JP2019002011A - Method for manufacturing coke - Google Patents

Method for manufacturing coke Download PDF

Info

Publication number
JP2019002011A
JP2019002011A JP2018113655A JP2018113655A JP2019002011A JP 2019002011 A JP2019002011 A JP 2019002011A JP 2018113655 A JP2018113655 A JP 2018113655A JP 2018113655 A JP2018113655 A JP 2018113655A JP 2019002011 A JP2019002011 A JP 2019002011A
Authority
JP
Japan
Prior art keywords
coal
coke
particle size
binder
caking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018113655A
Other languages
Japanese (ja)
Inventor
野村 誠治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2019002011A publication Critical patent/JP2019002011A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

To provide a method for manufacturing high-strength coke by adding a caking agent, where the method maintains the high strength of coke and enlarges coke size even when a blending ratio of non or slightly caking coals is increased.SOLUTION: A method of the present invention is a method for manufacturing coke by charging blended coals comprising coals having highly volatile content in a coke oven and carbonization. The coals having highly volatile content used in the method comprises 30 mass% or more of volatile content and preferably has 50% or more of a caking index. According to the method, adding a caking agent in a liquid state to the coals having highly volatile content in such an amount that mass ratio of the added caking agent to the coals having highly volatile content is more than 5%, mixing, and blending the mixture to other material coals.SELECTED DRAWING: Figure 1

Description

本発明は、製鉄原料として用いるコークスの製造方法に関するもので、特に、石炭に粘結材を添加してコークス炉で乾留することより高強度のコークスを製造する方法に関するものである。   The present invention relates to a method for producing coke used as an iron-making raw material, and more particularly to a method for producing high-strength coke by adding a caking additive to coal and subjecting it to dry distillation in a coke oven.

原料炭に粘結材を添加して高強度コークスを製造する方法は、従来から知られており、以下のような公知文献がある。
特許文献1では、微粉炭と粗粒炭への粘結材添加比率を、微粉炭・粗粒炭の性状に応じて調整して高強度コークスを作る方法が示されている。
特許文献2では、原料炭を性状に応じてグループ化し、グループ毎に最適な組成の粘結材を添加することで、高強度コークスを製造する方法が示されている。
特許文献3では、高膨張圧炭に対して選択的に粘結材を添加、混練、成型して、膨張圧を低減しながら高強度コークスを製造する方法が示されている。
以上のようなコークス製造方法において、製造コストの低減をさらに目指すため、非微粘結炭の配合比率を一層向上することが望まれている。
A method for producing a high-strength coke by adding a caking additive to raw coal is conventionally known, and the following known literatures are available.
Patent Document 1 discloses a method for producing high-strength coke by adjusting the binder addition ratio between pulverized coal and coarse coal according to the properties of pulverized coal and coarse coal.
Patent Document 2 discloses a method for producing high-strength coke by grouping raw coals according to properties and adding a binder having an optimum composition for each group.
Patent Document 3 discloses a method for producing high-strength coke while reducing expansion pressure by selectively adding, kneading, and molding a binder to high expansion pressure coal.
In the coke manufacturing method as described above, in order to further reduce the manufacturing cost, it is desired to further improve the blending ratio of the non-slightly caking coal.

また一方で、高炉操業の安定化や、高炉でのコークス使用量の削減に対するニーズも高まっており、コークス強度だけでなく、コークス粒度を向上させる方法の開発も求められている。コークス粒度を向上させる方法としては、例えば特許文献4に示された、石炭を瀝青物と混練する方法があるが、非微粘結炭の配合比率を増加しながら、さらにコークス粒度を向上させる方法が求められている。   On the other hand, there is an increasing need for stabilization of blast furnace operation and reduction of coke usage in the blast furnace, and development of a method for improving not only the coke strength but also the coke particle size is required. As a method for improving the coke particle size, for example, there is a method of kneading coal with bituminous material as disclosed in Patent Document 4, but a method for further improving the coke particle size while increasing the blending ratio of non-slightly caking coal. Is required.

国際公開第2010/073535号International Publication No. 2010/073535 特開2007−9016号公報Japanese Patent Laid-Open No. 2007-9016 特開2011−26468号公報JP 2011-26468 A 特開平6−264069号公報Japanese Patent Laid-Open No. 6-264069

しかし、以上のような従来の方法では、非微粘結炭の配合比率を高めたうえで、高強度を維持するとともに、さらに粒度を向上させるコークスの製造方法については示されていない。
そこで、本発明は、粘結材を添加して高強度コークスを製造する方法において、非微粘結炭配合比率を高めても、高強度を維持できるとともに、さらにコークス粒度を向上させることができるコークスの製造方法を提供する。
However, the conventional methods as described above do not show a method for producing coke that increases the blending ratio of non-slightly caking coal and maintains high strength and further improves the particle size.
Therefore, the present invention is a method for producing a high-strength coke by adding a caking agent, and even if the blending ratio of non-slightly caking coal is increased, high strength can be maintained and the coke particle size can be further improved. A method for producing coke is provided.

一般に、非微粘結炭は揮発分(VM)の含有量が高く、非微粘結炭の配合比率が増加すると配合炭全体のVMが増加し、コークス粒度は低下する。
VMが高くなるとコークス粒度が低下する理由は、一般にVMが高い石炭は再固化後の収縮率が大きいため、歪が大きくなる。このため、応力が大きくなり、コークスの亀裂が増加し、割れてコークスの粒径が小さくなるからである。
本発明者らは、非微粘結炭の中でVMが高い石炭(高VM炭)に着目して、高VM炭を含む配合炭について、上記課題を解決すべく種々の検討を重ねた結果、配合炭中で高VM炭にのみ選択的に粘結材をある一定割合以上集中して添加・混合することで、コークス強度を維持しながらコークス粒度を向上させられること、さらには、選択的に集中添加する粘結材の添加量と得られるコークスのコークス粒度の間に一定の関係があり、コークス粒度の向上効果を予測して粘結材の添加量を決められることを見出した。
In general, non-finely caking coal has a high content of volatile matter (VM), and when the blending ratio of non-minor caking coal increases, the VM of the entire coal blend increases and the coke particle size decreases.
The reason why the coke particle size is lowered when the VM is high is that, generally, coal having a high VM has a large shrinkage rate after resolidification, and thus the strain becomes large. For this reason, the stress increases, cracks in the coke increase, and cracks reduce the particle size of the coke.
The present inventors have focused on coal with high VM (high VM coal) among non-slightly caking coals, and as a result of repeating various studies in order to solve the above-mentioned problems with blended coal containing high VM coal. In addition, it is possible to improve the coke particle size while maintaining the coke strength by selectively adding and mixing the binder to a certain ratio or more selectively only in the high VM coal in the blended coal. It has been found that there is a certain relationship between the amount of the caking additive added in a concentrated manner and the coke particle size of the resulting coke, and the effect of improving the coke particle size can be predicted to determine the amount of caking additive added.

本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)高揮発分含有炭を含む配合炭をコークス炉に装炭して乾留するコークスの製造方法において、前記高揮発分含有炭は揮発分を30質量%以上含有するものであり、該高揮発分含有炭に、液体状の粘結材を高揮発分含有炭の含有量に対する質量比率(外数)で5%超添加し、他の原料炭に配合することを特徴とするコークスの製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In the method for producing coke, in which blended coal containing high volatile content coal is loaded into a coke oven and carbonized, the high volatile content coal contains 30% by mass or more of volatile matter. Production of coke characterized by adding more than 5% of liquid caking additive to volatile matter-containing coal in a mass ratio (external number) to the content of high-volatile matter-containing coal and blending with other raw coal Method.

(2)事前に高揮発分含有炭に対する粘結材の添加量あたりのコークス粒度向上効果を求めておき、高揮発分含有炭を含む配合炭に粘結材を添加しないで製造したコークスの平均粒度に対し、目標とする平均粒度を得るための目標粒度向上代を定め、前記コークス粒度向上効果と、前記高揮発分含有炭の含有量と、前記高揮発分含有炭に対する前記粘結材の添加率との積で表されるコークス粒度向上代が、前記目標粒度向上代以上となるように前記粘結材を添加することを特徴とする上記(1)に記載のコークスの製造方法。 (2) The average of coke produced without adding the binder to the blended coal containing the high volatile content coal in advance, after obtaining the effect of improving the coke particle size per added amount of the binder to the high volatile content coal. A target particle size improvement margin for obtaining a target average particle size is determined with respect to the particle size, the coke particle size improvement effect, the content of the high volatile content coal, and the binder for the high volatile content coal The coke production method according to (1) above, wherein the caking additive is added so that a coke particle size improvement allowance expressed by a product of the addition rate is equal to or greater than the target particle size improvement allowance.

(3)前記高揮発分含有炭は粘結力指数が50%以上であることを特徴とする上記(1)または(2)に記載のコークスの製造方法。 (3) The coke production method according to (1) or (2) above, wherein the high volatile content coal has a cohesive strength index of 50% or more.

本発明によれば、この結果、非粘粘結炭(高VM炭)の使用比率を上げても、コークス強度を一定以上に維持しながらコークス粒度を向上することができる。   According to the present invention, as a result, even if the use ratio of non-caking coal (high VM charcoal) is increased, the coke particle size can be improved while maintaining the coke strength at a certain level or higher.

高揮発分含有炭に粘結材を添加して乾留した場合の粘結材添加率と得られるコークスの平均粒度との関係を図である。It is a figure which shows the relationship between the caking additive addition rate at the time of carrying out dry distillation by adding caking additive to highly volatile content carbon, and the average particle size of the coke obtained.

本発明者は、高揮発分含有炭を含む配合炭をコークス炉に装炭して乾留するコークスの製造方法において、高揮発分含有炭に粘結材を集中的に添加し、それを混練して他の原料石炭に混合して乾留すると、コークス強度とコークス粒度の向上をともに達成できることを見出した。
最初に、そのような本発明の基礎となった実験的な知見について説明する。なお、石炭や粘結材の量的比率を表す「%」は「質量%」を示す。
The present inventor, in a method for producing coke in which coal blend containing high volatile content coal is loaded into a coke oven and dry distillation, intensively adding a caking additive to high volatile content coal and kneading it. It was found that coke strength and coke particle size can be improved by mixing with other raw coal and dry distillation.
First, experimental knowledge that is the basis of the present invention will be described. In addition, "%" showing the quantitative ratio of coal and a caking additive shows "mass%".

(実験1)
揮発分含有量の異なる石炭を用い、粘結材を原料炭に対して選択的に添加してコークスを製造し、コークス粒度及びコークス強度への影響を調べた。
表1に示す性状の3種類の石炭を準備した。なお、揮発分含有量はドライベースの値を示す。
これらの石炭の一部に粘結材を選択的に集中して添加し、他の石炭と混合して配合炭とした。配合条件や粘結材の添加条件は表2に示す通りとした。
(Experiment 1)
Coal with different volatile content was used to produce coke by selectively adding a caking additive to the raw coal, and the effects on coke particle size and coke strength were investigated.
Three types of coal having the properties shown in Table 1 were prepared. The volatile content is a dry base value.
A caking additive was selectively concentrated and added to some of these coals, and mixed with other coals to obtain blended coals. The blending conditions and the binder addition conditions were as shown in Table 2.

Figure 2019002011
Figure 2019002011

Figure 2019002011
Figure 2019002011

ここで、「ベース配合」とは、A炭、B炭、C炭をそれぞれ均等質量比率で配合した石炭を示し、「粘結材添加なし」とは、粘結材を添加しない石炭の銘柄と質量比率を示し、「粘結材選択集中添加」とは、粘結材を添加、混練する石炭の銘柄及びその石炭と粘結材の質量比率を示す。
それぞれの質量比率は内数で示しているが、上記条件2〜5において、添加対象の石炭に対する粘結材の添加率は、3.0/30.4×100=9.9%(外数)となる。
Here, “base blend” indicates coal in which A coal, B coal, and C charcoal are blended in equal mass ratios, and “no caking additive added” means a brand of coal not containing caking additive. The mass ratio is indicated, and “selective concentrated addition of binder” indicates the brand of coal to which the binder is added and kneaded and the mass ratio of the coal and the binder.
Each mass ratio is indicated by an inner number. In the above conditions 2 to 5, the addition ratio of the binder to the coal to be added is 3.0 / 30.4 × 100 = 9.9% (outer number )

条件2〜5においては、粘結材を対象とする石炭に集中して添加、混練した後、粘結材添加なしの石炭と粘結材選択集中添加した石炭を混合し、試験コークス炉で乾留した。なお、粘結材としては液体状のものとしてコールタールを用いた。この結果、対象とする石炭粒子の表面は粘結材で被覆されていると考えられる。
乾留後のコークスは、窒素中で冷却した後、コークス平均粒度とコークス強度DIを測定した。
ここで、コークス平均粒度は、複数の篩目で篩を行い、篩目の各粒度区分ごとの質量を測定し、各粒度区分の代表径(上下の篩目の中間径)を用いて、当該粒度区分の質量比率で加重平均した値とした。また、コークス強度DIとしては、ドラム強度指数DI150 15(以降、単に「DI」と記載する場合がある。)を測定した。
結果を同じく表2に示す。
In conditions 2 to 5, after adding and kneading intensively to the coal intended for the binder, the coal without the binder added and the coal selectively added with the binder are mixed and dry-distilled in a test coke oven. did. Note that coal tar was used as the caking agent as a liquid. As a result, it is considered that the surface of the target coal particles is coated with a caking additive.
The coke after dry distillation was cooled in nitrogen and then measured for coke average particle size and coke strength DI.
Here, the average particle size of the coke is obtained by sieving with a plurality of meshes, measuring the mass for each particle size category of the mesh, and using the representative diameter of each particle size category (intermediate diameter of the upper and lower sieve meshes), A weighted average value was obtained based on the mass ratio of the particle size classification. Further, as the coke strength DI, a drum strength index DI 150 15 (hereinafter sometimes simply referred to as “DI”) was measured.
The results are also shown in Table 2.

条件1は粘結材添加なしの例を、条件2はベース配合の一部に粘結材を集中添加した例を、条件3〜5はA、B、C炭のそれぞれに粘結材を集中添加した例を示す。
コークス強度DIに対しては、粘結材を添加した条件2〜5では、添加していない条件1に比べて、いずれも強度が向上した。
これに対し、粘結材の添加がコークス粒度に及ぼす影響は一様ではなく、条件1に比べると、3種の石炭全てに添加した場合やVMが一番低いA炭に添加した場合では効果がなく、A炭よりもVMが高いB炭に添加した場合でもコークス平均粒度はほとんど向上していない。これに対して、VMの一番高いC炭に添加した条件5ではコークス平均粒度が約3mm程度向上する結果が得られた。
Condition 1 is an example without addition of a binder, Condition 2 is an example of concentrated addition of a binder to a part of the base formulation, and Conditions 3 to 5 are concentrated binders for A, B, and C charcoal respectively. An example of addition is shown.
With respect to the coke strength DI, the strength was improved in conditions 2 to 5 in which a caking additive was added compared to condition 1 in which the caking strength was not added.
On the other hand, the influence of the addition of the binder on the coke particle size is not uniform. Compared with condition 1, it is effective when added to all three types of coal or when added to A coal with the lowest VM. Even when added to B coal, which has a higher VM than coal A, the coke average particle size is hardly improved. On the other hand, under the condition 5 added to C charcoal having the highest VM, a result that the average particle size of coke was improved by about 3 mm was obtained.

この結果から、VMがある一定値以上の高VM炭に、粘結材を、ある比率以上の割合で集中して添加・混合することでコークス平均粒度が向上することが認められた。
高VM炭は再固化後の収縮率が大きいためにコークスの亀裂発生の起点となるが、高VM炭を粘結材で被覆することにより、高VM炭の周囲の組織の粘性が向上し、同時に弾性が低下する結果、収縮時の応力が緩和され、亀裂が進展しにくくなると考えられた。
From this result, it was confirmed that the coke average particle size is improved by adding and mixing the binder to a high VM coal having a certain value or more at a certain ratio in a concentrated manner.
High VM charcoal is the starting point for cracking of coke because the shrinkage rate after resolidification is large, but by covering the high VM charcoal with a binder, the viscosity of the structure around the high VM charcoal is improved. At the same time, as a result of the decrease in elasticity, the stress during contraction was relaxed, and it was thought that cracks were less likely to progress.

この実験で、高VM炭への粘結材の集中添加によるコークス粒度向上の効果が認められたので、次に、その効果が発現する条件について検討した。   In this experiment, an effect of improving the coke particle size by the concentrated addition of the caking additive to the high VM charcoal was recognized. Next, the conditions under which the effect was manifested were examined.

(実験2)
最初に、粘結材の添加比率の影響について調べた。
表3の条件6、7に示すように、上記A〜C炭を実験1と同じ配合条件で用い、C炭への粘結材の添加率を変えて新たな配合炭を作製し、実験1と同様にしてコークスを製造し、コークス平均粒度とコークス強度DIを測定した。
結果を同じく表3に示す。表3には実験1の条件1、5も併せて示す。なお、対象炭への粘結炭の集中添加率を外数で示した。
(Experiment 2)
First, the influence of the caking additive addition ratio was examined.
As shown in conditions 6 and 7 in Table 3, the above-mentioned A to C charcoal were used under the same blending conditions as in Experiment 1, and a new blended coal was produced by changing the addition rate of the caking additive to C charcoal. Coke was produced in the same manner as above, and the average coke particle size and coke strength DI were measured.
The results are also shown in Table 3. Table 3 also shows Conditions 1 and 5 of Experiment 1. In addition, the concentration addition rate of caking coal to object charcoal was shown by the outside number.

Figure 2019002011
Figure 2019002011

表3に示されるように、粘結材のC炭への集中添加率3%ではコークス平均粒度の変化が現れなかったが、添加率が5.2%では、コークス平均粒度が1.7mm向上する結果が得られた。この結果から、高VM炭への粘結炭の添加率が5%超でコークス平均粒度の向上効果が表れることが確認できた。   As shown in Table 3, there was no change in the average coke particle size when the concentration ratio of the caking additive to C charcoal was 3%, but when the addition rate was 5.2%, the average coke particle size was improved by 1.7 mm. The result to be obtained. From this result, it was confirmed that when the addition ratio of caking coal to high VM coal exceeds 5%, the effect of improving the average coke particle size appears.

(実験3)
次に、粘結材の集中添加によるコークス粒度向上効果が得られる石炭の揮発分含有量について調べた。
新たに表4に示す性状のD炭を準備して、配合条件や粘結材の添加条件は表5に示す通りとした。ここで、「ベース配合2」とは、A炭、B炭、D炭をそれぞれ均等質量比率で配合した石炭を示す。
条件8、9の配合炭を用いて同様にコークスを製造し、コークス平均粒度とコークス強度DIを測定した。結果を同じく表5に示す。
(Experiment 3)
Next, it investigated about the volatile content of coal from which the coke particle size improvement effect by concentrated addition of caking additive was acquired.
D charcoal having the properties shown in Table 4 was newly prepared, and the blending conditions and the binder addition conditions were as shown in Table 5. Here, “base blend 2” indicates coal in which A coal, B coal, and D coal are blended in equal mass ratios.
Coke was produced in the same manner using the blended coals of conditions 8 and 9, and the average coke particle size and coke strength DI were measured. The results are also shown in Table 5.

Figure 2019002011
Figure 2019002011

Figure 2019002011

表5についても、それぞれの質量比率は内数で示しているが、上記条件9において、添加対象の石炭に対する粘結材の添加率は、3.0/30.4×100=9.9%(外数)となる。
Figure 2019002011

Also in Table 5, each mass ratio is indicated by an inner number. However, in the above condition 9, the addition ratio of the binder to the coal to be added is 3.0 / 30.4 × 100 = 9.9%. (Outside number).

表5に示すように、揮発分含有量30%のD炭に粘結材を集中添加した条件9では、コークス強度が向上するとともにコークス平均粒度が2.5mm向上する結果が得られた。この条件9の結果と実験1の条件5の結果から、原料石炭中で、揮発分を30%以上含有する石炭に粘結炭を集中添加することにより、コークス強度とコークス平均粒度をともに向上させることが確認された。   As shown in Table 5, under condition 9 in which a caking additive was concentratedly added to D charcoal having a volatile content of 30%, the coke strength was improved and the average coke particle size was improved by 2.5 mm. From the result of Condition 9 and the result of Condition 5 of Experiment 1, both coke strength and coke average particle size are improved by concentrated addition of caking coal to coal containing 30% or more of volatile matter in the raw coal. It was confirmed.

本発明者らは、以上の実験を基礎として、さらに、揮発分含有量の異なる種々の石炭を用い、粘結材を添加する対象の石炭や粘結材添加率を変えて同様の試験を行い、揮発分含有量が30%以上の高VM炭に、粘結材を外数で5%超の添加率で集中して添加・混練し、他の原料炭に混合してコークスを製造することにより、非微粘結炭(高VM炭)配合比率を高めても、コークス強度とコークス平均粒度をともに向上したコークスを製造できることを確認することができた。   Based on the above experiment, the present inventors further conducted various tests using various types of coal having different volatile contents, changing the target coal to which the binder is added and the binder addition rate. Add coke to concentrated high VM charcoal with a volatile content of 30% or more at an addition rate of more than 5% and mix with other raw coal to produce coke. Thus, it was confirmed that even if the blending ratio of non-slightly caking coal (high VM charcoal) was increased, coke with improved coke strength and coke average particle size could be produced.

これによって、原料炭に配合する高VM炭の銘柄や配合量とその石炭に集中添加する粘結材の組み合わせ毎に、目標のコークス粒度が得られる粘結材の添加率を実験的に求めることにより、実際の粘結材の添加量を決めることができるが、所定の銘柄の石炭と粘結材の組み合わせにおいて、粘結材添加量あたりのコークス粒度向上効果を予め求めておき、目標のコークス粒度となるような粘結材の添加量を事前に知ることができるようにすることが好ましい。   By this, for each combination of brand and blending amount of high-VM coal blended with raw coal and the binder to be concentrated and added to the coal, experimentally obtain the addition rate of the binder to obtain the target coke particle size. The actual amount of caking additive added can be determined, but in the combination of a predetermined brand of coal and caking additive, the effect of improving the coke particle size per caking additive addition is obtained in advance, and the target coke is obtained. It is preferable to be able to know in advance the amount of the caking additive added so as to obtain a particle size.

そこで、種々の銘柄の石炭について、粘結材の添加率とコークス平均粒度との関係を調べたところ、揮発分含有量が30%以上の高VM炭に対する粘結材添加率が外数で15%程度までの範囲では、粘結材添加率とコークス粒度は直線関係にあることを実験的に見出した。
その一例として、上記C炭とD炭に、それぞれ粘結材を添加した場合の粘結材添加率と得られるコークスの平均粒度との関係を図1に示す。
Therefore, when the relation between the addition rate of the binder and the average particle size of the coke was examined for various brands of coal, the addition rate of the binder to high VM coal having a volatile content of 30% or more was an external number of 15. In the range up to about%, it was experimentally found that the binder addition rate and the coke particle size have a linear relationship.
As an example, FIG. 1 shows the relationship between the caking additive addition rate and the average particle size of the coke obtained when caking additive is added to the C charcoal and D charcoal, respectively.

これにより本発明者は、種々の石炭銘柄と粘結材の組み合わせにおいて、それぞれ事前に粘結材添加量あたりのコークス粒度向上効果を求めておくことにより、石炭銘柄と粘結材の組み合わせが決まれば、次の手順でコークス粒度向上効果を予測できることを見出した。   As a result, the present inventor determined the combination of coal brand and caking material in advance by seeking the effect of improving the coke particle size per caking additive addition amount in each combination of various coal brands and caking material. It was found that the effect of improving the coke particle size can be predicted by the following procedure.

すなわち、高VM炭である石炭Iから製造したコークスの平均粒径Ia(mm)と石炭Iに粘結材Jをj%添加して製造したコークスの平均粒径Ib(mm)を調べれば、石炭Iと粘結材Jの組み合わせにおける粘結材添加量当たりのコークス粒度の向上効果EIJ(mm/%)を、次の式から求めることができる。
IJ=(Ib−Ia)/j
That is, if the average particle size Ia (mm) of coke produced from coal I, which is high VM coal, and the average particle size Ib (mm) of coke produced by adding caking agent J to coal I are investigated, The improvement effect E IJ (mm /%) of the coke particle size per added amount of binder in the combination of coal I and binder J can be obtained from the following equation.
E IJ = (Ib−Ia) / j

また、配合炭中に石炭Iがi%含まれ、石炭Iに粘結材Jをja%集中添加した配合炭を乾留したコークスの平均粒度向上代E(mm)は、EIJを用いて各効果の加重平均による次の式で求められる。
E=EIJ×(i/100)×ja
In addition, the average particle size improvement allowance E (mm) of coke obtained by dry distillation of coal blend containing coal% containing coal% and coal I containing ca% concentrated in coal I is calculated using E IJ. It is calculated by the following formula using a weighted average of effects.
E = E IJ × (i / 100) × ja

この平均粒度向上代Eの求め方に基づいて、先の実験で用いた条件5、7、9について平均粒度向上代Eの推定値を求め、先の実験で得られた実測値と比較した。
まず、C炭を用いた条件7と5について調べた。
C炭100%で乾留したコークスの平均粒度Iaは38mm、C炭に粘結材Jを6%添加混合して乾留したコークスの平均粒度Ibは44mmであった。C炭と粘結材Jの組み合わせにおいては、粘結材添加量あたりのコークス粒度向上効果EIJは、(44−38)/6=1mm/%と求められる。
上記表3において条件5においては、配合炭中にC炭が30.4%含まれ、C炭に粘結材Jを9.9%添加している。この場合、配合炭を乾留したコークスの平均粒度向上代Eは、1×(30.4/100)×9.9=3.0mmと推定され、同様に条件7については、1.7mmと推定され、いずれも実測値と一致することが認められた。
Based on the method of obtaining the average particle size improvement allowance E, an estimated value of the average particle size improvement allowance E was obtained for the conditions 5, 7, and 9 used in the previous experiment, and compared with the actually measured value obtained in the previous experiment.
First, conditions 7 and 5 using C charcoal were examined.
The average particle size Ia of coke that was carbonized with 100% C charcoal was 38 mm, and the average particle size Ib of coke that was carbonized by adding 6% caking additive J to C charcoal was 44 mm. In the combination of carbon charcoal and caking additive J, the coke particle size improvement effect E IJ per caking additive addition amount is determined to be (44−38) / 6 = 1 mm /%.
In Table 3 above, in condition 5, 30.4% C charcoal is included in the blended coal, and 9.9% caking additive J is added to C charcoal. In this case, the average particle size improvement margin E of the coke obtained by carbonizing the blended coal is estimated to be 1 × (30.4 / 100) × 9.9 = 3.0 mm, and similarly for condition 7, it is estimated to be 1.7 mm. It was confirmed that both agreed with the measured values.

Figure 2019002011
Figure 2019002011

同様に、D炭を用いた条件9について調べた。
D炭100%で乾留したコークスの平均粒度Iaは42mm、D炭に粘結材Jを7%添加混合して乾留したコークスの平均粒度Ibは47.5mmであった。D炭と粘結材Jの組み合わせにおいて、粘結材添加量あたりのコークス粒度向上効果Eijは、(47.5−42)/7=0.79mm/%と求められる。
表5において、条件9では、配合炭中にD炭が30.4%含まれ、D炭に粘結材Jを9.9%添加している。この場合、配合炭を乾留したコークスの粒度向上代Eは、0.79×(30.4/100)×9.9=2.4mmと推定され、実測値とほぼ一致することが認められた。
Similarly, the condition 9 using D charcoal was examined.
The average particle size Ia of coke dry-distilled with 100% D charcoal was 42 mm, and the average particle size Ib of coke dry-mixed with 7% caking additive J added to D charcoal was 47.5 mm. In combination with D carbon and caking J, coke particle sizes improvement E ij per caking additive amount is calculated as (47.5-42) /7=0.79mm/%.
In Table 5, in condition 9, 30.4% of D charcoal is contained in the blended coal, and 9.9% of caking additive J is added to D charcoal. In this case, the particle size improvement margin E of the coke obtained by carbonizing the blended coal was estimated to be 0.79 × (30.4 / 100) × 9.9 = 2.4 mm, and it was recognized that it substantially coincided with the actual measurement value. .

Figure 2019002011
Figure 2019002011

したがって、高VM炭として石炭Iを含有量iで含むある配合構成で、石炭Iに粘結材Jを集中添加する場合、事前に石炭Iに対する粘結材Jの添加量あたりのコークス粒度向上効果EIJを求めておき、石炭Iに粘結材Jを添加しないで製造したコークスの平均粒度Mに対し、目標とするコークスの平均粒度をM’として(M’−M)に相当する目標粒度向上代を定め、コークス粒度向上効果EIJと石炭Iの含有量iに対する粘結材Jの添加率jaの積から求められる値が目標粒度向上代(M’−M)以上となるように粘結材Jの添加率jaを求めることにより、目標のコークス粒度を達成できる粘結材の添加率を予め決めることができる。 Therefore, when a caking additive J is added to coal I in a concentrated composition containing coal I as high VM coal with a content i, the effect of improving the coke particle size per added amount of caking additive J to coal I in advance. E IJ is obtained, and the target particle size corresponding to (M′−M) is obtained by setting M ′ as the average particle size of the target coke with respect to the average particle size M of the coke produced without adding the binder J to coal I. An improvement allowance is determined, and the viscosity is determined so that the value obtained from the product of the coke particle size improvement effect E IJ and the addition rate ja of the binder J with respect to the coal i content i is equal to or greater than the target particle size improvement allowance (M′−M). By determining the addition rate ja of the binder J, the addition rate of the binder capable of achieving the target coke particle size can be determined in advance.

なお、配合炭中に複数の高VM炭を含む場合は、石炭Iと粘結材Jとの組み合わせによる平均粒度向上効果EIJをそれぞれ求め、それを加算することにより求めることができる。
例えば、石炭Imをm%、石炭Inをn%含み、石炭Imに粘結材Jをja%添加し、石炭Inに粘結材Kをka%添加する場合の合計の平均粒度向上代ΣE(mm)は、石炭Imに対する粘結材Jの平均粒度向上効果をEImJとし、石炭Inに対する粘結材Kの平均粒度向上効果をEInKとして、下式で求められる。
ΣE={EImJ×(m/100)×ja}+{EInk×(n/100)×ka}
In addition, when a some high VM coal is included in blended coal, it can obtain | require by calculating | requiring each average particle size improvement effect EIJ by the combination of coal I and caking additive J , and adding it.
For example, the average particle size improvement allowance ΣE (total of the case where m% coal Im, n% coal In, ja% binder J is added to coal Im, and ka% ka binder K is added to coal In. mm) is an average particle size effect of improving the caking J for coal Im and E IMJ, an average particle size effect of improving the caking K for coal in as E InK, determined by the following equation.
ΣE = {E ImJ × (m / 100) × ja} + {E Ink × (n / 100) × ka}

以上、本発明の基本的な形態について説明したが、さらに本発明を構成する個々の条件や好ましい条件について説明する。
(配合炭)
使用する配合炭の一部にVMがドライベースで30質量%以上の高VM炭を用いるものとする。高VM炭は単一銘柄のものでも複数銘柄のものでもよい。高VM炭の配合比率は、コークス平均粒度を向上させる効果がさらに発揮されるという観点から10%以上が好ましく、一方、コークス強度を確保する点から80%以下が好ましい。
The basic form of the present invention has been described above, but further, individual conditions and preferable conditions constituting the present invention will be described.
(Mixed coal)
As a part of the blended coal to be used, high VM coal with a VM of 30% by mass or more on a dry basis is used. The high VM charcoal may be a single brand or multiple brands. The blending ratio of the high VM charcoal is preferably 10% or more from the viewpoint that the effect of improving the average coke particle size is further exhibited, and is preferably 80% or less from the viewpoint of securing the coke strength.

なお、本発明が対象とする高VM炭としては、適度な粘結性を有していることが重要である。これは、被覆する粘結材により、高VM炭粒子周囲の組織だけでなく、高VM炭粒子表面近傍の粘結性が向上して弾性が低下すると、応力緩和効果がより促進され、亀裂がより進展しにくくなるためである。被覆する粘結材により粒子表面近傍の粘結性が向上して弾性が低下するには、粘結力指数が50%以上であればよいことを確認している。
従って、本発明が対象とする高VM炭の粘結力指数は50%以上であることが好ましい。ちなみに、上記試験で用いたA〜D炭は粘結力指数がすべて50%以上である。
In addition, as high VM charcoal which this invention makes object, having moderate caking property is important. This is because when the caking material to be coated improves not only the structure around the high VM charcoal particles but also the caking property in the vicinity of the surface of the high VM charcoal particles and the elasticity decreases, the stress relaxation effect is further promoted and cracks are generated. This is because it becomes more difficult to progress. In order to improve the caking property in the vicinity of the particle surface and reduce the elasticity by the caking material to be coated, it has been confirmed that the caking force index should be 50% or more.
Therefore, it is preferable that the caking force index of the high VM charcoal targeted by the present invention is 50% or more. Incidentally, the A to D charcoal used in the above test has a cohesive strength index of 50% or more.

ここで、粘結力指数は、石炭の粘着性の強さを示す指数であり、石炭利用技術用語辞典(社団法人燃料協会編、1983年コロナ社発行)の255頁に記載されている方法により測定される値を用いる。具体的には、0.25mm以下の石炭1gに0.25〜0.30mmの粉コークス9gを混ぜ、磁性るつぼで900℃、7分間乾留した後、0.42mmでふるい分けし、ふるい上に残存した重量の百分率で表示する方法で、粘結力指数を測定することができる。   Here, the cohesive strength index is an index indicating the strength of coal tackiness, and is determined by the method described on page 255 of the coal utilization technical terminology (edited by the Japan Fuel Association, published in 1983 by Corona). Use measured value. Specifically, 9 g of 0.25 to 0.30 mm of powdered coke is mixed with 1 g of coal of 0.25 mm or less, dried in a magnetic crucible at 900 ° C. for 7 minutes, sieved at 0.42 mm, and remains on the sieve. The cohesive strength index can be measured by the method of displaying the percentage of weight.

本発明が対象とする高VM炭に配合するその他の石炭としては、特に限定されるものではなく、強粘結炭を含む通常の配合炭用の石炭(VM:17質量%以上30質量%未満)を用いる。   Other coal to be blended with the high-VM coal targeted by the present invention is not particularly limited, and is a coal for ordinary blended coal including strong caking coal (VM: 17% by mass or more and less than 30% by mass) ) Is used.

(粘結材)
高VM炭に添加する粘結材は、対象とする石炭粒子の表面を粘結材で被覆できるように、使用温度で液体状のものとする。常温で固体の粘結材についても、加温して液体状にすれば、対象となる石炭と混合することで効果が発揮できる。
液体状粘結材には、コールタールなど石炭系粘結材、アスファルトなど石油系粘結材、その他の瀝青物粘結材が使用できる。また、固体粘結材としては、石炭ピッチ、石油重質残渣、アスファルトピッチなどが使用できる。
(Binder)
The caking additive added to the high VM coal is liquid at the operating temperature so that the surface of the target coal particles can be covered with the caking additive. Even if the binder is solid at room temperature, if it is heated to a liquid state, the effect can be exhibited by mixing with the target coal.
As the liquid binder, coal-based binders such as coal tar, petroleum-based binders such as asphalt, and other bituminous binders can be used. As the solid binder, coal pitch, heavy petroleum residue, asphalt pitch or the like can be used.

粘結材の使用温度は、液体状粘結材では、60〜80℃程度、固体粘結材で80〜200℃程度が例示される。固体粘結材は温度が低下するとすぐに固化して凝集してしまうため、加熱するとともに高速かくはん型の混合機でかくはんすることが好ましい。
粘結材の添加量は、添加対象とする高VM炭に対する比率(外数)で5質量%超とする。5質量%以下ではその作用が十分でない。また、上限はコークス粒度向上の観点からは、15%以下が望ましい。なお、コークス強度をより向上させる場合は、さらに多く添加しても良いが、20質量%超にするとコークス強度に悪影響を及ぼす可能性があるため、20質量%以下とすることが好ましい。
The operating temperature of the binder is exemplified by about 60 to 80 ° C. for the liquid binder and about 80 to 200 ° C. for the solid binder. Since the solid binder solidifies and aggregates as soon as the temperature is lowered, it is preferable to heat and stir with a high-speed stirring mixer.
The addition amount of the binder is more than 5% by mass (outside number) with respect to the high VM coal to be added. If it is 5% by mass or less, its action is not sufficient. The upper limit is preferably 15% or less from the viewpoint of improving the coke particle size. In order to further improve the coke strength, a larger amount may be added. However, if it exceeds 20% by mass, the coke strength may be adversely affected.

(製造工程)
本発明は、基本的には通常のコークスの製造技術を用いて、以下のような工程で実施することができる。
乾燥後粉砕された原料炭を準備する。原料炭のうち揮発分が30%以上の高VM炭を、混練・造粒設備に入れ、高VM炭に対して液体状の粘結材を滴下又は噴霧し、混練して混練物を作製する。この混練物とその他の原料炭(強粘結炭を含む通常の配合炭用の石炭等)を配合設備に搬送し、配合設備でそれらを混合・配合された配合炭をコークス炉に装入して乾留し、高炉用コークスを製造する。なお、配合設備を設置せず、ベルトコンベヤー上のコークス原料炭に混練物を供給してもよい。
(Manufacturing process)
Basically, the present invention can be carried out in the following steps using a normal coke production technique.
Prepare coking coal pulverized after drying. High VM charcoal with a volatile content of 30% or more of the raw coal is put into a kneading and granulating facility, and a liquid binder is dropped or sprayed on the high VM charcoal to knead to prepare a kneaded product. . This kneaded product and other raw coal (coal for ordinary blended coal including strong caking coal) are transported to the blending facility, and the blended coal mixed and blended in the blending facility is charged into the coke oven. To produce blast furnace coke. In addition, you may supply kneaded material to the coke raw coal on a belt conveyor, without installing a mixing equipment.

Claims (3)

高揮発分含有炭を含む配合炭をコークス炉に装炭して乾留するコークスの製造方法において、
前記高揮発分含有炭は揮発分を30質量%以上含有するものであり、該高揮発分含有炭に、液体状の粘結材を高揮発分含有炭の含有量に対する質量比率(外数)で5%超添加し、混練して、他の原料炭に配合することを特徴とするコークスの製造方法。
In a method for producing coke in which coal blend including high volatile content coal is loaded into a coke oven and dry-distilled,
The high volatile matter-containing coal contains 30% by mass or more of volatile matter, and the mass ratio (outside number) of the high-volatile matter-containing coal with a liquid caking additive to the content of the high-volatile matter-containing coal. The method for producing coke, characterized by adding more than 5%, kneading and blending with other raw coal.
事前に高揮発分含有炭に対する粘結材の添加量あたりのコークス粒度向上効果を求めておき、高揮発分含有炭を含む配合炭に粘結材を添加しないで製造したコークスの平均粒度に対し、目標とする平均粒度を得るための目標粒度向上代を定め、前記コークス粒度向上効果と、前記高揮発分含有炭の含有量と、前記高揮発分含有炭に対する前記粘結材の添加率との積で表されるコークス粒度向上代が、前記目標粒度向上代以上となるように前記粘結材を添加することを特徴とする請求項1に記載のコークスの製造方法。   For the average particle size of the coke produced without adding the binder to the blended coal containing the high volatile content coal, the effect of improving the coke particle size per added amount of the binder to the high volatile content coal was obtained in advance. The target particle size improvement margin for obtaining the target average particle size is determined, the coke particle size improvement effect, the content of the high volatile content coal, and the addition rate of the binder to the high volatile content coal The coke production method according to claim 1, wherein the caking additive is added so that a coke particle size improvement allowance represented by a product of the product is equal to or greater than the target particle size improvement allowance. 前記高揮発分含有炭は粘結力指数が50%以上であることを特徴とする請求項1または2に記載のコークスの製造方法。   The method for producing coke according to claim 1 or 2, wherein the high volatile content coal has a cohesive strength index of 50% or more.
JP2018113655A 2017-06-19 2018-06-14 Method for manufacturing coke Pending JP2019002011A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017119538 2017-06-19
JP2017119538 2017-06-19

Publications (1)

Publication Number Publication Date
JP2019002011A true JP2019002011A (en) 2019-01-10

Family

ID=65005684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113655A Pending JP2019002011A (en) 2017-06-19 2018-06-14 Method for manufacturing coke

Country Status (1)

Country Link
JP (1) JP2019002011A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268349A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Production of coke for metallurgical use
JPH11181439A (en) * 1997-12-18 1999-07-06 Nkk Corp Production of coke
CN101787296A (en) * 2010-03-15 2010-07-28 攀钢集团钢铁钒钛股份有限公司 Coking method of lignite addition and coal charge
JP2015174934A (en) * 2014-03-17 2015-10-05 新日鐵住金株式会社 Method of producing coke for plast furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268349A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Production of coke for metallurgical use
JPH11181439A (en) * 1997-12-18 1999-07-06 Nkk Corp Production of coke
CN101787296A (en) * 2010-03-15 2010-07-28 攀钢集团钢铁钒钛股份有限公司 Coking method of lignite addition and coal charge
JP2015174934A (en) * 2014-03-17 2015-10-05 新日鐵住金株式会社 Method of producing coke for plast furnace

Similar Documents

Publication Publication Date Title
KR100866166B1 (en) Process for producing blast furnace coke
JP6265015B2 (en) Coke manufacturing method
KR20150133827A (en) Method for evaluating weathering degree of coal, method for evaluating coking properties of weathered coal, method for controlling weathering degree of coal, and method for producing cokes
JP4910631B2 (en) Blast furnace operation method
EP2871226A1 (en) Coke and method for producing same
JP6241336B2 (en) Method for producing blast furnace coke
JP2019002011A (en) Method for manufacturing coke
JP5949706B2 (en) Coke production method, coke, modified coal, modified coal blend and coal or blended coal reforming method
KR101879554B1 (en) Metallurgical coke and method for producing the same
KR101767800B1 (en) Method for producing metallurgical coke
JP6260563B2 (en) Ferro-coke manufacturing method
JP4695244B2 (en) Coke manufacturing method
JP4551493B2 (en) Manufacturing method of high strength coke
JP5163247B2 (en) Coke production method
JP6642130B2 (en) Method for producing molded coal for coke production
CN112111292A (en) Coke matched with waste activated carbon and coking method
KR101503443B1 (en) Composition for cokes and method of manufacturing the cokes
WO2011105480A1 (en) Method for producing high-strength coke
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP7327293B2 (en) Method for producing molding for ferro-coke and method for producing ferro-coke
JP6086129B2 (en) Coke production method
KR101430841B1 (en) Process for producing high-strength coke
WO2015182529A1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
RU2529235C2 (en) Electrode mass for self-baking electrodes of ferroalloy furnaces
JPH09272871A (en) Production of high-strength coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222