JP5867307B2 - Method for selecting caking filler and method for producing high strength coke using the same - Google Patents

Method for selecting caking filler and method for producing high strength coke using the same Download PDF

Info

Publication number
JP5867307B2
JP5867307B2 JP2012139423A JP2012139423A JP5867307B2 JP 5867307 B2 JP5867307 B2 JP 5867307B2 JP 2012139423 A JP2012139423 A JP 2012139423A JP 2012139423 A JP2012139423 A JP 2012139423A JP 5867307 B2 JP5867307 B2 JP 5867307B2
Authority
JP
Japan
Prior art keywords
temperature
coal
caking
rate
caking filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012139423A
Other languages
Japanese (ja)
Other versions
JP2013028800A (en
Inventor
秀幸 林崎
秀幸 林崎
窪田 征弘
征弘 窪田
野村 誠治
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012139423A priority Critical patent/JP5867307B2/en
Publication of JP2013028800A publication Critical patent/JP2013028800A/en
Application granted granted Critical
Publication of JP5867307B2 publication Critical patent/JP5867307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、高強度コークスの製造にあたり原料炭に添加する粘結補填材を選択する方法、及び、この選択方法を利用して高強度コークスを製造する方法に関する。   The present invention relates to a method for selecting a caking filler to be added to raw coal in the production of high-strength coke, and a method for producing high-strength coke using this selection method.

銑鉄を得る高炉において鉄鉱石の還元材として使用されるコークスは、単味炭や複数種の石炭を配合した配合炭を原料にしてコークス炉で乾留して製造されるが、高炉内での通気性を十分に確保できるといった高強度コークスを得るには、粘結性や炭化特性に優れた強粘結炭を多く含む必要がある。ところが、強粘結炭は高価であって資源としての制限もあることから、非微粘結炭等の劣質炭の配合比率を上げることが重要な課題になっている。   Coke used as a reducing material for iron ore in a blast furnace to obtain pig iron is produced by dry distillation in a coke oven using raw coal or blended coal blended with multiple types of coal, but aeration in the blast furnace In order to obtain a high-strength coke that can secure sufficient properties, it is necessary to contain a large amount of strong caking coal having excellent caking properties and carbonization characteristics. However, strong caking coal is expensive and has limited resources, so increasing the blending ratio of poor quality coal such as non-minor caking coal has become an important issue.

しかしながら、劣質炭の比率が高まると、原料炭の粘結性が不足して目的のコークス強度が得られなくなるといった問題が生じる。そこで、コークス強度を維持するために、原料炭に粘結補填材を添加してコークス炉に装入する技術が広く採用されている。   However, when the ratio of inferior coal increases, the problem arises that the coking strength of the raw coal is insufficient and the desired coke strength cannot be obtained. Therefore, in order to maintain the coke strength, a technique of adding a caking filler to the raw coal and charging it into the coke oven is widely adopted.

粘結補填材の添加に関して、例えば、芳香族性瀝青物(ASP)とコールタールとを相互溶解させたものを原料炭に添加混合して加圧成型することで、強度の高い成形炭を製造する方法が提案されている(特許文献1参照)。また、石炭の固化温度に近い温度で熱分解してガスを発生するプラスチック等の気孔生成剤と共に、石炭系又は石油系ピッチ等の粘結剤を配合炭に添加して、気孔率が高く且つ一定レベル以上の強度を有するコークスを得る方法が提案されている(特許文献2参照)。   Concerning addition of caking filler, for example, high strength coal is manufactured by adding and mixing raw bituminous coal (ASP) and coal tar, which are mutually dissolved, and press molding. Has been proposed (see Patent Document 1). In addition, together with a pore-generating agent such as plastic that decomposes thermally at a temperature close to the solidification temperature of coal, a binder such as coal-based or petroleum-based pitch is added to the blended coal, and the porosity is high and A method for obtaining coke having a strength of a certain level or more has been proposed (see Patent Document 2).

更には、石炭をコークス炉で乾留する際に所定の粒度上限値以下に制御した廃プラスチックを添加することで、熱分解して発生したガスが石炭の軟化溶融層内に内包され、軟化溶融層内部のガス圧により、軟化溶融した石炭同士の融着結合を強固にして強度の高いコークスを得る方法が提案されている(特許文献3参照)。   Furthermore, when the coal is carbonized in a coke oven, by adding waste plastics controlled to a predetermined particle size upper limit or less, the gas generated by thermal decomposition is included in the softened molten layer of coal, and the softened molten layer A method has been proposed in which cohesion between softened and melted coals is strengthened by an internal gas pressure to obtain coke having high strength (see Patent Document 3).

一方で、粘結補填材を構成する成分をヘキサンに可溶な成分(HS成分)、ヘキサンに不溶でトルエンに可溶な成分(HI-TS成分)、及びトルエンに不溶な成分(TI成分)に分けて、粘結補填材におけるそれぞれの作用を見出し、添加する対象の原料炭の性状(揮発分含有量、粘結性等)に合わせて、適切な成分組成を有した粘結補填材を選択できるようにした方法が提案されている(特許文献4参照)。具体的には、原料炭を全膨張率により4つの区分に分けて、各区分に応じて粘結補填材における前記3成分の添加率の範囲を定めるようにしている。   On the other hand, the components that make up the caking filler are components that are soluble in hexane (HS components), components that are insoluble in hexane and soluble in toluene (HI-TS components), and components that are insoluble in toluene (TI components) In order to find each action in the caking filler, the caking filler with an appropriate component composition is selected according to the properties of the raw coal to be added (volatile content, caking properties, etc.). A method that enables selection is proposed (see Patent Document 4). Specifically, the raw coal is divided into four sections according to the total expansion rate, and the range of the addition ratio of the three components in the caking filler is determined according to each section.

特公昭52−3402号公報Japanese Patent Publication No.52-3402 特開平11−236573号公報Japanese Patent Laid-Open No. 11-236573 特許第4231213号公報Japanese Patent No. 423213 特開2007−9030号公報Japanese Patent Laid-Open No. 2007-9030

前述したように、原料炭に添加する粘結補填材は、これまでに様々なものが知られ使用されてきたが、石炭自体も産地や銘柄等によってその性状が異なることから、実際には炭種毎に最適な粘結補填材との組み合わせが存在すると考えられる。上記特許文献4には、原料炭の性状に合致させて適切な成分組成を有する粘結補填材を添加することが記載されているが、このように原料炭に適した粘結補填材を選び出すことは、高強度コークスを製造する上で極めて重要である。   As described above, various types of caking fillers added to coking coal have been known and used so far. However, since the properties of coal itself differ depending on the production area and brand, There seems to be an optimal combination of caking filler for each species. Patent Document 4 describes that a caking filler having an appropriate component composition is added in accordance with the properties of the raw coal, and thus a caking filler suitable for the raw coal is selected. This is extremely important in producing high strength coke.

そこで、本発明の目的は、高強度コークスの製造において、原料炭に適した粘結補填材を選択することができる方法を提供することにある。また、本発明の他の目的は、この方法を利用した高強度コークスの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of selecting a caking filler suitable for raw coal in the production of high-strength coke. Another object of the present invention is to provide a method for producing high-strength coke using this method.

本発明者らは、コークス強度の向上に資する粘結補填材を原料炭に応じて選択できるようにする手段について鋭意検討した結果、石炭が軟化してその後膨張し、再固化する際の気孔形成過程に注目して、粘結補填材から生じるガスを有効利用できる組み合わせがコークス強度を効果的に向上できることを見出し、本発明を完成するに至った。
すなわち、本発明の要旨は次のとおりである。
As a result of intensive studies on means for enabling selection of a caking filler that contributes to the improvement of coke strength depending on the raw coal, pore formation when the coal softens and then expands and resolidifies Focusing on the process, the present inventors have found that a combination that can effectively use the gas generated from the caking filler material can effectively improve the coke strength, and have completed the present invention.
That is, the gist of the present invention is as follows.

(1)高強度コークスの製造にあたり原料炭に添加する粘結補填材を選択する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求め、該ガス利用可能率前記T1−T2温度域における原料炭の揮発率を超えるものについて、T 1 −T 2 温度域でのガス利用可能率を指標にして、所望のコークス強度向上を満足する粘結補填材を選択することを特徴とする粘結補填材の選択方法。
(2)高強度コークスの製造にあたり原料炭に添加する粘結補填材を選択する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T 1 と最大になる温度T 2 とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T 1 −T 2 温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が前記T 1 −T 2 温度域における原料炭の揮発率を超えるものについて、T 1 −T 2 温度域でのガス利用可能率が最大である粘結補填材を選択することを特徴とする粘結補填材の選択方法。
(1) A method of selecting a caking filler to be added to the raw coal for the production of high-strength coke, and the temperature T 1 and the maximum at which the porosity of the raw coal is minimized in the temperature change from 350 ° C. to 550 ° C. The temperature T 2 at which the amount of caking filler is obtained, and the mass reduction rate of each caking filler in the T 1 -T 2 temperature range is determined from the mass reduction curves of a plurality of caking filler materials measured in advance. obtained as, for those the gas available rate exceeds volatilization rate of coking coal in the T 1 -T 2 temperature range, and the gas available rate at T 1 -T 2 temperature range in indicator, the desired coke A method for selecting a caking filler material, which comprises selecting a caking filler material satisfying an improvement in strength .
(2) A method of selecting a caking filler to be added to the raw coal for the production of high-strength coke, and the temperature T 1 and the maximum at which the porosity of the raw coal is minimized in the temperature change from 350 ° C. to 550 ° C. The temperature T 2 at which the amount of caking filler is obtained, and the mass reduction rate of each caking filler in the T 1 -T 2 temperature range is determined from the mass reduction curves of a plurality of caking filler materials measured in advance. obtained as, for those the gas available rate exceeds volatilization rate of coking coal in the T 1 -T 2 temperature range, caking prosthetic material gas available rate at T 1 -T 2 temperature range is the maximum A method for selecting a caking filler material, characterized in that:

)前記T1−T2温度域における原料炭の揮発率は、温度に対する原料炭の質量減少曲線における前記T1−T2温度域での原料炭の質量減少率であることを特徴とする(1)又は(2)に記載の粘結補填材の選択方法。 (3) Volatile rate of coking coal in the T 1 -T 2 temperature range, and characterized by a mass reduction rate of coking coal in the T 1 -T 2 temperature range in weight loss curve of coking coal for the temperature The method for selecting the caking filler according to (1) or (2) .

)選択対象の粘結補填材は、窒素中で900℃まで3℃/minで昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において質量減少速度が最大になる温度が400℃以上であることを特徴とする(1)〜(3)のいずれかに記載の粘結補填材の選択方法。 ( 4 ) The caking filler to be selected has the largest mass reduction rate in the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is increased to 900 ° C. at 3 ° C./min in nitrogen. The method for selecting a caking filler according to any one of (1) to (3), wherein the temperature at which it becomes is 400 ° C. or higher.

)前記質量減少速度曲線において質量減少速度が最大になる温度が400℃未満の粘結補填材を予め添加した原料炭の350℃から550℃までの温度変化における気孔率が最小になる温度T1と最大になる温度T2とを求めて、このT1−T2温度域における粘結補填材のガス利用可能率と前記粘結補填材を添加した原料炭の揮発率とから粘結補填材を選択することを特徴とする()に記載の粘結補填材の選択方法。 ( 5 ) The temperature at which the porosity in the temperature change from 350 ° C. to 550 ° C. of the coking coal previously added with the caking filler having a maximum mass reduction rate of less than 400 ° C. in the mass reduction rate curve is minimized. The T 1 and the maximum temperature T 2 are obtained, and the caking is calculated from the gas availability rate of the caking filler in the T 1 -T 2 temperature range and the volatilization rate of the raw coal to which the caking filler is added. The method for selecting a caking filler according to ( 4 ), wherein a filling material is selected.

)前記の350℃から550℃までの温度変化における原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求めるに際し、JIS M8801に記載されている膨張性試験方法により最大収縮温度T1'と最大膨張温度T2'を測定し、前記のT1をT1'で代用し、前記のT2を(T1'+T2')/2で代用することを特徴とする(1)〜()のいずれかに記載の粘結補填材の選択方法。 ( 6 ) In determining the temperature T 1 at which the porosity of the raw coal in the temperature change from 350 ° C. to 550 ° C. is minimized and the temperature T 2 at which it is maximized, the expansibility test method described in JIS M8801 Measure the maximum shrinkage temperature T 1 ′ and the maximum expansion temperature T 2 ′, substitute the above T 1 with T 1 ′, and substitute the above T 2 with (T 1 ′ + T 2 ′) / 2. The method for selecting a caking filler according to any one of (1) to ( 5 ), which is characterized.

)原料炭に粘結補填材を添加して乾留し、高強度コークスを製造する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求め、該ガス利用可能率前記T1−T2温度域における原料炭の揮発率を超えるものについて、T 1 −T 2 温度域でのガス利用可能率を指標にして、所望のコークス強度向上を満足する粘結補填材を選択して原料炭に添加することを特徴とする高強度コークスの製造方法。
(8)原料炭に粘結補填材を添加して乾留し、高強度コークスを製造する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T 1 と最大になる温度T 2 とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T 1 −T 2 温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が前記T 1 −T 2 温度域における原料炭の揮発率を超えるものについて、T 1 −T 2 温度域でのガス利用可能率が最大である粘結補填材を選択して原料炭に添加することを特徴とする高強度コークスの製造方法。
( 7 ) A method of producing a high-strength coke by adding a caking filler to raw coal and producing high-strength coke, the temperature T 1 at which the porosity of the raw coal is minimized in the temperature change from 350 ° C to 550 ° C. And the maximum temperature T 2, and from the mass reduction curves of a plurality of types of caking fillers measured in advance, the mass reduction rate of each caking filler in the T 1 -T 2 temperature range is used as a gas. obtained as time rate, for those the gas available rate exceeds volatilization rate of coking coal in the T 1 -T 2 temperature range, and the gas available rate at T 1 -T 2 temperature range as an index, a desired A method for producing high-strength coke, comprising selecting a caking filler satisfying the improvement in coke strength and adding it to raw coal.
(8) A method of producing a high-strength coke by adding a caking filler to coking coal and producing high-strength coke, and the temperature T 1 at which the porosity of the coking coal is minimized at a temperature change from 350 ° C. to 550 ° C. And the maximum temperature T 2, and from the mass reduction curves of a plurality of types of caking fillers measured in advance , the mass reduction rate of each caking filler in the T 1 -T 2 temperature range is used as a gas. obtained as time rate, for those the gas available rate exceeds volatilization rate of coking coal in the T 1 -T 2 temperature range, the gas available rate at T 1 -T 2 temperature range is up to caking A method for producing high-strength coke, characterized in that a filler is selected and added to the raw coal.

)前記T1−T2温度域における原料炭の揮発率は、温度に対する原料炭の質量減少曲線における前記T1−T2温度域での原料炭の質量減少率であることを特徴とする(7)又は(8)に記載の高強度コークスの製造方法。 (9) volatilization rate of coking coal in the T 1 -T 2 temperature range, and characterized by a mass reduction rate of coking coal in the T 1 -T 2 temperature range in weight loss curve of coking coal for the temperature The manufacturing method of the high intensity | strength coke as described in (7) or (8) .

10)窒素中で900℃まで3℃/minで昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上の粘結補填材の中から選択して添加することを特徴とする(7)〜(9)のいずれかに記載の高強度コークスの製造方法。 ( 10 ) In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is increased to 900 ° C. at 3 ° C./min in nitrogen, the temperature at which the mass reduction rate is maximized is 400 ° C. or higher. The method for producing high-strength coke according to any one of (7) to (9), wherein the material is selected and added from caking fillers.

11)前記質量減少速度曲線において質量減少速度が最大になる温度が400℃未満の粘結補填材を予め添加した原料炭の350℃から550℃までの温度変化における気孔率が最小になる温度T1と最大になる温度T2とを求めて、このT1−T2温度域における粘結補填材のガス利用可能率と前記粘結補填材を添加した原料炭の揮発率とから粘結補填材を選択して添加することを特徴とする(10)に記載の高強度コークスの製造方法。 ( 11 ) The temperature at which the porosity in the temperature change from 350 ° C. to 550 ° C. of the coking coal in which the caking filler having a maximum mass reduction rate of less than 400 ° C. is previously added in the mass reduction rate curve is minimized. The T 1 and the maximum temperature T 2 are obtained, and the caking is calculated from the gas availability rate of the caking filler in the T 1 -T 2 temperature range and the volatilization rate of the raw coal to which the caking filler is added. ( 10 ) The method for producing high-strength coke according to ( 10 ), wherein a filler is selected and added.

12)前記の350℃から550℃までの温度変化における原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求めるに際し、JIS M8801に記載されている膨張性試験方法により最大収縮温度T1'と最大膨張温度T2'を測定し、前記のT1をT1'で代用し、前記のT2を(T1'+T2')/2で代用することを特徴とする(7)〜(11)のいずれかに記載の高強度コークスの製造方法。 ( 12 ) In determining the temperature T 1 at which the porosity of the raw coal at the temperature change from 350 ° C. to 550 ° C. is minimized and the temperature T 2 at which it is maximized, the expansibility test method described in JIS M8801 Measure the maximum shrinkage temperature T 1 ′ and the maximum expansion temperature T 2 ′, substitute the above T 1 with T 1 ′, and substitute the above T 2 with (T 1 ′ + T 2 ′) / 2. The method for producing high-strength coke according to any one of (7) to (11) .

本発明によれば、高強度コークスを製造するにあたり、原料炭に応じてコークス強度の向上に資する粘結補填材を的確に選択することができるようになる。また、この方法を利用すれば、適切な粘結補填材を選択して原料炭に添加することができるようになるため、高強度コークスの効果的な製造が可能になる。   According to the present invention, when producing high-strength coke, a caking filler that contributes to improvement of coke strength can be accurately selected according to the raw coal. Further, if this method is used, an appropriate caking filler can be selected and added to the raw coal, so that high-strength coke can be effectively produced.

図1は、本発明の実施例に係る実験に用いた粘結補填材の重量減少曲線である。FIG. 1 is a weight reduction curve of a caking filler used in an experiment according to an example of the present invention. 図2は、石炭の気孔形成過程の観察に用いた実験用底面加熱炉の概要を示す断面説明図である。FIG. 2 is a cross-sectional explanatory view showing an outline of the experimental bottom heating furnace used for observing the pore formation process of coal. 図3は、実験用底面加熱炉から得られた観察試料の温度勾配の様子を示すグラフである。FIG. 3 is a graph showing the state of the temperature gradient of the observation sample obtained from the experimental bottom heating furnace. 図4は、マイクロフォーカスX線CTを使って観察試料の断面画像を撮影する様子を示した説明図である。FIG. 4 is an explanatory diagram showing a state in which a cross-sectional image of an observation sample is captured using microfocus X-ray CT. 図5は、石炭Bの気孔形成過程における温度と気孔率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the temperature and the porosity in the pore formation process of coal B. 図6は、石炭BのJIS M8801記載のディラトメーター法により得られる膨張率の温度変化を示すグラフである。FIG. 6 is a graph showing the temperature change of the expansion coefficient of coal B obtained by the dilatometer method described in JIS M8801.

以下、本発明について詳細に説明する。
本発明は、高強度コークスの製造にあたり原料炭に添加する粘結補填材を選択する方法に関し、本発明者等が見出した以下のような思想のもと、コークス強度を効果的に向上できる原料炭と粘結補填材との組み合わせを見つけ出すものである。すなわち、一般に、石炭は400℃前後の温度で軟化し始めてその後膨張し、500℃前後の温度で再固化するが、その際の石炭の気孔形成過程に注目して、少なくとも350℃から550℃までの温度変化において対象となる原料炭の気孔率が最も低下する温度T1と、気孔率が最も高くなる温度T2とを求めて、このT1−T2温度域で多量のガスを発生して所定のガス利用可能率を満たすことができる粘結補填材を添加するようにする。
Hereinafter, the present invention will be described in detail.
The present invention relates to a method for selecting a caking filler to be added to raw coal in the production of high-strength coke, and based on the following ideas found by the present inventors, a raw material that can effectively improve coke strength. Finding a combination of charcoal and caking filler. That is, in general, coal begins to soften at a temperature of about 400 ° C. and then expands, and then resolidifies at a temperature of about 500 ° C. Attention is paid to the pore formation process of the coal, and at least from 350 ° C. to 550 ° C. the temperature T 1 of the porosity of the coking coal in question is most decreased in temperature change, seeking and temperature T 2 which porosity is the highest, a large amount of gas generated in the T 1 -T 2 temperature range Thus, a caking filler capable of satisfying a predetermined gas availability rate is added.

ここで、原料炭の「気孔率が最も低下する温度T1」と「気孔率が最も高くなる温度T2」を求める手段としては、例えば、加熱装置を用いて試料全体を所定の温度に加熱し、乾留途中の原料炭を所定の温度毎に取り出して急冷し、樹脂を埋め込み研磨して顕微鏡画像から気孔率を測定して前記温度T1及び温度T2を求めることも可能である。
しかし、気孔形成過程を詳細に捉えるようにするために、好適には、石炭層、軟化溶融層、及びコークス層を有するような温度勾配のある試料を作製して、所定の断層の顕微鏡画像観察から前記温度T1及び温度T2を求めるようにするのが良く、より好適には、マイクロフォーカスX線CTを用いて350℃から550℃までの温度勾配を有する試料(原料炭)を測定し、前記温度T1及び温度T2を求めようにするのが良い。このようにマイクロフォーカスX線CTを用いれば、非破壊測定が可能であって、多数の断面画像を得ることができることから、より詳細に気孔形成過程を捉えることができ、前記温度T1及び温度T2を精緻に求めることができる。なお、測定コスト等を考慮しなければ、乾留中の原料炭をその場観察(in-situ)して前記温度T1及び温度T2を求めるようにしても良いことは勿論である。
Here, as a means for obtaining the “temperature T 1 at which the porosity is the lowest” and the “temperature T 2 at which the porosity is the highest” of the raw coal, for example, the entire sample is heated to a predetermined temperature using a heating device. It is also possible to take out raw coal in the middle of dry distillation at every predetermined temperature, quench it, bury and polish the resin, measure the porosity from the microscopic image, and obtain the temperature T 1 and the temperature T 2 .
However, in order to capture the pore formation process in detail, it is preferable to prepare a sample having a temperature gradient such as a coal layer, a softened / melted layer, and a coke layer, and observe a microscopic image of a predetermined fault. The temperature T 1 and the temperature T 2 are preferably obtained from the sample, and more preferably, a sample (coking coal) having a temperature gradient from 350 ° C. to 550 ° C. is measured using microfocus X-ray CT. The temperature T 1 and the temperature T 2 are preferably obtained. Thus, by using microfocus X-ray CT, non-destructive measurement is possible and a large number of cross-sectional images can be obtained, so that the pore formation process can be captured in more detail, and the temperature T 1 and temperature T 2 can be determined precisely. Of course, if the measurement cost or the like is not taken into account, the temperature T 1 and the temperature T 2 may be obtained by in-situ observation of the raw coal during dry distillation.

そして、本発明においては、選択対象となる複数種の粘結補填材について予め質量減少曲線を測定しておき、前記T1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求める。この求めたガス利用可能率が前記T1−T2温度域における原料炭の揮発率を超えるものを選択することで、原料炭に添加する粘結補填材として効果的にコークス強度の向上を図ることができることを新たに見出した。 In the present invention, mass reduction curves are measured in advance for a plurality of types of caking fillers to be selected, and the mass reduction rate of each caking filler in the T 1 -T 2 temperature range is used as a gas. Obtain as possible rate. By the obtained gas available rates are selected to exceed the volatilization rate of coking coal in the T 1 -T 2 temperature range, effectively improving the coke strength as caking filling material is added to the raw material coal I found out that I could do it.

粘結補填材については、これまでに使用されている公知のものとして、主に石油系粘結補填材や石炭系粘結補填材が知られており、その他、廃プラスチック等も利用可能である。なかでも、前述したT1−T2温度域で多量のガスを発生して効果的にコークス強度の向上に資する粘結補填材としては、窒素中で900℃まで3℃/minで昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において質量減少速度が最大になる温度が400℃以上であるものが好ましい。このような特性を有する粘結補填材の具体例としては、石油系粘結補填材(ユリカピッチや溶剤脱瀝アスファルトのような石油系ピッチ等)のほか、プラスチック(ポリエチレン等)が挙げられる。 As for the caking filler, known petroleum-based caking fillers and coal-caking caking fillers are known as known ones used so far, and waste plastics can also be used. . Among them, as a caking filler that generates a large amount of gas in the T 1 -T 2 temperature range and effectively contributes to the improvement of coke strength, the temperature was raised to 900 ° C. at 3 ° C./min in nitrogen. In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve with time, the temperature at which the mass reduction rate is maximized is preferably 400 ° C. or higher. Specific examples of the caking filler having such properties include petroleum caking fillers (petroleum pitches such as yurika pitch and solvent-desulfurized asphalt) and plastics (polyethylene, etc.).

前記T1−T2温度域における原料炭の揮発率は、原料炭に対して一般には1〜3質量%程度であり、この原料炭の揮発分は、石油系粘結補填材等のT1−T2温度域における揮発分とほぼ同様の成分と考えられる。そのため、前述した質量減少曲線から求められるT1−T2温度域での粘結補填材の質量減少率をガス利用可能率として求め、このガス利用可能率がT1−T2温度域における原料炭の揮発率を少なくとも超えるものを選択することで、その原料炭に対してコークス強度の向上に資する粘結補填材を確実に見つけ出すことができる。ここで、T1−T2温度域における原料炭の揮発率について、より正確には、対象となる原料炭の質量減少曲線を予め測定しておき、T1−T2温度域での原料炭の質量減少率から求めることができる。 The volatilization rate of the raw coal in the T 1 -T 2 temperature range is generally about 1 to 3% by mass with respect to the raw coal, and the volatile content of the raw coal is T 1 such as petroleum caking filler. It is considered to be almost the same components as the volatile content in the -T 2 temperature region. Therefore, the mass reduction rate caking prosthetic material at T 1 -T 2 temperature range determined from the weight loss curve above determined as a gas available rates, raw material the gas available rate at T 1 -T 2 Temperature range By selecting a material that exceeds at least the volatility of charcoal, it is possible to reliably find a caking filler that contributes to the improvement of coke strength for the raw coal. Here, more precisely, regarding the volatilization rate of the raw coal in the T 1 -T 2 temperature range, a mass reduction curve of the target raw coal is measured in advance, and the raw coal in the T 1 -T 2 temperature range is measured. It can obtain | require from the mass reduction rate of.

本発明によって選択した粘結補填材がコークス強度の向上を図る理由について、本発明者等が推測するには、選ばれた粘結補填材がT1−T2温度域において好適なガス発生材として作用して、石炭の膨張を助長することで、対象となる原料炭の粘結性の向上に寄与するものと考える。 In order for the present inventors to infer the reason why the caking filler selected according to the present invention improves coke strength, the selected caking filler is a gas generating material suitable for the T 1 -T 2 temperature range. It is considered that it contributes to the improvement of the caking property of the target raw coal by acting as an aid to the expansion of the coal.

一方で、後述する実施例に示したように、本発明者等は、石炭系の粘結補填材を原料炭に添加すると、これを添加していない原料炭の場合よりT1−T2温度域が広がる効果があることを見出した。これは、石炭系の粘結補填材を原料炭に添加することで、石炭の構造が緩和したことによるものと考えられる。石炭系粘結補填材は、一般には、前記質量減少速度が最大になる温度が400℃未満であることから、事前にこのような石炭系の粘結補填材を配合した原料炭を用いることで、選択された粘結補填材から発生するガスを有効活用することができるようになる。 On the other hand, as shown in the examples described later, the inventors added a coal-based caking filler to the raw coal, and the T 1 -T 2 temperature was higher than in the case of raw coal without adding this. I found out that there is an effect to widen the area. This is thought to be due to the fact that the coal structure has been relaxed by adding a coal-based caking filler to the raw coal. In general, since the temperature at which the mass reduction rate is maximized is less than 400 ° C., the coal-based caking filler is prepared by using raw coal containing such a coal-based caking filler in advance. The gas generated from the selected caking filler can be used effectively.

すなわち、予め石炭系粘結補填材を添加した原料炭の350℃から550℃までの温度変化における気孔率が最小になる温度T1と最大になる温度T2とを求めて、このT1−T2温度域における粘結補填材のガス利用可能率と石炭系粘結補填材を添加した原料炭の揮発率とから粘結補填材を選択するようにしてもよい。なお、原料炭に対する石炭系粘結補填材の配合量が1質量%以上であれば、このようなT1−T2温度域を広げる効果が確認される。この効果が飽和する等の観点から、原料炭に配合する石炭系粘結補填材の上限は10質量%程度である。 That is, seeking and temperature T 2 becomes temperatures T 1 and the maximum porosity is minimized at a temperature change from 350 ° C. coking coal with the addition of pre-coal caking filling material to 550 ° C., the T 1 - T gas availability factor of caking filling material in the two temperature ranges and coal caking filling material may be selected caking prosthetic material and a volatile index of coking coal added. Incidentally, the amount of coal caking prosthetic material for coking coal is not less than 1 mass%, the effect to spread such T 1 -T 2 temperature range is confirmed. From the standpoint of saturation of this effect, the upper limit of the coal-based caking filler to be blended with the raw coal is about 10% by mass.

本発明において高強度コークスを製造するに際しては、前述した粘結補填材の選択方法を利用して、少なくともT1−T2温度域における原料炭の揮発率を超える粘結補填材を選択し、原料炭に添加して乾留を行うようにすればよい。選択した粘結補填材の原料炭に対する添加量は特に制限されないが、一般には0.1質量%以上10質量%以下程度である。高強度コークスを製造する上では公知の方法を利用することができ、例えば、原料炭をコークス炉に装入する前段階において流動層で乾燥・分級させるようにしてもよく、乾留条件等についても特に制限はない。但し、原料炭を流動層で乾燥・分級させる場合は、乾燥後の石炭に粘結補填材を添加することが好ましい。なお、選択した粘結補填材のなかから少なくとも1種を原料炭に添加して乾留すればよいが、2種以上の粘結補填材を配合するようにしてもよい。また、配合炭を原料にする場合には、石炭毎に本発明の選択方法を利用して粘結補填材を選択して、それぞれを添加するようにするのが望ましい。 When producing high-strength coke in the present invention, using the above-described method for selecting a caking filler, selecting a caking filler that exceeds the volatility of the raw coal at least in the T 1 -T 2 temperature range, What is necessary is just to carry out dry distillation by adding to raw coal. The amount of the selected caking filler added to the raw coal is not particularly limited, but is generally about 0.1% by mass to 10% by mass. For producing high-strength coke, a known method can be used. For example, the coking coal may be dried and classified in a fluidized bed in the stage before charging the coke oven. There is no particular limitation. However, when the raw coal is dried and classified in the fluidized bed, it is preferable to add a caking filler to the dried coal. Note that at least one of the selected caking fillers may be added to the raw coal and dry-distilled, but two or more caking fillers may be blended. When blended coal is used as a raw material, it is desirable to select a caking filler by using the selection method of the present invention for each coal and add each of them.

以上、述べた通り、気孔形成過程を詳細に捉えるためには、石炭層、軟化溶融層、及びコークス層を有するような温度勾配のある試料を作製して、マイクロフォーカスX線CTを用いて所定の断層の顕微鏡画像を観察することにより、前記温度T1及び温度T2を精緻に求めることができるため、最も好適である。しかし、この方法は、相当の作業を要するため、本発明者らは、より簡便な方法を検討した。 As described above, in order to grasp the pore formation process in detail, a sample having a temperature gradient such as a coal layer, a softened / melted layer, and a coke layer is prepared, and a predetermined value is obtained using a microfocus X-ray CT. The temperature T 1 and the temperature T 2 can be determined precisely by observing a tomographic microscopic image of the tomography, which is most preferable. However, since this method requires considerable work, the present inventors examined a simpler method.

その結果、JIS M8801に記載されている膨張性試験方法を用いて、この方法により原料炭の最大収縮温度T1'及び最大膨張温度T2'を測定することで、前記温度T1はT1'とほぼ同様の値となり、また前記温度T2は(T1'+T2')/2に近い値となることを実験的に知見した。この理由は明確ではないが、石炭を加熱すると、軟化溶融して収縮した際には石炭の気孔が塞がれ易くなって気孔率が小さくなり、一方、膨張した際には揮発分が抜けて気孔が多くなると考えられるため、何らかの相関性を有したものと推測される。
従って、前記のT1をT1'で代用し、前記のT2を(T1'+T2')/2で代用することができるため、簡便な方法により、測定精度をほとんど低下させることなく、前記温度T1及び温度T2を求めることができる。
As a result, by using the expansibility test method described in JIS M8801, by measuring the maximum shrinkage temperature T 1 ′ and the maximum expansion temperature T 2 ′ of the raw coal by this method, the temperature T 1 is T 1. It has been experimentally found that the temperature T 2 is almost the same as that of ', and that the temperature T 2 is close to (T 1 ' + T 2 ') / 2. The reason for this is not clear, but when the coal is heated, it softens, melts and shrinks, and the pores of the coal are easily blocked and the porosity decreases. Since it is thought that there are many pores, it is assumed that there was some correlation.
Accordingly, T 1 can be substituted with T 1 ′, and T 2 can be substituted with (T 1 ′ + T 2 ′) / 2, so that the measurement accuracy is hardly lowered by a simple method. The temperature T 1 and the temperature T 2 can be obtained.

本発明について、実施例に基づきより具体的に説明するが、本発明はこれらの内容に制限されるものではない。   The present invention will be described more specifically based on examples, but the present invention is not limited to these contents.

表1に示した性状を有する石炭A及びBと、表2に示した性状を有する粘結補填材P1〜P5及びC1とを用いて、以下のようにして本発明の粘結補填材の選択方法に係る実験を行った。ここで、表2中のTmax(℃)は、粘結補填材を窒素中で900℃まで3℃/minで昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度を示す。また、表2に示した粘結補填材P1〜P5及びC1について、予め以下の条件のもと、それぞれの質量減少曲線を得た。すなわち、粘結補填材20mgを窒素雰囲気下で、900℃まで3℃/minで昇温し、質量の経時変化(質量減少曲線)を熱天秤で測定した。 Using the coals A and B having the properties shown in Table 1 and the caking fillers P1 to P5 and C1 having the properties shown in Table 2, the selection of the caking filler of the present invention is as follows. Experiments related to the method were performed. Here, T max (° C.) in Table 2 is the mass reduction rate obtained by first-order differentiation of the mass reduction curve when the caking filler is heated up to 900 ° C. at 3 ° C./min in nitrogen. The curve shows the temperature at which the rate of mass loss is maximized. Moreover, about the caking filler P1-P5 and C1 shown in Table 2, each mass reduction | decrease curve was obtained on condition of the following beforehand. That is, 20 mg of the caking filler was heated up to 900 ° C. at 3 ° C./min in a nitrogen atmosphere, and the change with time in mass (mass reduction curve) was measured with a thermobalance.

Figure 0005867307
Figure 0005867307

Figure 0005867307
Figure 0005867307

[原料炭の気孔形成過程の観察]
先ず、350℃から550℃までの温度勾配を有する原料炭の気孔形成過程を観察するため、石炭Aを3mm以下の粒径が質量比100%となるように粉砕し、図2に示したように、金属製のレトルトに円筒型の断熱材スリーブ(内径75mm×高さ30mm)を挿入して、断熱材スリーブの内側に粉砕後の石炭Aを嵩密度0.80g/cm3(乾燥状態)で充填した。そして、充填した石炭Aの上に断熱材の蓋を介してレンガを載せて、これらをレトルトの上方から固定具で固定してボルト留めした。その際、断熱材スリーブ内に充填した石炭Aの中央部付近から、のちに直径20mm×高さ30mmのCT撮影用の観察試料が採取できるように、断熱材と紙筒を用いて他の部分と切り離し可能なようにしておいた。更に、このレトルトの底面側に発熱体を配置しレトルトを底面側より加熱した。なお、断熱材スリーブ内に充填した石炭Aには、底面箇所、底面からの高さ5mmの箇所、高さ方向の中心箇所、及び底面からの高さ25mm(上方側表面から深さ5mm)の箇所の合計4箇所に熱電対を挿入して、温度を測定できるようにした。
[Observation of pore formation process of raw coal]
First, in order to observe the pore formation process of the raw coal having a temperature gradient from 350 ° C. to 550 ° C., coal A was pulverized so that the particle size of 3 mm or less was 100% by mass, as shown in FIG. A cylindrical heat insulating material sleeve (inner diameter 75 mm × height 30 mm) is inserted into a metal retort, and the pulverized coal A inside the heat insulating material sleeve has a bulk density of 0.80 g / cm 3 (dry state) Filled with. Then, bricks were placed on the filled coal A via a heat insulating material lid, and these were fixed with bolts from above the retort and bolted. At that time, other parts using a heat insulating material and a paper tube are used so that an observation sample for CT imaging having a diameter of 20 mm and a height of 30 mm can be collected later from near the center of the coal A filled in the heat insulating material sleeve. And made it possible to detach. Further, a heating element was disposed on the bottom side of the retort, and the retort was heated from the bottom side. The coal A filled in the heat insulating material sleeve has a bottom portion, a portion having a height of 5 mm from the bottom surface, a central portion in the height direction, and a height of 25 mm from the bottom surface (depth from the upper surface to 5 mm). Thermocouples were inserted into a total of four locations so that the temperature could be measured.

次いで、発熱体を800℃まで20℃/minで昇温し、その後800℃で一定に保持した。約1時間後、試料底面からの高さ25mmの箇所の温度が350℃に到達した時点で、実験用底面加熱炉からレトルトを取り出して急冷することで、底面から高さ方向に向かって温度勾配を有する石炭Aの気孔形成観察試料を作成した。実験用底面加熱炉からレトルトを取り出した時点でその他の箇所の熱電対は、高さ方向の中心箇所が414℃、底面からの高さ5mmの箇所が478℃、底面箇所が516℃であり、上記で得られた観察試料の試料底面からの距離と最終到達温度との関係式を示すと図3のようになる。すなわち、得られた観察試料には、少なくとも350℃〜550℃の範囲で温度勾配が形成されたことになり、一般的な石炭の乾留に従えば、底面側からコークス層、軟化溶融層、及び石炭層が形成されたと考えられる。   Next, the heating element was heated up to 800 ° C. at 20 ° C./min, and then kept constant at 800 ° C. About 1 hour later, when the temperature of the 25 mm height from the bottom of the sample reached 350 ° C., the retort was taken out from the bottom furnace for experimental use and rapidly cooled, so that the temperature gradient from the bottom to the height direction. A pore formation observation sample of coal A having At the time when the retort is taken out from the experimental bottom heating furnace, the other portions of the thermocouple are 414 ° C. at the center in the height direction, 478 ° C. at the height of 5 mm from the bottom, and 516 ° C. at the bottom. FIG. 3 shows a relational expression between the distance from the bottom surface of the observation sample obtained above and the final temperature reached. That is, in the obtained observation sample, a temperature gradient was formed in a range of at least 350 ° C. to 550 ° C., and according to general coal dry distillation, a coke layer, a softened molten layer, and It is thought that a coal bed was formed.

そして、上記で得られた観察試料から、予め断熱材と紙筒を用いて分離可能にしておいた直径20mm×高さ30mmのCT撮影用観察試料を取り出し、マイクロフォーカスX線CT(東芝製TOSCANER-32250μhd)を用いて、石炭Aの気孔形成過程を観察した。マイクロフォーカスX線CTを用いた撮影では、図4に示したように、コーンビームを用いて観察試料の高さ方向に沿って横断面(底面発熱体に対して平行な断面)を撮影していき、スライスピッチ26μm(約0.15℃相当)、解像度9.1μm/pixel、1024×1024pixelとして、およそ1300枚の断面画像を得た。撮影した各断面画像に対して画像解析を行い、気孔の面積を合計した値が断面積において占める割合から気孔率(%)を算出した。そして、試料底面からの距離に基づき、図3に示した温度勾配の関係を用いて、その断面画像の位置における観察試料の最終到達温度を読み取り、石炭Aの気孔率が最小になる温度T1と気孔率が最大になる温度T2を求めたところ、T1=410℃、及びT2=425℃であった。 Then, from the observation sample obtained above, an observation sample for CT imaging having a diameter of 20 mm and a height of 30 mm, which has been made separable beforehand using a heat insulating material and a paper tube, is taken out, and a microfocus X-ray CT (TOSCANER manufactured by Toshiba) is taken out. -32250 μhd), the pore formation process of coal A was observed. In imaging using microfocus X-ray CT, as shown in FIG. 4, a cross section (a section parallel to the bottom heating element) is taken along the height direction of the observation sample using a cone beam. As a result, approximately 1300 cross-sectional images were obtained with a slice pitch of 26 μm (corresponding to about 0.15 ° C.) and a resolution of 9.1 μm / pixel and 1024 × 1024 pixels. Image analysis was performed on each photographed cross-sectional image, and the porosity (%) was calculated from the ratio of the total area of the pores in the cross-sectional area. Then, based on the distance from the bottom surface of the sample, using the temperature gradient relationship shown in FIG. 3, the final reached temperature of the observation sample at the position of the cross-sectional image is read, and the temperature T 1 at which the porosity of coal A is minimized. When the temperature T 2 at which the porosity was maximized was determined, T 1 = 410 ° C. and T 2 = 425 ° C.

また、石炭系粘結補填材を共存させた原料炭の場合に、気孔率が最小になる温度T1と最大になる温度T2の変化を確認するために、粉砕した石炭Aに対して石炭系粘結補填材C1を質量比で2%添加したものについて、上記と同様にして気孔形成過程の観察を行った。その結果、気孔率が最小になる温度T1は395℃であり、気孔率が最大になるT2は425℃であり、石炭A単独の場合と比べて、T1−T2温度域が15℃広がることが分った。 In addition, in the case of coking coal coexisting with a coal-based caking filler, in order to confirm the change between the temperature T 1 at which the porosity is minimized and the temperature T 2 at which the porosity is maximized, The pore formation process was observed in the same manner as described above for the system caking filler C1 added at a mass ratio of 2%. As a result, the temperature T 1 at which the porosity is minimized is 395 ° C., T 2 at which the porosity is maximized is 425 ° C., and the T 1 -T 2 temperature range is 15 compared to the case of coal A alone. It was found that the temperature spreads.

一方、石炭Bについても3mm以下の粒径が質量比100%となるように粉砕し、石炭Aの場合と同様にして気孔形成過程の観察を行って、石炭Bの気孔率が最小になる温度T1と気孔率が最大になる温度T2を求めたところ、T1=432℃、及びT2=448℃であった。また、粉砕した石炭Bに対して石炭系粘結補填材C1を質量比で2%添加したものについて、上記と同様にして気孔形成過程の観察を行ったところ、T1=418℃、及びT2=448℃であり、石炭B単独の場合に比べてT1−T2温度域が14℃広がることが分った。ここで、石炭Bから得られた温度勾配を有する観察試料について、断面画像の気孔率(%)とその断面画像の位置における観察試料の最終到達温度との関係をグラフにしたものを図5(a)に示す。また、図5(b)は、石炭Bに石炭系粘結補填材C1を予め添加した場合のものである。なお、これらのグラフでは、観察試料の最終到達温度が400℃〜490℃の部分のみを示している。 On the other hand, the coal B is pulverized so that the particle size of 3 mm or less is 100% by mass, and the pore formation process is observed in the same manner as in the case of the coal A, and the temperature at which the porosity of the coal B is minimized. When T 1 and the temperature T 2 at which the porosity was maximized were determined, T 1 = 432 ° C. and T 2 = 448 ° C. Further, when the pore forming process was observed in the same manner as described above with respect to the one obtained by adding 2% by mass of the coal-based caking filler C1 to the pulverized coal B, T 1 = 418 ° C. and T It was found that 2 = 448 ° C., and that the T 1 -T 2 temperature range was expanded by 14 ° C. compared to the case of coal B alone. Here, for the observation sample having a temperature gradient obtained from coal B, a graph showing the relationship between the porosity (%) of the cross-sectional image and the final ultimate temperature of the observation sample at the position of the cross-sectional image is shown in FIG. Shown in a). FIG. 5B shows the case where the coal-based caking filler C1 is added to the coal B in advance. In these graphs, only the portion where the final reached temperature of the observation sample is 400 ° C. to 490 ° C. is shown.

[コークス製造実験:実験番号1〜5]
先ず、表1に示した石炭Aを3mm以下の粒径が質量比85%となるように粉砕し、表3に示したように、粉砕した石炭Aに対して石油系粘結補填材P1〜P5をそれぞれ質量比で3%(外数)添加して、嵩密度0.85g/cm3(乾燥状態)となるよう実験用乾留装置に装入した。そして、炉温1250℃で18.5時間加熱してコークスを製造し、コークス強度DI150 15(-)を測定した。また、石油系粘結補填材の効果を確認するために、石油系粘結補填材P1〜P5を添加しない以外は上記と同様にしてコークスを製造してコークス強度DI150 15(-)を測定し、石油系粘結補填材を添加した場合のコークス強度DIから石油系粘結補填材を添加していない場合のコークス強度DIを引いて、コークス向上効果ΔDIを求め、ΔDIを石油系粘結補填材の添加率(3%)で割った値であるコークス向上効果ΔDI(−/%)を求めた。結果を表3に示す。
[Coke production experiment: Experiment numbers 1-5]
First, coal A shown in Table 1 is pulverized so that the particle size of 3 mm or less becomes a mass ratio of 85%, and as shown in Table 3, petroleum-based caking filler P1 to P1 P5 was added at a mass ratio of 3% (outside number), respectively, and charged into an experimental dry distillation apparatus so that the bulk density was 0.85 g / cm 3 (dry state). Coke was produced by heating at a furnace temperature of 1250 ° C. for 18.5 hours, and coke strength DI 150 15 (−) was measured. In addition, in order to confirm the effect of petroleum-based caking filler, coke was produced in the same manner as above except that petroleum caking fillers P1 to P5 were not added, and coke strength DI 150 15 (-) was measured. The coke strength DI when no petroleum-based caking filler is added is subtracted from the coke strength DI when the petroleum-based caking filler is added to obtain the coke improvement effect ΔDI, and ΔDI is calculated as the oil-based caking strength. The coke improvement effect ΔDI (− /%), which was a value divided by the supplementation rate (3%), was determined. The results are shown in Table 3.

ここで、石炭Aに対する各粘結補填材の作用の違いを確認するために、事前に石炭Aの質量減少曲線を測定しておき、石炭Aの気孔率が最小になる温度T1と気孔率が最大になる温度T2のT1−T2温度域(410℃〜425℃)における石炭Aの質量減少率(%)を求め、この温度域での石炭Aの揮発率(%)とした。結果を表3に示す。なお、石炭Aの質量減少曲線の測定は、石炭20mgを窒素雰囲気下で、900℃まで3℃/minで昇温し、質量の経時変化(質量減少曲線)を熱天秤で測定した。 Here, in order to confirm the difference in action of each caking filler with respect to coal A, a mass decrease curve of coal A is measured in advance, and temperature T 1 and porosity at which the porosity of coal A is minimized. The mass reduction rate (%) of coal A in the T 1 -T 2 temperature range (410 ° C. to 425 ° C.) of the temperature T 2 at which the temperature becomes maximum is obtained, and the volatilization rate (%) of coal A in this temperature range is obtained. . The results are shown in Table 3. The mass reduction curve of coal A was measured by heating 20 mg of coal to 900 ° C. at 3 ° C./min in a nitrogen atmosphere, and measuring the mass change over time (mass reduction curve) with a thermobalance.

また、粘結補填材P1〜P5については、図1に示した質量減少曲線を用いて、それぞれT1−T2温度域での質量減少率(%)をガス利用可能率として求めた。これらの結果は表3に示したとおりであり、粘結補填材P1〜P5は、いずれもT1−T2温度域におけるガス利用可能率が石炭Aの揮発率を超えており、コークス強度の向上に資することが分る。なかでも、粘結補填材P1〜4は、その効果が顕著であり、特にこのT1−T2温度域におけるガス利用可能率が最大である粘結補填材P3(すなわちT1−T2温度域での質量減少速度が最大である)は、石炭Aを用いて得られるコークスの強度を最も向上させる働きがあると判断することができる。 As for the coking filling material P1 to P5, using the weight loss curve shown in FIG. 1, calculated mass reduction rate at T 1 -T 2 Temperature range (%) as a gas available rates, respectively. These results are as shown in Table 3, caking prosthetic material P1~P5 are both exceeds the volatilization rate of the gas available rate coal A in T 1 -T 2 temperature range, the coke strength It turns out that it contributes to improvement. Among them, caking prosthetic material P1~4, the effect is remarkable, particularly the T 1 -T 2 Temperature caking filling material gas available rate is a maximum in the range P3 (i.e. T 1 -T 2 Temperature It can be judged that the mass reduction rate in the region has the function of most improving the strength of the coke obtained using coal A.

[コークス製造実験:実験番号6〜10]
3mm以下の粒径が質量比85%となるように粉砕した石炭Aに対して石炭系粘結補填材C1を質量比で2%(外数)添加したうえで、石油系粘結補填材P1〜P5をそれぞれ質量比で3%(外数)添加して、嵩密度0.85g/cm3(乾燥状態)となるよう実験用乾留装置に装入した以外は上記と同様にしてコークスを製造し、コークス強度DI150 15(-)を測定した。また、石炭系粘結補填材C1を質量比で2%(外数)添加したうえで、石油系粘結補填材P1〜P5を添加せずにコークスを製造してコークス強度DI150 15(-)を測定し、上記と同様にして、石炭系粘結補填材C1を共存させた石炭Aに対する石油系粘結補填材P1〜P5のコークス向上効果ΔDIを求め、ΔDIを石油系粘結補填材の添加率(3%)で割った値を求めた。更には、石炭Aに石炭系粘結補填材C1を共存させた状態で求めたT1−T2温度域(395℃〜425℃)での石炭Aの揮発率と、このT1−T2温度域における粘結補填材P1〜P5のガス利用可能率についても同様にして求めた。結果を表3に示す。
[Coke production experiment: Experiment Nos. 6 to 10]
After adding 2% (outside number) of the coal-based caking filler C1 to the coal A pulverized so that the particle size of 3 mm or less is 85% by mass, the petroleum-based caking filler P1 Coke was produced in the same manner as above except that 3% (outside number) of P5 was added in each mass ratio and charged into the experimental carbonization apparatus so that the bulk density was 0.85 g / cm 3 (dry state). Coke strength DI 150 15 (-) was measured. Further, after adding 2% (outside number) of the coal-based caking filler C1 by mass ratio, coke is produced without adding the petroleum-based caking fillers P1 to P5, and coke strength DI 150 15 (- ) Was measured, and in the same manner as described above, the coke improvement effect ΔDI of the petroleum-based caking fillers P1 to P5 with respect to the coal A coexisting with the coal-based caking filler C1 was obtained, and ΔDI was determined as the petroleum caking filler. The value divided by the addition rate (3%) was obtained. Furthermore, the volatilization rate of coal A in the T 1 -T 2 temperature range (395 ° C. to 425 ° C.) obtained in the state where coal-based caking filler C 1 coexists with coal A, and this T 1 -T 2 It was determined in the same for gas availability factor of caking prosthetic material P1~P5 in temperature range. The results are shown in Table 3.

上記実験番号1〜5の場合と比較して明らかなように、石炭系粘結補填材C1を共存させた場合には、石油系粘結補填材P1〜P5からの発生ガスをより有効活用することができて、いずれもコークス向上効果ΔDI(−/%)が高くなることが分る。粘結補填材P1〜P5は、全てT1−T2温度域におけるガス利用可能率が石炭Aからの揮発率を超えており、コークス強度の向上に資することが分る。なかでも、このT1−T2温度域におけるガス利用可能率が最大である粘結補填材P3が、最も高い効果を示すと判断することができる。 As apparent from the comparison with the cases of the experiment numbers 1 to 5, when the coal-based caking filler C1 coexists, the generated gas from the petroleum caking fillers P1 to P5 is used more effectively. It can be seen that the coke improvement effect ΔDI (− /%) increases. It can be seen that all of the caking fillers P1 to P5 have a gas availability rate in the T 1 -T 2 temperature range that exceeds the volatilization rate from the coal A, which contributes to an improvement in coke strength. Among them, it is possible to caking prosthetic material P3 gas available rate in the T 1 -T 2 temperature range is maximum, is determined to show the highest effect.

[コークス製造実験:実験番号11〜20]
表3に示したように、石炭Aを石炭Bに変更した以外は上記実験番号1〜10と同様にしてコークスを製造し、粘結補填材P1〜P5のコークス向上効果ΔDI(−/%)を求めた。石炭Bを単独で原料炭にした場合(実験番号11〜15)、及び、石炭Bに石炭系粘結補填材C1を共存させた場合(実験番号16〜20)のいずれの場合にも、T1−T2温度域における粘結補填材P1〜P5のガス利用可能率がこの温度域における石炭Bからの揮発率を超えており、コークス強度の向上に資することが分る。なかでも、T1−T2温度域におけるガス利用可能率が最大である粘結補填材P4は、石炭Bを用いて得られるコークスの強度を最も向上させる働きがあると判断することができる。
[Coke production experiment: Experiment Nos. 11 to 20]
As shown in Table 3, coke was produced in the same manner as in Experiment Nos. 1 to 10 except that coal A was changed to coal B, and the coke improvement effect ΔDI (− /%) of the caking fillers P1 to P5 Asked. In both cases where Coal B is used alone as raw coal (Experiment Nos. 11 to 15) and Coal B is made to coexist with coal-based caking filler C1 (Experiment Nos. 16 to 20), T 1 -T 2 temperature region caking filling material gas available rate P1~P5 in is above the volatilization rate of the coal B in this temperature range, it is found to contribute to the improvement of the coke strength. Among them, caking prosthetic material P4 gas available rate is maximum at T 1 -T 2 temperature range, it can be determined that there is work to best improve the strength of the resulting coke with coal B.

Figure 0005867307
Figure 0005867307

[コークス製造実験:実験番号21〜30]
粉砕後の石炭Aを質量比50%、及び粉砕後の石炭Bを質量比50%配合した配合炭を用いて、この配合炭に対して石油系粘結補填材P1〜P5をそれぞれ質量比で3%(外数)添加した以外は上記実験番号1〜5と同様にしてコークスを製造し、粘結補填材P1〜P5のコークス向上効果ΔDI(−/%)を求めた(実験番号21〜25)。また、上記配合炭に対して炭素系粘結補填材C1を質量比で2%(外数)添加したうえで、石油系粘結補填材P1〜P5をそれぞれ質量比で3%(外数)添加した以外は上記実験番号6〜10と同様にしてコークスを製造し、粘結補填材P1〜P5のコークス向上効果ΔDI(−/%)を求めた(実験番号26〜30)。結果を表4に示す。
[Coke production experiment: Experiment numbers 21-30]
Using blended coal containing 50% by mass of coal A after pulverization and 50% by mass of coal B after pulverization, each of the petroleum-based caking fillers P1 to P5 at a mass ratio with respect to this blended coal. Coke was produced in the same manner as in Experiment Nos. 1 to 5 except that 3% (outside number) was added, and the coke improvement effect ΔDI (− /%) of the caking fillers P1 to P5 was determined (Experiment Nos. 21 to 21). 25). Further, after adding 2% (outside number) of carbon-based caking filler C1 to the blended coal, 3% (outside number) of petroleum-based caking fillers P1 to P5 are respectively added. Coke was produced in the same manner as in Experiment Nos. 6 to 10 except for the addition, and the coke improvement effect ΔDI (− /%) of the caking fillers P1 to P5 was determined (Experiment Nos. 26 to 30). The results are shown in Table 4.

これらの結果から、石炭A+Bを原料炭にした場合(実験番号21〜25)、及び、石炭A+Bに石炭系粘結補填材C1を共存させた場合(実験番号26〜30)のいずれの場合にも、T1−T2温度域における粘結補填材P1〜P5のガス利用可能率がこの温度域における石炭A+Bからの揮発率を超えており、コークス強度の向上に資することが分る。
ここで、石炭A+Bを原料炭にした場合(実験番号21〜25)では、T1−T2温度域におけるガス利用可能率が最大である粘結補填材はP4であり、石炭A+Bを用いて得られるコークスの強度を最も向上させる働きがあると判断することができる。一方、石炭A+Bに石炭系粘結補填材C1を共存させた場合(実験番号26〜30)では、T1−T2温度域におけるガス利用可能率が最大である粘結補填材はP3であり、石炭A+Bを用いて得られるコークスの強度を最も向上させる働きがあると判断することができる。
From these results, when coal A + B is used as raw coal (experiment numbers 21 to 25) and when coal-based caking filler C1 coexists with coal A + B (experiment numbers 26 to 30). However, it can be understood that the gas availability rates of the caking fillers P1 to P5 in the T 1 -T 2 temperature range exceed the volatilization rate from the coal A + B in this temperature range, which contributes to the improvement of coke strength.
Here, in the case of coal A + B in the original coal (Test No. 21 to 25), caking prosthetic material gas availability rate of T 1 -T 2 temperature range is maximum is P4, using coal A + B It can be determined that the strength of the obtained coke is most improved. On the other hand, in the case of the coexistence of coal caking filling material C1 coal A + B (Run No. 26 to 30), caking prosthetic material gas availability rate of T 1 -T 2 temperature range is greatest is at P3 It can be determined that the strength of the coke obtained using coal A + B is most improved.

Figure 0005867307
Figure 0005867307

上記コークス製造の実験結果から分るように、少なくとも350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求めて、予め測定した複数種の粘結補填材の質量減少曲線からT1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求め、このガス利用可能率が、T1−T2温度域における原料炭の揮発率を超える粘結補填材を選択することで、原料炭に応じてコークス強度の向上に資する粘結補填材を的確に選択することができるようになる。また、この方法を利用すれば、高強度コークスの効果的な製造が可能になることから、コークス製造産業において極めて利用価値が高いものである。 As can be seen from the experimental results of the above coke production, the temperature T 1 at which the porosity of the raw coal is minimized and the temperature T 2 at which the porosity of the raw coal is maximized in a temperature change from at least 350 ° C. to 550 ° C. are obtained and measured in advance. seeking mass reduction rate of the caking-reinforcing material as a gas available rate of T 1 -T 2 temperature range from weight loss curves of a plurality of types of caking prosthetic material, the gas availability rate, T 1 -T 2 temperature By selecting a caking filler that exceeds the volatilization rate of the raw coal in the region, it becomes possible to accurately select the caking filler that contributes to the improvement of the coke strength according to the raw coal. In addition, if this method is used, it is possible to effectively produce high-strength coke, which is extremely useful in the coke manufacturing industry.

[原料炭の気孔形成過程の観察とディラトメーター法の関係]
350℃から550℃までの温度変化において対象となる原料炭の気孔率が最も低下する温度T1と、気孔率が最も高くなる温度T2として、実験が容易であるJIS M8801に記載されている膨張性試験方法(ディラトメーター法)により、原料炭の最大収縮温度T1'と最大膨張温度T2'を求め、最大収縮温度T1'と最大膨張温度T2'の中間温度T3'を(T1'+T2')/2により算出し、T1'−T3'温度域とT1−T2温度域との関係を求めた。
ちなみに、石炭BのJIS M8801記載のディラトメーター法により得られる膨張率の温度変化の関係を図6に例示している。
上記と同様の石炭A、石炭B、及び配合炭について、その結果を表5に示す。
[Relationship between observation of pore formation process of raw coal and dilatometer method]
The temperature T 1 of the porosity of the coking coal is most reduced of interest in a temperature change from 350 ° C. to 550 ° C., as temperature T 2 which porosity is highest, is described in JIS M8801 experiment is easy The maximum shrinkage temperature T 1 ′ and maximum expansion temperature T 2 ′ of coking coal are obtained by an expansibility test method (dilatometer method), and an intermediate temperature T 3 ′ between the maximum shrinkage temperature T 1 ′ and the maximum expansion temperature T 2 ′. Was calculated by (T 1 '+ T 2 ') / 2, and the relationship between the T 1 '-T 3 ' temperature region and the T 1 -T 2 temperature region was determined.
Incidentally, the relationship of the temperature change of the expansion coefficient obtained by the dilatometer method described in JIS M8801 of coal B is illustrated in FIG.
The results are shown in Table 5 for the same coal A, coal B, and blended coal as described above.

Figure 0005867307
Figure 0005867307

上記の実験結果から、T1'−T3'温度域とT1−T2温度域は、ほぼ同様の温度域であることが分かる。従って、JIS M8801に記載されている膨張性試験方法(ディラトメーター法)を用いても、本発明によれば、最適な粘結補填材を選択して添加することが可能になることが確認できた。 From the above experimental results, it can be seen that the T 1 '-T 3 ' temperature range and the T 1 -T 2 temperature range are substantially the same temperature range. Therefore, even if the expansibility test method (dilatometer method) described in JIS M8801 is used, according to the present invention, it is confirmed that the optimum caking filler can be selected and added. did it.

Claims (12)

高強度コークスの製造にあたり原料炭に添加する粘結補填材を選択する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求め、該ガス利用可能率前記T1−T2温度域における原料炭の揮発率を超えるものについて、T 1 −T 2 温度域でのガス利用可能率を指標にして、所望のコークス強度向上を満足する粘結補填材を選択することを特徴とする粘結補填材の選択方法。 This is a method for selecting a caking filler to be added to raw coal during the production of high-strength coke, and the temperature T 1 at which the porosity of the raw coal is minimized and the temperature at which it is maximized when the temperature changes from 350 ° C to 550 ° C. seeking and T 2, also from the mass reduction curves of a plurality of types of caking filling material measured in advance, the mass reduction rate of the caking-reinforcing material in the T 1 -T 2 temperature range obtained as gas available rate , for those the gas available rate exceeds the volatilization rate of coking coal in the T 1 -T 2 temperature range, and the gas available rate at T 1 -T 2 temperature range as an index, the desired coke strength improvement A method for selecting a caking filler, comprising selecting a caking filler material that satisfies the requirements. 高強度コークスの製造にあたり原料炭に添加する粘結補填材を選択する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度TThis is a method for selecting a caking filler to be added to the raw coal during the production of high-strength coke, and the temperature T at which the porosity of the raw coal is minimized when the temperature changes from 350 ° C to 550 ° C. 11 と最大になる温度TAnd maximum temperature T 22 とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記TIn addition, from the mass decrease curves of a plurality of types of caking fillers measured in advance, the T 11 −T-T 22 温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が前記TThe mass reduction rate of each caking filler in the temperature range is obtained as a gas availability rate, and the gas availability rate is calculated as T 11 −T-T 22 温度域における原料炭の揮発率を超えるものについて、TFor those that exceed the volatility of raw coal in the temperature range, T 11 −T-T 22 温度域でのガス利用可能率が最大である粘結補填材を選択することを特徴とする粘結補填材の選択方法。A method for selecting a caking filler comprising selecting a caking filler having the maximum gas availability in a temperature range. 前記T1−T2温度域における原料炭の揮発率は、温度に対する原料炭の質量減少曲線における前記T1−T2温度域での原料炭の質量減少率であることを特徴とする請求項1又は2に記載の粘結補填材の選択方法。 Volatilization rate of coking coal in the T 1 -T 2 temperature range, claims, characterized in that a mass reduction rate of coking coal in the T 1 -T 2 temperature range in weight loss curve of coking coal for the temperature A method for selecting a caking filler according to 1 or 2 . 選択対象の粘結補填材は、窒素中で900℃まで3℃/minで昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において質量減少速度が最大になる温度が400℃以上であることを特徴とする請求項1〜3のいずれかに記載の粘結補填材の選択方法。 The caking filler to be selected is the temperature at which the mass reduction rate is maximized in the mass reduction rate curve obtained by first-derivation of the mass reduction curve when the temperature is increased to 900 ° C. at 3 ° C./min in nitrogen. The method for selecting a caking filler according to any one of claims 1 to 3, wherein the temperature is 400 ° C or higher. 前記質量減少速度曲線において質量減少速度が最大になる温度が400℃未満の粘結補填材を予め添加した原料炭の350℃から550℃までの温度変化における気孔率が最小になる温度T1と最大になる温度T2とを求めて、このT1−T2温度域における粘結補填材のガス利用可能率と前記粘結補填材を添加した原料炭の揮発率とから粘結補填材を選択することを特徴とする請求項に記載の粘結補填材の選択方法。 In the mass reduction rate curve, the temperature T 1 at which the porosity at the temperature change from 350 ° C. to 550 ° C. of the raw coal previously added with the caking filler having a maximum mass reduction rate of less than 400 ° C. is minimized. The maximum temperature T 2 is obtained, and the caking filler is determined from the gas availability rate of the caking filler in the T 1 -T 2 temperature range and the volatilization rate of the raw coal added with the caking filler. The method for selecting a caking filler according to claim 4 , wherein the selecting method is selected. 前記の350℃から550℃までの温度変化における原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求めるに際し、JIS M8801に記載されている膨張性試験方法により最大収縮温度T1'と最大膨張温度T2'を測定し、前記のT1をT1'で代用し、前記のT2を(T1'+T2')/2で代用することを特徴とする請求項1〜のいずれかに記載の粘結補填材の選択方法。 When determining the temperature T 1 at which the porosity of the raw coal at the temperature change from 350 ° C. to 550 ° C. is minimized and the temperature T 2 at which it is maximized, the maximum shrinkage is determined by the expansibility test method described in JIS M8801. The temperature T 1 ′ and the maximum expansion temperature T 2 ′ are measured, the T 1 is replaced with T 1 ′, and the T 2 is replaced with (T 1 ′ + T 2 ′) / 2. The method for selecting a caking filler according to any one of claims 1 to 5 . 原料炭に粘結補填材を添加して乾留し、高強度コークスを製造する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記T1−T2温度域における各粘結補填材の質量減少率をガス利用可能率として求め、該ガス利用可能率前記T1−T2温度域における原料炭の揮発率を超えるものについて、T 1 −T 2 温度域でのガス利用可能率を指標にして、所望のコークス強度向上を満足する粘結補填材を選択して原料炭に添加することを特徴とする高強度コークスの製造方法。 A method of producing a high-strength coke by adding a caking filler to coking coal and producing high-strength coke, at a temperature T 1 that minimizes the porosity of the coking coal in a temperature change from 350 ° C. to 550 ° C. obtains a temperature T 2 comprised, also, from the mass reduction curves of a plurality of types of caking filling material measured in advance, the mass reduction rate of the caking-reinforcing material in the T 1 -T 2 temperature range as the gas available rate seeking, for those the gas available rate exceeds volatilization rate of coking coal in the T 1 -T 2 temperature range, and the gas available rate at T 1 -T 2 temperature range in indicator, the desired coke strength A method for producing high-strength coke, which comprises selecting a caking filler that satisfies the improvement and adding it to the raw coal. 原料炭に粘結補填材を添加して乾留し、高強度コークスを製造する方法であって、350℃から550℃までの温度変化において原料炭の気孔率が最小になる温度TA method of producing a high-strength coke by adding a caking filler to coking coal and producing high-strength coke, and the temperature T at which the porosity of the coking coal is minimized at a temperature change from 350 ° C. to 550 ° C. 11 と最大になる温度TAnd maximum temperature T 22 とを求め、また、予め測定した複数種の粘結補填材の質量減少曲線から、前記TIn addition, from the mass decrease curves of a plurality of types of caking fillers measured in advance, the T 11 −T-T 22 温度域における各粘結補填材の質量減少率をガス利用可能率として求めて、該ガス利用可能率が前記TThe mass reduction rate of each caking filler in the temperature range is obtained as a gas availability rate, and the gas availability rate is calculated as T 11 −T-T 22 温度域における原料炭の揮発率を超えるものについて、TFor those that exceed the volatility of raw coal in the temperature range, T 11 −T-T 22 温度域でのガス利用可能率が最大である粘結補填材を選択して原料炭に添加することを特徴とする高強度コークスの製造方法。A method for producing high-strength coke, characterized in that a caking filler having the maximum gas availability in a temperature range is selected and added to raw coal. 前記T1−T2温度域における原料炭の揮発率は、温度に対する原料炭の質量減少曲線における前記T1−T2温度域での原料炭の質量減少率であることを特徴とする請求項7又は8に記載の高強度コークスの製造方法。 Volatilization rate of coking coal in the T 1 -T 2 temperature range, claims, characterized in that a mass reduction rate of coking coal in the T 1 -T 2 temperature range in weight loss curve of coking coal for the temperature The manufacturing method of the high intensity | strength coke of 7 or 8 . 窒素中で900℃まで3℃/minで昇温したときの質量減少曲線を時間で一次微分して得られる質量減少速度曲線において、質量減少速度が最大になる温度が400℃以上の粘結補填材の中から選択して添加することを特徴とする請求項7〜9のいずれかに記載の高強度コークスの製造方法。 In the mass reduction rate curve obtained by first-order differentiation of the mass reduction curve when the temperature is increased to 900 ° C. in nitrogen at 3 ° C./min, the temperature at which the mass reduction rate is maximized is 400 ° C. or more. The method for producing high-strength coke according to any one of claims 7 to 9, wherein the material is selected and added from among the materials. 前記質量減少速度曲線において質量減少速度が最大になる温度が400℃未満の粘結補填材を予め添加した原料炭の350℃から550℃までの温度変化における気孔率が最小になる温度T1と最大になる温度T2とを求めて、このT1−T2温度域における粘結補填材のガス利用可能率と前記粘結補填材を添加した原料炭の揮発率とから粘結補填材を選択して添加することを特徴とする請求項10に記載の高強度コークスの製造方法。 In the mass reduction rate curve, the temperature T 1 at which the porosity at the temperature change from 350 ° C. to 550 ° C. of the raw coal previously added with the caking filler having a maximum mass reduction rate of less than 400 ° C. is minimized. The maximum temperature T 2 is obtained, and the caking filler is determined from the gas availability rate of the caking filler in the T 1 -T 2 temperature range and the volatilization rate of the raw coal added with the caking filler. It selects and adds, The manufacturing method of the high strength coke of Claim 10 characterized by the above-mentioned. 前記の350℃から550℃までの温度変化における原料炭の気孔率が最小になる温度T1と最大になる温度T2とを求めるに際し、JIS M8801に記載されている膨張性試験方法により最大収縮温度T1'と最大膨張温度T2'を測定し、前記のT1をT1'で代用し、前記のT2を(T1'+T2')/2で代用することを特徴とする請求項7〜11のいずれかに記載の高強度コークスの製造方法。 When determining the temperature T 1 at which the porosity of the raw coal at the temperature change from 350 ° C. to 550 ° C. is minimized and the temperature T 2 at which it is maximized, the maximum shrinkage is determined by the expansibility test method described in JIS M8801. The temperature T 1 ′ and the maximum expansion temperature T 2 ′ are measured, the T 1 is replaced with T 1 ′, and the T 2 is replaced with (T 1 ′ + T 2 ′) / 2. The manufacturing method of the high intensity | strength coke in any one of Claims 7-11 .
JP2012139423A 2011-06-24 2012-06-21 Method for selecting caking filler and method for producing high strength coke using the same Active JP5867307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139423A JP5867307B2 (en) 2011-06-24 2012-06-21 Method for selecting caking filler and method for producing high strength coke using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011140181 2011-06-24
JP2011140181 2011-06-24
JP2012139423A JP5867307B2 (en) 2011-06-24 2012-06-21 Method for selecting caking filler and method for producing high strength coke using the same

Publications (2)

Publication Number Publication Date
JP2013028800A JP2013028800A (en) 2013-02-07
JP5867307B2 true JP5867307B2 (en) 2016-02-24

Family

ID=47786113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139423A Active JP5867307B2 (en) 2011-06-24 2012-06-21 Method for selecting caking filler and method for producing high strength coke using the same

Country Status (1)

Country Link
JP (1) JP5867307B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6146109B2 (en) * 2013-04-26 2017-06-14 新日鐵住金株式会社 Method for selecting caking filler and method for producing high strength coke using the same
JP6720827B2 (en) * 2015-11-09 2020-07-08 日本製鉄株式会社 Carbon material for producing coke, method for producing the same, and method for producing coke
CN114410328B (en) * 2022-02-10 2022-11-08 山西沁新能源集团股份有限公司 High carbon coke with wrinkled carbon layer and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212201B2 (en) * 1971-06-01 1977-04-05
JPS5720356B2 (en) * 1971-12-29 1982-04-28
US4481011A (en) * 1982-09-30 1984-11-06 Ruhrkohle Aktiengesellscaft Coke oven charge mixtures with coal binder
JP2001200263A (en) * 2000-01-17 2001-07-24 Nippon Steel Corp Process for preparing blast furnace coke using waste plastic

Also Published As

Publication number Publication date
JP2013028800A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
US10308513B2 (en) Method for producing graphite bodies
JP5867307B2 (en) Method for selecting caking filler and method for producing high strength coke using the same
JP6870528B2 (en) Manufacturing method of coke for blast furnace
Kieush et al. Investigation on the influence of wood pellets on the reactivity of coke with CO2 and its microstructure properties
Hayashizaki et al. Observation of the Coal Thermoplastic Layer Using μ-focus X-ray CT and Sole-heated Oven
JP5884159B2 (en) Method for producing metallurgical coke
JP2014224242A (en) Method for producing coke
JP6308157B2 (en) Method for preparing blended coal and method for producing coke
JP7067226B2 (en) How to evaluate coke strength
JP7070228B2 (en) Estimating method of surface fracture strength of coke
US10377672B2 (en) Methods for producing polygranular graphite bodies
Amrani et al. Effect of carbon anode production parameters on anode cracking
JP6822622B1 (en) Coal evaluation method, compound coal preparation method, and coke production method
JP6146109B2 (en) Method for selecting caking filler and method for producing high strength coke using the same
JP6075354B2 (en) Coke production method
JP6642130B2 (en) Method for producing molded coal for coke production
JP5163247B2 (en) Coke production method
JP6590155B2 (en) Coke for metallurgy and method for producing the same
JP6241337B2 (en) Method for producing blast furnace coke
JP6464912B2 (en) Coke production method
Kocaefe et al. Effect of the modification of a high-QI pitch with an additive on anode quality
JP6880904B2 (en) How to make coke
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP2021042378A (en) Method for estimating coal inert factor coefficient and method for estimating coke surface fracture strength
JP5714165B1 (en) Method for producing coking coal and method for producing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350