JP3552510B2 - Coke production method - Google Patents

Coke production method Download PDF

Info

Publication number
JP3552510B2
JP3552510B2 JP34968697A JP34968697A JP3552510B2 JP 3552510 B2 JP3552510 B2 JP 3552510B2 JP 34968697 A JP34968697 A JP 34968697A JP 34968697 A JP34968697 A JP 34968697A JP 3552510 B2 JP3552510 B2 JP 3552510B2
Authority
JP
Japan
Prior art keywords
coke
particle size
inert substance
binder
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34968697A
Other languages
Japanese (ja)
Other versions
JPH11181439A (en
Inventor
喜代志 深田
省三 板垣
泉 下山
秀紀 角谷
政章 丸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP34968697A priority Critical patent/JP3552510B2/en
Publication of JPH11181439A publication Critical patent/JPH11181439A/en
Application granted granted Critical
Publication of JP3552510B2 publication Critical patent/JP3552510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はコークスの製造方法に関するものである。
【0002】
【従来の技術】
冶金用コークスは、高炉操業の安定化を図ることを品質管理の目標として設定されており、特にコークスの役割である高炉内通気性を確保するための充填材としての役割が、最近の高炉の大型や微粉炭の多量吹き込み操業においては注目されている。このためコークス品質としては、コークス強度を維持しながらコークス粒径の拡大が求められている。コークス粒径は、従来よりコークス強度や乾留温度に影響されることが知られており、コークス粒径を拡大する技術として以下に記載した内容について各種検討が行われている。
【0003】
例えば、
1)コークス炉の乾留温度の低下
2)コークス炉に装入する石炭の嵩密度の低下
3)粘結材の装入炭への添加
4)粉コークス、又は石油コークスの装入炭への添加
5)装入炭の石炭性状(例えば、反射率(Ro)、流動性(MF))の向上などの方法が挙げられる。
【0004】
【発明が解決しようとする課題】
コークス粒径の拡大技術について、上記の様な各種研究がなされてきたが、1)項はコークス炉稼働率の制約、2)項は生産性からの制約があるため、コークス生産量の確保から厳しく限定される。又、3)、5)項は高価な粘結材や石炭を使用するためにコークス製造単価の増加につながり実操業では採用されていない。4)項は、非軟化溶融物である粉コークスや石油コークスの添加によって、装入炭の軟化溶融性が低下しコークス強度の低下が生じるために、添加量に限界がある。このため、実操業では上記の技術はコークス生産性の確保およびコークス製造コストの上昇などの問題があり、ほとんど採用されていない。このため、コークス強度を維持しながらコークス粒径を拡大する実用的な方法の開発が望まれている。
【0005】
【課題を解決するための手段】
本発明では、石炭の軟化溶融時の接着挙動に影響を及ぼすと考えられるイナート粒径、比表面積に着目し、イナート粒径や比表面積に応じた最適なピッチ等の粘結材の量を配合し、強度を維持しながら目標粒径を得ることに成功した。
【0006】
すなわち、本発明は、
原料炭に粘結材とイナート物質を配合してこれを乾留することによりコークスを製造する際に、予め当該粘結材の添加量、イナート物質の粒径と添加量を変数として得られるコークスの粒径および強度との関係を求めておき、前記粘結材の添加量ならびにイナート物質の粒径および添加量を、目的とするコークスの粒径および強度から設定することを特徴とするコークスの製造方法、
原料炭に粘結材とイナート物質を配合してこれを乾留することによりコークスを製造する際に、予め当該粘結材の添加量、イナート物質の比表面積と添加量を変数として得られるコークスの粒径および強度との関係を求めておき、前記粘結材の添加量ならびにイナート物質の比表面積および添加量を、目的とするコークスの粒径および強度から設定することを特徴とするコークスの製造方法、
に関するものである。
【0007】
【発明の実施の形態】
コークス炉にはカールスチル式、コッパース式、オットー式等種々のものが開発されているが、本発明の方法はその型式を問わず適用できる。
【0008】
コークスの原料炭には粘結性と石炭化度が適当な範囲にあることが必要であり、このような石炭は少ないので性質の異なる数種の石炭を配合して原料炭として使用されている。石炭中にはコークスの骨格成分となる繊維質部分と接着機能を発揮する粘結成分が含まれており、コークスの原料炭はこの両者のバランスがとられていなければならない。この両者のバランスをとることは従来より行われており、本発明において使用される原料炭はこのコークス原料炭としての要求を満足するものである。
【0009】
粘結材はピッチ、軟ピッチ、中ピッチ、硬ピッチなどの石炭系粘結材、ASP、PDAなどの石油系粘結材、膨張炭、SRCなどの溶剤処理炭、その他、芳香族性が高く、軟化溶融する高分子系の物質であれば使用することができる。
【0010】
イナート物質は乾留時に軟化溶融しない物質であり、コークス、無煙炭、褐炭、亜炭、泥炭、同化炭等の瀝青炭以外の石炭、鉄粉、アルミニウム粉等の金属粉、金属酸化物粉等である。イナート物質の粒径は平均粒径で0.01〜1mm程度、好ましくは0.1〜0.5mm程度のものが好ましい。
【0011】
イナート物質の配合量は0.01〜15%、通常0.05〜10%程度の範囲であり、本発明では、用いるものと同種のイナート物質と粘結材について、予め当該イナート物質の各種径と添加率における粘結材の添加率と得られるコークスの粒径および強度との関係を求めておく。この関係は、イナート物質の粒径と添加率のそれぞれ最低2点、好ましくは3点ないし10点程度について測定しておいて、他は得られた測定値から直線あるいは曲線を作成して求めることができる。
【0012】
コークスの粒径は平均粒径で20〜100mm程度、特に50〜70mm程度が好ましく、それぞれの工場で操業条件、コスト等から最適の粒径が設定される。
【0013】
粘結材の配合量は通常0.01〜20%程度が適当な範囲であり、その範囲内で設定したイナート物質の配合量において所望の粒径のコークスが得られるよう、先に求めておいた関係から粘結材の配合量を定める。但し、イナート物質の粒径や配合量も可変であり、要は所望の品質および粒径のコークスが得られるように粘結材の配合量およびイナート物質の粒径と配合量を定めればよい。
【0014】
この関係を図1に例示する。図1において、A、Bはイナート物質の添加率がAまたはB(A<B)であり、1、2、3はこのイナート物質の粒径(または比表面積)が1、2または3(1<2<3)であることを示している。同図に示すようにイナート物質の添加率がBで粒径が2であれば粘結材の添加率をB2’にすることによって目的粒径のコークスを得ることができる。
【0015】
また、この粘結材添加率から目標とするコークスの強度も指定することができる。この関係を図2に示す。同図に示すようにイナート物質の添加率がBで粒径が2であれば粘結材の添加率をB2’’にすることによって目的強度のコークスを得ることができる。
【0016】
上記の関係はイナート物質の粒径の代わりに比表面積を指標に用いることもでき、比表面積について予め測定しておけば同様に所望の品質および粒径のコークスが得られるように粘結材の配合量およびイナート物質の比表面積と配合量を定めることができる。
【0017】
乾留条件は特に制限されるものではなく、予め前記関係を求めるために行った乾留に準じて行えばよい。
【0018】
【実施例】
乾留試験は実際のコークス炉をシミュレート可能な試験小型乾留炉を用いて行った。石炭試料としては、通常の配合炭品位程度(Ro=1.10、MF=230)のものを使用した。
【0019】
[実施例1]
イナート物質(CDQ設備(コークス乾式消火設備)から得られた微粉コークスを使用)として粒度構成の異なるA粉、B粉とC粉を使用した。A粉の粒度分布は図3にB粉の粉度分布は図4に示した。イナート物質の添加率は2%一定とした。
【0020】
粘結材としてピッチを用い、その添加率とコークスの平均粒径、ドラム強度の関係を求め、下表の結果が得られた。これを図5および図6に示した。図中の横線はベースラインを示す。
【0021】
【表1】

Figure 0003552510
【0022】
【表2】
Figure 0003552510
【0023】
ピッチ添加率の増加に伴い、粒径は増加傾向を示し、特に、微粉のA粉の増加量は大きかった。一方、ピッチの増加に伴い強度はベース並に回復した。微粉のA粉ではピッチの添加率が少量で効果があった。
【0024】
イナート添加率に対するピッチの必要量を下表および図7に示した。添加イナート物質の1mm以上の比率が小さいほどピッチ必要量は少ない。
【0025】
【表3】
Figure 0003552510
【0026】
また、A粉を使用した場合イナートを5%配合し、5mm以上の粒径増加を確認した。
【0027】
[実施例2]
イナート物質(中塊コークス?)として比表面積の異なるD、E、F粉を使用した。比表面積を以下に示す。尚、本値は粒度構成が0.25〜0.5mmであるサンプルの測定値である。
A:0.459、B:31.7、C38.9(m/g)
【0028】
イナート物質の粒径は平均0.25mm程度と一定であり、添加率は2%一定とした。
【0029】
ピッチ添加率とコークス平均粒径、ドラム強度の関係を求め、下表の結果が得られた。これを図8および図9に示した。図中の横線はベースラインを示す。
【0030】
【表4】
Figure 0003552510
【0031】
【表5】
Figure 0003552510
【0032】
ピッチ添加率の増加に伴い、粒径は増加傾向を示し、特に、比表面積の小さいDの増加量は顕著に大きかった。一方、ピッチの増加に伴い強度はベース並に回復した。Dではピッチの添加率が少量で効果があった。
【0033】
イナート添加率に対するピッチの必要量を下表と図10に示した。添加イナート物質の比表面積が小さいほどピッチ必要量は少なかった。
【0034】
【表6】
Figure 0003552510
【0035】
【発明の効果】
本発明によれば、強度を低下させずに粒径が大きく、大粒径のコークスを製造することができ、高炉内において充分な通気性が確保され、安定操業を継続することができるコークスを供給することができる。
【図面の簡単な説明】
【図1】本発明を説明する、イナート物質の添加量と粒径を変えて粘結材添加量とコークス平均粒径の関係を示すグラフである。
【図2】イナート物質の添加量と粒径を変えて粘結材添加量とコークスドラム強度の関係を示すグラフである。
【図3】本発明の実施例で使用したイナート物質の粒度分布を示すグラフである。
【図4】本発明の実施例で使用したイナート物質の粒度分布を示すグラフである。
【図5】イナート物質の各粒径について粘結材添加率とコークス平均粒径の関係を示すグラフである。
【図6】イナート物質の各粒径について粘結材添加率とコークスドラム強度の関係を示すグラフである。
【図7】イナート物質の1mm以上の比率とイナート物質添加量に対する粘結材必要量の関係を示すグラフである。
【図8】イナート物質の各比表面積について粘結材添加率とコークス平均粒径の関係を示すグラフである。
【図9】イナート物質の各比表面積について粘結材添加率とコークスドラム強度の関係を示すグラフである。
【図10】イナート物質の比表面積とイナート物質添加量に対する粘結材必要量の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing coke.
[0002]
[Prior art]
Metallurgical coke has been set as the goal of quality control to stabilize the operation of blast furnaces.In particular, the role of coke as a filler to ensure air permeability in the blast furnace has been Attention has been paid to large-scale and pulverized coal injection operations. For this reason, the coke quality is required to increase the coke particle size while maintaining the coke strength. It is conventionally known that the coke particle size is affected by the coke strength and the carbonization temperature, and various studies have been made on the contents described below as a technique for expanding the coke particle size.
[0003]
For example,
1) Decrease in carbonization temperature of coke oven 2) Decrease in bulk density of coal charged into coke oven 3) Addition of binder to charged coal 4) Addition of powdered coke or petroleum coke to charged coal 5) A method for improving the coal properties (for example, reflectance (Ro) and fluidity (MF)) of the charged coal is exemplified.
[0004]
[Problems to be solved by the invention]
Various studies have been conducted on the technology for expanding the coke particle size as described above. However, item 1) is limited by the coke oven operation rate, and item 2) is limited by the productivity. Strictly limited. In addition, items 3) and 5) use expensive binders and coal, which increases the unit cost of coke production, and is not adopted in actual operation. In item 4), the addition of non-softened molten coke powder or petroleum coke lowers the softening and melting properties of the charged coal and lowers the coke strength. For this reason, in the actual operation, the above-mentioned technology is hardly adopted because of problems such as securing coke productivity and increasing coke production cost. Therefore, development of a practical method for expanding the coke particle size while maintaining coke strength is desired.
[0005]
[Means for Solving the Problems]
In the present invention, attention is paid to the inert particle size and the specific surface area which are considered to affect the adhesion behavior during the softening and melting of coal, and the amount of the binder such as the optimal pitch according to the inert particle size and the specific surface area is compounded. Then, it succeeded in obtaining the target particle size while maintaining the strength.
[0006]
That is, the present invention
When coke is produced by blending a binder and an inert substance with coking coal and dry-distilling the same, the amount of the coke obtained in advance with the addition amount of the binder, the particle size and the addition amount of the inert substance as variables. The production of coke characterized in that the relationship between the particle size and the strength is determined, and the addition amount of the binder and the particle size and the addition amount of the inert substance are set from the particle size and the strength of the target coke. Method,
When coke is produced by blending a binder and an inert substance into coking coal and dry-distilling the same, the amount of the coke obtained in advance with the amount of the binder added, the specific surface area of the inert substance and the added amount as variables. The production of coke characterized by determining the relationship between particle size and strength, and setting the addition amount of the binder and the specific surface area and addition amount of the inert substance from the particle size and strength of the target coke. Method,
It is about.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Various types of coke ovens, such as a Carlstil type, a Coppers type, and an Otto type, have been developed, but the method of the present invention can be applied regardless of the type.
[0008]
Coking coking coal must have caking properties and a degree of coalification within an appropriate range, and since such coal is scarce, several types of coal with different properties are blended and used as coking coal. . Coal contains a fibrous portion serving as a skeleton component of coke and a caking component exhibiting an adhesive function, and the coking coal must have a balance between the two. The balance between the two has been conventionally performed, and the raw coal used in the present invention satisfies the requirement as the coke raw coal.
[0009]
Binders are coal-based binders such as pitch, soft pitch, medium pitch, and hard pitch; petroleum-based binders such as ASP and PDA; expanded coal; solvent-treated coal such as SRC; As long as it is a high molecular material that softens and melts, it can be used.
[0010]
The inert substance is a substance that does not soften and melt during carbonization, and includes coal other than bituminous coal such as coke, anthracite, lignite, lignite, peat, and assimilated coal, metal powder such as iron powder and aluminum powder, and metal oxide powder. The average particle size of the inert substance is preferably about 0.01 to 1 mm, more preferably about 0.1 to 0.5 mm.
[0011]
The compounding amount of the inert substance is in the range of 0.01 to 15%, usually about 0.05 to 10%. In the present invention, for the same kind of inert substance and binder as used, various diameters of the inert substance are previously determined. The relationship between the addition rate of the binder in the addition rate and the particle size and strength of the obtained coke is determined in advance. This relationship is determined by measuring at least two points, preferably about three to ten points, of the particle size and the addition rate of the inert substance, respectively, and obtaining a straight line or a curve from the measured values. Can be.
[0012]
The average particle size of the coke is preferably about 20 to 100 mm, particularly about 50 to 70 mm, and the optimum particle size is set in each factory from the operating conditions and cost.
[0013]
A suitable amount of the binder is usually about 0.01 to 20%, and it is determined in advance so that a coke having a desired particle size can be obtained with the amount of the inert substance set within the range. The amount of binder added is determined from the relationship. However, the particle size and the amount of the inert substance are also variable. In short, the compounding amount of the binder and the particle size and the amount of the inert substance may be determined so as to obtain coke of a desired quality and particle size. .
[0014]
This relationship is illustrated in FIG. In FIG. 1, A and B indicate the addition rate of the inert substance is A or B (A <B), and 1, 2, and 3 indicate that the particle size (or specific surface area) of the inert substance is 1, 2, or 3 (1 <2 <3). As shown in the figure, if the addition ratio of the inert substance is B and the particle size is 2, coke having the target particle size can be obtained by setting the addition ratio of the binder to B2 '.
[0015]
The target coke strength can also be specified from the binder addition rate. This relationship is shown in FIG. As shown in the figure, if the addition rate of the inert substance is B and the particle size is 2, the coke having the desired strength can be obtained by setting the addition rate of the binder to B2 ''.
[0016]
The above relationship can also use the specific surface area as an index instead of the particle size of the inert substance, and if the specific surface area is measured in advance, the coke of the desired quality and particle size can be obtained in the same manner. The amount and the specific surface area and amount of the inert substance can be determined.
[0017]
The carbonization conditions are not particularly limited, and may be performed according to the carbonization performed in advance to obtain the above relationship.
[0018]
【Example】
The carbonization test was performed using a small test carbonization furnace capable of simulating an actual coke oven. As a coal sample, a coal blend having a grade of ordinary blended coal (Ro = 1.10, MF = 230) was used.
[0019]
[Example 1]
A powder, B powder and C powder having different particle size compositions were used as inert substances (using fine powder coke obtained from CDQ equipment (coke dry fire extinguishing equipment)). The particle size distribution of powder A is shown in FIG. 3, and the particle size distribution of powder B is shown in FIG. The addition rate of the inert substance was kept constant at 2%.
[0020]
Using pitch as a binder, the relationship between the addition rate, the average particle size of coke, and the drum strength was determined, and the results in the following table were obtained. This is shown in FIG. 5 and FIG. The horizontal line in the figure indicates the baseline.
[0021]
[Table 1]
Figure 0003552510
[0022]
[Table 2]
Figure 0003552510
[0023]
As the pitch addition rate increased, the particle size showed an increasing tendency, and in particular, the increase amount of fine powder A was large. On the other hand, as the pitch increased, the strength recovered to the base level. The fine powder A was effective with a small amount of pitch added.
[0024]
The required amount of pitch with respect to the inert addition ratio is shown in the following table and FIG. The smaller the ratio of 1 mm or more of the added inert substance, the smaller the required pitch.
[0025]
[Table 3]
Figure 0003552510
[0026]
When powder A was used, 5% of inert was added, and an increase in particle size of 5 mm or more was confirmed.
[0027]
[Example 2]
D, E, and F powders having different specific surface areas were used as inert substances (middle lump coke?). The specific surface area is shown below. This value is a measured value of a sample having a particle size of 0.25 to 0.5 mm.
A: 0.459, B: 31.7, C38.9 (m 2 / g)
[0028]
The particle size of the inert substance was constant at an average of about 0.25 mm, and the addition rate was constant at 2%.
[0029]
The relationship between the pitch addition rate, the average coke particle size, and the drum strength was determined, and the results shown in the following table were obtained. This is shown in FIG. 8 and FIG. The horizontal line in the figure indicates the baseline.
[0030]
[Table 4]
Figure 0003552510
[0031]
[Table 5]
Figure 0003552510
[0032]
As the pitch addition rate increased, the particle size tended to increase, and in particular, the increase in D with a small specific surface area was remarkably large. On the other hand, as the pitch increased, the strength recovered to the base level. In the case of D, an effect was obtained with a small amount of pitch added.
[0033]
The required amount of pitch with respect to the inert addition ratio is shown in the following table and FIG. The smaller the specific surface area of the added inert material, the smaller the required pitch.
[0034]
[Table 6]
Figure 0003552510
[0035]
【The invention's effect】
According to the present invention, a coke having a large particle size without reducing the strength and capable of producing coke having a large particle size, ensuring sufficient air permeability in a blast furnace, and maintaining stable operation can be obtained. Can be supplied.
[Brief description of the drawings]
FIG. 1 is a graph illustrating the present invention, showing the relationship between the amount of binder added and the average particle size of coke by changing the amount of addition of an inert substance and the particle size.
FIG. 2 is a graph showing the relationship between the amount of binder added and the coke drum strength by changing the amount of addition of the inert substance and the particle size.
FIG. 3 is a graph showing a particle size distribution of an inert substance used in Examples of the present invention.
FIG. 4 is a graph showing a particle size distribution of an inert substance used in an example of the present invention.
FIG. 5 is a graph showing a relationship between a binder addition rate and an average coke particle diameter for each particle diameter of an inert substance.
FIG. 6 is a graph showing the relationship between the binder addition rate and the coke drum strength for each particle size of the inert substance.
FIG. 7 is a graph showing a relationship between a ratio of an inert substance of 1 mm or more and a required amount of a binder to an added amount of an inert substance.
FIG. 8 is a graph showing a relationship between a binder addition rate and an average coke particle diameter for each specific surface area of an inert substance.
FIG. 9 is a graph showing the relationship between the binder addition rate and the coke drum strength for each specific surface area of the inert substance.
FIG. 10 is a graph showing the relationship between the specific surface area of the inert substance and the amount of the binder added to the amount of the inert substance added.

Claims (1)

原料炭に粘結材と比表面積0.459m2/g以下のイナート物質を配合してこれを乾留することによりコークスを製造する際に、予め当該粘結材の添加量ならびにイナート物質の比表面積および添加量を変数として得られるコークスの粒径および強度との関係を求めておき、前記粘結材の添加量ならびにイナート物質の比表面積および添加量を、目的とするコークスの粒径および強度から設定することを特徴とするコークス製造方法。When coke is produced by blending a binder with a binder and an inert substance having a specific surface area of 0.459 m 2 / g or less in the raw coal and subjecting it to dry distillation, the amount of the binder added and the specific surface area of the inert substance are determined in advance. And the relationship between the particle size and strength of coke obtained with the addition amount as a variable, and the addition amount of the binder and the specific surface area and addition amount of the inert substance are determined from the particle size and strength of the desired coke. A coke manufacturing method characterized by setting.
JP34968697A 1997-12-18 1997-12-18 Coke production method Expired - Fee Related JP3552510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34968697A JP3552510B2 (en) 1997-12-18 1997-12-18 Coke production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34968697A JP3552510B2 (en) 1997-12-18 1997-12-18 Coke production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003416131A Division JP2004131739A (en) 2003-12-15 2003-12-15 Method for producing coke

Publications (2)

Publication Number Publication Date
JPH11181439A JPH11181439A (en) 1999-07-06
JP3552510B2 true JP3552510B2 (en) 2004-08-11

Family

ID=18405424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34968697A Expired - Fee Related JP3552510B2 (en) 1997-12-18 1997-12-18 Coke production method

Country Status (1)

Country Link
JP (1) JP3552510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011833B2 (en) * 2006-06-14 2012-08-29 Jfeスチール株式会社 Coke manufacturing method
JP2019002011A (en) * 2017-06-19 2019-01-10 新日鐵住金株式会社 Method for manufacturing coke

Also Published As

Publication number Publication date
JPH11181439A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
WO2000006669A1 (en) Method for producing metallurgical coke
JP3552510B2 (en) Coke production method
JP6694161B2 (en) Method of manufacturing metallurgical coke
KR101767800B1 (en) Method for producing metallurgical coke
WO2014129337A1 (en) Method for producing metallurgical coke
JP5686052B2 (en) Coke production method
JP2004131739A (en) Method for producing coke
WO2015182529A1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP3854355B2 (en) High strength coke manufacturing method
KR101232943B1 (en) Method for producing high-strength coke
JPH11181441A (en) Production of coke for metallurgy
JP7493121B1 (en) Coke manufacturing method
JP4695244B2 (en) Coke manufacturing method
WO2024202185A1 (en) Coke production method
JP3614919B2 (en) Blast furnace coke manufacturing method
JPH1121561A (en) Production of coke for blast furnace
JPS60174951A (en) Estimation of coke strength
JP4396295B2 (en) Method for producing metallurgical coke
JPS6340234B2 (en)
KR101910405B1 (en) Ferrocoke manufacturing method
JP2001115168A (en) Preparation method of coke for metallurgy
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JPS5938279A (en) Production of metallurgical coke
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP3446130B2 (en) Manufacturing method of coke for metallurgy

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees