JP6720827B2 - Carbon material for producing coke, method for producing the same, and method for producing coke - Google Patents

Carbon material for producing coke, method for producing the same, and method for producing coke Download PDF

Info

Publication number
JP6720827B2
JP6720827B2 JP2016207726A JP2016207726A JP6720827B2 JP 6720827 B2 JP6720827 B2 JP 6720827B2 JP 2016207726 A JP2016207726 A JP 2016207726A JP 2016207726 A JP2016207726 A JP 2016207726A JP 6720827 B2 JP6720827 B2 JP 6720827B2
Authority
JP
Japan
Prior art keywords
coal
coke
temperature
carbonaceous material
shrinkage coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016207726A
Other languages
Japanese (ja)
Other versions
JP2017088869A (en
Inventor
野村 誠治
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2017088869A publication Critical patent/JP2017088869A/en
Application granted granted Critical
Publication of JP6720827B2 publication Critical patent/JP6720827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、乾留する石炭に添加して、コークスを製造するためのコークス製造用炭材に関するものである。 TECHNICAL FIELD The present invention relates to a carbon material for coke production for producing coke by adding it to coal to be carbonized.

高炉操業に使用されるコークスは、高炉内の通気性を確保するために、所要の強度及び粒度が求められる。このようなコークスは、多種の石炭を粉砕・配合した後、コークス炉に装入して、炉内で乾留して製造される。コークス製造用の石炭に、良質な石炭を用いることで、十分な強度のコークスを製造することができるが、良質な石炭は、資源的に枯渇状態にある。それに対して、劣質な石炭は、埋蔵量が豊富であり、劣質な石炭を用いて、十分な強度を有するコークスを製造することが望まれている。 Coke used for blast furnace operation is required to have required strength and particle size in order to ensure air permeability in the blast furnace. Such coke is produced by crushing and blending various types of coal, charging the coke into a coke oven, and dry-distilling in the oven. By using good quality coal as the coal for producing coke, coke having sufficient strength can be produced, but good quality coal is in a resource depleted state. On the other hand, inferior coal has a large reserve, and it is desired to produce coke having sufficient strength by using inferior coal.

コークスの強度は、コークスの亀裂と関係があり、十分な強度のコークスを得るためには、コークスの亀裂を抑制する必要がある。このようなコークスの亀裂は、石炭の乾留過程における石炭の収縮により発生するとされている。 The strength of the coke is related to the crack of the coke, and it is necessary to suppress the crack of the coke in order to obtain the coke having a sufficient strength. Such coke cracks are said to occur due to the shrinkage of coal during the coal carbonization process.

石炭の乾留過程における、加熱温度に対するコークス収縮係数の変化(収縮係数曲線)には、1次収縮による第1次ピーク(極大)と2次収縮による第2次ピーク(極大)がある。第1次ピークは、石炭が400〜500℃程度の温度範囲で軟化溶融し、その後固化するときに起こる収縮によるピークであり、第2次ピークは、約700℃の脱水素するときに起こる収縮によるピークである。 The change in the coke shrinkage coefficient with respect to the heating temperature (shrinkage coefficient curve) in the carbonization process of coal includes a primary peak (maximum) due to primary shrinkage and a secondary peak (maximum) due to secondary shrinkage. The first peak is a peak caused by shrinkage that occurs when coal softens and melts in a temperature range of about 400 to 500° C. and then solidifies, and the second peak shrinks when dehydrogenating at about 700° C. Is the peak.

1次収縮率は石炭の種類により異なり、揮発分が高い劣質な石炭では1次収縮が大きい。そのため、数種類の石炭を配合してコークスを製造する方法において、揮発分が高い劣質な石炭を配合すると、石炭同志の収縮の差が大きくなり、ミクロな亀裂が発生し易い。一方、2次収縮率は石炭の種類によらずほぼ一定であるものの、ミクロな亀裂を進展させる。 The primary shrinkage depends on the type of coal, and inferior coal with a high volatile content has a large primary shrinkage. Therefore, in a method of producing coke by mixing several types of coal, when poor quality coal having a high volatile content is mixed, the difference in shrinkage between coals becomes large, and microcracks are likely to occur. On the other hand, although the secondary shrinkage is almost constant regardless of the type of coal, it causes microcracks to grow.

このような亀裂を抑制し、コークス粒度を拡大して、十分な強度のコークスを得るために、石炭の再固化温度以上での収縮率が石炭より小さいコークス粉等の炭材を添加するとともに、炭材と石炭粒子の接着強度を補強するために、ピッチ等の歴青物をあわせて添加する技術が知られている(例えば、特許文献1、参照)。 Such cracks are suppressed, the coke grain size is expanded, and in order to obtain coke having sufficient strength, while adding a carbonaceous material such as a coke powder having a shrinkage rate smaller than that of coal at a resolidification temperature of coal, A technique is known in which bituminous substances such as pitch are added together to reinforce the adhesive strength between the carbonaceous material and the coal particles (see, for example, Patent Document 1).

特開平6−264069号公報JP-A-6-264069 特開昭56−136880号公報JP-A-56-136880 特開昭56−136881号公報JP-A-56-136881 特開昭56−136882号公報JP-A-56-136882 特開平07−003309号公報JP, 07-003309, A 国際公開第2010/087468号International Publication No. 2010/087468

この石炭より収縮率が小さい炭材を添加する技術において、乾留する石炭の種類によっては、亀裂が十分に抑制されず、十分な粒度及び強度のコークスが得られないことがあった。
本発明は、このような実情に鑑み、亀裂を抑制し、十分な強度及び粒度のコークスを製造できるコークス製造用炭材を提供することを目的とする。
In the technique of adding a carbonaceous material having a shrinkage rate smaller than that of coal, cracks may not be sufficiently suppressed depending on the type of coal to be carbonized, and coke having a sufficient grain size and strength may not be obtained.
In view of such circumstances, an object of the present invention is to provide a carbon material for producing coke, which can suppress cracks and produce coke having sufficient strength and grain size.

本発明者らは、上記課題を解決するために、まず、石炭に添加する炭材について調査した。炭材としては、劣質な石炭をコークス製造の原料とするために、450〜600℃で予備乾留したチャーが広く知られている(例えば、特許文献2〜6、参照)。 In order to solve the above problems, the present inventors first investigated carbonaceous materials added to coal. As the carbonaceous material, char that has been preliminarily carbonized at 450 to 600° C. in order to use inferior coal as a raw material for coke production is widely known (see, for example, Patent Documents 2 to 6).

本発明者らは、種々の温度で予備乾留して得られた炭材を準備し、石炭に炭材を添加し、乾留して、炭材の違いと亀裂との関係を調査した。その結果、特定の石炭と炭材との組み合わせにおいて、亀裂が抑制されることを知見した。 The present inventors prepared carbonaceous materials obtained by preliminary carbonization at various temperatures, added carbonaceous materials to coal, and carbonized them to investigate the relationship between the difference in carbonaceous materials and cracks. As a result, they found that cracks were suppressed in the combination of specific coal and carbonaceous material.

そこで、亀裂が抑制された組合せの石炭と炭材において、石炭乾留時の加熱温度とコークス収縮係数との関係と、炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係とを測定したところ、石炭のコークス収縮係数の第1次ピーク(極大)と第2次ピーク(極大)の間の極小に、炭材の収縮係数のピーク(極大)が存在していた。 Therefore, in the combination coal and carbonaceous material in which cracks are suppressed, the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient and the relationship between the heating temperature during carbonization of the raw material coal and the carbonaceous material contraction coefficient are described. As a result of measurement, a peak (maximum) of the shrinkage coefficient of the carbonaceous material was present at a minimum between the first peak (maximum) and the second peak (maximum) of the coke shrinkage coefficient of coal.

このように、石炭の乾留時の加熱温度とコークス収縮係数との関係に対して、炭材を、特定の原料石炭乾留時の加熱温度と炭材収縮係数との関係を有するものとすることで、石炭と炭材の混合物を乾留したとき、500〜1000℃の温度帯を通じて、コークス収縮係数の変化が少なく、低位に保つことができ、その結果、亀裂の発生を抑制することができることを見出した。 In this way, with respect to the relationship between the heating temperature and the coke shrinkage coefficient during the carbonization of coal, the carbonaceous material has a relationship between the heating temperature during the carbonization of a specific raw material coal and the carbonaceous material shrinkage coefficient. It has been found that, when a mixture of coal and carbonaceous materials is subjected to carbonization, the coke shrinkage coefficient changes little and can be kept at a low level through a temperature range of 500 to 1000° C., and as a result, the occurrence of cracks can be suppressed. It was

本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材において、
前記石炭は、当該石炭乾留時の加熱温度とコークス収縮係数との関係において当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有し、
前記炭材は、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内である
ことを特徴とするコークス製造用炭材。
The present invention was made based on the above findings, and the gist thereof is as follows.
(1) In the carbonaceous material for coke production, which is added to the coal when carbonizing carbon to produce coke,
The coal has a minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature during the coal carbonization and the coke shrinkage coefficient,
The carbonaceous material has a maximum of the carbonaceous material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during carbonization of the raw material coal of the carbonaceous material, and shows the maximum. A carbonaceous material for producing coke, characterized in that the temperature is within ±30° C. of the temperature showing the minimum of the coal.

(2)石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材の製造方法であって、
前記石炭について、当該石炭乾留時の加熱温度とコークス収縮係数との関係を測定し、当該石炭の再固化温度以上の温度うち、コークス収縮係数の極小を示す温度を求め、
前記石炭の前記極小を示す温度未満の温度で、前記炭材を製造するための原料石炭を炭化して、前記炭材が、当該原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度で炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内となるようにする
ことを特徴とするコークス製造用炭材の製造方法。
(3)前記原料石炭として、ドライベースの揮発分VMが35〜50%と、粘結力指数CIが20以上の少なくとも一方の条件を満たすものを用いることを特徴とする上記(2)に記載のコークス製造用炭材の製造方法。
(4)前記原料石炭として、平均粒度3mm以上の粒状物または造粒物を用いることを特徴とする上記(2)または(3)に記載のコークス製造用炭材の製造方法。
(2) A method for producing a carbonaceous material for coke production, which is added to the coal when carbonizing carbon to produce coke,
Regarding the coal, the relationship between the heating temperature and the coke shrinkage coefficient during the coal carbonization was measured, and the temperature showing the minimum of the coke shrinkage coefficient was found among the temperatures above the resolidification temperature of the coal.
At a temperature lower than the temperature showing the minimum of the coal, the raw material coal for producing the carbonaceous material is carbonized, and the carbonaceous material has a relationship between the heating temperature and the carbonaceous material shrinkage coefficient during the carbonization of the raw material coal. And having a maximum of the carbonaceous material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal, and the temperature showing the maximum is within ±30° C. of the temperature showing the minimum of the coal. A method for producing carbonaceous material for coke production.
(3) The above-mentioned (2), characterized in that, as the raw material coal, a coal having a dry base volatile matter VM of 35 to 50% and a cohesion index CI of at least one of 20 or more is used. Method for producing carbonaceous material for coke production.
(4) The method for producing a carbon material for coke production according to the above (2) or (3), wherein a granular material or a granulated material having an average particle size of 3 mm or more is used as the raw material coal.

(5)石炭にコークス製造用炭材を添加して乾留するコークスの製造方法であって、
前記石炭として、当該石炭乾留時の加熱温度とコークス収縮係数との関係において、当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものを用い、
前記炭材として、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内であるものを用いる
ことを特徴とするコークスの製造方法。
(5) A method for producing coke, comprising adding carbon material for producing coke to coal and carbonizing
As the coal, in the relationship between the heating temperature during the coal carbonization and the coke shrinkage coefficient, one having a minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal,
As the carbonaceous material, in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during carbonization of the raw material coal of the carbonaceous material, the carbonaceous material shrinkage coefficient has a maximum at a temperature equal to or higher than the resolidification temperature of the coal, and exhibits the maximum. A method for producing coke, characterized in that the temperature is within ±30° C. of the temperature at which the minimum of the coal is shown.

なお、本発明および明細書では、コークス製造用の石炭を単に「石炭」と表記し、炭材製造用の石炭を「原料石炭」と表記する。 In addition, in this invention and a specification, the coal for coke manufacture is only described as "coal", and the coal for carbon material manufacture is described as "raw material coal."

本発明によれば、コークス製造用炭材を、石炭の乾留時の加熱温度とコークス収縮係数の関係に対して、特定の原料石炭乾留時の加熱温度と炭材収縮係数の関係を有するものとしたので、亀裂が抑制され、十分な強度及び粒度を有するコークスを製造することができる。 According to the present invention, the carbonaceous material for coke production has a relationship between the heating temperature during carbonization of coal and the coefficient of coke shrinkage, and the relationship between the heating temperature during carbonization of a specific raw material and the coefficient of carbonaceous material shrinkage. Therefore, cracks are suppressed, and coke having sufficient strength and grain size can be produced.

乾留時の加熱温度と収縮係数との関係を示す図である。It is a figure which shows the relationship between the heating temperature at the time of dry distillation, and a shrinkage coefficient. 石炭A及びBの乾留時の加熱温度と収縮係数との関係を示す図である。It is a figure which shows the relationship between the heating temperature and the shrinkage coefficient at the time of carbonization of coals A and B. 石炭Aの乾留時の加熱温度と収縮係数との関係、No.1〜4の炭材の原料石炭乾留時の加熱温度と収縮係数との関係を示す図である。The relationship between the heating temperature and the shrinkage coefficient during the carbonization of coal A, No. It is a figure which shows the relationship between the heating temperature at the time of raw material coal carbonization of a carbonaceous material of 1-4, and a shrinkage coefficient.

本発明のコークス製造用炭材(以下、「本発明の炭材」という)は、コークスを製造する際に石炭に添加するものであり、原料石炭乾留時の加熱温度と炭材収縮係数の関係において、石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、該極大を示す温度が、石炭の乾留時の加熱温度とコークス収縮係数との関係において、コークス収縮係数の極小を示す温度の±30℃以内のものである。 The carbonaceous material for producing coke of the present invention (hereinafter referred to as "carbonaceous material of the present invention") is added to coal during the production of coke, and the relationship between the heating temperature during carbonization of the raw material coal and the carbonaceous material shrinkage coefficient. In, in the temperature of the coal re-solidification temperature or higher, has a maximum of the carbonaceous material shrinkage coefficient, the temperature showing the maximum, in the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient, the minimum of the coke shrinkage coefficient. It is within ±30°C of the indicated temperature.

以下、本発明の炭材に至った検討の経緯について説明する。なお、特段の断りの無い限り、石炭及び炭材の配合率、揮発分の「%」は「質量%」を示す。 Hereinafter, the background of the study leading to the carbonaceous material of the present invention will be described. In addition, unless otherwise specified, the blending ratio of coal and carbonaceous material, and “%” of volatile matter indicate “mass %”.

本発明者らは、コークスの製造において、亀裂を抑制し、十分な強度及び粒度のコークスを製造できる炭材について次のような調査を実施した。まず、種々の温度で予備乾留して得られた炭材を準備し、1種の石炭にそれぞれ添加し、複数の混合物を得て、それらを乾留して、炭材の違いと亀裂との関係を調査した。その結果、特定の炭材において、亀裂が抑制された。 In the production of coke, the present inventors conducted the following investigation on a carbonaceous material capable of suppressing cracking and producing coke having sufficient strength and grain size. First, prepare carbonaceous materials obtained by preliminary carbonization at various temperatures, add them to one kind of coal, respectively, obtain a plurality of mixtures, and carbonize them to determine the relationship between carbonaceous materials and cracks. investigated. As a result, the crack was suppressed in the specific carbonaceous material.

そこで、石炭、亀裂が抑制された炭材X及び亀裂が発生した炭材Yにおいて、それぞれ乾留時の加熱温度と収縮係数との関係を測定した。図1に、乾留時の加熱温度と収縮係数との関係を示す。図1において、実線が石炭、点線Xが亀裂が抑制された炭材X、点線Yが亀裂が発生した炭材Yの乾留時の加熱温度と収縮係数との関係である。 Therefore, the relationship between the heating temperature and the shrinkage coefficient during carbonization was measured for coal, carbon material X with cracks suppressed, and carbon material Y with cracks. FIG. 1 shows the relationship between the heating temperature during dry distillation and the shrinkage coefficient. In FIG. 1, the solid line represents the coal, the dotted line X represents the carbon material X with cracks suppressed, and the dotted line Y represents the relationship between the heating temperature and the shrinkage coefficient during carbonization of the carbon material Y with cracks.

石炭の乾留時の加熱温度とコークス収縮係数の関係では、400〜500℃程度の温度範囲で軟化溶融し、その後固化するときに起こる1次収縮による第1次ピークP1(極大)と、約700℃の脱水素するときに起こる2次収縮による第2次ピーク(極大)が確認された。亀裂が抑制された炭材X及び亀裂が発生した炭材Yでは、石炭の再固化温度以上の温度、具体的には、炭材Xでは約570℃、炭材Yでは約700℃にピークが確認された。 Regarding the relationship between the heating temperature and the coke shrinkage coefficient during the carbonization of coal, the primary peak P1 (maximum) due to the primary shrinkage that occurs when the coal softens and melts in the temperature range of about 400 to 500° C. and then solidifies, and about 700 A secondary peak (maximum) due to secondary contraction that occurred during dehydrogenation at ℃ was confirmed. In the carbonaceous material X in which cracks are suppressed and the carbonaceous material Y in which cracks are generated, the temperature is equal to or higher than the resolidification temperature of coal, specifically, the carbonaceous material X has a peak at about 570°C and the carbonaceous material Y has a peak at about 700°C. confirmed.

これより、亀裂が抑制された炭材Xでは、石炭の乾留時の加熱温度とコークス収縮係数の関係における、第1次ピークP1と第2次ピークP2に挟まれた極小に相当する位置に、炭材収縮係数のピークが存在していた。それに対して、亀裂が発生した炭材Yでは、石炭のコークス収縮係数の極大(第2次ピークP2)と重なるように、炭材収縮係数のピークが存在していた。 From this, in the carbonaceous material X in which cracks were suppressed, at the position corresponding to the minimum between the primary peak P1 and the secondary peak P2 in the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient, There was a peak of carbon material shrinkage coefficient. On the other hand, in the carbon material Y in which cracks were generated, the peak of the carbon material shrinkage coefficient was present so as to overlap with the maximum of the coke shrinkage coefficient of coal (secondary peak P2).

そうすると、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度と同等にすると、炭材と石炭の混合物のコークス収縮係数の変化が少なくなり、コークスの亀裂を抑制できるが、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極大を示す温度と同等にすると、炭材と石炭の混合物のコークス収縮係数の変化が大きくなり、コークスに歪が生じ、コークスに亀裂が発生すると考えた。 Then, if the temperature showing the maximum shrinkage coefficient of the carbonaceous material is made equal to the temperature showing the minimum shrinkage coefficient of the coke of the coal, the change in the coke shrinkage coefficient of the mixture of the carbonaceous material and the coal is reduced, and the cracking of the coke is suppressed. However, if the temperature showing the maximum shrinkage coefficient of the carbonaceous material is made equal to the temperature showing the maximum shrinkage coefficient of the coke of the coal, the change in the coke shrinkage coefficient of the mixture of the carbonaceous material and the coal becomes large, and the strain in the coke becomes large. It was thought that cracks would form in the coke.

そこで、種々の炭材の収縮係数の極大を示す温度と、石炭のコークス収縮係数の極小を示す温度との差と、亀裂の有無との関係について詳細に検討した結果、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることで、コークスの亀裂を抑制できることを知見した。 Therefore, as a result of detailed study on the relationship between the temperature showing the maximum of the shrinkage coefficient of various carbon materials and the temperature showing the minimum of the coke shrinkage coefficient of coal, and the presence or absence of cracks, It was found that coke cracking can be suppressed by setting the temperature at which the maximum is within ±30° C. of the temperature at which the coke shrinkage coefficient of coal is minimum.

本発明は、以上のような検討過程を経て上記(1)〜(5)に記載の発明に至ったものであり、そのような本発明について、さらに、必要な要件や好ましい要件について順次説明する。 The present invention has reached the inventions described in (1) to (5) above through the above-described examination process, and the necessary requirements and preferable requirements of the present invention will be sequentially described. ..

本発明の炭材は、コークスを製造する際に石炭に添加するものであり、原料石炭乾留時の加熱温度と炭材収縮係数の関係において、石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、該極大を示す温度が、石炭のコークス収縮係数の極小を示す温度の±30℃であるものである。
まず、本発明の炭材の添加対象の石炭について説明する。
The carbonaceous material of the present invention is to be added to coal during the production of coke, and in the relationship between the heating temperature and the carbonaceous material contraction coefficient at the time of raw material coal carbonization, the carbonaceous material contraction coefficient is at a temperature above the resolidification temperature of coal. Of the coke shrinkage coefficient of the coal is ±30°C.
First, the coal to which the carbonaceous material of the present invention is added will be described.

(石炭)
本発明の炭材の添加対象の石炭は、石炭乾留時の加熱温度とコークス収縮係数との関係において、石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものであれば、特に限定されるものでない。この極小は、石炭乾留時の加熱温度とコークス収縮係数との関係において、石炭の軟化溶融の後に固化するときに起こる1次収縮による第1次ピーク(極大)と、約700℃の脱水素により熱収縮するときに起こる2次収縮による第2次ピーク(極大)の間に観測されるものであり、少なくとも、再固化温度以上1000℃以下の温度範囲において、観測されるものである。
(coal)
Coal to which the carbonaceous material of the present invention is added is particularly limited as long as it has a minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of coal in the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient. Not what is done. In the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient, this local minimum is due to the primary peak (maximum) due to primary shrinkage that occurs when coal solidifies after softening and melting, and dehydrogenation at about 700°C. It is observed during the secondary peak (maximum) due to the secondary shrinkage that occurs during thermal shrinkage, and is observed at least in the temperature range from the resolidification temperature to 1000°C.

この石炭乾留時の加熱温度とコークス収縮係数との関係の求め方は、特開2005−232349号公報に詳細に記載されているため、この関係の求め方に関しては、以下に簡潔に説明する。 Since the method for obtaining the relationship between the heating temperature and the coke shrinkage coefficient during coal carbonization is described in detail in JP-A-2005-232349, the method for obtaining this relationship will be briefly described below.

細管に、石炭試料を充填して、細管内の石炭試料の上にピストンを挿入して、例えば3℃/分の昇温速度で1000℃まで昇温する。ピストンの位置に基づいて昇温中の試料長さを測定し、温度に対する試料長さの関係を求める。再固化温度での試料の長さをLR、温度Tでの試料長さをLTとしたとき、温度Tでのコークス収縮率R(−)を以下の式で定義する。そして、単位温度変化あたりのコークス収縮率Rの変化をコークス収縮係数(−/℃)とし、温度とコークス収縮係数との関係を求める。
R=(LR−LT)/LR
A thin tube is filled with a coal sample, a piston is inserted on the coal sample in the thin tube, and the temperature is raised to 1000° C. at a temperature rising rate of 3° C./min, for example. The sample length during temperature increase is measured based on the position of the piston, and the relationship between the sample length and the temperature is obtained. The length L R of the sample at resolidification temperature, when a sample length at a temperature T and a L T, coke shrinkage at temperature T R (-) is defined by the following equation. Then, the change in the coke shrinkage rate R per unit temperature change is taken as the coke shrinkage coefficient (−/° C.), and the relationship between the temperature and the coke shrinkage coefficient is obtained.
R = (L R -L T) / L R

また、本発明の炭材の添加対象の石炭は、1銘柄から構成される単味炭でも複数銘柄から構成される配合炭でもよい。ただし、非微粘結炭の配合率が50%未満では、炭材配合によるコークスの割れ抑制や、強度向上の効果が小さいため、非微粘結炭を50%以上配合した配合炭とすることが好ましい。また、石炭の揮発分及び粒度は、特に限定されるものでなく、ドライベースの揮発分VMが17〜40%、粒度が3mm以下の比率を60%〜95%であるものが例示される。 Further, the coal to which the carbonaceous material of the present invention is added may be plain coal composed of one brand or blended coal composed of multiple brands. However, if the blending ratio of the non-caking coal is less than 50%, the effect of suppressing the cracking of coke and improving the strength due to the blending of the carbon material is small. Therefore, the blending coal should contain 50% or more of the non-caking coal. Is preferred. Moreover, the volatile matter and particle size of coal are not particularly limited, and those having a dry base volatile matter VM of 17 to 40% and a particle size of 3 mm or less of 60% to 95% are exemplified.

(炭材)
本発明の炭材は、原料石炭乾留時の加熱温度と炭材収縮係数の関係において、対象とする石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、該極大を示す温度が、該石炭のコークス収縮係数の極小を示す温度の±30℃以内であるものとする。ちなみに、原料石炭乾留時の加熱温度と炭材収縮係数との関係の求め方は、上記の温度とコークス収縮係数との関係の求め方と同様の条件である。
後述の実施例に示されるように、炭材の収縮係数の極大を示す温度を、対象とする石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることで、500〜1000℃の温度域を通じて、コークス収縮係数の変化を少なく、低位に保つことができ、亀裂の発生を抑制できる。
(Carbon material)
The carbonaceous material of the present invention has a maximum of the carbonaceous material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the target coal in the relationship between the heating temperature during the raw material coal carbonization and the carbonaceous material shrinkage coefficient, and the temperature showing the maximum. Is within ±30° C. of the temperature showing the minimum coke shrinkage coefficient of the coal. By the way, the method for obtaining the relationship between the heating temperature and the carbon material shrinkage coefficient during carbonization of the raw material coal is the same as the method for obtaining the relationship between the temperature and the coke shrinkage coefficient.
As shown in Examples described later, by setting the temperature showing the maximum of the shrinkage coefficient of the carbonaceous material within ±30°C of the temperature showing the minimum of the coke shrinkage coefficient of the target coal, Throughout the temperature range, there is little change in the coke shrinkage coefficient, it can be kept at a low level, and the occurrence of cracks can be suppressed.

対象とする石炭のコークス収縮係数の極小を示す温度は、石炭乾留時の加熱温度とコークス収縮係数の関係の図面から読み取っても、該関係の近似曲線の式を微分して求めてもよい。 The temperature indicating the minimum coke shrinkage coefficient of the target coal may be read from the drawing of the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient, or may be obtained by differentiating the equation of the approximate curve of the relationship.

炭材の収縮係数の極大値は、特に限定されるものでなく、石炭のコークス収縮係数の極小値より大きくても、小さくてもよい。また、炭材収縮係数の極大値を有するピークの形状は、特に限定されるものでなく、シャープな形状でもブロードな形状でもよい。 The maximum value of the shrinkage coefficient of the carbon material is not particularly limited, and may be larger or smaller than the minimum value of the coke shrinkage coefficient of coal. Further, the shape of the peak having the maximum value of the carbon material shrinkage coefficient is not particularly limited, and may be a sharp shape or a broad shape.

炭材が、そのような石炭の再固化温度以上の温度で収縮係数の極大を示すには、炭材に揮発分を残存させておくことが重要であるが、その量は特に限定されるものではなく、コークスの亀裂を抑制できる範囲に適宜設定すればよい。
また、炭材の粘結力指数CIは、20以上とすることが好ましい。粘結力指数CIが20未満では、周囲の粒子と接着し難いため、石炭とともに乾留して製造したコークスの強度が低下することがある。
In order for the carbonaceous material to exhibit the maximum shrinkage coefficient at a temperature above the resolidification temperature of such coal, it is important to leave the volatile content in the carbonaceous material, but the amount is particularly limited. Instead, it may be set appropriately within a range in which cracking of coke can be suppressed.
The cohesive strength index CI of the carbonaceous material is preferably 20 or more. When the cohesion index CI is less than 20, it is difficult to adhere to surrounding particles, and thus the strength of coke produced by carbonization with coal may be reduced.

ここで、揮発分VMは、JIS M8812で規定される方法により測定されるものである。また、粘結力指数CIは、石炭利用技術用語辞典(社団法人燃料協会編)p.255に記載されており、0.25mm以下の劣質炭1gに0.25〜0.30mmの粉コークス9gを混合し、磁性るつぼで950℃、7分間乾留した後、0.30mm以上の篩で篩分けし、篩上に残存した質量の百分率で表示した値である。 Here, the volatile matter VM is measured by the method specified in JIS M8812. In addition, the cohesion index CI is a coal utilization technical terminology dictionary (edited by Japan Fuel Association) p. 255, 1 g of inferior coal of 0.25 mm or less is mixed with 9 g of powder coke of 0.25 to 0.30 mm, and the mixture is dry-distilled in a magnetic crucible at 950° C. for 7 minutes, and then sieved with a screen of 0.30 mm or more. It is a value expressed as a percentage of the mass remaining after sieving.

次に、本発明のコークス製造用炭材の製造方法(以下、「本発明の炭材の製法」という)、及び、本発明のコークスの製造方法(以下、「本発明のコークスの製法」という)の流れについて説明するとともに、必要な要件や好ましい要件について順次説明する。 Next, a method for producing a carbon material for producing coke according to the present invention (hereinafter referred to as "method for producing carbon material according to the present invention") and a method for producing coke according to the present invention (hereinafter referred to as "method for producing coke according to the present invention") ), the necessary requirements and preferable requirements will be sequentially described.

本発明の炭材の製法は、炭材製造用の原料石炭を、石炭のコークス収縮係数の極小を示す温度未満の温度で炭化して、炭材が石炭の再固化温度以上の温度で炭材収縮係数が極大を有し、かつ、該極大を示す温度が石炭の前記極小を示す温度の±30℃以内となるように製造する方法であり、原料石炭の性状(揮発分、平均粒度等)に応じて目的の炭材収縮係数を有する炭材となるように炭化条件を調整するものである。 The method for producing a carbonaceous material of the present invention is to carbonize a raw material coal for producing a carbonaceous material at a temperature lower than a temperature at which the coke shrinkage coefficient of the coal is minimal, and the carbonaceous material is a carbonaceous material at a temperature equal to or higher than the resolidification temperature of the coal. The shrinkage coefficient has a maximum, and is a method for producing so that the temperature showing the maximum is within ±30° C. of the temperature showing the minimum of the coal, and the properties of the raw material coal (volatile matter, average particle size, etc.) According to the above, the carbonization conditions are adjusted so that the carbon material has a target carbon material shrinkage coefficient.

まず、石炭を準備する。石炭は、上述するように、石炭乾留時の加熱温度とコークス収縮係数の関係において、当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものであれば、特に限定されるものでなく、単味炭でも配合炭でもよい。 First, prepare coal. Coal, as described above, in the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient, as long as it has a minimum coke shrinkage coefficient at a temperature above the resolidification temperature of the coal, it is particularly limited. Alternatively, plain coal or blended coal may be used.

そして、上述するように特開2005−232349号公報に記載の方法により、石炭乾留時の加熱温度とコークス収縮係数との関係を測定し、当該石炭の再固化温度以上の温度でコークス収縮係数の極小を示す温度を求める。該極小を示す温度は、石炭乾留時の加熱温度とコークス収縮係数の関係の図面から読み取って求めることができる。 Then, as described above, by the method described in JP-A-2005-232349, the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient was measured, and the coke shrinkage coefficient was measured at a temperature equal to or higher than the resolidification temperature of the coal. Find the temperature that shows the minimum. The temperature showing the minimum value can be obtained by reading from the drawing showing the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient.

次に、炭材製造用の原料石炭を準備する。
原料石炭は、炭材としたときに、収縮係数の極大を示す温度が上記のような範囲になるようなものであれば、その他の特性は特に限定されるものではないが、ドライベースの揮発分VMが35〜50%の石炭を採用することが好ましい。また、原料石炭の粘結力指数CIは、20以上とすることが好ましい。
Next, raw material coal for carbonaceous material production is prepared.
Raw coal is not particularly limited in other characteristics as long as the temperature at which the maximum shrinkage coefficient is in the above range when used as carbonaceous material is not particularly limited. It is preferable to use coal having a VM of 35 to 50%. Further, the cohesion index CI of the raw material coal is preferably 20 or more.

原料石炭のVMの値は炭材の収縮係数に影響を与え、その値が35%未満では、炭材に残留する揮発分が少なくなるために収縮係数の絶対値が小さくなる。この場合は、収縮係数が異なるものを組み合わせて応力を緩和して亀裂発生を抑制する効果が小さくなるために、収縮係数極大温度が上記の範囲に入っていても、コークス粒径を向上させる効果が効果的に発揮できない場合が生じる。また、50%超では、炭材に残留する揮発分が多くなるために収縮係数の絶対値が大きくなり、収縮係数極大温度が上記の範囲に入っていてもコークスの亀裂が発生する可能性があり、これによりコークス粒径を向上させる効果が効果的に発揮できない場合が生じる。 The value of VM of the raw material coal affects the shrinkage coefficient of the carbonaceous material, and if the value is less than 35%, the absolute value of the shrinkage coefficient becomes small because the volatile content remaining in the carbonaceous material decreases. In this case, the effect of improving coke grain size is obtained even if the maximum shrinkage coefficient temperature is in the above range, because the effect of relaxing the stress by reducing the shrinkage coefficient by combining those having different shrinkage coefficients is small. There may be cases where can not be effectively exhibited. On the other hand, if it exceeds 50%, the absolute value of the shrinkage coefficient becomes large due to the large amount of volatile components remaining in the carbonaceous material, and coke cracks may occur even if the maximum shrinkage coefficient temperature is within the above range. There is a case where the effect of improving the coke particle size cannot be effectively exhibited.

原料石炭のCIについては、その値が20未満では、石炭の粘結性が不足して、石炭粒子の接着性を阻害し、コークス強度を低下させる場合が生じる。 With respect to the CI of the raw material coal, if the value is less than 20, the caking property of the coal is insufficient, the adhesion of the coal particles is hindered, and the coke strength may be reduced.

また、原料石炭は平均粒度3mm以上とすることが好ましい。粒度が小さい原料石炭は、伝熱が早く、かつ、比表面積が大きいため、炭化の際に揮発分が放出され易くなり、炭材に必要な量の揮発分が残留し難くなる結果、最適な収縮率極大温度を持つ炭材を調整可能な温度範囲が狭くなると考えられる。更に、粒度が大きい原料石炭は、予定とする炭化温度よりも高温で炭化処理された場合であっても、揮発分を残存させることができる。このため、原料石炭は平均粒度3mm以上の粒状物とすることが好ましく、更に好ましくは、平均粒度10mm以上の粒状物である。 In addition, the raw coal preferably has an average particle size of 3 mm or more. Raw coal with a small particle size has a fast heat transfer and a large specific surface area, so volatile components are likely to be released during carbonization, and as a result, it becomes difficult for the volatile component to remain in the carbonaceous material. It is considered that the temperature range in which the carbon material with the maximum shrinkage temperature can be adjusted is narrowed. Further, the raw material coal having a large particle size can leave the volatile components even when it is carbonized at a temperature higher than the expected carbonization temperature. For this reason, it is preferable that the raw material coal is a granular material having an average particle size of 3 mm or more, and more preferably a granular material having an average particle size of 10 mm or more.

なお、3mm未満の微粒であっても、造粒して平均粒度を3mm以上の造粒物とすることで、揮発分の脱離速度を抑えることができるため、炭材に必要な量の揮発分を残留させ易くなり、粒径向上効果を向上させることができる。しかしながら、平均粒度3mm以上の粒状物と比較すると、造粒物は微粒と微粒の界面から揮発分が脱離しやすいので、同じ平均粒度で比較すると、粒径向上効果は粗粒の方が大きくなる。 Even if the fine particles are less than 3 mm, the desorption rate of volatile components can be suppressed by granulating the granulated product to have an average particle size of 3 mm or more, so that the amount of volatilization necessary for the carbonaceous material is reduced. It becomes easy to remain the amount, and the particle size improving effect can be improved. However, as compared with granules having an average particle size of 3 mm or more, volatile matter is more easily desorbed from the interface between fine particles and fine particles, so when compared with the same average particle size, the effect of improving particle size is larger for coarse particles. ..

ここで、平均粒度は、JIS Z 8801に規定する篩を用いて篩分け、それぞれの篩上に残った試料の質量を計測し、この累積分布から求めることができる。 Here, the average particle size can be determined from the cumulative distribution by sieving using a sieve defined in JIS Z 8801, measuring the mass of the sample remaining on each sieve, and calculating the cumulative distribution.

また、原料石炭を、ピッチ等のバインダーと混練し、造粒した造粒物を用いることが好ましい。これにより、原料石炭は、ピッチ等のバインダーで被覆され、揮発分の脱離速度を抑えることができるため、炭材に必要な量の揮発分を残留させることができる。更に、バインダーで被覆された原料石炭は、予定とする炭化温度よりも高温で炭化処理された場合であっても、揮発分を残存させることができる。 Further, it is preferable to use a granulated product obtained by kneading the raw material coal with a binder such as pitch and granulating. As a result, the raw coal is coated with a binder such as pitch and the desorption rate of volatile matter can be suppressed, so that a necessary amount of volatile matter can remain in the carbonaceous material. Further, the raw material coal coated with the binder can leave the volatile components even when the raw coal is carbonized at a temperature higher than the predetermined carbonization temperature.

造粒物とする際に原料石炭に添加するバインダーは、特に限定されるものでなく、石油系及び石炭系のバインダー(タール、ピッチ等)のいずれも使用することができる。バインダーの添加量も、特に限定されるものでなく、原料石炭に対する外数で5〜15質量%が例示される。 The binder to be added to the raw coal in forming the granulated product is not particularly limited, and any of petroleum-based and coal-based binders (tar, pitch, etc.) can be used. The addition amount of the binder is also not particularly limited, and is exemplified by 5 to 15% by mass as an external number with respect to the raw coal.

次に、原料石炭を、炭材の収縮係数の極大を示す温度が石炭のコークス収縮係数の極小を示す温度の±30℃以内となるよう炭化する。例えば、石炭の該極小を示す温度よりも低い温度(温度差ΔT=20〜80℃)で原料石炭を炭化(乾留)することで、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることができることを、実験的に知見した。この点は、対象とする炭材製造用石炭の性状に対応して、適宜、事前に実験等で確認して設定することが好ましい。また、原料石炭の炭化において、加熱炉は特に限定されるものでなく、特許文献2〜6に記載されているような、キルンやシャフト炉を用いて、原料石炭を炭化することができる。 Next, the raw material coal is carbonized so that the temperature at which the maximum shrinkage coefficient of the carbon material is maximum is within ±30°C of the temperature at which the minimum coke shrinkage coefficient of the coal is reached. For example, by coking (dry-distilling) the raw material coal at a temperature (temperature difference ΔT=20 to 80° C.) lower than the temperature at which the minimum of coal is obtained, the temperature at which the maximum shrinkage coefficient of the carbonaceous material is indicated is the coke of coal. It was experimentally found that the temperature can be set within ±30°C of the temperature at which the shrinkage coefficient is minimum. It is preferable that this point be appropriately confirmed and set in advance by experiments or the like in accordance with the properties of the target coal for coal production. Further, in the carbonization of the raw material coal, the heating furnace is not particularly limited, and the raw material coal can be carbonized by using a kiln or a shaft furnace as described in Patent Documents 2 to 6.

このように原料石炭を炭化すると、炭化温度で揮発する成分は炭材から抜けるものの、石炭のコークス収縮係数の極小を示す温度よりも20〜80℃低い温度における、炭材の収縮係数は極めて低い値(理想的にはほぼゼロ)となる様な原料石炭を用いることが好ましい。一方、炭化温度以上で揮発する成分は、炭材に残留しており、炭化温度より高温にすると揮発分が抜けて収縮係数が増大する。これにより、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることができる様な原料石炭を用いることが重要である。 When the raw material coal is carbonized in this way, the components that volatilize at the carbonization temperature escape from the carbonaceous material, but the shrinkage coefficient of the carbonaceous material is extremely low at a temperature 20 to 80° C. lower than the temperature at which the coke shrinkage coefficient of coal is minimal. It is preferable to use a raw material coal that has a value (ideally, almost zero). On the other hand, the components that volatilize above the carbonization temperature remain in the carbonaceous material, and if the temperature is higher than the carbonization temperature, the volatile components escape and the shrinkage coefficient increases. Therefore, it is important to use the raw material coal that allows the temperature at which the shrinkage coefficient of the carbonaceous material is maximum to be within ±30° C. of the temperature at which the coke shrinkage coefficient of the coal is minimal.

次に、本発明のコークスの製法について説明する。
本発明のコークスの製法は、上述の石炭に、本発明の炭材を添加して、コークス炉に装入し、乾留してコークスを製造するものである。
Next, a method for producing coke according to the present invention will be described.
The method for producing coke of the present invention is to add the carbonaceous material of the present invention to the above-mentioned coal, charge the coke in a coke oven, and carry out dry distillation to produce coke.

石炭は、所定の粒度に粉砕し、炭材を添加する。石炭の粉砕では、3mm以下の比率を60%〜95%の粒度に粉砕することが例示される。また、石炭は、必要に応じて、非微粘結炭を50%以上配合した配合炭とする。 Coal is crushed to a predetermined particle size and carbonaceous material is added. In the crushing of coal, crushing a ratio of 3 mm or less to a particle size of 60% to 95% is exemplified. In addition, the coal is blended coal in which 50% or more of non-caking coal is blended, if necessary.

石炭に対する炭材の配合率は、特に限定されるものでなく、例えば、内数で1〜10%とする。1%未満では、コークスの亀裂を抑制できないことがある。また、10%超では、コークス強度が低下するこがある。 The blending ratio of the carbonaceous material to the coal is not particularly limited, and is, for example, 1 to 10% in the internal number. If it is less than 1%, cracking of coke may not be suppressed. Further, if it exceeds 10%, the coke strength may decrease.

そして、コークス炉の炭化室へ石炭及び炭材を装入する。装入嵩密度は、特に限定されるものでなく、例えば、750kg/m3が例示される。装入嵩密度が750kg/m3未満では、粘結力指数CIが低い炭材の場合、粘結性が不足してコークス強度が低下することがある。 Then, coal and carbonaceous material are charged into the carbonization chamber of the coke oven. The charging bulk density is not particularly limited and is, for example, 750 kg/m 3 . When the charging bulk density is less than 750 kg/m 3 , carbonaceous materials having a low caking strength index CI may have insufficient caking properties and may have low coke strength.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The condition in the example is one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one condition example. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

まず、石炭A〜Fを準備した。石炭A及びBがコークス製造用の石炭であり、石炭C〜Fが炭材製造用の原料石炭である。表1に、灰分量、ドライベースの揮発分VM、流動性を示す。なお、流動性はJIS M 8801に規定される方法で測定した。 First, coals A to F were prepared. Coals A and B are coals for coke production, and coals C to F are raw material coals for carbon material production. Table 1 shows the amount of ash, volatile matter VM on a dry basis, and fluidity. The fluidity was measured by the method specified in JIS M8801.

Figure 0006720827
Figure 0006720827

石炭A及びBについて、乾留時の加熱温度とコークス収縮係数との関係を測定した。図2に、石炭A及びBの乾留時の加熱温度と収縮係数との関係を示す。図2より、石炭A及びBのコークス収縮係数の極小を示す温度を求めた。石炭Aのコークス収縮係数の極小を示す温度は550℃で、石炭Bのコークス収縮係数の極小を示す温度は570℃であった。 For coals A and B, the relationship between the heating temperature during carbonization and the coke shrinkage coefficient was measured. FIG. 2 shows the relationship between the heating temperature and the shrinkage coefficient during dry distillation of coals A and B. From FIG. 2, the temperature at which the minimum coke shrinkage coefficient of coals A and B was obtained was determined. The temperature at which the minimum coke shrinkage coefficient of coal A was 550°C, and the temperature at which the minimum coke shrinkage coefficient of coal B was 570°C.

次に、表2に示すように、石炭C〜Fの粒度を調整して原料石炭とした。表2において、平均粒度3〜5mm、10〜15mmを、それぞれ、+3mm、+10mmと表記し、篩下粒度3mm以下の比率が100%を、−3mm 100%と表記する。また、No.6、12は、篩下粒度3mm以下の比率を100%とした石炭Cに、外数でバインダーを10質量%添加し、混練、造粒して、平均粒度3mm以上のバインダーで被覆して作製した原料石炭であり、+3mm造粒と表記している。 Next, as shown in Table 2, the particle size of coals C to F was adjusted to obtain raw coal. In Table 2, the average particle sizes of 3 to 5 mm and 10 to 15 mm are described as +3 mm and +10 mm, respectively, and the ratio of the particle size under the sieve of 3 mm is 100% is described as -3 mm 100%. In addition, No. Nos. 6 and 12 were produced by adding 10% by mass of a binder to the coal C whose ratio under the sieve grain size is 3 mm or less to 100%, kneading and granulating, and coating with a binder having an average grain size of 3 mm or more. It is the raw material coal which was made, and is described as +3 mm granulation.

Figure 0006720827
Figure 0006720827

No.1〜19の原料石炭について、表3に示す炭化温度で炭化して、炭材とした。そして、No.1〜19について、原料石炭乾留時の加熱温度と炭材収縮係数との関係を測定し、No.1〜19の炭材収縮係数の極大を示す温度を求めた。表3に、No.1〜19の炭材収縮係数の極大を示す温度(極大の温度)、及び、No.1〜19の炭材収縮係数の極大を示す温度と石炭A又はBのコークス収縮係数の極小を示す温度との差(温度差)を示す。 No. The raw material coals 1 to 19 were carbonized at carbonization temperatures shown in Table 3 to obtain carbonaceous materials. And No. For Nos. 1 to 19, the relationship between the heating temperature during carbonization of the raw material coal and the carbon material shrinkage coefficient was measured, and No. The temperature at which the carbon material shrinkage coefficient maximum of 1 to 19 was determined. In Table 3, No. The temperature (maximum temperature) showing the maximum of the carbon material shrinkage coefficient of 1 to 19, and No. The difference (temperature difference) between the temperature showing the maximum of the carbon material shrinkage coefficient of 1 to 19 and the temperature showing the minimum of the coke shrinkage coefficient of coal A or B is shown.

そして、表3に示す石炭に、No.1〜19の炭材をそれぞれ5%添加してコークスを製造し、コークスの平均粒度とコークス強度を測定した。表3に、コークスの平均粒度とコークス強度DI150 15を示す。コークス強度は、コークスをJIS K2151記載のドラム試験機により150回転した後、15mmふるい上のコークスの百分率DI150 15を実測して求めた。なお、コークス強度DI150 15を、以下、コークス強度DIと簡略化して記載する。 Then, the coal shown in Table 3 was added with No. Coke was manufactured by adding 5% of each of the carbonaceous materials 1 to 19 and the average particle size of the coke and the coke strength were measured. Table 3 shows the average particle size of coke and the coke strength DI 150 15 . The coke strength was obtained by measuring the coke percentage DI 150 15 on a 15 mm sieve after rotating the coke 150 times by a drum tester described in JIS K2151. Note that the coke strength DI 150 15 will be simply referred to as coke strength DI hereinafter.

Figure 0006720827
Figure 0006720827

図3に、石炭Aの乾留時の加熱温度と収縮係数との関係、No.1〜4の炭材の原料石炭乾留時の加熱温度と収縮係数との関係を示す。
No.2、3、5、6、8、10〜15は、原料石炭乾留時の加熱温度と収縮係数の関係において、炭材の収縮係数の極大を示す温度が、石炭Aのコークス収縮係数の極小を示す温度の±30℃(石炭A:520〜580℃)であるため、No.1、4、7、9と比較して、コークス強度DIが大きくなった。また、平均粒度の大きいコークスが得られ、コークスの亀裂が抑制された。
Fig. 3 shows the relationship between the heating temperature and the shrinkage coefficient of coal A during carbonization, No. The relationship between the heating temperature and the shrinkage coefficient at the time of carbonization of the raw material coal of the carbon materials 1 to 4 is shown.
No. In Nos. 2, 3, 5, 6, 8, and 10 to 15, in the relationship between the heating temperature and the shrinkage coefficient during carbonization of the raw material coal, the temperature showing the maximum shrinkage coefficient of the carbonaceous material shows the minimum of the coke shrinkage coefficient of coal A. Since the temperature is ±30° C. (coal A: 520 to 580° C.), No. The coke strength DI was larger than those of 1, 4, 7, and 9. In addition, coke having a large average particle size was obtained, and cracks in the coke were suppressed.

特に、+3mmの粒状物の場合は、炭化温度525℃(No.3)と475℃(No.2)の広い温度範囲で望ましい炭材を作ることができた。
また、同じ温度差10℃のNo.8、10、12を比較すると、平均粒度は、No.8(−3mm 100%)<No.12(+3mm造粒)<No.10(+3mm)の順となっており、+3mmの粒状物が好ましい結果が得られた。
In particular, in the case of the +3 mm granular material, a desirable carbonaceous material could be produced in a wide temperature range of carbonization temperatures of 525°C (No. 3) and 475°C (No. 2).
In addition, the same temperature difference of 10 ℃ No. Comparing Nos. 8, 10, and 12, the average grain size is No. 8 (-3 mm 100%) <No. 12 (+3 mm granulation) <No. The order was 10 (+3 mm), and a preferable result was obtained with a granular material of +3 mm.

No.1、4は、炭化温度が適切でないため、揮発分が必要以上に抜けてしまい、又は、必要以上に残存し、炭材の収縮係数の極大を示す温度が、石炭Aのコークス収縮係数の極小を示す温度の±30℃外であり、発明例と比較して、コークス強度DIが小さくなった。また、発明例と比較して、平均粒度の小さいコークスとなり、コークスの亀裂が抑制されなかった。 No. In Nos. 1 and 4, since the carbonization temperature was not appropriate, the volatile content was removed more than necessary or remained more than necessary, and the temperature at which the shrinkage coefficient of the carbonaceous material was maximum was the minimum coke shrinkage coefficient of coal A. Is outside the temperature range of ±30° C., and the coke strength DI is smaller than that of the invention examples. Further, as compared with the invention example, the coke had a smaller average particle size, and cracking of the coke was not suppressed.

また、No.7、9は、炭材の原料石炭の粒度が小さいため、揮発分が必要以上に抜けてしまい、炭材収縮係数の極大を示す温度が、石炭Aのコークス収縮係数の極小を示す温度の±30℃外であり、No.8の発明例と比較して、コークス強度DIが小さくなった。また、発明例と比較して、平均粒度の小さいコークスとなり、コークスの亀裂が抑制されなかった。 In addition, No. In Nos. 7 and 9, since the raw material coal of the carbonaceous material has a small particle size, the volatile components are removed more than necessary, and the temperature at which the maximum coefficient of the carbonaceous material shrinkage is ± the temperature at which the minimum coke shrinkage coefficient of the coal A is ±. Outside of 30° C., No. The coke strength DI was smaller than that of Example 8 of the invention. Further, as compared with the invention example, the coke had a smaller average particle size, and cracking of the coke was not suppressed.

次に、No.17、18は、原料石炭乾留時の加熱温度と収縮係数の関係において、炭材の収縮係数の極大を示す温度が、石炭Bのコークス収縮係数の極小を示す温度の±30℃(石炭B:540〜600℃)であり、No.16、19と比較して、コークス強度DIが大きくなった。また、平均粒度の大きいコークスが得られ、コークスの亀裂が抑制された。 Next, No. In Nos. 17 and 18, in the relationship between the heating temperature and the shrinkage coefficient during carbonization of the raw material coal, the temperature at which the maximum shrinkage coefficient of the carbonaceous material is ±30° C. (the temperature at which the minimum coke shrinkage coefficient of coal B is shown) (Coal B: 540 to 600° C.), and No. Compared with Nos. 16 and 19, the coke strength DI was increased. In addition, coke having a large average particle size was obtained, and cracks in the coke were suppressed.

No.16、19は、炭化温度が適切でないため、揮発分が必要以上に抜けてしまい、又は、必要以上に残存し、炭材の収縮係数の極大を示す温度が、石炭Bのコークス収縮係数の極小を示す温度の±30℃外であり、発明例と比較して、コークス強度DIが小さくなった。また、発明例と比較して、平均粒度の小さいコークスとなり、コークスの亀裂が抑制されなかった。 No. In Nos. 16 and 19, the carbonization temperature is not appropriate, so that the volatile content is removed more than necessary or remains more than necessary, and the temperature at which the maximum shrinkage coefficient of the carbonaceous material is shown is the minimum coke shrinkage coefficient of coal B. Is outside the temperature range of ±30° C., and the coke strength DI is smaller than that of the invention examples. Further, as compared with the invention example, the coke had a smaller average particle size, and cracking of the coke was not suppressed.

本発明によれば、コークス製造用炭材を、石炭の乾留時の加熱温度とコークス収縮係数の関係に対して、特定の原料石炭乾留時の加熱温度と炭材収縮係数の関係を有するものとしたので、亀裂が抑制され、十分な強度及び粒度を有するコークスを製造することができる。よって、本発明は、産業上の利用可能性が高いものである。 According to the present invention, the carbonaceous material for coke production has a relationship between the heating temperature during carbonization of coal and the coefficient of coke shrinkage, and the relationship between the heating temperature during carbonization of a specific raw material and the coefficient of carbonaceous material shrinkage. Therefore, cracks are suppressed, and coke having sufficient strength and grain size can be produced. Therefore, the present invention has high industrial applicability.

Claims (5)

石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材において、
前記石炭は、当該石炭乾留時の加熱温度とコークス収縮係数との関係において当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有し、
前記炭材は、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内である
ことを特徴とするコークス製造用炭材。
In the carbonaceous material for coke production, which is added to the coal when carbonizing carbon to produce coke,
The coal has a minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature during the coal carbonization and the coke shrinkage coefficient,
The carbonaceous material has a maximum of the carbonaceous material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during carbonization of the raw material coal of the carbonaceous material, and shows the maximum. A carbonaceous material for producing coke, characterized in that the temperature is within ±30° C. of the temperature showing the minimum of the coal.
石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材の製造方法であって、
前記石炭について、当該石炭乾留時の加熱温度とコークス収縮係数との関係を測定し、当該石炭の再固化温度以上の温度うち、コークス収縮係数の極小を示す温度を求め、
前記石炭の前記極小を示す温度未満の温度で、前記炭材を製造するための原料石炭を炭化して、前記炭材が、当該原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度で炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内となるようにする
ことを特徴とするコークス製造用炭材の製造方法。
A method for producing carbonaceous material for coke production, which is added to the coal when carbonizing carbon to produce coke,
Regarding the coal, the relationship between the heating temperature and the coke shrinkage coefficient during the coal carbonization was measured, and the temperature showing the minimum of the coke shrinkage coefficient was found among the temperatures above the resolidification temperature of the coal.
At a temperature lower than the temperature showing the minimum of the coal, the raw material coal for producing the carbonaceous material is carbonized, and the carbonaceous material has a relationship between the heating temperature and the carbonaceous material shrinkage coefficient during the carbonization of the raw material coal. And having a maximum of the carbonaceous material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal, and the temperature showing the maximum is within ±30° C. of the temperature showing the minimum of the coal. A method for producing carbonaceous material for coke production.
前記原料石炭として、ドライベースの揮発分VMが35〜50%と、粘結力指数CIが20以上の少なくとも一方の条件を満たすものを用いることを特徴とする請求項2に記載のコークス製造用炭材の製造方法。 The coke for producing coke according to claim 2, characterized in that the raw coal has a dry base volatile matter VM of 35 to 50% and a cohesion index CI of at least one of 20 or more. Carbonaceous material manufacturing method. 前記原料石炭として、平均粒度3mm以上の粒状物または造粒物を用いることを特徴とする請求項2または3に記載のコークス製造用炭材の製造方法。 The method for producing a carbon material for coke production according to claim 2 or 3, wherein a granular material or an agglomerated material having an average particle size of 3 mm or more is used as the raw material coal. 石炭にコークス製造用炭材を添加して乾留するコークスの製造方法であって、
前記石炭として、当該石炭乾留時の加熱温度とコークス収縮係数との関係において、当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものを用い、
前記炭材として、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内であるものを用いる
ことを特徴とするコークスの製造方法。
A method for producing coke in which carbon material for coke production is added to coal and carbonized,
As the coal, in the relationship between the heating temperature during the coal carbonization and the coke shrinkage coefficient, one having a minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal,
As the carbonaceous material, in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during carbonization of the raw material coal of the carbonaceous material, the carbonaceous material shrinkage coefficient has a maximum at a temperature equal to or higher than the resolidification temperature of the coal, and exhibits the maximum. A method for producing coke, characterized in that the temperature is within ±30° C. of the temperature at which the minimum of the coal is shown.
JP2016207726A 2015-11-09 2016-10-24 Carbon material for producing coke, method for producing the same, and method for producing coke Active JP6720827B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015219486 2015-11-09
JP2015219486 2015-11-09

Publications (2)

Publication Number Publication Date
JP2017088869A JP2017088869A (en) 2017-05-25
JP6720827B2 true JP6720827B2 (en) 2020-07-08

Family

ID=58767816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207726A Active JP6720827B2 (en) 2015-11-09 2016-10-24 Carbon material for producing coke, method for producing the same, and method for producing coke

Country Status (1)

Country Link
JP (1) JP6720827B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192488A (en) * 1981-05-22 1982-11-26 Kawasaki Steel Corp Preparation of coke for blast furnace
JPH06264069A (en) * 1993-03-15 1994-09-20 Nippon Steel Corp Production of coke
JPH073309A (en) * 1993-06-17 1995-01-06 Kawasaki Steel Corp Production of molded coke
JPH11181442A (en) * 1997-12-18 1999-07-06 Nkk Corp Production of coke for metallurgy
JP5867307B2 (en) * 2011-06-24 2016-02-24 新日鐵住金株式会社 Method for selecting caking filler and method for producing high strength coke using the same
JP6065510B2 (en) * 2012-10-09 2017-01-25 新日鐵住金株式会社 Method of blending coke raw material for blast furnace
JP5983278B2 (en) * 2012-10-11 2016-08-31 新日鐵住金株式会社 Method for producing highly reactive coke for blast furnace

Also Published As

Publication number Publication date
JP2017088869A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP4102426B2 (en) Method for producing blast furnace coke
JP4879706B2 (en) Method for producing blast furnace coke
US10308513B2 (en) Method for producing graphite bodies
JP6265015B2 (en) Coke manufacturing method
JP4757956B2 (en) Method for producing blast furnace coke
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP6241336B2 (en) Method for producing blast furnace coke
KR101767800B1 (en) Method for producing metallurgical coke
WO2014129337A1 (en) Method for producing metallurgical coke
JP2007002052A (en) Method for producing high strength-coke
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP6073648B2 (en) Graphite material manufacturing method and carbon-based raw material crusher
JP6464912B2 (en) Coke production method
JP5011833B2 (en) Coke manufacturing method
KR101864524B1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP2007246593A (en) Method for producing coke
JP4819197B2 (en) Manufacturing method of high strength coke
JP4695244B2 (en) Coke manufacturing method
JP7047616B2 (en) How to make coke
JP2009249596A (en) Method of manufacturing coke
JP2008156661A (en) Method for producing coke for blast furnace
JP3552510B2 (en) Coke production method
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP2010144096A (en) Method for producing ferrocoke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151