JP2008156661A - Method for producing coke for blast furnace - Google Patents

Method for producing coke for blast furnace Download PDF

Info

Publication number
JP2008156661A
JP2008156661A JP2008033191A JP2008033191A JP2008156661A JP 2008156661 A JP2008156661 A JP 2008156661A JP 2008033191 A JP2008033191 A JP 2008033191A JP 2008033191 A JP2008033191 A JP 2008033191A JP 2008156661 A JP2008156661 A JP 2008156661A
Authority
JP
Japan
Prior art keywords
coal
expansion pressure
high expansion
caking
coke oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008033191A
Other languages
Japanese (ja)
Other versions
JP4751408B2 (en
Inventor
Seiji Nomura
誠治 野村
Kazuya Okanishi
和也 岡西
Makoto Ueki
誠 植木
Arihiro Sugano
有博 菅野
Hideaki Murakami
英明 村上
Koichi Yamaguchi
幸一 山口
Kazuhide Doi
一秀 土井
Satoshi Koizumi
聡 小泉
Yutaka Suzuki
豊 鈴木
Kenji Kato
健次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008033191A priority Critical patent/JP4751408B2/en
Publication of JP2008156661A publication Critical patent/JP2008156661A/en
Application granted granted Critical
Publication of JP4751408B2 publication Critical patent/JP4751408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing coke for a blast furnace capable of increasing the ratio of coal having high expansion pressure used without raising the expansion pressure of a coke oven. <P>SOLUTION: The method for producing the coke for the blast furnace is a method for adjusting a weighted average value of the total expansion ratio of non or slightly caking coal in blended coal comprising coal having a high expansion pressure, non or slightly caking coal and caking coal charged into the coke oven, to ≤30%. This can greatly reduce an expansion pressure of the blended coal upon carbonization of coal in a carbonization chamber of the coke oven. Further, the ratio of grains of the coal having high expansion pressure of ≤0.7 mm is set to ≥45 mass%. A binder in an amount of ≥5 mass% based on the coal having a high expansion pressure is added, kneaded beforehand, then mixed with the residual blended coal and carbonized in the coke oven. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉用コークスの製造方法に関し、特に、コークス炉の損傷低減及びコークス押し出し性の向上のための高炉用コークスの製造方法に関するものである。   The present invention relates to a method for producing coke for a blast furnace, and more particularly to a method for producing coke for a blast furnace for reducing damage to the coke oven and improving coke extrusion.

コークス炉の炭化室で石炭を乾留してコークスを製造する過程で、石炭は加熱されることにより膨張し、コークス炉の炉壁に圧力を及ぼすが、この圧力のことを一般に膨張圧と呼んでいる。この膨張圧が高いと、コークスを炭化室から炉外へ排出するとき(押し出し時)の抵抗(押し出し抵抗)が増大し、炉壁に過大な負荷が作用して、炉壁が損傷することがある。さらに、膨張圧が異常に高くなると、コークス炉の炉壁が直接損傷して操業不能となることもある。このため、コークス炉の操業において膨張圧をコークス炉損傷の許容限界値以下に管理することは、重要な課題である。特に、近年コークス炉の老朽化が進み、炉体強度が低下することにより許容限界値が低下するとともに、近年の調湿炭法などの石炭事前処理技術の導入によりコークス炉炭化室内の石炭装入嵩密度が上昇し、膨張圧は増加傾向にあり、コークス炉の延命のために膨張圧管理はますます重要な課題となっている。   In the process of producing coke by carbonizing coal in the coke oven, the coal expands when heated and exerts pressure on the coke oven wall. This pressure is generally called expansion pressure. Yes. If this expansion pressure is high, the resistance (extrusion resistance) when coke is discharged from the carbonization chamber to the outside of the furnace (at the time of extrusion) increases, and an excessive load acts on the furnace wall, which may damage the furnace wall. is there. Furthermore, if the expansion pressure becomes abnormally high, the furnace wall of the coke oven may be directly damaged and become inoperable. For this reason, it is an important issue to manage the expansion pressure below the allowable limit value for coke oven damage in the operation of the coke oven. In particular, coke ovens have been aging in recent years, and the allowable limit value has been lowered due to the decrease in furnace strength. In addition, the introduction of coal pretreatment technology such as the humidity-controlling coal method has recently introduced coal into the coke oven carbonization chamber. As the bulk density rises and the expansion pressure tends to increase, expansion pressure management has become an increasingly important issue for extending the life of coke ovens.

特許文献1では、配合炭を構成するそれぞれの銘柄の石炭の最大膨張圧の相加平均値、非微粘結炭の配合率、および粘結炭のみの配合炭の全膨張率、粘結材添加率から配合炭膨張圧を算出し、この算出配合炭膨張圧を、あらかじめ定めたコークス炉の許容限界圧以下にするように、石炭の銘柄、配合割合および粘結材添加率を調整するコークス炉の操業方法が提案されている。   In patent document 1, the arithmetic mean value of the maximum expansion pressure of each brand coal constituting the blended coal, the blending rate of non-slightly caking coal, the total expansion rate of the blended coal only of caking coal, and the caking material. Coke that calculates the blended coal expansion pressure from the addition rate, and adjusts the coal brand, blending ratio, and binder addition rate so that the calculated blended coal expansion pressure is less than or equal to the predetermined allowable limit pressure of the coke oven. A method of operating the furnace has been proposed.

特開2001−214171号公報JP 2001-214171 A

コークス炉に装入する石炭は、高膨張圧炭、非微粘結炭、および粘結炭の大きく三種類に分類することができる。高膨張圧炭とは、装入密度0.85t/m3で炉温1250℃で乾留したときに、最大膨張圧が15kPa以上となる石炭のことである。非微粘結炭とは、平均最大反射率(JIS M8816の石炭の微細組織成分及び反射率測定方法記載の方法で測定されるビトリニットの平均最大反射率、以下Roと略称する)が0.8以下の石炭、あるいは流動度(JIS M8801の流動性試験方法(ギーセラープラストメーター法)により測定される最高流動度、以下MFと略称する)が10ddpm以下の石炭のことである。粘結炭とは、高膨張圧炭にも非微粘結炭にも該当しないコークス製造用原料炭を指す。 Coal charged into the coke oven can be roughly classified into three types: high expansion pressure coal, non-slightly caking coal, and caking coal. High expansion pressure coal is coal whose maximum expansion pressure is 15 kPa or more when dry-distilled at a furnace density of 1250 ° C. with a charging density of 0.85 t / m 3 . Non-slightly caking coal has an average maximum reflectance (average maximum reflectance of vitrinite measured by the method described in JIS M8816 coal fine structure component and reflectance measurement method, hereinafter abbreviated as Ro) of 0.8. The following coal or coal (the maximum fluidity measured by the fluidity test method (Gieseller Plastometer method) of JIS M8801, hereinafter abbreviated as MF) is 10 ddpm or less. The caking coal refers to a raw material coal for producing coke that does not correspond to a high expansion pressure coal or a non-slightly caking coal.

上記に示すような高膨張圧炭は、主に低揮発分の強粘結炭であり、高膨張圧炭から製造したコークスの強度は高いのが通例であるが、一方で高膨張圧炭をコークス炉装入石炭に配合するとコークス炉の膨張圧が高くなり、結果としてコークス炉への悪影響が大きいことがコークス製造業者に知られているため、需要が伸び悩み、市場価格が低くなっている。このため、コークス炉の膨張圧を上昇させずに、高膨張圧炭の使用割合を現状よりもさらに向上させることができれば、資源の有効利用を図ることが可能となる。   High expansion pressure coal as shown above is mainly caking coal with low volatile content, and the strength of coke produced from high expansion pressure coal is usually high, while high expansion pressure coal is When coke oven charging coal is added, the coke oven expansion pressure increases, and as a result, the coke manufacturers are known to have a large negative impact on the coke oven, resulting in sluggish demand and lower market prices. For this reason, if the usage rate of the high expansion pressure coal can be further improved from the current level without increasing the expansion pressure of the coke oven, effective use of resources can be achieved.

本発明は、コークス炉の膨張圧を上昇させずに、高膨張圧炭の使用割合を増大することのできる高炉用コークスの製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the coke for blast furnaces which can increase the usage rate of a high expansion pressure coal, without raising the expansion pressure of a coke oven.

即ち、本発明の要旨とするところは以下の通りである。
(1)コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、非微粘結炭の全膨張率の加重平均値が30%以下となるように調整することを特徴とする高炉用コークスの製造方法。
(2)コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、高膨張圧炭の0.7mm以下の粒子の割合を45質量%以上とし、かつ、非微粘結炭の全膨張率の加重平均値が30%以下となるように調整することを特徴とする高炉用コークスの製造方法。
(3)コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、高膨張圧炭に対して5質量%以上の粘結材を事前に添加、混練した後に、残りの配合炭と混合し、コークス炉で乾留することを特徴とする、上記(1)又は(2)に記載の高炉用コークスの製造方法。
(4)分級機を用いて前記高膨張圧炭を分級点0.7mmで分級して、その篩上の高膨張圧炭のみを粉砕機を用いて粉砕することを特徴とする上記(2)又は(3)に記載の高炉用コークスの製造方法。
That is, the gist of the present invention is as follows.
(1) Of the blended coal composed of high expansion pressure coal, non-slightly caking coal, and caking coal charged in the coke oven, the weighted average value of the total expansion rate of non-slightly caking coal is 30% A method for producing coke for blast furnace, which is adjusted to be as follows.
(2) The ratio of particles of 0.7 mm or less of the high expansion pressure coal among the high expansion pressure coal, non-slightly caking coal, and blended coal composed of caking coal charged in the coke oven is 45 masses. %, And a weighted average value of the total expansion coefficient of the non-slightly caking coal is adjusted to be 30% or less.
(3) Among the high-expansion pressure coal, non-slightly caking coal, and blended coal composed of caking coal charged into the coke oven, 5 mass% or more of caking material is used with respect to the high-expansion pressure coal. The method for producing coke for blast furnace according to the above (1) or (2), wherein after adding and kneading in advance, it is mixed with the remaining blended coal and dry-distilled in a coke oven.
(4) The above (2), wherein the high expansion pressure coal is classified at a classification point of 0.7 mm using a classifier, and only the high expansion pressure coal on the sieve is pulverized using a pulverizer. Or the manufacturing method of the coke for blast furnaces as described in (3).

本発明において、高膨張圧炭とは、装入密度0.85t/m3で炉温1250℃で乾留したときに、最大膨張圧が15kPa以上となる石炭をいう。非微粘結炭とは、平均最大反射率(JIS M8816の石炭の微細組織成分及び反射率測定方法記載の方法で測定されるビトリニットの平均最大反射率)が0.8以下の石炭、あるいは流動度(JIS M8801の流動性試験方法(ギーセラープラストメーター法)により測定される最高流動度)が10ddpm以下の石炭をいう。 In the present invention, high expansion pressure coal refers to coal having a maximum expansion pressure of 15 kPa or more when dry-distilled at a furnace density of 1250 ° C. with a charging density of 0.85 t / m 3 . Non-coking coal is a coal having an average maximum reflectance (average maximum reflectance of vitrinite measured by the method described in JIS M8816 coal microstructure and reflectance measuring method) of 0.8 or less, or flow This refers to coal having a degree (maximum fluidity measured by the fluidity test method (Gieseller Plastometer method) of JIS M8801) of 10 ddpm or less.

本発明により、コークス炉の膨張圧を上昇させずに、従来少量しか使用できなかった高膨脹圧炭の使用可能量が飛躍的に増加する。これにより原料選択範囲が拡大し、資源の有効利用が図れる。   According to the present invention, the usable amount of high expansion pressure coal, which can be used only in a small amount in the related art, without increasing the expansion pressure of the coke oven is dramatically increased. Thereby, the raw material selection range is expanded, and effective use of resources can be achieved.

本発明は第1に、コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち高膨張圧炭を細粒化し、すなわち高膨張圧炭の0.7mm以下の粒子の割合を45質量%以上にする。これにより、コークス炉炭化室で石炭を乾留するに際し、膨張圧を大きく低減することができる。ここで高膨張圧炭とは、装入密度0.85t/m3で炉温1250℃で乾留した時に、最大膨張圧が15kPa以上となる石炭のことである。 In the present invention, firstly, high expansion pressure coal, which is composed of high expansion pressure coal, non-slightly caking coal, and caking coal charged into a coke oven, is refined, that is, high expansion pressure. The ratio of particles of 0.7 mm or less of charcoal is 45% by mass or more. Thereby, when dry-distilling coal in a coke oven carbonization chamber, an expansion pressure can be reduced greatly. Here, the high expansion pressure coal is coal having a maximum expansion pressure of 15 kPa or more when dry-distilled at a furnace temperature of 1250 ° C. with a charging density of 0.85 t / m 3 .

図1には、高膨張圧炭の−0.7mmの比率を横軸に、配合炭のコークス炉における膨張圧を縦軸に示す。高膨張圧炭の−0.7mmの比率が高いほど、即ち高膨張圧炭を細粒化するほど、配合炭のコークス炉における膨張圧が低減することがわかる。ここで、図1において、高膨張圧炭、粘結炭、非微粘結炭の配合比率はそれぞれ20質量%、40質量%、40質量%であり、粘結炭および非微粘結炭の粉砕粒度は−3mm 80質量%である。また、粘結材は添加していない。高膨張圧炭は、Ro1.56%、MF200ddpm、最大膨張圧100kPaの強粘結炭である。粘結炭はRo1.22%、MF900ddpmである。非微粘結炭は、Ro0.78%、MF100ddpm、全膨張率(JIS M8801の膨張性試験方法(ジラトメータ法)により測定される収縮率と膨張率の和、Total Dilatation。以下、TDと称する)は40%である。   In FIG. 1, the ratio of −0.7 mm of high expansion pressure coal is shown on the horizontal axis, and the expansion pressure of the blended coal in the coke oven is shown on the vertical axis. It can be seen that the higher the -0.7 mm ratio of the high expansion pressure coal, that is, the finer the high expansion pressure coal, the lower the expansion pressure of the blended coal in the coke oven. Here, in FIG. 1, the blending ratios of high expansion pressure coal, caking coal, and non-slightly caking coal are 20% by mass, 40% by mass, and 40% by mass, respectively. The pulverized particle size is -3 mm 80% by mass. Moreover, the caking additive is not added. The high expansion pressure coal is strong caking coal with Ro 1.56%, MF200 ddpm, and maximum expansion pressure 100 kPa. The caking coal is Ro1.22% and MF900ddpm. The non-slightly caking coal is Ro 0.78%, MF100ddpm, total expansion rate (the sum of contraction rate and expansion rate measured by JIS M8801 expansion test method (dilatometer method), Total Dilatation, hereinafter referred to as TD) Is 40%.

高膨張圧炭の細粒化により膨張圧が低下する原因は以下のように考えられる。つまり、石炭は、乾留過程において軟化溶融した後に再固化してコークスとなるが、膨張圧の発生要因は軟化溶融した石炭層内にトラップされた石炭の熱分解ガスの圧力である。高膨張圧炭は、軟化溶融した際の粘度が非常に高いという特徴を有している。そのため、高膨張圧炭を配合した石炭を乾留する場合において、発生ガスは粘度の高い軟化溶融層から容易に抜けることはできず、石炭層の内部にトラップされ、ガスの圧力上昇によりコークス層を介して、膨張圧としてコークス炉壁に作用する。これに対し、上記本発明のように高膨張圧炭の粒径を小さくすると、ガスが石炭粒子外に逃げやすく、粒子内の圧力が低下すると考えられる。   The reason why the expansion pressure decreases due to the refinement of the high expansion pressure coal is considered as follows. That is, coal softens and melts in the carbonization process and then resolidifies to become coke. The cause of the expansion pressure is the pressure of the pyrolysis gas of the coal trapped in the softened and melted coal bed. High expansion pressure coal has a feature that its viscosity when softened and melted is very high. For this reason, in the case of dry distillation of coal containing high expansion pressure coal, the generated gas cannot easily escape from the softened and melted layer with high viscosity, and is trapped inside the coal layer and the coke layer is removed by the gas pressure increase. Then, it acts on the coke oven wall as an expansion pressure. On the other hand, it is considered that when the particle size of the high expansion pressure coal is reduced as in the present invention, the gas easily escapes to the outside of the coal particles, and the pressure in the particles decreases.

本発明では、コークス炉に装入する石炭のうち、高膨張圧炭の0.7mm以下の粒子の割合を45質量%以上にすることにより、コークス炉炭化室で石炭を乾留する際の膨張圧を大幅に低減できる。   In this invention, the expansion pressure at the time of dry distillation of coal in a coke oven carbonization chamber is made by making the ratio of particles of 0.7 mm or less of high expansion pressure coal out of coal charged into the coke oven to 45 mass% or more. Can be greatly reduced.

通常、コークス炉に装入する石炭の粉砕粒度は3mmの篩下重量百分率で管理するのが通例であり、粉砕粒度は平均で−3mmが80質量%前後である。通常コークス製造用原料炭を粉砕するために用いられる粉砕機を用いて粉砕のみで、本発明で規定する上記高膨張圧炭の0.7mm以下の粒子の割合を45質量%以上にするには、高膨張圧炭の3mm以下の粒子の割合が85質量%以上になるように粉砕し細粒化すれば良い。   Usually, the pulverized particle size of the coal charged into the coke oven is usually controlled by the weight percentage under the sieve of 3 mm, and the average pulverized particle size is about 80% by mass at −3 mm. To increase the proportion of particles of 0.7 mm or less of the high expansion pressure coal specified in the present invention to 45% by mass or more only by pulverization using a pulverizer usually used for pulverizing raw coal for coke production Further, the high expansion pressure coal may be pulverized and finely divided so that the proportion of particles of 3 mm or less is 85 mass% or more.

配合炭の膨張圧を低減する効果は、粉砕機を用いて高膨張圧炭を強粉砕し細粒化すればするほど効果は大きくなる。しかし、粉砕機を用いて高膨張圧炭を強粉砕するにしたがって微粉化した石炭が増加し、搬送時およびコーク炉装入時の発塵などのハンドリングやキャリーオーバー等の問題が生じるため、これらの問題が顕在化する0.3mm以下の粒度が少なくなるような粉砕した石炭の粒度制御を行なうことが好ましい。   The effect of reducing the expansion pressure of the blended coal increases as the high expansion pressure coal is strongly pulverized and refined using a pulverizer. However, as the high expansion pressure coal is pulverized with a pulverizer, the amount of finely pulverized coal increases, and problems such as handling and carryover such as dust generation during transportation and charging into the coke oven occur. It is preferable to control the particle size of the pulverized coal so that the particle size of 0.3 mm or less where the above problem becomes apparent is reduced.

一方、特殊な粉砕機を使用したり、篩と組み合わせることにより高膨張圧炭の粒度分布を制御することにより、その粒度を発塵などのコークス炉操業に悪影響がない粒度の下限値に制御するのが好ましい。   On the other hand, by controlling the particle size distribution of the high expansion pressure coal by using a special pulverizer or combining it with a sieve, the particle size is controlled to the lower limit value of the particle size that does not adversely affect the operation of the coke oven such as dusting. Is preferred.

発明者らの検討によると、高膨張圧炭を粉砕した後の粒度分布のうち0.7mm以下の比較的微粉な粒度の範囲では、配合炭の膨張圧低減効果に及ぼす影響は粒度によらず同じであることを見いだした。すなわち、発明者らの検討結果によれば、−0.7mmが100質量%の高膨張圧炭と−0.3mmが100質量%の高膨張圧炭では、配合炭の膨張圧は同じであった。その理由は、高膨張圧炭の石炭粒子の大きさが小さくなると、粒子内から外部へのガスの拡散に及ぼす粒子サイズの影響が小さくなるためと考えられる。一方、上記のようにコークス炉の操業に悪影響を及ぼす微粉の粒度は0.3mm以下であるため、高膨張圧炭を粉砕した後になるべく−0.3mmの微粉を低減し、0.3−0.7mmの粒度範囲を増加させるようにするのが好ましい。   According to the study by the inventors, in the range of relatively fine particle size of 0.7 mm or less in the particle size distribution after pulverizing the high expansion pressure coal, the effect on the expansion pressure reduction effect of the blended coal does not depend on the particle size. I found the same thing. That is, according to the examination results of the inventors, the expansion pressure of the blended coal is the same between the high expansion pressure coal with −0.7 mm being 100 mass% and the high expansion pressure coal with −0.3 mm being 100 mass%. It was. The reason is considered to be that when the size of the coal particles of the high expansion pressure coal is reduced, the influence of the particle size on the diffusion of gas from the inside of the particles to the outside is reduced. On the other hand, since the particle size of the fine powder that adversely affects the operation of the coke oven is 0.3 mm or less as described above, the fine powder of -0.3 mm is reduced as much as possible after pulverizing the high expansion pressure coal, and 0.3-0 It is preferable to increase the particle size range of .7 mm.

高膨張圧炭を粉砕した後に−0.3mmの微粉を低減し、0.3−0.7mmの粒度範囲を増加させるようにするための具体的な方法としては、例えば、図2に示すように、分級機1を用いて高膨張圧炭2を分級点0.7mmで分級して、その篩上の高膨張圧炭2のみを粉砕機3を用いて粉砕することにより、高膨張圧炭2の原炭中の0.7mm以下の微粉の過粉砕を抑制でき、高膨張圧炭2の0.7mm以下の粒子を45質量%以上にし、かつ−0.3mmの微粉を低減することが可能となる。   As a specific method for reducing the fine powder of -0.3 mm and increasing the particle size range of 0.3-0.7 mm after pulverizing the high expansion pressure coal, for example, as shown in FIG. In addition, the high expansion pressure coal 2 is classified using a classifier 1 at a classification point of 0.7 mm, and only the high expansion pressure coal 2 on the sieve is pulverized using the pulverizer 3. It is possible to suppress overpulverization of fine powder of 0.7 mm or less in the raw coal of No. 2 and to make particles of 0.7 mm or less of the high expansion pressure coal 2 45 mass% or more and to reduce fine powder of -0.3 mm. It becomes possible.

例えば、発明者らがこのような粉砕機と分級機を用いて高膨張圧炭の0.7mm以下の粒子を45質量%以上にした場合、0.3mm以下の粒子の質量割合は21質量%まで低減でき、分級機を用いずに粉砕する場合(0.3mm以下の粒子の質量割合は28質量%)に比較して0.3mm以下の粒子の質量割合を大きく低減することが可能であった。   For example, when the inventors have made particles of 0.7 mm or less of high expansion pressure coal 45% by mass or more using such a pulverizer and classifier, the mass ratio of particles of 0.3 mm or less is 21% by mass. Compared with the case of pulverizing without using a classifier (the mass ratio of particles of 0.3 mm or less is 28 mass%), the mass ratio of particles of 0.3 mm or less can be greatly reduced. It was.

一方、粘結炭については、もともと膨張圧が低いので、細粒化による膨張圧抑制効果は小さく、むしろ、細粒化により、(1)石炭をハンドリングする際の発塵が増える、(2)コークス炉に装入する時の装入嵩密度が低下し、コークス炉一窯当りのコークス生産量が低下する、(3)コークス炉への石炭装入時の発塵微粉(キャリーオーバー)が増加し、コークス炉炉壁付着カーボンが増加してコークス押出性を悪化させたり、コークス炉ガス排出用の上昇管を閉塞させてり、コークス炉ガス処理系統においてキャリーオーバーによる処理効率の低下が発生する、などの悪影響が生じる。したがって、膨張圧抑制のための上記のような強粉砕は、高膨張圧炭のみとするのが好ましい。   On the other hand, for caking coal, since the expansion pressure is originally low, the effect of suppressing expansion pressure due to fine granulation is small. Rather, due to fine granulation, (1) the generation of dust when handling coal increases, The bulk density when charging into the coke oven decreases, the coke production per coke oven decreases, and (3) dust generation dust (carry over) increases when charging coal into the coke oven. However, carbon adhering to the coke oven furnace wall increases and the coke extrudability deteriorates, or the riser pipe for discharging the coke oven gas is blocked, resulting in a reduction in processing efficiency due to carry over in the coke oven gas processing system. Adverse effects such as Therefore, it is preferable that the above-described strong pulverization for suppressing the expansion pressure is only high expansion pressure coal.

また、非微粘結炭については、粉砕して細粒化することにより配合炭の膨張圧が低下する効果があることを発明者らは確認しており、上記のように高膨張圧炭を強粉砕することに加えて、非微粘結炭を強粉砕することにより、配合炭の膨張圧をさらに低下することが可能である。発明者の検討によれば、例えば、上述した図1の実験条件において高膨張圧炭の−0.7mmの比率が45質量%の場合に配合炭の膨張圧は8kPaまで低減できるが、この条件で、さらに、配合炭中の非微粘結炭を強粉砕し微細化することで非微粘結炭の−0.7mmの比率を3質量%増加させる(通常の粉砕では−3mmの比率が4質量%程度増加することに相当する)場合には配合炭の膨張圧はさらに1kPa低下し、また、−0.7mmの比率を6質量%増加させる(通常の粉砕では−3mmの比率が7質量%程度増加することに相当する)場合には配合炭の膨張圧はさらに2kPa低下した。   In addition, for non-slightly caking coal, the inventors have confirmed that the expansion pressure of the blended coal is reduced by pulverization and fine granulation. In addition to the strong pulverization, the expansion pressure of the blended coal can be further reduced by strongly pulverizing the non-slightly caking coal. According to the inventor's study, for example, when the ratio of -0.7 mm of high expansion pressure coal is 45% by mass in the experimental condition of FIG. 1 described above, the expansion pressure of the blended coal can be reduced to 8 kPa. In addition, the non-slightly caking coal in the blended coal is strongly pulverized and refined to increase the -0.7 mm ratio of the non-slightly caking coal by 3% by mass (the ratio of -3 mm is normal pulverization). In the case of an increase of about 4% by mass), the expansion pressure of the blended coal further decreases by 1 kPa, and the ratio of −0.7 mm is increased by 6% by mass (the ratio of −3 mm is 7 for normal grinding). (Corresponding to an increase of about mass%), the expansion pressure of the blended coal further decreased by 2 kPa.

本発明は第2に、コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、非微粘結炭の炭種、配合比率を調整し、非微粘結炭の全膨張率の加重平均値が30質量%以下となるように調整する。これによりコークス炉炭化室で石炭を乾留するに際し、配合炭の膨張圧を大きく低減することができる。   Secondly, among the blended coals composed of high expansion pressure coal, non-slightly caking coal, and caking coal charged in the coke oven, the present invention includes the coal type and blending ratio of the non-slightly caking coal. It adjusts and it adjusts so that the weighted average value of the total expansion coefficient of a non-slightly caking coal may be 30 mass% or less. As a result, when the coal is carbonized in the coke oven carbonization chamber, the expansion pressure of the blended coal can be greatly reduced.

非微粘結炭の配合比を増加させることにより配合炭の膨張圧が抑制可能であることは、既に特許文献1に示されているが、非微粘結炭の炭種により膨張圧抑制効果が異なることは従来知られていなかった。本発明者らは、図3に示すように、非微粘結炭の中でも全膨張率(JIS M8801の膨張性試験方法(ジラトメータ法)により測定される収縮率と膨張率の総和、Total Dilatation)の小さい非微粘結炭の炭種ほど配合炭の膨張圧を低減する効果が大きいことを見いだした。   It has already been shown in Patent Document 1 that the expansion pressure of blended coal can be suppressed by increasing the blending ratio of non-slightly caking coal. However, it has not been known so far. As shown in FIG. 3, the inventors of the present invention, among non-slightly caking coals, have a total expansion rate (total dilatation measured by JIS M8801 expansion test method (dilatometer method), Total Dilatation). It has been found that the effect of reducing the expansion pressure of the blended coal is greater as the type of non-slightly caking coal is smaller.

図3において、高膨張圧炭、粘結炭、非微粘結炭の配合比率はそれぞれ22.5質量%、42.5質量%、35質量%である。高膨張圧炭は、Ro1.44%、MF400ddpm、最大膨張圧40kPaの強粘結炭であり、粘結炭はRo1.18%、MF170ddpmである。また、全体の配合炭の粉砕粒度は−3mm 80質量%であり、配合炭のうち、高膨張圧炭の−0.7mmの質量比率は40質量%である。また、粘結材は添加していない。   In FIG. 3, the blending ratios of high expansion pressure coal, caking coal, and non-caking coal are 22.5 mass%, 42.5 mass%, and 35 mass%, respectively. High expansion pressure coal is Ro 1.44%, MF400ddpm, strong caking coal with maximum expansion pressure 40kPa, caking coal is Ro 1.18%, MF170ddpm. Moreover, the grinding | pulverization particle size of the whole coal blend is -3 mm 80 mass%, and the mass ratio of -0.7 mm of high expansion pressure coal is 40 mass% among the coal blends. Moreover, the caking additive is not added.

全膨張率が低いと膨張圧が低くなるのは当然ではないかと考えがちであるが、図4に示すように一般に全膨張率と膨張圧には全く相関がない。これは、全膨張率は、自由膨張条件下で軟化溶融した石炭がどの程度膨張するかを示す数値でありるのに対して、膨張圧は軟化溶融した石炭層内にトラップされた石炭の熱分解ガスに起因する圧力であるからである。つまり、いくら石炭の全膨張率が高くても、拘束条件下において軟化溶融した石炭層からガスが抜けやすければ膨張圧は低くなるためである。このため従来は、配合炭の膨張圧を低減するために全膨張率が小さい石炭、特に全膨張率が小さい炭種の非微粘結炭を用いるという発想はなかった。   Although it is easy to think that it is natural that the expansion pressure is low when the total expansion coefficient is low, there is generally no correlation between the total expansion coefficient and the expansion pressure as shown in FIG. This is a numerical value indicating how much the softened and melted coal expands under free expansion conditions, whereas the expansion pressure is the heat of the coal trapped in the softened and melted coal bed. This is because the pressure is caused by the cracked gas. In other words, no matter how high the total expansion rate of coal, if the gas can easily escape from the coal layer softened and melted under restraint conditions, the expansion pressure will be low. For this reason, conventionally, there has been no idea of using coal with a low total expansion rate, particularly non-slightly caking coal of a coal type with a low total expansion rate, in order to reduce the expansion pressure of the blended coal.

全膨張率が小さい炭種の非微粘結炭を配合することにより配合炭の膨張圧が低下する理由は以下のように考えられる。すなわち、非微粘結炭4は高膨張圧炭5よりも石炭化度が低く再固化温度が低いため、石炭化度が高い高膨張圧炭5が軟化溶融している時に既に再固化しており、図5(a)に示すように高膨張圧炭5から発生した熱分解ガス6が軟化溶融石炭層内に保持されにくいためと推定される。   The reason why the expansion pressure of the blended coal is lowered by blending non-slightly caking coal of a coal type having a small total expansion rate is considered as follows. That is, the non-slightly caking coal 4 has a lower degree of coalification and a lower resolidification temperature than the high expansion pressure coal 5, so that the high expansion pressure coal 5 having a high degree of coalification has already been resolidified when softened and melted. As shown in FIG. 5 (a), it is presumed that the pyrolysis gas 6 generated from the high expansion pressure coal 5 is not easily held in the softened molten coal layer.

また、全膨張率が低い炭種の非微粘結炭4bほど配合炭の膨張圧が低減する理由としては、以下のように推定される。すなわち、全膨張率が高い炭種の非微粘結炭4aに比べて、全膨張率が低い炭種の非微粘結炭4bを用いた場合には、非微粘結炭同士が十分に接着せず、図5(b)に示すように高膨張圧炭5から発生した熱分解ガス6が抜ける通路がより増加するためにガスが外部へ抜けやすくなり、軟化溶融石炭層内のガス圧が低下したものと推定される。   Further, the reason why the expansion pressure of the blended coal decreases as the non-slightly caking coal 4b of the coal type having a lower total expansion rate is estimated as follows. That is, when the non-slightly caking coal 4b of the coal type having a low total expansion rate is used as compared with the non-slightly caking coal 4a of the coal type having a high overall expansion rate, the non-slightly caking coals are sufficiently separated from each other. As shown in FIG. 5 (b), since the passage through which the pyrolysis gas 6 generated from the high expansion pressure coal 5 escapes further increases, the gas easily escapes to the outside, and the gas pressure in the softened molten coal layer does not adhere. Is estimated to have decreased.

本発明において配合炭中に複数炭種の非微粘結炭を配合する場合には、各炭種の単味非微粘結炭の全膨張率をそれぞれ測定し、これらを加重平均した値を、非微粘結炭の全膨張率とすることができる。そして、非微粘結炭の全膨張率加重平均を30%以下にすれば、配合炭の膨張圧を許容値以下に低減することが可能である。配合炭中に配合する非微粘結炭の全膨張率の加重平均は低ければ低いほど配合炭の膨張圧低減効果が大きいので、必要とする強度のコークスが得られる範囲で低下させればよい。非微粘結炭の全膨張率の過度の低下に伴なうコークス強度の低下の影響を少なくし所要コークス強度を維持するためにはその全膨張率の下限値を5%とするのがより好ましい。   In the present invention, when blending non-slightly caking coal of a plurality of coal types in the blended coal, the total expansion rate of simple non-slightly caking coal of each coal type is measured, and a value obtained by weighted average of these values. The total expansion rate of the non-slightly caking coal can be obtained. And if the total expansion coefficient weighted average of non-slightly caking coal is made into 30% or less, it is possible to reduce the expansion pressure of blended coal below an allowable value. The lower the weighted average of the total expansion ratio of the non-slightly caking coal blended in the blended coal, the greater the effect of reducing the expansion pressure of the blended coal. . In order to reduce the influence of the decrease in coke strength accompanying the excessive decrease in the overall expansion rate of non-slightly caking coal and maintain the required coke strength, the lower limit value of the total expansion rate is more preferably 5%. preferable.

本発明は第3に、コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、高膨張圧炭を細粒化する上記第1の発明と、非微粘結炭の炭種選択によって非微粘結炭の全膨張率を調整する上記第2の発明とを併用する。これにより、上述した第1及び第2の発明の相乗作用により配合炭の膨張圧をさらに大きく低減させることが可能である。   Thirdly, the present invention relates to the above-mentioned first that finely expands the high expansion pressure coal among the high expansion pressure coal, non-slightly caking coal, and blended coal composed of the caking coal charged in the coke oven. And the second invention for adjusting the total expansion rate of the non-slightly caking coal by selecting the coal type of the non-slightly caking coal. Thereby, it is possible to further reduce the expansion pressure of the blended coal by the synergistic action of the first and second inventions described above.

本発明は第4に、コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、高膨張圧炭に対して5質量%以上の粘結材を事前に混練した後に、残りの配合炭と混合し、コークス炉で乾留する。これにより、コークス炉炭化室で石炭を乾留するに際し、膨張圧を大きく低減することができる。   4thly this invention is 5 mass% or more with respect to high expansion pressure coal among the high expansion pressure coal, the coal mixture comprised by the high expansion pressure coal, non-slightly caking coal, and caking coal charged to a coke oven. After the kneading material is kneaded in advance, it is mixed with the remaining blended coal and subjected to dry distillation in a coke oven. As a result, the expansion pressure can be greatly reduced when the coal is carbonized in the coke oven carbonization chamber.

配合炭への粘結材の添加により膨張圧が抑制可能であることは、特許文献1に示されているが、図6に示すように、対配合炭当りの粘結材の添加率が同一(1.5質量%)の条件では、配合炭のうちで高膨張圧炭に選択的にタールやピッチなどの粘結材を添加(高膨張圧炭に対する添加率:10質量%)、混練し、その後に残りの非微粘結炭および粘結炭と混合することにより配合炭の膨張圧をより低下させることが可能となる。   Although it is shown in Patent Document 1 that the expansion pressure can be suppressed by adding the binder to the blended coal, as shown in FIG. 6, the addition ratio of the binder per paired coal is the same. Under the condition of (1.5% by mass), a binder such as tar or pitch is selectively added to the high expansion pressure coal among the blended coals (addition ratio to the high expansion pressure coal: 10% by mass) and kneaded. Then, the expansion pressure of the blended coal can be further reduced by mixing with the remaining non-slightly caking coal and caking coal.

図6において、高膨張圧炭、粘結炭、非微粘結炭の配合比率はそれぞれ15質量%、45質量%、40質量%である。高膨張圧炭は、Ro1.59%、MF120ddpm、最大膨張圧60kPaの強粘結炭であり、粘結炭はRo1.22%、MF900ddpmであり、非微粘結炭は、Ro0.76%、MF50ddpm、TD40%である。また、全体の配合炭の粉砕粒度は−3mm 80質量%であり、配合炭のうち、高膨張圧炭の−0.7mmの質量比率は40質量%である。   In FIG. 6, the blending ratios of high expansion pressure coal, caking coal, and non-caking coal are 15% by mass, 45% by mass, and 40% by mass, respectively. High expansion pressure coal is Ro 1.59%, MF120ddpm, maximum expansion pressure 60kPa strong caking coal, caking coal is Ro1.22%, MF900ddpm, non-slightly caking coal is Ro0.76%, MF50ddpm, TD40%. Moreover, the grinding | pulverization particle size of the whole coal blend is -3 mm 80 mass%, and the mass ratio of -0.7 mm of high expansion pressure coal is 40 mass% among the coal blends.

高膨張圧炭に対して選択的に粘結材を添加することにより膨張圧が低下する理由は、粘結材添加により高膨張圧炭が軟化溶融した石炭層の粘度が低下し、ガスが抜けやすくなるためと考えられ、高膨張圧炭は他の粘結炭、非微粘結炭に比べて、特にこの粘度低下による効果が大きいものと考えられる。   The reason why the expansion pressure is reduced by selectively adding the caking additive to the high expansion pressure coal is that the addition of the caking agent reduces the viscosity of the coal layer where the high expansion pressure coal is softened and melted, and the gas escapes. It is thought that this is because the high expansion pressure coal is considered to be particularly effective in reducing the viscosity as compared with other caking coal and non-caking coal.

粘結材としては、例えば、コールタール、アスファルトおよびタールやアスファルトを蒸留または重質化したピッチなどの瀝青物が用いられるが、これらに限定するものではない。   Examples of the caking additive include coal tar, asphalt, and bitumen such as pitch obtained by distilling or increasing the weight of tar or asphalt, but is not limited thereto.

高膨張圧炭に選択的に粘結材を添加する場合の粘結材の添加率については、充分な膨張圧低減効果を得るためには高膨張圧炭に対して5質量%以上の添加が必要であり、より望ましくは8質量%以上であることが好ましい。   Regarding the addition rate of the binder when selectively adding the binder to the high expansion pressure coal, in order to obtain a sufficient expansion pressure reduction effect, addition of 5% by mass or more with respect to the high expansion pressure coal is required. It is necessary, and more desirably 8% by mass or more.

上記の粘結材添加率の上限値については、添加率が大きいほど膨張圧抑制効果は大きいが、多量の粘結材を添加、混練すると、搬送時などに付着などにより石炭のハンドリングが困難となるので、上記添加率の上限は18質量%、より望ましくは14質量%とするのが好ましい。   As for the upper limit value of the above-mentioned binder addition rate, the greater the addition rate, the greater the effect of suppressing the expansion pressure, but when a large amount of binder is added and kneaded, it is difficult to handle coal due to adhesion during transportation, etc. Therefore, the upper limit of the addition rate is preferably 18% by mass, more preferably 14% by mass.

配合炭のうち、高膨張圧炭に対して5質量%以上の粘結材を高膨張圧炭に選択的に添加する上記第4の発明は、高膨張圧炭を細粒化する前記第1の発明と、非微粘結炭の全膨張率を制限する前記第2の発明のいずれか、あるいは両方と併用することにより、膨張圧をさらに大きく低減させることが可能である。   Among the blended coals, the fourth invention in which 5% by mass or more of a binder is selectively added to the high expansion pressure coal with respect to the high expansion pressure coal is the first invention in which the high expansion pressure coal is refined. The expansion pressure can be further reduced by using both of the above and the second invention that limits the total expansion rate of non-slightly caking coal, or both.

表1に示すような配合炭を、水分3%に調整した後、装入密度0.85t/m3で可動壁型試験コークス炉(炉幅400mm、炉長1000mm、炉高1000mm)に装入し、炉温1250℃で18時間乾留した。この時、乾留過程において可動壁に作用する膨張圧を測定した。高膨張圧炭と非微粘結炭の配合比率は表1に示すとおりであり、高膨張圧炭の配合比率は15質量%(実施例1〜17、比較例1)と25質量%(実施例18〜34、比較例2)の2種類とした。高膨張圧炭と非微粘結炭以外の残部は通常の粘結炭を配合している。 After the blended coal shown in Table 1 was adjusted to a moisture content of 3%, it was charged into a movable wall type test coke oven (furnace width 400 mm, furnace length 1000 mm, furnace height 1000 mm) with a charging density of 0.85 t / m 3. And then carbonized at a furnace temperature of 1250 ° C. for 18 hours. At this time, the expansion pressure acting on the movable wall during the dry distillation process was measured. The mixing ratio of the high expansion pressure coal and the non-slightly caking coal is as shown in Table 1, and the mixing ratio of the high expansion pressure coal is 15% by mass (Examples 1 to 17, Comparative Example 1) and 25% by mass (implementation). Two types of Examples 18 to 34 and Comparative Example 2) were used. The remainder other than high expansion pressure coal and non-slightly caking coal is blended with ordinary caking coal.

ここで用いた高膨張圧炭は、Ro1.56%、MF200ddpm、最大膨張圧100kPaの強粘結炭である。粘結炭はRo1.22%、MF900ddpmである。非微粘結炭Aは全膨張率5%、非微粘結炭Bは全膨張率15%、非微粘結炭Cは全膨張率25%、非微粘結炭Dは全膨張率35%の石炭である。   The high expansion pressure coal used here is strongly caking coal with Ro 1.56%, MF 200 ddpm, and maximum expansion pressure 100 kPa. The caking coal is Ro1.22% and MF900ddpm. The non-slightly caking coal A has a total expansion rate of 5%, the non-slightly caking coal B has a total expansion rate of 15%, the non-slightly caking coal C has a total expansion rate of 25%, and the non-slightly caking coal D has a total expansion rate of 35%. % Coal.

ここで、配合炭をコークス炉で乾留する際に目標とする膨張圧の許容範囲は8kPa以下である。   Here, the allowable range of the expansion pressure when carbonizing coal blend in a coke oven is 8 kPa or less.

実施例1〜4、18〜21は、高膨張圧炭の粉砕強化を実施した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 1 to 4 and 18 to 21 are examples in which pulverization and strengthening of high expansion pressure coal is performed, and the maximum expansion pressure is 8 kPa or less, which satisfies the target.

実施例5〜8、22〜25は、非微粘結炭の炭種選択を実施した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 5 to 8 and 22 to 25 are examples when selecting a coal type of non-slightly caking coal, and the maximum expansion pressure is 8 kPa or less, which satisfies the target.

実施例9〜12、26〜29は、高膨張圧炭を粉砕強化し、かつ非微粘結炭の炭種選択を実施した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 9 to 12 and 26 to 29 are examples in which high expansion pressure coal is pulverized and strengthened, and coal type selection of non-slightly caking coal is performed, and the maximum expansion pressure is 8 kPa or less, and the target Is satisfied.

実施例13,14、30、31は高膨張圧炭に粘結材を選択添加した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 13, 14, 30, and 31 are examples where a caking additive is selectively added to high expansion pressure coal, and the maximum expansion pressure is 8 kPa or less, which satisfies the target.

実施例15、32は、高膨張圧炭の粉砕強化を実施し、かつ高膨張圧炭に粘結材を選択添加した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 15 and 32 are examples in which crushing and strengthening of high expansion pressure coal was performed and a caking additive was selectively added to high expansion pressure coal, and the maximum expansion pressure was 8 kPa or less, which satisfied the target. is doing.

実施例16、33は、非微粘結炭の炭種選択を実施し、かつ高膨張圧炭に粘結材を選択添加した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 16 and 33 are examples in which coal type selection of non-slightly caking coal was carried out and caking material was selectively added to high expansion pressure coal, and the maximum expansion pressure was 8 kPa or less. Is satisfied.

実施例17、34は、高膨張圧炭を粉砕強化し、かつ非微粘結炭の炭種選択を実施し、かつ高膨張圧炭に粘結材を選択添加した場合の実施例であり、最大膨張圧は8kPa以下であり、目標を満足している。   Examples 17 and 34 are examples in which high expansion pressure coal is pulverized and strengthened, non-slightly caking coal type is selected, and a caking agent is selectively added to high expansion pressure coal. The maximum expansion pressure is 8 kPa or less, which satisfies the target.

一方、比較例1、2は、高膨張圧炭の粉砕強化、非微粘結炭の炭種選択、高膨張圧炭への粘結材選択添加のいずれも実施しなかった比較例であり、最大膨張圧は8kPaを超えており、目標を達成することができなかった。   On the other hand, Comparative Examples 1 and 2 are comparative examples in which neither pulverization strengthening of high expansion pressure coal, coal type selection of non-slightly caking coal, or caking material selection addition to high expansion pressure coal was performed, The maximum expansion pressure exceeded 8 kPa, and the target could not be achieved.

以上より、本発明の実施により高膨張圧炭比率が高い条件で膨張圧を許容値以下に抑制できていることがわかる。   From the above, it can be seen that by implementing the present invention, the expansion pressure can be suppressed to an allowable value or less under a condition where the high expansion pressure coal ratio is high.

Figure 2008156661
Figure 2008156661

高膨張圧炭の粒度と膨張圧の関係を示す図である。It is a figure which shows the relationship between the particle size of high expansion pressure coal, and an expansion pressure. 高膨張圧炭の微粉を低減し粉砕するための実施形態を示す図である。It is a figure which shows embodiment for reducing and grind | pulverizing the fine powder of high expansion pressure coal. 非微粘結炭の全膨張率と膨張圧の関係を示す図である。It is a figure which shows the relationship between the total expansion rate of a non-slightly caking coal, and an expansion pressure. 全膨張率と膨張圧の関係を示す図である。It is a figure which shows the relationship between a total expansion rate and expansion pressure. 非微粘結炭による膨張圧抑制効果を示す模式図であり、(a)は全膨張率が高い非微粘結炭を用いた場合、(b)は全膨張率が低い非微粘結炭を用いた場合である。It is a schematic diagram which shows the expansion pressure suppression effect by a non-slightly caking coal, (a) is a non-slightly caking coal with a low total expansion rate, when (b) is a non-slightly caking coal with a high total expansion rate. Is used. 粘結材添加率と膨張圧の関係を示す図である。It is a figure which shows the relationship between a caking additive addition rate and an expansion pressure.

符号の説明Explanation of symbols

1 分級機
2 高膨張圧炭
3 粉砕機
4a 全膨張率が高い非微粘結炭
4b 全膨張率が低い非微粘結炭
5 高膨張圧炭
6 熱分解ガス
1 Classifier 2 High expansion pressure coal 3 Pulverizer 4a Non-slightly caking coal with high total expansion rate 4b Non-slightly caking coal with low overall expansion rate 5 High expansion pressure coal 6 Pyrolysis gas

Claims (4)

コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、非微粘結炭の全膨張率の加重平均値が30%以下となるように調整することを特徴とする高炉用コークスの製造方法。   Of the blended coal composed of high expansion pressure coal, non-slightly caking coal, and caking coal charged in the coke oven, the weighted average value of the total expansion rate of the non-slightly caking coal is 30% or less. A method for producing coke for blast furnace, which is adjusted as described above. コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、高膨張圧炭の0.7mm以下の粒子の割合を45質量%以上とし、かつ、非微粘結炭の全膨張率の加重平均値が30%以下となるように調整することを特徴とする高炉用コークスの製造方法。   Of the blended coal composed of high expansion pressure coal, non-slightly caking coal, and caking coal charged in the coke oven, the proportion of particles of 0.7 mm or less of the high expansion pressure coal is 45% by mass or more. And the manufacturing method of the coke for blast furnaces characterized by adjusting so that the weighted average value of the total expansion coefficient of a non-slightly caking coal may be 30% or less. コークス炉に装入する高膨張圧炭、非微粘結炭、および、粘結炭により構成される配合炭のうち、高膨張圧炭に対して5質量%以上の粘結材を事前に添加、混練した後に、残りの配合炭と混合し、コークス炉で乾留することを特徴とする、請求項1又は2に記載の高炉用コークスの製造方法。   Of the blended coal composed of high expansion pressure coal, non-slightly caking coal, and caking coal charged in the coke oven, 5% by mass or more of caking material is added to the high expansion pressure coal in advance. The method for producing coke for a blast furnace according to claim 1, wherein after kneading, the mixture is mixed with the remaining blended coal and dry-distilled in a coke oven. 分級機を用いて前記高膨張圧炭を分級点0.7mmで分級して、その篩上の高膨張圧炭のみを粉砕機を用いて粉砕することを特徴とする請求項2又は3に記載の高炉用コークスの製造方法。   The high expansion pressure coal is classified at a classification point of 0.7 mm using a classifier, and only the high expansion pressure coal on the sieve is pulverized using a pulverizer. Of blast furnace coke.
JP2008033191A 2008-02-14 2008-02-14 Method for producing blast furnace coke Expired - Fee Related JP4751408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008033191A JP4751408B2 (en) 2008-02-14 2008-02-14 Method for producing blast furnace coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033191A JP4751408B2 (en) 2008-02-14 2008-02-14 Method for producing blast furnace coke

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003426742A Division JP4625253B2 (en) 2003-12-24 2003-12-24 Method for producing blast furnace coke

Publications (2)

Publication Number Publication Date
JP2008156661A true JP2008156661A (en) 2008-07-10
JP4751408B2 JP4751408B2 (en) 2011-08-17

Family

ID=39657908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033191A Expired - Fee Related JP4751408B2 (en) 2008-02-14 2008-02-14 Method for producing blast furnace coke

Country Status (1)

Country Link
JP (1) JP4751408B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026468A (en) * 2009-07-27 2011-02-10 Nippon Steel Corp Method for producing coke for blast furnace
KR20160145805A (en) 2014-05-28 2016-12-20 가부시키가이샤 고베 세이코쇼 Method for manufacturing blast furnace coke, and blast furnace coke

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272992A (en) * 1991-02-28 1992-09-29 Nippon Steel Corp Method for predicting expansion pressure in process of coke production
JPH04306294A (en) * 1991-02-28 1992-10-29 Nippon Steel Corp Control of expansion pressure on carbonization of coal
JPH06212168A (en) * 1993-01-20 1994-08-02 Nippon Steel Corp Method for blending coal for charging coke oven
JPH07268348A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Production of coke for blast furnace
JPH09272871A (en) * 1996-04-03 1997-10-21 Nippon Steel Corp Production of high-strength coke
JPH11302661A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Method for compounding coal for coke making
JP2001214171A (en) * 2000-01-31 2001-08-07 Nippon Steel Corp Method of operating coke furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272992A (en) * 1991-02-28 1992-09-29 Nippon Steel Corp Method for predicting expansion pressure in process of coke production
JPH04306294A (en) * 1991-02-28 1992-10-29 Nippon Steel Corp Control of expansion pressure on carbonization of coal
JPH06212168A (en) * 1993-01-20 1994-08-02 Nippon Steel Corp Method for blending coal for charging coke oven
JPH07268348A (en) * 1994-03-30 1995-10-17 Nippon Steel Corp Production of coke for blast furnace
JPH09272871A (en) * 1996-04-03 1997-10-21 Nippon Steel Corp Production of high-strength coke
JPH11302661A (en) * 1998-04-17 1999-11-02 Nippon Steel Corp Method for compounding coal for coke making
JP2001214171A (en) * 2000-01-31 2001-08-07 Nippon Steel Corp Method of operating coke furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026468A (en) * 2009-07-27 2011-02-10 Nippon Steel Corp Method for producing coke for blast furnace
KR20160145805A (en) 2014-05-28 2016-12-20 가부시키가이샤 고베 세이코쇼 Method for manufacturing blast furnace coke, and blast furnace coke

Also Published As

Publication number Publication date
JP4751408B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4879706B2 (en) Method for producing blast furnace coke
JP5737002B2 (en) Method for producing blended coal for coke oven charging
JP6260260B2 (en) Coke production method
JP4751408B2 (en) Method for producing blast furnace coke
JPWO2010116722A1 (en) Method for producing blast furnace coke
JP4625253B2 (en) Method for producing blast furnace coke
JP6265015B2 (en) Coke manufacturing method
EP2871226A1 (en) Coke and method for producing same
JP6241336B2 (en) Method for producing blast furnace coke
JP4486552B2 (en) Manufacturing method of high strength coke
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP6227482B2 (en) Method for producing blast furnace coke and blast furnace coke
JP4899390B2 (en) Coke production method
JP5011833B2 (en) Coke manufacturing method
JP2005194358A (en) Method for estimating coke strength
JP5163247B2 (en) Coke production method
JP4396295B2 (en) Method for producing metallurgical coke
KR101430841B1 (en) Process for producing high-strength coke
JP5942971B2 (en) Coke production method
JP5561146B2 (en) Method for producing blast furnace coke
JP4776945B2 (en) Method for producing highly reactive coke for blast furnace
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP5434335B2 (en) Method for producing blast furnace coke
JP2004307557A (en) Method for manufacturing high-strength coke
JP2010144096A (en) Method for producing ferrocoke

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R151 Written notification of patent or utility model registration

Ref document number: 4751408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees