合を5〜10%以下に制限する必要がある。
一方、塩化水素を燃料中から除去する方法として、脱塩
剤を用いる方法がある。脱塩剤には、アルカリ金属(N
a,K,Li等)の酸化物又は炭酸塩,アルカリ土類金
属の酸化物又は炭酸塩が用いられる。一般的にはアルカ
リ土類金属の化合物である石灰石や消石灰,生石灰が使
用される。カルシウム化合物などの脱塩剤の最適な反応
温度は450〜650℃であり、高温になると塩化カル
シウムなどの脱塩後の生成物は分解し、塩素がガスとし
て放出されてしまう。このため、脱塩に適した燃焼方法
として約800℃以下で安定燃焼が可能な流動層燃焼が
主流である。このとき、燃焼ガスの温度が約800℃以
下と低いため、燃焼ガスの熱エネルギーを蒸気として回
収する場合、蒸気温度が低くなり熱効率が低くなる。
Chloride contained in solid waste and biomass is released into the gas as chlorine. This chlorine has the problem of corroding the heat transfer tubes in the form of hydrogen chloride. Therefore, in order to suppress the concentration of hydrogen chloride in the combustion gas, for example, in the case of co-firing of biomass and coal, it is necessary to limit the ratio of biomass in the calorific value to 5 to 10% or less.
On the other hand, as a method for removing hydrogen chloride from fuel, there is a method using a desalting agent. Alkali metals (N
a, K, Li, etc.) or an alkaline earth metal oxide or carbonate. Generally, limestone, slaked lime, and quicklime which are compounds of alkaline earth metals are used. The optimal reaction temperature of a desalinating agent such as a calcium compound is 450 to 650 ° C. When the temperature becomes high, the product after desalting such as calcium chloride is decomposed and chlorine is released as a gas. For this reason, fluidized bed combustion capable of performing stable combustion at about 800 ° C. or less is the mainstream as a combustion method suitable for desalination. At this time, since the temperature of the combustion gas is as low as about 800 ° C. or less, when the heat energy of the combustion gas is recovered as steam, the steam temperature is reduced and the thermal efficiency is reduced.

【0022】本発明の実施例では、固形廃棄物やバイオ
マスと石炭のように、燃料中に含まれる塩化物の濃度が
異なる燃料を使用する場合、各々の燃料の燃焼方法を変
えることで上記の問題点の解決を図る。すなわち、固形
廃棄物やバイオマスのように燃料中に含まれる塩化物の
濃度が高い燃料は、燃料炉下部(上流側)に設けた流動
層で、脱塩に適した800℃以下の温度下で燃焼させ
る。例えば、脱塩剤として生石灰を用いる場合、次の反
応により脱塩が行われる。
In the embodiment of the present invention, when fuels having different concentrations of chlorides contained in the fuel, such as solid waste and biomass and coal, are used, the above-described combustion method of each fuel is changed to change the above-described fuel. Try to solve the problem. That is, a fuel having a high concentration of chloride contained in the fuel, such as solid waste and biomass, is supplied to a fluidized bed provided at the lower part (upstream side) of the fuel furnace at a temperature of 800 ° C. or less suitable for desalination. Burn. For example, when quicklime is used as a desalting agent, desalting is performed by the following reaction.

【0023】CaO+2HCl → CaCl2+H2
塩化カルシウムのようにアルカリ金属やアルカリ土類金
属の塩化物の形で固定された塩素は、細かな粉体とな
る。この固定化された塩素は流動層11下部の排出口1
4から抜き出される。さらに、石炭のように塩化物を多
く含まない燃料は燃焼炉上部(下流側)で粉体燃焼させ
る。粉体燃焼では流動層燃焼よりも熱負荷を高くできる
ため燃焼ガスの温度は高くなる(通常、1200℃以
上)。この際、塩化カルシウムのように固定化された塩
素は温度が高くなると分解し、塩素が放出される。この
ため、燃焼炉内の流動層11とバーナとは十分な間隔
(通常、2m以上)を取り、固定化された塩素が流動層
上部に巻き上がった場合も粉体燃焼部12のように高温
となる領域に到達させないことが望ましい。
CaO + 2HCl → CaCl 2 + H 2 O
Chlorine fixed in the form of an alkali metal or alkaline earth metal chloride, such as calcium chloride, is a fine powder. The immobilized chlorine is supplied to the outlet 1 at the bottom of the fluidized bed 11.
Extracted from 4. Further, a fuel which does not contain a large amount of chloride, such as coal, is subjected to powder combustion at the upper part (downstream side) of the combustion furnace. Since the heat load can be higher in powder combustion than in fluidized bed combustion, the temperature of the combustion gas becomes higher (usually 1200 ° C. or higher). At this time, the immobilized chlorine such as calcium chloride is decomposed when the temperature is increased, and chlorine is released. For this reason, the fluidized bed 11 and the burner in the combustion furnace have a sufficient space (usually 2 m or more), and even if the immobilized chlorine rolls up at the upper part of the fluidized bed, the high temperature as in the powder burning section 12 is maintained. It is desirable not to reach the region where

【0024】流動層11に供給する空気量は流動層に供
給される燃料を完全燃焼するのに必要な空気量よりも少
ないことが望ましい。流動層11内を空気不足の還元状
態で燃焼させることで、緩慢に燃焼反応が進む。流動層
11内には燃料や空気の偏在により局所的な高温部分が
発生することがある。高温部分が出来ると、脱塩剤によ
る塩素の固定が進まず、流動層外に放出される塩化水素
が増す。流動層11内を空気不足とし、緩慢に燃焼させ
ることで、高温部分の発生を抑え、塩化水素の生成を抑
制できる。
It is desirable that the amount of air supplied to the fluidized bed 11 is smaller than the amount of air required to completely burn the fuel supplied to the fluidized bed. By burning the fluidized bed 11 in a reduced state with insufficient air, the combustion reaction proceeds slowly. In the fluidized bed 11, local high-temperature portions may be generated due to uneven distribution of fuel and air. When a high temperature portion is formed, the fixation of chlorine by the desalting agent does not proceed, and the amount of hydrogen chloride released to the outside of the fluidized bed increases. By making the inside of the fluidized bed 11 short of air and burning slowly, generation of a high-temperature portion can be suppressed, and generation of hydrogen chloride can be suppressed.

【0025】また、流動層11内の温度を抑えるため、
流動媒体の循環配管に冷却器31を設けることが望まし
い。流動媒体を冷却器31で冷却することで、流動層内
の温度を一定に制御できる。また、流動層内の温度を制
御する方法として、流動層に燃焼装置の下流側の熱交換
器(図示せず)で冷却された燃焼ガスを供給する方法が
ある。燃焼ガスは酸素濃度が低く、炭酸ガスを多く含
む。このため、燃焼ガスの供給により流動層内の熱容量
が増し、緩慢に燃焼させることができる。
Further, in order to suppress the temperature in the fluidized bed 11,
It is desirable to provide the cooler 31 in the circulation pipe of the fluid medium. By cooling the fluidized medium with the cooler 31, the temperature in the fluidized bed can be controlled to be constant. Further, as a method of controlling the temperature in the fluidized bed, there is a method of supplying a combustion gas cooled by a heat exchanger (not shown) downstream of the combustion device to the fluidized bed. The combustion gas has a low oxygen concentration and contains a large amount of carbon dioxide gas. Therefore, the heat capacity in the fluidized bed is increased by the supply of the combustion gas, so that the fluidized bed can be burned slowly.

【0026】流動層11で生成した燃焼ガスは燃焼炉上
部で粉体燃焼部12を通過することで、ガスの温度が上
昇する。このため、流動層燃焼のみの場合よりも燃焼炉
上部の伝熱管での蒸気温度を高め、回収できる熱エネル
ギーを増やすことができる。また、燃焼炉上部のバーナ
17や空気投入口18から供給された空気により高温で
完全燃焼できるため、一酸化炭素などの未燃焼分やダイ
オキシン類の発生を抑えられる。
The combustion gas generated in the fluidized bed 11 passes through the powder combustion section 12 in the upper part of the combustion furnace, so that the temperature of the gas rises. For this reason, the steam temperature in the heat transfer tube in the upper part of the combustion furnace can be increased as compared with the case of only fluidized bed combustion, and the heat energy that can be recovered can be increased. In addition, since air can be completely burned at a high temperature by the air supplied from the burner 17 and the air inlet 18 in the upper part of the combustion furnace, generation of unburned components such as carbon monoxide and dioxins can be suppressed.

【0027】さらに、粉体燃焼で石炭を使用する場合、
石炭の燃焼により発生する燃焼灰は一部が燃焼炉下部の
流動層11に落下する。燃焼灰は石炭の種類によりその
組成が異なるが、おおよそCaOやMgOなどのアルカ
リ金属やアルカリ土類金属の酸化物を灰の重さの5〜1
0%程度含む。この燃焼灰中のアルカリ金属やアルカリ
土類金属の酸化物は流動層11内で脱塩剤として作用す
る。このため、流動層上部で粉体燃焼し、燃焼灰を流動
層に落下させることで、脱塩剤の供給量を低減できる。
また、石炭の燃焼灰は流動層内で流動媒体と混合するこ
とで粉砕され、ハンドリングしやすくなる。
Further, when using coal in powder combustion,
Part of the combustion ash generated by the combustion of the coal falls into the fluidized bed 11 at the lower part of the combustion furnace. The composition of the combustion ash varies depending on the type of coal. However, roughly, oxides of alkali metals and alkaline earth metals such as CaO and MgO are converted to ash having a weight of 5 to 1%.
Contain about 0%. The oxide of the alkali metal or alkaline earth metal in the combustion ash acts as a desalting agent in the fluidized bed 11. Therefore, the amount of the desalinating agent supplied can be reduced by burning the powder in the upper part of the fluidized bed and dropping the combustion ash into the fluidized bed.
Further, the combustion ash of coal is pulverized by being mixed with the fluid medium in the fluidized bed, and is easy to handle.

【0028】流動層燃焼は粉体燃焼に比べ、前述の通
り、燃焼のばらつきに起因する燃焼ガスの酸素濃度変動
が起き易い。燃焼ガス中の酸素濃度が低下した場合、未
燃分が出て、熱効率が低下する。また、空気量を過度に
増やした場合も燃焼ガスの顕熱として回収できない熱エ
ネルギーが増加し、熱効率が低下する。流動層は燃焼状
態の検出が難しく、温度変化も粉体燃焼と比べて遅い。
また、流動層内の空気量を変えても流動層内の空気の拡
散速度は粉体燃焼の場合よりも遅い。このため、流動層
内の温度変動により、空気の供給量を制御する方法では
酸素濃度の変動を低減することは難しい。
Fluidized bed combustion, as described above, tends to cause fluctuations in the oxygen concentration of the combustion gas due to variations in combustion, as described above. When the oxygen concentration in the combustion gas decreases, unburned components are emitted, and the thermal efficiency decreases. Also, when the amount of air is excessively increased, thermal energy that cannot be recovered as sensible heat of the combustion gas increases, and the thermal efficiency decreases. It is difficult to detect the state of combustion in a fluidized bed, and the temperature change is slower than that in powder combustion.
Further, even if the amount of air in the fluidized bed is changed, the diffusion speed of air in the fluidized bed is lower than in the case of powder combustion. For this reason, it is difficult to reduce the variation in the oxygen concentration by the method of controlling the supply amount of air due to the temperature variation in the fluidized bed.

【0029】図1に示す本発明の実施例では、流動層の
燃焼ガスの酸素濃度変動を検知し、燃焼炉出口の酸素濃
度を一定とする手段として、バーナ17から噴出する燃
料の火炎温度、もしくは火炎輝度の計測器32と計測結
果に基づき、空気供給口やバーナから供給する空気量を
変える流量調節器33を有する。
In the embodiment of the present invention shown in FIG. 1, fluctuations in the oxygen concentration of the combustion gas in the fluidized bed are detected, and as a means for keeping the oxygen concentration at the combustion furnace outlet constant, the flame temperature of the fuel injected from the burner 17 is measured. Alternatively, it has a flame luminance measuring device 32 and a flow controller 33 for changing the amount of air supplied from an air supply port or a burner based on the measurement result.

【0030】バーナから噴出する燃料は燃焼炉下部の流
動層11で生成する燃焼ガス雰囲気下で燃焼する。この
ため、バーナ17から一定の燃料や空気供給量で噴出さ
せても、流動層11の燃焼ガスの酸素濃度変動により、
火炎内の温度や輝度は変動する。この温度変動や輝度変
動を捉えることで、流動層11での燃焼状態の変動を捉
えることが出来る。通常、流動層11の燃焼ガスの酸素
濃度が低下すると、下流側の粉体燃焼部12でも酸素濃
度が低下するため、火炎温度や輝度が低下する。特に、
流動層11に面する粉体燃焼部12の下部の火炎は変動
が大きくなり、検出しやすい。
The fuel injected from the burner burns in a combustion gas atmosphere generated in the fluidized bed 11 at the lower part of the combustion furnace. Therefore, even if the fuel or air is supplied from the burner 17 at a constant supply amount, the oxygen concentration of the combustion gas in the fluidized bed 11 fluctuates.
The temperature and brightness in the flame fluctuate. By capturing the temperature fluctuation and the luminance fluctuation, the fluctuation of the combustion state in the fluidized bed 11 can be detected. Normally, when the oxygen concentration of the combustion gas in the fluidized bed 11 decreases, the oxygen concentration also decreases in the powder combustion section 12 on the downstream side, so that the flame temperature and the brightness decrease. In particular,
Flame at the lower part of the powder combustion part 12 facing the fluidized bed 11 has a large fluctuation and is easy to detect.

【0031】流動層11で生成する燃焼ガスの酸素濃度
変動を検知し、燃焼炉上部の空気量を調整することで、
燃焼炉出口での酸素濃度を一定に保ち、未燃分の発生を
抑えられる。さらに、酸素濃度の変動幅が小さくなるた
め、空気量を必要以上に増やす必要が無くなる。このた
め、燃焼排ガス量と顕熱として回収できない熱エネルギ
ーを低減できる。
By detecting the change in the oxygen concentration of the combustion gas generated in the fluidized bed 11 and adjusting the amount of air in the upper part of the combustion furnace,
The oxygen concentration at the combustion furnace outlet is kept constant, and the generation of unburned components can be suppressed. Further, since the fluctuation range of the oxygen concentration is reduced, it is not necessary to increase the amount of air more than necessary. For this reason, the amount of combustion exhaust gas and thermal energy that cannot be recovered as sensible heat can be reduced.

【0032】また、地球上の二酸化炭素の増加を抑制す
るにはバイオマスのような再生エネルギーや固形廃棄物
のような廃棄物のエネルギーを利用することが望まし
い。しかし、バイオマスや固形廃棄物は季節毎の供給量
が異なる。また、含有水分や発熱量が一定でない点が短
所として挙げられる。このため、発電に利用するには石
炭との混焼が考えられる。微粉炭焚きボイラを前記固形
廃棄物やバイオマスとの混焼に改造する場合、微粉炭焚
きボイラのバーナよりも下部(上流側)を改造し、図1
のように流動層11を設けることが考えられる。この
際、バーナから上部(下流側)の伝熱管や構造物は改造
前と同じに出来るため、改造コストを低減できる。
In order to suppress the increase of carbon dioxide on the earth, it is desirable to use renewable energy such as biomass or energy of waste such as solid waste. However, biomass and solid waste vary in seasonal supply. Another disadvantage is that the moisture content and the calorific value are not constant. Therefore, co-firing with coal can be considered for use in power generation. When remodeling the pulverized coal-fired boiler to co-firing with the solid waste and biomass, the lower part (upstream side) of the burner of the pulverized coal-fired boiler was remodeled, and FIG.
It is conceivable to provide the fluidized bed 11 as follows. At this time, since the heat transfer tubes and structures above (downstream) from the burner can be made the same as before the modification, the modification cost can be reduced.

【0033】(第2の実施の形態)図3は本発明に係わ
る第2の実施の形態を示す燃焼装置の概略図である。
(Second Embodiment) FIG. 3 is a schematic view of a combustion apparatus showing a second embodiment according to the present invention.

【0034】図1に示す本発明に係わる第1の実施の形
態を示す燃焼装置と異なる点は、燃焼炉を流動層11と
粉体燃焼部12の2つに分離し、流動層出口に粒子と燃
焼ガスの分離器41を設け、燃焼ガスのみを粉体燃焼部
12に供給することである。
The difference from the combustion apparatus according to the first embodiment of the present invention shown in FIG. 1 is that the combustion furnace is separated into two parts, a fluidized bed 11 and a powder combustion part 12, and a particle is provided at the outlet of the fluidized bed. And a combustion gas separator 41 to supply only the combustion gas to the powder combustion unit 12.

【0035】流動層内では、脱塩反応によりアルカリ金
属やアルカリ土類金属の塩化物(例えば塩化カルシウ
ム)の形で固定された塩素は、細かな粉体となる。図3
のように、分離器41を設けることで、脱塩反応により
生成した粉体は流動層内から粉体燃焼部12に流出しに
くくなる。このため、粉体燃焼部12での高温燃焼によ
り流動層内で脱塩された塩素が再分解し、伝熱管の腐食
を引き起こす危険性は小さくなる。
In the fluidized bed, the chlorine fixed in the form of a chloride (for example, calcium chloride) of an alkali metal or alkaline earth metal by a desalination reaction becomes a fine powder. FIG.
By providing the separator 41 as described above, the powder generated by the desalination reaction hardly flows out of the fluidized bed into the powder combustion unit 12. For this reason, the danger that chlorine desalted in the fluidized bed due to high-temperature combustion in the powder combustion section 12 is re-decomposed and causes corrosion of the heat transfer tube is reduced.

【0036】また、微粉炭ボイラに固形廃棄物やバイオ
マスを混焼するための改造工事をする場合、燃焼炉壁の
周囲に圧力配管である伝熱管が巡らされており、この伝
熱管の改造が課題となることが多い。図3に示すように
流動層を分離することで、図1に示す燃焼炉のように流
動層を燃焼炉内に設ける場合と比べて、流動層部の伝熱
管の磨耗対策が不要となる。このため、燃焼炉の改造部
分を減らすことができる。
In the case of remodeling work for co-firing solid waste and biomass in a pulverized coal boiler, heat transfer tubes, which are pressure pipes, are routed around the combustion furnace wall. Often becomes. By separating the fluidized bed as shown in FIG. 3, there is no need to take measures against abrasion of the heat transfer tubes in the fluidized bed compared to the case where the fluidized bed is provided in the combustion furnace as in the combustion furnace shown in FIG. For this reason, the remodeling part of a combustion furnace can be reduced.

【0037】[0037]

【発明の効果】本発明によれば、固形廃棄物やバイオマ
スなどの塩化物を多く含む固体燃料と石炭を混焼する燃
焼方法及び燃焼装置において、塩化物による伝熱管など
への腐食を防ぎ、かつ、燃焼ガスの温度を高め、燃焼装
置から回収できる熱エネルギーを増やすことができる。
また、微粉炭ボイラを前記固体燃料との混焼に適した燃
焼装置に改造することができる。
According to the present invention, in a combustion method and a combustion apparatus for co-firing coal with solid fuel containing a large amount of chloride such as solid waste and biomass, corrosion of a heat transfer tube or the like by chloride is prevented, and In addition, the temperature of the combustion gas can be increased, and the heat energy that can be recovered from the combustion device can be increased.
Further, the pulverized coal boiler can be modified into a combustion device suitable for co-firing with the solid fuel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係わる燃焼装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of a combustion device according to an embodiment of the present invention.

【図2】本発明の他の実施形態に係わる燃焼装置の概略
構成図である。
FIG. 2 is a schematic configuration diagram of a combustion device according to another embodiment of the present invention.

【図3】本発明のさらに他の実施形態に係わる燃焼装置
の概略構成図である。
FIG. 3 is a schematic configuration diagram of a combustion device according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…燃焼装置、11…流動層燃焼部、12…粉体燃焼
部(浮遊燃焼部)、13,18…空気投入口、14…排
出口、15…燃料投入口、16…脱塩剤や流動媒体の投
入口、17…粉体燃焼用バーナ、19…伝熱管、20,
21…燃料ホッパ、22,25,28…燃料供給器、2
3…ホッパ、24,41…分離器、26…粉砕器、27
…供給ブロア、31…冷却器、32…計測器、33…流
量調節器、42…火炎。
DESCRIPTION OF SYMBOLS 10 ... Combustion apparatus, 11 ... Fluidized bed combustion part, 12 ... Powder combustion part (floating combustion part), 13, 18 ... Air inlet, 14 ... Discharge port, 15 ... Fuel inlet, 16 ... Desalinating agent and fluid Medium inlet, 17: burner for powder combustion, 19: heat transfer tube, 20,
21: fuel hopper, 22, 25, 28: fuel supply device, 2
3: hopper, 24, 41: separator, 26: crusher, 27
... supply blower, 31 ... cooler, 32 ... measuring instrument, 33 ... flow controller, 42 ... flame.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 正行 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 山本 研二 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 津村 俊一 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 高橋 芳孝 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 Fターム(参考) 3K062 AA11 AB01 AC01 AC17 BA02 CA01 CB03 DA01 DA05 DA40 DB08 3K064 AA04 AA08 AA10 AB01 AC02 AC06 AC10 AC12 AD05 AD08 AE01 AE04 AE06 AE11 AE13 AF02 BA05 BA15 BA22 BB07 3K065 AA11 AB01 AC01 AC17 BA01 JA05 JA18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Taniguchi 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Power and Electricity Research Laboratory, Hitachi, Ltd. (72) Inventor Kenji Yamamoto Omika-cho, Hitachi City, Ibaraki Prefecture 7-2-1, Hitachi, Ltd. Electric Power and Electric Development Laboratory (72) Inventor Shunichi Tsumura 6-9 Takara-cho, Kure-shi, Hiroshima Babcock-Hitachi Kure Factory (72) Inventor Yoshitaka Takahashi, Kure, Hiroshima No. 6-9, Ichitakacho B terminus in the Kure factory of Babcock Hitachi Co., Ltd. F term (reference) 3K062 AA11 AB01 AC01 AC17 BA02 CA01 CB03 DA01 DA05 DA40 DB08 3K064 AA04 AA08 AA10 AB01 AC02 AC06 AC10 AC12 AD05 AD08 AE01 AE04 AE06 AE11 BB07 3K065 AA11 AB01 AC01 AC17 BA01 JA05 JA18

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】固形廃棄物とバイオマスの少なくとも一方
からなる固体燃料の流動層燃焼部と、前記流動層燃焼部
の下流側に設けられ、前記流動層燃焼部の燃焼ガスが流
入する微粉炭の粉体燃焼部と、前記粉体燃焼部の下流側
に設けられ、前記粉体燃焼部の燃焼ガスが流入する熱回
収部とを有することを特徴とする固体燃料の燃焼装置。
1. A fluidized bed combustion section for solid fuel comprising at least one of solid waste and biomass, and pulverized coal provided downstream of the fluidized bed combustion section and into which combustion gas from the fluidized bed combustion section flows. An apparatus for burning solid fuel, comprising: a powder combustion unit; and a heat recovery unit provided downstream of the powder combustion unit and into which combustion gas from the powder combustion unit flows.
【請求項2】固形廃棄物とバイオマスの少なくとも一方
からなる固体燃料の流動層燃焼部と、前記流動層燃焼部
の下流側にて粉体と燃焼ガスを分離する分離器と、前記
分離器の下流側に設けられた微粉炭の粉体燃焼部と、前
記粉体燃焼部の下流側に設けられ、前記粉体燃焼部の燃
焼ガスが流入する熱回収部とを有し、前記分離器で分離
された粉体が前記流動層燃焼部に還流されることを特徴
とする固体燃料の燃焼装置。
2. A fluidized bed combustion section for solid fuel comprising at least one of solid waste and biomass; a separator for separating powder and combustion gas downstream of the fluidized bed combustion section; A powder combustion unit for pulverized coal provided on the downstream side, and a heat recovery unit provided on the downstream side of the powder combustion unit and into which the combustion gas of the powder combustion unit flows; A solid fuel combustion apparatus, wherein the separated powder is returned to the fluidized bed combustion section.
【請求項3】前記粉体燃焼部の下流側に空気を供給する
空気投入口を有することを特徴とする請求項1または2
に記載の燃焼装置。
3. An air inlet for supplying air to a downstream side of the powder combustion section.
The combustion device according to claim 1.
【請求項4】前記流動層燃焼部に、前記熱回収部から出
た燃焼ガスの一部を供給する燃焼排ガス投入口を有する
ことを特徴とする請求項1または2に記載の固体燃料の
燃焼装置。
4. The solid fuel combustion according to claim 1, wherein the fluidized bed combustion section has a combustion exhaust gas inlet for supplying a part of the combustion gas discharged from the heat recovery section. apparatus.
【請求項5】前記流動層燃焼部は、流動媒体を前記流動
層燃焼部の外部との間で循環させる流路を有し、前記流
路には流動媒体を冷却する冷却部を有することを特徴と
する請求項1または2に記載の固体燃料の燃焼装置。
5. The fluidized bed combustion section has a flow path for circulating a fluid medium with the outside of the fluidized bed combustion section, and the flow path has a cooling section for cooling the fluid medium. The solid fuel combustion device according to claim 1 or 2, wherein:
【請求項6】固形廃棄物とバイオマスの少なくとも一方
からなる固体燃料を流動層燃焼する工程と、前記流動層
燃焼工程の燃焼ガスを利用して微粉炭を燃焼する粉体燃
焼工程とを有することを特徴とする固体燃料の燃焼方
法。
6. A fluidized bed combustion of a solid fuel composed of at least one of solid waste and biomass, and a powder combustion process of burning pulverized coal using a combustion gas of the fluidized bed combustion process. A method for burning solid fuel, characterized in that:
【請求項7】請求項6に記載の燃焼方法において、前記
流動層燃焼工程の流動媒体としてアルカリ金属もしくは
アルカリ土類金属の酸化物を用いることを特徴とする固
体燃料の燃焼方法。
7. The method according to claim 6, wherein an oxide of an alkali metal or an alkaline earth metal is used as a fluid medium in the fluidized bed combustion step.
【請求項8】請求項6または7に記載の燃焼方法におい
て、前記流動層燃焼工程の燃焼ガス温度を800℃以下
に調整することを特徴とする固体燃料の燃焼方法。
8. The method for burning solid fuel according to claim 6, wherein the temperature of the combustion gas in said fluidized bed combustion step is adjusted to 800 ° C. or lower.
【請求項9】請求項6に記載の燃焼方法において、前記
粉体燃焼工程に供給する空気量を前記粉体燃焼工程で生
成される火炎の温度,輝度,形状のいずれかの計測結果
に基づき調整することを特徴とする固体燃料の燃焼方
法。
9. The combustion method according to claim 6, wherein an amount of air supplied to the powder combustion step is determined based on a measurement result of any one of temperature, brightness, and shape of a flame generated in the powder combustion step. A method for burning solid fuel, comprising adjusting.
【請求項10】微粉炭ボイラを固形廃棄物とバイオマス
の少なくとも一方からなる固体燃料と微粉炭の混合燃焼
ボイラに改造するボイラ改造方法であり、 微粉炭ボイラの底部に流動層燃焼域を設け、前記流動層
燃焼域に固形廃棄物やバイオマスなどの固体燃料とアル
カリ金属もしくはアルカリ土類金属の酸化物と流動媒体
と燃焼用空気を供給する供給口を設けることを特徴とす
るボイラ改造方法。
10. A boiler modification method for modifying a pulverized coal boiler into a mixed combustion boiler of pulverized coal and solid fuel comprising at least one of solid waste and biomass, wherein a fluidized bed combustion zone is provided at the bottom of the pulverized coal boiler, A method for remodeling a boiler, wherein a supply port for supplying a solid fuel such as solid waste or biomass, an oxide of an alkali metal or an alkaline earth metal, a fluid medium, and combustion air is provided in the fluidized bed combustion zone.
【請求項11】微粉炭ボイラを固形廃棄物とバイオマス
の少なくとも一方からなる固体燃料と微粉炭の混合燃焼
装置に改造するボイラ改造方法であり、 微粉炭ボイラの上流側に流動層燃焼炉を設け、前記流動
層燃焼炉と微粉炭ボイラの間に粉体と燃焼ガスの分離器
を設け、前記分離器から出る粉体は前記流動層燃焼炉に
還流し、前記分離器から出る燃焼ガスは微粉炭ボイラの
バーナより上流側より供給する供給口を設けることを特
徴とするボイラ改造方法。
11. A boiler modification method for modifying a pulverized coal boiler into a mixed combustion apparatus of pulverized coal and solid fuel comprising at least one of solid waste and biomass, wherein a fluidized bed combustion furnace is provided upstream of the pulverized coal boiler. A powder and combustion gas separator is provided between the fluidized bed combustion furnace and the pulverized coal boiler, the powder discharged from the separator is returned to the fluidized bed combustion furnace, and the combustion gas discharged from the separator is fine powder. A method for remodeling a boiler, comprising providing a supply port for supplying from a burner of a coal boiler from an upstream side.
JP2001161589A 2001-05-30 2001-05-30 Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler Pending JP2002349821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161589A JP2002349821A (en) 2001-05-30 2001-05-30 Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001161589A JP2002349821A (en) 2001-05-30 2001-05-30 Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler

Publications (1)

Publication Number Publication Date
JP2002349821A true JP2002349821A (en) 2002-12-04

Family

ID=19004844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161589A Pending JP2002349821A (en) 2001-05-30 2001-05-30 Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler

Country Status (1)

Country Link
JP (1) JP2002349821A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291524A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Combustion equipment and method of biomass fuel
WO2006093026A1 (en) * 2005-02-28 2006-09-08 Mitsubishi Heavy Industries, Ltd. System and method for removing mercury in exhaust gas
CN102168588A (en) * 2011-03-21 2011-08-31 昆明理工大学 Biomass thermal power generation system based on organic medium Rankine cycle (ORC)
JP2012035216A (en) * 2010-08-09 2012-02-23 Babcock Hitachi Kk Catalyst for treating exhaust gas, method for producing the same, and method for treating nitrogen oxide in exhaust gas
JP2014202448A (en) * 2013-04-08 2014-10-27 株式会社トクヤマ Power generating method
CN104749315A (en) * 2015-02-13 2015-07-01 华中科技大学 Carbon-containing solid fuel mixed combustion test device and method
WO2015195443A1 (en) * 2014-06-16 2015-12-23 Biomass Energy Enhancements Llc A system for co-firing cleaned coal and beneficiated biomass feedstock in a coal combustion apparatus
CN106196009A (en) * 2016-07-15 2016-12-07 红云红河烟草(集团)有限责任公司 A kind of flying dust and recycling method thereof
CN108167838A (en) * 2017-12-26 2018-06-15 哈尔滨锅炉厂有限责任公司 A kind of novel coupled electricity-generation system of waste incinerator insertion large coal-fired boiler
CN108947070A (en) * 2018-08-14 2018-12-07 陈婧琪 A kind of method for desalting seawater
CN109869713A (en) * 2019-02-28 2019-06-11 兖矿集团有限公司 A kind of circulating fluidized bed combustion coal Boiler Furnace is interior without ammonia method of denitration
CN111780126A (en) * 2020-06-24 2020-10-16 中国能源建设集团广东省电力设计研究院有限公司 Flue gas treatment system and method of solid incinerator coupled generator set

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291524A (en) * 2004-03-31 2005-10-20 Babcock Hitachi Kk Combustion equipment and method of biomass fuel
WO2006093026A1 (en) * 2005-02-28 2006-09-08 Mitsubishi Heavy Industries, Ltd. System and method for removing mercury in exhaust gas
US7662352B2 (en) 2005-02-28 2010-02-16 Mitsubishi Heavy Industries, Ltd. Method and system for removing mercury from flue gas
JP2012035216A (en) * 2010-08-09 2012-02-23 Babcock Hitachi Kk Catalyst for treating exhaust gas, method for producing the same, and method for treating nitrogen oxide in exhaust gas
CN102168588A (en) * 2011-03-21 2011-08-31 昆明理工大学 Biomass thermal power generation system based on organic medium Rankine cycle (ORC)
JP2014202448A (en) * 2013-04-08 2014-10-27 株式会社トクヤマ Power generating method
US9702548B2 (en) 2014-06-16 2017-07-11 Biomass Energy Enhancements, Llc System for co-firing cleaned coal and beneficiated organic-carbon-containing feedstock in a coal combustion apparatus
WO2015195443A1 (en) * 2014-06-16 2015-12-23 Biomass Energy Enhancements Llc A system for co-firing cleaned coal and beneficiated biomass feedstock in a coal combustion apparatus
CN104749315A (en) * 2015-02-13 2015-07-01 华中科技大学 Carbon-containing solid fuel mixed combustion test device and method
CN106196009A (en) * 2016-07-15 2016-12-07 红云红河烟草(集团)有限责任公司 A kind of flying dust and recycling method thereof
CN108167838A (en) * 2017-12-26 2018-06-15 哈尔滨锅炉厂有限责任公司 A kind of novel coupled electricity-generation system of waste incinerator insertion large coal-fired boiler
CN108947070A (en) * 2018-08-14 2018-12-07 陈婧琪 A kind of method for desalting seawater
CN109869713A (en) * 2019-02-28 2019-06-11 兖矿集团有限公司 A kind of circulating fluidized bed combustion coal Boiler Furnace is interior without ammonia method of denitration
CN111780126A (en) * 2020-06-24 2020-10-16 中国能源建设集团广东省电力设计研究院有限公司 Flue gas treatment system and method of solid incinerator coupled generator set
CN111780126B (en) * 2020-06-24 2023-01-03 中国能源建设集团广东省电力设计研究院有限公司 Flue gas treatment system and method of solid incinerator coupling generator set

Similar Documents

Publication Publication Date Title
CN100529532C (en) Boiler improvements with oxygen-enriched combustion for increased efficiency and reduced emissions
Liu et al. Experimental tests on co-firing coal and biomass waste fuels in a fluidised bed under oxy-fuel combustion
CN108980847B (en) A kind of rubbish charing burning treatment process
CN102047040B (en) Method of controlling flow rate of primary recirculating exhaust gas in oxygen combustion boiler and apparatus therefor
JP2002349821A (en) Combustion device and combustion method for solid fuel and method for remodeling pulverized coal fired boiler
EP0597458B1 (en) Fluidized-bed incinerator
KR102169126B1 (en) Waste incinerationg method using stoker type incinerator equipped with direct-type waste pre-dryer
JP2009019870A (en) Fluidized bed gasification combustion furnace
CN108469019A (en) A kind of phenol wastewater and the waste coke mixed burning system that gasifies
JP2007265728A (en) Effective utilization method of waste heat in incineration of waste material
CN208222489U (en) A kind of phenol wastewater and the waste coke mixed burning system that gasifies
JP2005274015A (en) Circulation fluidized bed boiler device and its operation control method
JP2004002552A (en) Waste gasification method, waste gasification device, and waste treatment apparatus using the same
CN209540898U (en) A kind of low latitude gas that bilayer is reverse compares waste incinerator
JP4157519B2 (en) Circulating fluidized bed boiler equipment
JP2005201621A (en) Refuse gasifying and melting method and apparatus
JP4219312B2 (en) High temperature corrosion reduction device for circulating fluidized bed boiler
JP2004347274A (en) Waste treatment device
JP2005121342A (en) Operation method of circulating fluidized bed furnace
CN108006685A (en) A kind of waste incineration CFB boiler of multistage gas-solid separating device arranged in series
CN115745439B (en) Method and process system for calcining cement by using low-carbon environment-friendly alternative fuel
JPS5896913A (en) Solid fuel feeding method for fluidized bed combustion device
Tame Energy recovery from waste by use of fluidised-bed technology
RU2321799C1 (en) Method of burning combustible shale in boiler with circulating fluidized bed
JPH11108320A (en) Waste combustion treatment method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512