JP2017088869A - Carbonaceous material for coke production, production method thereof and production method of coke - Google Patents

Carbonaceous material for coke production, production method thereof and production method of coke Download PDF

Info

Publication number
JP2017088869A
JP2017088869A JP2016207726A JP2016207726A JP2017088869A JP 2017088869 A JP2017088869 A JP 2017088869A JP 2016207726 A JP2016207726 A JP 2016207726A JP 2016207726 A JP2016207726 A JP 2016207726A JP 2017088869 A JP2017088869 A JP 2017088869A
Authority
JP
Japan
Prior art keywords
coal
coke
temperature
shrinkage coefficient
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016207726A
Other languages
Japanese (ja)
Other versions
JP6720827B2 (en
Inventor
野村 誠治
Seiji Nomura
誠治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2017088869A publication Critical patent/JP2017088869A/en
Application granted granted Critical
Publication of JP6720827B2 publication Critical patent/JP6720827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonaceous material for coke production that can produce coke having sufficient strength and particle size while suppressing fissure.SOLUTION: In a carbonaceous material for producing coke added to coal when producing coke by dry distillation of coal, the coal has a minimum of a coke contraction coefficient at a temperature higher than a re-solidifying temperature of the coal in the relationship between a heating temperature during dry distillation of the coal and the coke contraction coefficient, and the carbonaceous material has a maximum of a carbonaceous material contraction coefficient at a temperature higher than a re-solidifying temperature of the coal in the relationship between a heating temperature during dry distillation of a raw material coal of the carbonaceous material and the carbonaceous material coke contraction coefficient, the temperature showing the maximum is within ±30°C of the temperature showing the minimum of the coal.SELECTED DRAWING: Figure 1

Description

本発明は、乾留する石炭に添加して、コークスを製造するためのコークス製造用炭材に関するものである。   The present invention relates to a carbon material for coke production for producing coke by adding to coal to be carbonized.

高炉操業に使用されるコークスは、高炉内の通気性を確保するために、所要の強度及び粒度が求められる。このようなコークスは、多種の石炭を粉砕・配合した後、コークス炉に装入して、炉内で乾留して製造される。コークス製造用の石炭に、良質な石炭を用いることで、十分な強度のコークスを製造することができるが、良質な石炭は、資源的に枯渇状態にある。それに対して、劣質な石炭は、埋蔵量が豊富であり、劣質な石炭を用いて、十分な強度を有するコークスを製造することが望まれている。   Coke used for blast furnace operation is required to have required strength and particle size in order to ensure air permeability in the blast furnace. Such coke is produced by pulverizing and blending various types of coal, charging the coke into a coke oven, and performing dry distillation in the oven. Although coke with sufficient strength can be produced by using high-quality coal as coke-producing coal, the high-quality coal is in a resource-depleted state. On the other hand, inferior quality coal has abundant reserves, and it is desired to produce coke having sufficient strength using inferior quality coal.

コークスの強度は、コークスの亀裂と関係があり、十分な強度のコークスを得るためには、コークスの亀裂を抑制する必要がある。このようなコークスの亀裂は、石炭の乾留過程における石炭の収縮により発生するとされている。   The strength of coke is related to the crack of coke, and in order to obtain coke with sufficient strength, it is necessary to suppress the crack of coke. Such cracks in coke are said to occur due to coal shrinkage during the coal carbonization process.

石炭の乾留過程における、加熱温度に対するコークス収縮係数の変化(収縮係数曲線)には、1次収縮による第1次ピーク(極大)と2次収縮による第2次ピーク(極大)がある。第1次ピークは、石炭が400〜500℃程度の温度範囲で軟化溶融し、その後固化するときに起こる収縮によるピークであり、第2次ピークは、約700℃の脱水素するときに起こる収縮によるピークである。   There are a primary peak (maximum) due to primary shrinkage and a secondary peak (maximum) due to secondary shrinkage in the change in coke shrinkage coefficient with respect to heating temperature (shrinkage coefficient curve) during the coal carbonization process. The primary peak is a peak due to shrinkage that occurs when coal softens and melts in the temperature range of about 400 to 500 ° C. and then solidifies, and the secondary peak is the shrinkage that occurs when dehydrogenation occurs at about 700 ° C. It is a peak by.

1次収縮率は石炭の種類により異なり、揮発分が高い劣質な石炭では1次収縮が大きい。そのため、数種類の石炭を配合してコークスを製造する方法において、揮発分が高い劣質な石炭を配合すると、石炭同志の収縮の差が大きくなり、ミクロな亀裂が発生し易い。一方、2次収縮率は石炭の種類によらずほぼ一定であるものの、ミクロな亀裂を進展させる。   The primary shrinkage varies depending on the type of coal. Inferior coal with a high volatile content has a large primary shrinkage. Therefore, in the method of producing coke by blending several kinds of coal, when blending inferior coal with high volatile content, the difference in contraction between the coals becomes large and micro cracks are likely to occur. On the other hand, the secondary shrinkage rate is almost constant regardless of the type of coal, but it develops micro cracks.

このような亀裂を抑制し、コークス粒度を拡大して、十分な強度のコークスを得るために、石炭の再固化温度以上での収縮率が石炭より小さいコークス粉等の炭材を添加するとともに、炭材と石炭粒子の接着強度を補強するために、ピッチ等の歴青物をあわせて添加する技術が知られている(例えば、特許文献1、参照)。   In order to suppress such cracks, expand the coke particle size, and obtain coke with sufficient strength, while adding a carbonaceous material such as coke powder whose shrinkage rate above the re-solidification temperature of coal is smaller than coal, In order to reinforce the adhesive strength between the carbonaceous material and the coal particles, a technique of adding a bitumen such as a pitch together is known (for example, see Patent Document 1).

特開平6−264069号公報Japanese Patent Laid-Open No. 6-264069 特開昭56−136880号公報JP-A-56-136880 特開昭56−136881号公報Japanese Patent Laid-Open No. 56-136881 特開昭56−136882号公報JP-A-56-136882 特開平07−003309号公報Japanese Patent Application Laid-Open No. 07-003309 国際公開第2010/087468号International Publication No. 2010/087468

この石炭より収縮率が小さい炭材を添加する技術において、乾留する石炭の種類によっては、亀裂が十分に抑制されず、十分な粒度及び強度のコークスが得られないことがあった。
本発明は、このような実情に鑑み、亀裂を抑制し、十分な強度及び粒度のコークスを製造できるコークス製造用炭材を提供することを目的とする。
In the technique of adding a carbon material having a shrinkage rate smaller than that of the coal, cracks are not sufficiently suppressed depending on the type of coal to be carbonized, and a coke having a sufficient particle size and strength may not be obtained.
In view of such a situation, an object of the present invention is to provide a carbon material for coke production that can suppress cracking and produce coke having sufficient strength and particle size.

本発明者らは、上記課題を解決するために、まず、石炭に添加する炭材について調査した。炭材としては、劣質な石炭をコークス製造の原料とするために、450〜600℃で予備乾留したチャーが広く知られている(例えば、特許文献2〜6、参照)。   In order to solve the above-mentioned problems, the present inventors first investigated a carbon material added to coal. As the carbon material, char preliminarily distilled at 450 to 600 ° C. in order to use inferior coal as a raw material for coke production is widely known (for example, see Patent Documents 2 to 6).

本発明者らは、種々の温度で予備乾留して得られた炭材を準備し、石炭に炭材を添加し、乾留して、炭材の違いと亀裂との関係を調査した。その結果、特定の石炭と炭材との組み合わせにおいて、亀裂が抑制されることを知見した。   The inventors prepared carbonaceous materials obtained by preliminary carbonization at various temperatures, added carbonaceous materials to the coal, and carbonized them, and investigated the relationship between the difference between the carbonaceous materials and cracks. As a result, it has been found that cracks are suppressed in a combination of specific coal and carbonaceous material.

そこで、亀裂が抑制された組合せの石炭と炭材において、石炭乾留時の加熱温度とコークス収縮係数との関係と、炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係とを測定したところ、石炭のコークス収縮係数の第1次ピーク(極大)と第2次ピーク(極大)の間の極小に、炭材の収縮係数のピーク(極大)が存在していた。   Therefore, in the combination of coal and carbonaceous materials in which cracks are suppressed, the relationship between the heating temperature during coal dry distillation and the coke shrinkage coefficient, and the relationship between the heating temperature during carbonization of coal raw material and the carbonaceous material shrinkage coefficient As a result of measurement, a peak (maximum) of the contraction coefficient of the carbonaceous material was present at the minimum between the primary peak (maximum) and the secondary peak (maximum) of the coke contraction coefficient of coal.

このように、石炭の乾留時の加熱温度とコークス収縮係数との関係に対して、炭材を、特定の原料石炭乾留時の加熱温度と炭材収縮係数との関係を有するものとすることで、石炭と炭材の混合物を乾留したとき、500〜1000℃の温度帯を通じて、コークス収縮係数の変化が少なく、低位に保つことができ、その結果、亀裂の発生を抑制することができることを見出した。   Thus, with respect to the relationship between the heating temperature at the time of dry distillation of coal and the coke shrinkage coefficient, the carbon material has a relationship between the heating temperature at the time of specific raw material coal dry distillation and the carbon material shrinkage coefficient. It has been found that when a mixture of coal and carbonaceous material is dry-distilled, the coke shrinkage coefficient changes little and can be kept low throughout the temperature range of 500 to 1000 ° C., and as a result, the occurrence of cracks can be suppressed. It was.

本発明は、上記知見に基づいてなされたもので、その要旨とするところは以下の通りである。
(1)石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材において、
前記石炭は、当該石炭乾留時の加熱温度とコークス収縮係数との関係において当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有し、
前記炭材は、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内である
ことを特徴とするコークス製造用炭材。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) In the carbon material for coke production added to the coal when carbonizing the coal to produce coke,
The coal has a minimum of the coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature and the coke shrinkage coefficient during the coal dry distillation,
The carbon material has a maximum carbon material shrinkage coefficient at a temperature equal to or higher than the re-solidification temperature of the coal in the relationship between the heating temperature and the carbon material shrinkage coefficient at the time of carbonization of the raw material coal. A carbon material for coke production, wherein the temperature is within ± 30 ° C. of the temperature at which the minimum of the coal is exhibited.

(2)石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材の製造方法であって、
前記石炭について、当該石炭乾留時の加熱温度とコークス収縮係数との関係を測定し、当該石炭の再固化温度以上の温度うち、コークス収縮係数の極小を示す温度を求め、
前記石炭の前記極小を示す温度未満の温度で、前記炭材を製造するための原料石炭を炭化して、前記炭材が、当該原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度で炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内となるようにする
ことを特徴とするコークス製造用炭材の製造方法。
(3)前記原料石炭として、ドライベースの揮発分VMが35〜50%と、粘結力指数CIが20以上の少なくとも一方の条件を満たすものを用いることを特徴とする上記(2)に記載のコークス製造用炭材の製造方法。
(4)前記原料石炭として、平均粒度3mm以上の粒状物または造粒物を用いることを特徴とする上記(2)または(3)に記載のコークス製造用炭材の製造方法。
(2) A method for producing a carbonaceous material for coke production that is added to the coal when carbonized to produce coke,
For the coal, measure the relationship between the heating temperature and the coke shrinkage coefficient during the coal dry distillation, find the temperature that indicates the minimum of the coke shrinkage coefficient among the temperatures above the resolidification temperature of the coal,
Carbonizing the raw material coal for producing the carbonaceous material at a temperature lower than the temperature indicating the minimum of the coal, the carbonaceous material in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during the raw material coal dry distillation The carbon material has a maximum shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal, and the temperature indicating the maximum is within ± 30 ° C. of the temperature indicating the minimum of the coal. A method for producing carbonaceous materials for coke production.
(3) As described in (2) above, the raw material coal is one that satisfies at least one condition of 35 to 50% in dry base volatile matter VM and a caking index CI of 20 or more. Of carbon material for the production of coke.
(4) The method for producing a carbon material for coke production according to (2) or (3) above, wherein a granular material or a granulated material having an average particle size of 3 mm or more is used as the raw material coal.

(5)石炭にコークス製造用炭材を添加して乾留するコークスの製造方法であって、
前記石炭として、当該石炭乾留時の加熱温度とコークス収縮係数との関係において、当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものを用い、
前記炭材として、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内であるものを用いる
ことを特徴とするコークスの製造方法。
(5) A method for producing coke in which carbonaceous material for coke production is added to coal and subjected to dry distillation,
As the coal, in the relationship between the heating temperature and the coke shrinkage coefficient during the coal dry distillation, the one having the minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal,
As the carbon material, the relationship between the heating temperature and the carbon material shrinkage coefficient during the raw coal dry distillation of the carbon material has a maximum carbon material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal, and shows the maximum value. A method for producing coke, characterized in that the temperature is within ± 30 ° C. of the minimum temperature of the coal.

なお、本発明および明細書では、コークス製造用の石炭を単に「石炭」と表記し、炭材製造用の石炭を「原料石炭」と表記する。   In the present invention and the specification, coal for producing coke is simply referred to as “coal”, and coal for producing carbonaceous material is referred to as “raw coal”.

本発明によれば、コークス製造用炭材を、石炭の乾留時の加熱温度とコークス収縮係数の関係に対して、特定の原料石炭乾留時の加熱温度と炭材収縮係数の関係を有するものとしたので、亀裂が抑制され、十分な強度及び粒度を有するコークスを製造することができる。   According to the present invention, the carbonaceous material for coke production has a relationship between the heating temperature at the time of dry distillation of the coal and the coke shrinkage coefficient, and the relationship between the heating temperature at the time of carbonization of the specific raw material and the carbonaceous material shrinkage coefficient. As a result, cracks are suppressed and coke having sufficient strength and particle size can be produced.

乾留時の加熱温度と収縮係数との関係を示す図である。It is a figure which shows the relationship between the heating temperature at the time of dry distillation, and a shrinkage coefficient. 石炭A及びBの乾留時の加熱温度と収縮係数との関係を示す図である。It is a figure which shows the relationship between the heating temperature at the time of dry distillation of coal A and B, and a shrinkage coefficient. 石炭Aの乾留時の加熱温度と収縮係数との関係、No.1〜4の炭材の原料石炭乾留時の加熱温度と収縮係数との関係を示す図である。Relationship between heating temperature and shrinkage coefficient during dry distillation of coal A, No. It is a figure which shows the relationship between the heating temperature at the time of the raw material coal dry distillation of 1-4 carbonaceous materials, and a shrinkage | contraction coefficient.

本発明のコークス製造用炭材(以下、「本発明の炭材」という)は、コークスを製造する際に石炭に添加するものであり、原料石炭乾留時の加熱温度と炭材収縮係数の関係において、石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、該極大を示す温度が、石炭の乾留時の加熱温度とコークス収縮係数との関係において、コークス収縮係数の極小を示す温度の±30℃以内のものである。   The carbon material for coke production of the present invention (hereinafter referred to as “the carbon material of the present invention”) is added to coal when producing coke, and the relationship between the heating temperature and the carbon material shrinkage coefficient during raw coal dry distillation. In this case, the carbon material shrinkage coefficient has a maximum at a temperature equal to or higher than the resolidification temperature of the coal, and the temperature indicating the maximum is the minimum of the coke shrinkage coefficient in the relationship between the heating temperature of the coal during carbonization and the coke shrinkage coefficient. The temperature is within ± 30 ° C of the indicated temperature.

以下、本発明の炭材に至った検討の経緯について説明する。なお、特段の断りの無い限り、石炭及び炭材の配合率、揮発分の「%」は「質量%」を示す。   Hereinafter, the background of the study that led to the carbonaceous material of the present invention will be described. Unless otherwise specified, “%” of the blending ratio of coal and carbonaceous material and volatile content indicates “mass%”.

本発明者らは、コークスの製造において、亀裂を抑制し、十分な強度及び粒度のコークスを製造できる炭材について次のような調査を実施した。まず、種々の温度で予備乾留して得られた炭材を準備し、1種の石炭にそれぞれ添加し、複数の混合物を得て、それらを乾留して、炭材の違いと亀裂との関係を調査した。その結果、特定の炭材において、亀裂が抑制された。   The inventors of the present invention conducted the following investigation on carbon materials that can suppress cracking and produce coke having sufficient strength and particle size in the production of coke. First, carbon materials obtained by preliminary carbonization at various temperatures are prepared, added to one type of coal, and a plurality of mixtures are obtained. These are carbonized, and the relationship between differences in carbon materials and cracks. investigated. As a result, cracks were suppressed in specific carbon materials.

そこで、石炭、亀裂が抑制された炭材X及び亀裂が発生した炭材Yにおいて、それぞれ乾留時の加熱温度と収縮係数との関係を測定した。図1に、乾留時の加熱温度と収縮係数との関係を示す。図1において、実線が石炭、点線Xが亀裂が抑制された炭材X、点線Yが亀裂が発生した炭材Yの乾留時の加熱温度と収縮係数との関係である。   Therefore, the relationship between the heating temperature and the shrinkage coefficient during dry distillation was measured for coal, carbon material X in which cracks were suppressed, and carbon material Y in which cracks occurred. In FIG. 1, the relationship between the heating temperature at the time of dry distillation and a shrinkage coefficient is shown. In FIG. 1, the solid line is the coal, the dotted line X is the carbon material X in which cracking is suppressed, and the dotted line Y is the relationship between the heating temperature and the shrinkage coefficient during carbonization of the carbonaceous material Y in which the crack is generated.

石炭の乾留時の加熱温度とコークス収縮係数の関係では、400〜500℃程度の温度範囲で軟化溶融し、その後固化するときに起こる1次収縮による第1次ピークP1(極大)と、約700℃の脱水素するときに起こる2次収縮による第2次ピーク(極大)が確認された。亀裂が抑制された炭材X及び亀裂が発生した炭材Yでは、石炭の再固化温度以上の温度、具体的には、炭材Xでは約570℃、炭材Yでは約700℃にピークが確認された。   Regarding the relationship between the heating temperature during coal carbonization and the coke shrinkage coefficient, the primary peak P1 (maximum) due to the primary shrinkage that occurs when softening and melting in the temperature range of about 400 to 500 ° C. and then solidifying is about 700 A secondary peak (maximum) due to secondary contraction that occurred when dehydrogenating at 0 ° C. was confirmed. In the case of the carbon material X in which cracks are suppressed and the carbon material Y in which cracks are generated, the peak is at a temperature equal to or higher than the resolidification temperature of the coal, specifically, about 570 ° C for the carbon material X and about 700 ° C for the carbon material Y. confirmed.

これより、亀裂が抑制された炭材Xでは、石炭の乾留時の加熱温度とコークス収縮係数の関係における、第1次ピークP1と第2次ピークP2に挟まれた極小に相当する位置に、炭材収縮係数のピークが存在していた。それに対して、亀裂が発生した炭材Yでは、石炭のコークス収縮係数の極大(第2次ピークP2)と重なるように、炭材収縮係数のピークが存在していた。   From this, in the carbonaceous material X in which cracks are suppressed, the position corresponding to the minimum sandwiched between the primary peak P1 and the secondary peak P2 in the relationship between the heating temperature during the carbonization of coal and the coke shrinkage coefficient, There was a peak of the carbonaceous material shrinkage coefficient. On the other hand, in the carbon material Y in which the crack occurred, the peak of the carbon material shrinkage coefficient was present so as to overlap with the maximum of the coke shrinkage coefficient of coal (secondary peak P2).

そうすると、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度と同等にすると、炭材と石炭の混合物のコークス収縮係数の変化が少なくなり、コークスの亀裂を抑制できるが、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極大を示す温度と同等にすると、炭材と石炭の混合物のコークス収縮係数の変化が大きくなり、コークスに歪が生じ、コークスに亀裂が発生すると考えた。   Then, if the temperature that shows the maximum of the shrinkage coefficient of coal is made equal to the temperature that shows the minimum of the coke shrinkage coefficient of coal, the change in the coke shrinkage coefficient of the mixture of coal and coal is reduced, and cracking of coke is suppressed. However, if the temperature at which the maximum shrinkage coefficient of coal is made equal to the temperature at which the maximum coke shrinkage coefficient of coal is obtained, the change in the coke shrinkage coefficient of the mixture of coal and coal will increase, causing distortion in the coke. It was considered that cracks occurred in the coke.

そこで、種々の炭材の収縮係数の極大を示す温度と、石炭のコークス収縮係数の極小を示す温度との差と、亀裂の有無との関係について詳細に検討した結果、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることで、コークスの亀裂を抑制できることを知見した。   Therefore, as a result of examining in detail the relationship between the difference between the temperature that shows the maximum shrinkage coefficient of various carbon materials and the temperature that shows the minimum coke shrinkage coefficient of coal, and the presence or absence of cracks, It was found that cracking of coke can be suppressed by setting the temperature showing the maximum to be within ± 30 ° C. of the temperature showing the minimum of the coke shrinkage coefficient of coal.

本発明は、以上のような検討過程を経て上記(1)〜(5)に記載の発明に至ったものであり、そのような本発明について、さらに、必要な要件や好ましい要件について順次説明する。   The present invention has reached the inventions described in the above (1) to (5) through the examination process as described above, and the necessary and preferred requirements will be further described in order for such the present invention. .

本発明の炭材は、コークスを製造する際に石炭に添加するものであり、原料石炭乾留時の加熱温度と炭材収縮係数の関係において、石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、該極大を示す温度が、石炭のコークス収縮係数の極小を示す温度の±30℃であるものである。
まず、本発明の炭材の添加対象の石炭について説明する。
The carbonaceous material of the present invention is added to coal when producing coke, and in the relationship between the heating temperature and carbonaceous material shrinkage coefficient during raw coal dry distillation, the carbonaceous material shrinkage coefficient is higher than the coal resolidification temperature. The temperature showing the maximum is ± 30 ° C. of the temperature showing the minimum of the coke shrinkage coefficient of coal.
First, the coal to which the carbonaceous material of the present invention is added will be described.

(石炭)
本発明の炭材の添加対象の石炭は、石炭乾留時の加熱温度とコークス収縮係数との関係において、石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものであれば、特に限定されるものでない。この極小は、石炭乾留時の加熱温度とコークス収縮係数との関係において、石炭の軟化溶融の後に固化するときに起こる1次収縮による第1次ピーク(極大)と、約700℃の脱水素により熱収縮するときに起こる2次収縮による第2次ピーク(極大)の間に観測されるものであり、少なくとも、再固化温度以上1000℃以下の温度範囲において、観測されるものである。
(coal)
The coal to which the carbonaceous material of the present invention is added is particularly limited as long as it has a minimum of the coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature during coal dry distillation and the coke shrinkage coefficient. It is not what is done. This minimum is due to the primary peak (maximum) due to primary shrinkage that occurs when the coal solidifies after softening and melting of coal, and the dehydrogenation at about 700 ° C. It is observed during the secondary peak (maximum) due to secondary contraction that occurs when heat shrinks, and is observed at least in the temperature range of the resolidification temperature to 1000 ° C.

この石炭乾留時の加熱温度とコークス収縮係数との関係の求め方は、特開2005−232349号公報に詳細に記載されているため、この関係の求め方に関しては、以下に簡潔に説明する。   Since the method for obtaining the relationship between the heating temperature during coal dry distillation and the coke shrinkage coefficient is described in detail in JP-A-2005-232349, the method for obtaining this relationship will be briefly described below.

細管に、石炭試料を充填して、細管内の石炭試料の上にピストンを挿入して、例えば3℃/分の昇温速度で1000℃まで昇温する。ピストンの位置に基づいて昇温中の試料長さを測定し、温度に対する試料長さの関係を求める。再固化温度での試料の長さをLR、温度Tでの試料長さをLTとしたとき、温度Tでのコークス収縮率R(−)を以下の式で定義する。そして、単位温度変化あたりのコークス収縮率Rの変化をコークス収縮係数(−/℃)とし、温度とコークス収縮係数との関係を求める。
R=(LR−LT)/LR
A thin tube is filled with a coal sample, a piston is inserted on the coal sample in the thin tube, and the temperature is raised to 1000 ° C., for example, at a heating rate of 3 ° C./min. The sample length during temperature rise is measured based on the position of the piston, and the relationship between the sample length and the temperature is obtained. The length L R of the sample at resolidification temperature, when a sample length at a temperature T and a L T, coke shrinkage at temperature T R (-) is defined by the following equation. Then, a change in the coke shrinkage ratio R per unit temperature change is defined as a coke shrinkage coefficient (− / ° C.), and a relationship between the temperature and the coke shrinkage coefficient is obtained.
R = (L R −L T ) / L R

また、本発明の炭材の添加対象の石炭は、1銘柄から構成される単味炭でも複数銘柄から構成される配合炭でもよい。ただし、非微粘結炭の配合率が50%未満では、炭材配合によるコークスの割れ抑制や、強度向上の効果が小さいため、非微粘結炭を50%以上配合した配合炭とすることが好ましい。また、石炭の揮発分及び粒度は、特に限定されるものでなく、ドライベースの揮発分VMが17〜40%、粒度が3mm以下の比率を60%〜95%であるものが例示される。   Moreover, the coal to which the carbonaceous material of the present invention is added may be simple coal composed of one brand or blended coal composed of multiple brands. However, if the blending ratio of non-slightly caking coal is less than 50%, the effect of suppressing the cracking of coke due to the blending of carbonaceous materials and improving the strength is small. Is preferred. Moreover, the volatile matter and particle size of coal are not particularly limited, and examples include a dry base volatile matter VM of 17 to 40% and a particle size ratio of 3 mm or less of 60% to 95%.

(炭材)
本発明の炭材は、原料石炭乾留時の加熱温度と炭材収縮係数の関係において、対象とする石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、該極大を示す温度が、該石炭のコークス収縮係数の極小を示す温度の±30℃以内であるものとする。ちなみに、原料石炭乾留時の加熱温度と炭材収縮係数との関係の求め方は、上記の温度とコークス収縮係数との関係の求め方と同様の条件である。
後述の実施例に示されるように、炭材の収縮係数の極大を示す温度を、対象とする石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることで、500〜1000℃の温度域を通じて、コークス収縮係数の変化を少なく、低位に保つことができ、亀裂の発生を抑制できる。
(Charcoal)
The carbonaceous material of the present invention has a maximum carbonaceous material shrinkage coefficient at a temperature equal to or higher than the re-solidification temperature of the target coal in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during carbonization of the raw material coal, and a temperature indicating the maximum. Is within ± 30 ° C. of the temperature at which the coal exhibits a minimum coke shrinkage coefficient. Incidentally, the method for obtaining the relationship between the heating temperature and the carbon material shrinkage coefficient during the raw coal dry distillation is the same condition as the method for obtaining the relationship between the temperature and the coke shrinkage coefficient.
As shown in the examples described later, the temperature indicating the maximum of the shrinkage coefficient of the carbonaceous material is within ± 30 ° C of the temperature indicating the minimum of the coke shrinkage coefficient of the target coal, Through the temperature range, the change in the coke shrinkage coefficient is small and can be kept low, and the occurrence of cracks can be suppressed.

対象とする石炭のコークス収縮係数の極小を示す温度は、石炭乾留時の加熱温度とコークス収縮係数の関係の図面から読み取っても、該関係の近似曲線の式を微分して求めてもよい。   The temperature indicating the minimum coke shrinkage coefficient of the target coal may be read from the drawing of the relationship between the heating temperature during coal dry distillation and the coke shrinkage coefficient, or may be obtained by differentiating the equation of the approximate curve of the relationship.

炭材の収縮係数の極大値は、特に限定されるものでなく、石炭のコークス収縮係数の極小値より大きくても、小さくてもよい。また、炭材収縮係数の極大値を有するピークの形状は、特に限定されるものでなく、シャープな形状でもブロードな形状でもよい。   The maximum value of the shrinkage coefficient of the carbon material is not particularly limited, and may be larger or smaller than the minimum value of the coke shrinkage coefficient of coal. Moreover, the shape of the peak having the maximum value of the carbonaceous material shrinkage coefficient is not particularly limited, and may be a sharp shape or a broad shape.

炭材が、そのような石炭の再固化温度以上の温度で収縮係数の極大を示すには、炭材に揮発分を残存させておくことが重要であるが、その量は特に限定されるものではなく、コークスの亀裂を抑制できる範囲に適宜設定すればよい。
また、炭材の粘結力指数CIは、20以上とすることが好ましい。粘結力指数CIが20未満では、周囲の粒子と接着し難いため、石炭とともに乾留して製造したコークスの強度が低下することがある。
In order for a carbon material to exhibit a maximum shrinkage coefficient at a temperature higher than the re-solidification temperature of such coal, it is important to leave volatile matter in the carbon material, but the amount is particularly limited Instead, it may be set appropriately within a range in which cracking of coke can be suppressed.
Further, the cohesive strength index CI of the carbon material is preferably 20 or more. When the cohesive strength index CI is less than 20, it is difficult to adhere to surrounding particles, and the strength of coke produced by dry distillation with coal may be reduced.

ここで、揮発分VMは、JIS M8812で規定される方法により測定されるものである。また、粘結力指数CIは、石炭利用技術用語辞典(社団法人燃料協会編)p.255に記載されており、0.25mm以下の劣質炭1gに0.25〜0.30mmの粉コークス9gを混合し、磁性るつぼで950℃、7分間乾留した後、0.30mm以上の篩で篩分けし、篩上に残存した質量の百分率で表示した値である。   Here, the volatile content VM is measured by a method defined in JIS M8812. In addition, the cohesive strength index CI is a dictionary of coal utilization technical terms (edited by the Japan Fuel Association) p. 255, and 9 g of 0.25 to 0.30 mm powdered coke is mixed with 1 g of inferior charcoal of 0.25 mm or less, dried at 950 ° C. for 7 minutes with a magnetic crucible, and then screened with a sieve of 0.30 mm or more. It is a value expressed as a percentage of the mass after sieving and remaining on the sieve.

次に、本発明のコークス製造用炭材の製造方法(以下、「本発明の炭材の製法」という)、及び、本発明のコークスの製造方法(以下、「本発明のコークスの製法」という)の流れについて説明するとともに、必要な要件や好ましい要件について順次説明する。   Next, a method for producing a carbonaceous material for producing coke according to the present invention (hereinafter referred to as “the method for producing the carbonaceous material according to the present invention”) and a method for producing the coke according to the present invention (hereinafter referred to as “the method for producing the coke according to the present invention”). ) And the necessary and preferred requirements will be explained in turn.

本発明の炭材の製法は、炭材製造用の原料石炭を、石炭のコークス収縮係数の極小を示す温度未満の温度で炭化して、炭材が石炭の再固化温度以上の温度で炭材収縮係数が極大を有し、かつ、該極大を示す温度が石炭の前記極小を示す温度の±30℃以内となるように製造する方法であり、原料石炭の性状(揮発分、平均粒度等)に応じて目的の炭材収縮係数を有する炭材となるように炭化条件を調整するものである。   The method for producing a carbonaceous material according to the present invention is obtained by carbonizing raw material coal for producing a carbonaceous material at a temperature lower than the temperature at which the coke shrinkage coefficient of the coal is minimum, and the carbonaceous material is heated at a temperature equal to or higher than the resolidification temperature of the coal. The shrinkage coefficient has a maximum and is a method for producing so that the temperature showing the maximum is within ± 30 ° C. of the temperature showing the minimum of coal. Properties of raw coal (volatile matter, average particle size, etc.) The carbonization conditions are adjusted so as to obtain a carbon material having a target carbon material shrinkage coefficient.

まず、石炭を準備する。石炭は、上述するように、石炭乾留時の加熱温度とコークス収縮係数の関係において、当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものであれば、特に限定されるものでなく、単味炭でも配合炭でもよい。   First, prepare coal. As described above, the coal is particularly limited as long as it has a minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature at the time of coal dry distillation and the coke shrinkage coefficient. There may be simple charcoal or blended charcoal.

そして、上述するように特開2005−232349号公報に記載の方法により、石炭乾留時の加熱温度とコークス収縮係数との関係を測定し、当該石炭の再固化温度以上の温度でコークス収縮係数の極小を示す温度を求める。該極小を示す温度は、石炭乾留時の加熱温度とコークス収縮係数の関係の図面から読み取って求めることができる。   Then, as described above, by the method described in JP-A-2005-232349, the relationship between the heating temperature during coal dry distillation and the coke shrinkage coefficient is measured, and the coke shrinkage coefficient is measured at a temperature equal to or higher than the resolidification temperature of the coal. Find the minimum temperature. The temperature indicating the minimum can be obtained by reading from the drawing of the relationship between the heating temperature during coal dry distillation and the coke shrinkage coefficient.

次に、炭材製造用の原料石炭を準備する。
原料石炭は、炭材としたときに、収縮係数の極大を示す温度が上記のような範囲になるようなものであれば、その他の特性は特に限定されるものではないが、ドライベースの揮発分VMが35〜50%の石炭を採用することが好ましい。また、原料石炭の粘結力指数CIは、20以上とすることが好ましい。
Next, raw material coal for producing carbonaceous materials is prepared.
The raw material coal is not particularly limited as long as the temperature at which the shrinkage coefficient is maximized is within the above range when used as a carbon material, but the volatilization of the dry base is not limited. It is preferable to employ coal having a minute VM of 35 to 50%. The cohesive strength index CI of the raw coal is preferably 20 or more.

原料石炭のVMの値は炭材の収縮係数に影響を与え、その値が35%未満では、炭材に残留する揮発分が少なくなるために収縮係数の絶対値が小さくなる。この場合は、収縮係数が異なるものを組み合わせて応力を緩和して亀裂発生を抑制する効果が小さくなるために、収縮係数極大温度が上記の範囲に入っていても、コークス粒径を向上させる効果が効果的に発揮できない場合が生じる。また、50%超では、炭材に残留する揮発分が多くなるために収縮係数の絶対値が大きくなり、収縮係数極大温度が上記の範囲に入っていてもコークスの亀裂が発生する可能性があり、これによりコークス粒径を向上させる効果が効果的に発揮できない場合が生じる。   The VM value of the raw material coal affects the shrinkage coefficient of the carbonaceous material. If the value is less than 35%, the volatile matter remaining in the carbonaceous material is reduced, so the absolute value of the shrinkage coefficient is small. In this case, since the effect of relaxing the stress by reducing the stress by combining those having different shrinkage coefficients becomes smaller, the effect of improving the coke particle size even if the shrinkage coefficient maximum temperature is within the above range. May not be effective. On the other hand, if it exceeds 50%, the absolute value of the shrinkage coefficient increases because the volatile matter remaining in the carbon material increases, and even if the maximum shrinkage coefficient temperature is within the above range, there is a possibility of cracking of coke. There is a case where the effect of improving the coke particle size cannot be exhibited effectively.

原料石炭のCIについては、その値が20未満では、石炭の粘結性が不足して、石炭粒子の接着性を阻害し、コークス強度を低下させる場合が生じる。   As for CI of raw material coal, if the value is less than 20, the caking property of coal is insufficient, the adhesion of coal particles is inhibited, and the coke strength may be lowered.

また、原料石炭は平均粒度3mm以上とすることが好ましい。粒度が小さい原料石炭は、伝熱が早く、かつ、比表面積が大きいため、炭化の際に揮発分が放出され易くなり、炭材に必要な量の揮発分が残留し難くなる結果、最適な収縮率極大温度を持つ炭材を調整可能な温度範囲が狭くなると考えられる。更に、粒度が大きい原料石炭は、予定とする炭化温度よりも高温で炭化処理された場合であっても、揮発分を残存させることができる。このため、原料石炭は平均粒度3mm以上の粒状物とすることが好ましく、更に好ましくは、平均粒度10mm以上の粒状物である。   Moreover, it is preferable that raw material coal shall be 3 mm or more in average particle size. The raw material coal with a small particle size has a fast heat transfer and a large specific surface area, so that the volatile matter is easily released during carbonization, and the amount of volatile matter required for the carbonaceous material is less likely to remain. It is considered that the temperature range in which the carbonaceous material having the maximum shrinkage rate can be adjusted is narrowed. Furthermore, even if raw material coal with a large particle size is carbonized at a temperature higher than the intended carbonization temperature, volatile matter can remain. For this reason, it is preferable that raw material coal shall be a granular material with an average particle size of 3 mm or more, More preferably, it is a granular material with an average particle size of 10 mm or more.

なお、3mm未満の微粒であっても、造粒して平均粒度を3mm以上の造粒物とすることで、揮発分の脱離速度を抑えることができるため、炭材に必要な量の揮発分を残留させ易くなり、粒径向上効果を向上させることができる。しかしながら、平均粒度3mm以上の粒状物と比較すると、造粒物は微粒と微粒の界面から揮発分が脱離しやすいので、同じ平均粒度で比較すると、粒径向上効果は粗粒の方が大きくなる。   In addition, even if it is a granule of less than 3 mm, the desorption rate of the volatile matter can be suppressed by granulating it into a granulated product having an average particle size of 3 mm or more. It becomes easy to leave a part, and the particle size improvement effect can be improved. However, compared with a granular material having an average particle size of 3 mm or more, the volatile matter is easily released from the interface between the fine particles and the granular material, and therefore, when compared with the same average particle size, the effect of improving the particle size is larger for the coarse particles. .

ここで、平均粒度は、JIS Z 8801に規定する篩を用いて篩分け、それぞれの篩上に残った試料の質量を計測し、この累積分布から求めることができる。   Here, the average particle size can be obtained from this cumulative distribution by sieving using a sieve specified in JIS Z 8801, measuring the mass of the sample remaining on each sieve.

また、原料石炭を、ピッチ等のバインダーと混練し、造粒した造粒物を用いることが好ましい。これにより、原料石炭は、ピッチ等のバインダーで被覆され、揮発分の脱離速度を抑えることができるため、炭材に必要な量の揮発分を残留させることができる。更に、バインダーで被覆された原料石炭は、予定とする炭化温度よりも高温で炭化処理された場合であっても、揮発分を残存させることができる。   Moreover, it is preferable to use a granulated product obtained by kneading raw material coal with a binder such as pitch and granulating it. Thereby, since raw material coal is coat | covered with binders, such as a pitch, and the detachment | desorption rate of a volatile matter can be suppressed, the amount of volatile matter required for a carbonaceous material can remain. Furthermore, even if the raw material coal coated with the binder is carbonized at a temperature higher than the intended carbonization temperature, volatile components can remain.

造粒物とする際に原料石炭に添加するバインダーは、特に限定されるものでなく、石油系及び石炭系のバインダー(タール、ピッチ等)のいずれも使用することができる。バインダーの添加量も、特に限定されるものでなく、原料石炭に対する外数で5〜15質量%が例示される。   The binder added to the raw material coal when making the granulated product is not particularly limited, and any of petroleum-based and coal-based binders (tar, pitch, etc.) can be used. The addition amount of the binder is also not particularly limited, and is exemplified by 5 to 15% by mass based on the external number relative to the raw material coal.

次に、原料石炭を、炭材の収縮係数の極大を示す温度が石炭のコークス収縮係数の極小を示す温度の±30℃以内となるよう炭化する。例えば、石炭の該極小を示す温度よりも低い温度(温度差ΔT=20〜80℃)で原料石炭を炭化(乾留)することで、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることができることを、実験的に知見した。この点は、対象とする炭材製造用石炭の性状に対応して、適宜、事前に実験等で確認して設定することが好ましい。また、原料石炭の炭化において、加熱炉は特に限定されるものでなく、特許文献2〜6に記載されているような、キルンやシャフト炉を用いて、原料石炭を炭化することができる。   Next, the raw material coal is carbonized so that the temperature showing the maximum of the shrinkage coefficient of the carbon material is within ± 30 ° C. of the temperature showing the minimum of the coke shrinkage coefficient of the coal. For example, by carbonizing (dry-distilling) the raw material coal at a temperature lower than the temperature indicating the minimum of coal (temperature difference ΔT = 20 to 80 ° C.), the temperature indicating the maximum shrinkage coefficient of the carbonaceous material is obtained. It was experimentally found that the temperature indicating the minimum shrinkage coefficient can be within ± 30 ° C. It is preferable to confirm and set this point in advance through experiments or the like as appropriate in accordance with the properties of the target coal for producing carbonaceous materials. Moreover, in carbonization of raw material coal, a heating furnace is not specifically limited, Raw material coal can be carbonized using a kiln or a shaft furnace as described in Patent Documents 2 to 6.

このように原料石炭を炭化すると、炭化温度で揮発する成分は炭材から抜けるものの、石炭のコークス収縮係数の極小を示す温度よりも20〜80℃低い温度における、炭材の収縮係数は極めて低い値(理想的にはほぼゼロ)となる様な原料石炭を用いることが好ましい。一方、炭化温度以上で揮発する成分は、炭材に残留しており、炭化温度より高温にすると揮発分が抜けて収縮係数が増大する。これにより、炭材の収縮係数の極大を示す温度を、石炭のコークス収縮係数の極小を示す温度の±30℃以内とすることができる様な原料石炭を用いることが重要である。   When carbonizing the raw material coal in this way, the components that volatilize at the carbonization temperature escape from the carbonaceous material, but the carbonaceous material has a very low shrinkage coefficient at a temperature 20 to 80 ° C. lower than the temperature at which the coal coke shrinkage coefficient is minimal. It is preferable to use raw coal that has a value (ideally almost zero). On the other hand, components that volatilize at or above the carbonization temperature remain in the carbonaceous material, and when the temperature is higher than the carbonization temperature, volatile components are lost and the shrinkage coefficient increases. Thus, it is important to use raw material coal that can make the temperature showing the maximum of the shrinkage coefficient of the carbonaceous material within ± 30 ° C. of the temperature showing the minimum of the coke shrinkage coefficient of coal.

次に、本発明のコークスの製法について説明する。
本発明のコークスの製法は、上述の石炭に、本発明の炭材を添加して、コークス炉に装入し、乾留してコークスを製造するものである。
Next, the manufacturing method of the coke of this invention is demonstrated.
In the method for producing coke of the present invention, the carbon material of the present invention is added to the above-mentioned coal, charged into a coke oven, and subjected to dry distillation to produce coke.

石炭は、所定の粒度に粉砕し、炭材を添加する。石炭の粉砕では、3mm以下の比率を60%〜95%の粒度に粉砕することが例示される。また、石炭は、必要に応じて、非微粘結炭を50%以上配合した配合炭とする。   Coal is pulverized to a predetermined particle size and carbonaceous material is added. Coal pulverization is exemplified by pulverizing a ratio of 3 mm or less to a particle size of 60% to 95%. In addition, coal is blended coal containing 50% or more of non-slightly caking coal as required.

石炭に対する炭材の配合率は、特に限定されるものでなく、例えば、内数で1〜10%とする。1%未満では、コークスの亀裂を抑制できないことがある。また、10%超では、コークス強度が低下するこがある。   The compounding ratio of the carbonaceous material with respect to coal is not particularly limited, and is, for example, 1 to 10%. If it is less than 1%, cracking of coke may not be suppressed. If it exceeds 10%, the coke strength may decrease.

そして、コークス炉の炭化室へ石炭及び炭材を装入する。装入嵩密度は、特に限定されるものでなく、例えば、750kg/m3が例示される。装入嵩密度が750kg/m3未満では、粘結力指数CIが低い炭材の場合、粘結性が不足してコークス強度が低下することがある。 And coal and a carbonaceous material are charged into the carbonization chamber of a coke oven. The charging bulk density is not particularly limited, and for example, 750 kg / m 3 is exemplified. When the charging bulk density is less than 750 kg / m 3 , in the case of a carbon material having a low caking strength index CI, the caking strength may be insufficient and the coke strength may be lowered.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

まず、石炭A〜Fを準備した。石炭A及びBがコークス製造用の石炭であり、石炭C〜Fが炭材製造用の原料石炭である。表1に、灰分量、ドライベースの揮発分VM、流動性を示す。なお、流動性はJIS M 8801に規定される方法で測定した。   First, coals A to F were prepared. Coals A and B are coals for producing coke, and coals C to F are raw material coals for producing carbonaceous materials. Table 1 shows the ash content, dry base volatile content VM, and fluidity. In addition, fluidity | liquidity was measured by the method prescribed | regulated to JISM8801.

Figure 2017088869
Figure 2017088869

石炭A及びBについて、乾留時の加熱温度とコークス収縮係数との関係を測定した。図2に、石炭A及びBの乾留時の加熱温度と収縮係数との関係を示す。図2より、石炭A及びBのコークス収縮係数の極小を示す温度を求めた。石炭Aのコークス収縮係数の極小を示す温度は550℃で、石炭Bのコークス収縮係数の極小を示す温度は570℃であった。   About coal A and B, the relationship between the heating temperature at the time of dry distillation and a coke shrinkage coefficient was measured. In FIG. 2, the relationship between the heating temperature at the time of dry distillation of coal A and B and a shrinkage coefficient is shown. From FIG. 2, the temperature indicating the minimum coke shrinkage coefficient of coals A and B was determined. The temperature showing the minimum coke shrinkage coefficient of coal A was 550 ° C., and the temperature showing the minimum coke shrinkage coefficient of coal B was 570 ° C.

次に、表2に示すように、石炭C〜Fの粒度を調整して原料石炭とした。表2において、平均粒度3〜5mm、10〜15mmを、それぞれ、+3mm、+10mmと表記し、篩下粒度3mm以下の比率が100%を、−3mm 100%と表記する。また、No.6、12は、篩下粒度3mm以下の比率を100%とした石炭Cに、外数でバインダーを10質量%添加し、混練、造粒して、平均粒度3mm以上のバインダーで被覆して作製した原料石炭であり、+3mm造粒と表記している。   Next, as shown in Table 2, the particle sizes of coals C to F were adjusted to obtain raw material coal. In Table 2, the average particle sizes of 3 to 5 mm and 10 to 15 mm are expressed as +3 mm and +10 mm, respectively, and the ratio of the particle size of 3 mm or less under the sieve is 100% and is expressed as −3 mm and 100%. No. 6 and 12 were prepared by adding 10% by mass of a binder to coal C with a particle size of 3 mm or less under sieve being 100%, kneading and granulating, and coating with a binder having an average particle size of 3 mm or more. The raw material coal is described as +3 mm granulation.

Figure 2017088869
Figure 2017088869

No.1〜19の原料石炭について、表3に示す炭化温度で炭化して、炭材とした。そして、No.1〜19について、原料石炭乾留時の加熱温度と炭材収縮係数との関係を測定し、No.1〜19の炭材収縮係数の極大を示す温度を求めた。表3に、No.1〜19の炭材収縮係数の極大を示す温度(極大の温度)、及び、No.1〜19の炭材収縮係数の極大を示す温度と石炭A又はBのコークス収縮係数の極小を示す温度との差(温度差)を示す。   No. About 1-19 raw material coal, it carbonized at the carbonization temperature shown in Table 3, and it was set as the carbon material. And No. For Nos. 1 to 19, the relationship between the heating temperature during carbonization of raw material coal and the carbon material shrinkage coefficient was measured. The temperature which shows the maximum of the carbonaceous material shrinkage | contraction coefficient of 1-19 was calculated | required. In Table 3, no. The temperature (maximum temperature) which shows the maximum of the carbonaceous material shrinkage | contraction coefficient of 1-19, and No.1. The difference (temperature difference) of the temperature which shows the maximum of the coal material shrinkage | contraction coefficient of 1-19, and the temperature which shows the minimum of the coke shrinkage | contraction coefficient of coal A or B is shown.

そして、表3に示す石炭に、No.1〜19の炭材をそれぞれ5%添加してコークスを製造し、コークスの平均粒度とコークス強度を測定した。表3に、コークスの平均粒度とコークス強度DI150 15を示す。コークス強度は、コークスをJIS K2151記載のドラム試験機により150回転した後、15mmふるい上のコークスの百分率DI150 15を実測して求めた。なお、コークス強度DI150 15を、以下、コークス強度DIと簡略化して記載する。 And in coal shown in Table 3, No. Coke was produced by adding 5% each of 1-19 carbonaceous materials, and the average particle size and coke strength of the coke were measured. Table 3 shows the average particle size and coke strength DI 150 15 of the coke. The coke strength was determined by actually measuring the coke percentage DI 150 15 on a 15 mm sieve after the coke was rotated 150 times with a drum tester described in JIS K2151. Hereinafter, the coke strength DI 150 15 will be abbreviated as the coke strength DI.

Figure 2017088869
Figure 2017088869

図3に、石炭Aの乾留時の加熱温度と収縮係数との関係、No.1〜4の炭材の原料石炭乾留時の加熱温度と収縮係数との関係を示す。
No.2、3、5、6、8、10〜15は、原料石炭乾留時の加熱温度と収縮係数の関係において、炭材の収縮係数の極大を示す温度が、石炭Aのコークス収縮係数の極小を示す温度の±30℃(石炭A:520〜580℃)であるため、No.1、4、7、9と比較して、コークス強度DIが大きくなった。また、平均粒度の大きいコークスが得られ、コークスの亀裂が抑制された。
FIG. 3 shows the relationship between the heating temperature and the shrinkage coefficient during coal carbonization. The relationship between the heating temperature at the time of carbonization of raw material coal of 1-4 carbonaceous materials and a shrinkage coefficient is shown.
No. 2, 3, 5, 6, 8, 10-15, the temperature showing the maximum of the shrinkage coefficient of the carbonaceous material in the relationship between the heating temperature and the shrinkage coefficient during the raw coal dry distillation, the minimum of the coke shrinkage coefficient of coal A Since it is ± 30 ° C. (coal A: 520 to 580 ° C.) of the temperature shown, Compared with 1, 4, 7, and 9, the coke strength DI was increased. Further, coke having a large average particle size was obtained, and cracking of the coke was suppressed.

特に、+3mmの粒状物の場合は、炭化温度525℃(No.3)と475℃(No.2)の広い温度範囲で望ましい炭材を作ることができた。
また、同じ温度差10℃のNo.8、10、12を比較すると、平均粒度は、No.8(−3mm 100%)<No.12(+3mm造粒)<No.10(+3mm)の順となっており、+3mmの粒状物が好ましい結果が得られた。
In particular, in the case of a +3 mm granular material, a desirable carbon material could be produced in a wide temperature range of carbonization temperatures of 525 ° C. (No. 3) and 475 ° C. (No. 2).
The same temperature difference of 10 ° C. When comparing 8, 10, and 12, the average particle size is No. 8 (-3 mm 100%) <No. 12 (+3 mm granulation) <No. The order of 10 (+3 mm) was obtained, and a favorable result was obtained with a granular material of +3 mm.

No.1、4は、炭化温度が適切でないため、揮発分が必要以上に抜けてしまい、又は、必要以上に残存し、炭材の収縮係数の極大を示す温度が、石炭Aのコークス収縮係数の極小を示す温度の±30℃外であり、発明例と比較して、コークス強度DIが小さくなった。また、発明例と比較して、平均粒度の小さいコークスとなり、コークスの亀裂が抑制されなかった。   No. Since the carbonization temperature is not appropriate for 1 and 4, the volatile matter escapes more than necessary, or the temperature at which it remains more than necessary and shows the maximum shrinkage coefficient of the carbonaceous material is the minimum of the coke shrinkage coefficient of coal A The coke strength DI was smaller than that of the inventive example. Moreover, it became coke with a small average particle diameter compared with the invention example, and the crack of coke was not suppressed.

また、No.7、9は、炭材の原料石炭の粒度が小さいため、揮発分が必要以上に抜けてしまい、炭材収縮係数の極大を示す温度が、石炭Aのコークス収縮係数の極小を示す温度の±30℃外であり、No.8の発明例と比較して、コークス強度DIが小さくなった。また、発明例と比較して、平均粒度の小さいコークスとなり、コークスの亀裂が抑制されなかった。   No. 7 and 9, since the raw material coal particle size of the carbon material is small, the volatile matter escapes more than necessary, and the temperature indicating the maximum of the carbon material shrinkage coefficient is ± of the temperature indicating the minimum of the coke shrinkage coefficient of coal A It is outside 30 ° C. Compared with the invention example of 8, the coke strength DI was decreased. Moreover, it became coke with a small average particle diameter compared with the invention example, and the crack of coke was not suppressed.

次に、No.17、18は、原料石炭乾留時の加熱温度と収縮係数の関係において、炭材の収縮係数の極大を示す温度が、石炭Bのコークス収縮係数の極小を示す温度の±30℃(石炭B:540〜600℃)であり、No.16、19と比較して、コークス強度DIが大きくなった。また、平均粒度の大きいコークスが得られ、コークスの亀裂が抑制された。   Next, no. 17 and 18 are ± 30 ° C. (coal B: the temperature at which the maximum of the shrinkage coefficient of the carbonaceous material shows the minimum of the coke shrinkage coefficient of the coal B in the relationship between the heating temperature and the shrinkage coefficient during the dry distillation of the raw material coal. 540-600 ° C). Compared with 16 and 19, the coke strength DI was increased. Further, coke having a large average particle size was obtained, and cracking of the coke was suppressed.

No.16、19は、炭化温度が適切でないため、揮発分が必要以上に抜けてしまい、又は、必要以上に残存し、炭材の収縮係数の極大を示す温度が、石炭Bのコークス収縮係数の極小を示す温度の±30℃外であり、発明例と比較して、コークス強度DIが小さくなった。また、発明例と比較して、平均粒度の小さいコークスとなり、コークスの亀裂が抑制されなかった。   No. 16 and 19, since the carbonization temperature is not appropriate, the volatile matter escapes more than necessary or remains more than necessary, and the temperature at which the shrinkage coefficient of the carbonaceous material is maximized is the minimum of the coke shrinkage coefficient of coal B The coke strength DI was smaller than that of the inventive example. Moreover, it became coke with a small average particle diameter compared with the invention example, and the crack of coke was not suppressed.

本発明によれば、コークス製造用炭材を、石炭の乾留時の加熱温度とコークス収縮係数の関係に対して、特定の原料石炭乾留時の加熱温度と炭材収縮係数の関係を有するものとしたので、亀裂が抑制され、十分な強度及び粒度を有するコークスを製造することができる。よって、本発明は、産業上の利用可能性が高いものである。   According to the present invention, the carbonaceous material for coke production has a relationship between the heating temperature at the time of dry distillation of the coal and the coke shrinkage coefficient, and the relationship between the heating temperature at the time of carbonization of the specific raw material and the carbonaceous material shrinkage coefficient. As a result, cracks are suppressed and coke having sufficient strength and particle size can be produced. Therefore, the present invention has high industrial applicability.

Claims (5)

石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材において、
前記石炭は、当該石炭乾留時の加熱温度とコークス収縮係数との関係において当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有し、
前記炭材は、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内である
ことを特徴とするコークス製造用炭材。
In the carbon material for coke production that is added to the coal when carbonizing carbon to produce coke,
The coal has a minimum of the coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal in the relationship between the heating temperature and the coke shrinkage coefficient during the coal dry distillation,
The carbon material has a maximum carbon material shrinkage coefficient at a temperature equal to or higher than the re-solidification temperature of the coal in the relationship between the heating temperature and the carbon material shrinkage coefficient at the time of carbonization of the raw material coal. A carbon material for coke production, wherein the temperature is within ± 30 ° C. of the temperature at which the minimum of the coal is exhibited.
石炭を乾留してコークスを製造する際に当該石炭に添加されるコークス製造用炭材の製造方法であって、
前記石炭について、当該石炭乾留時の加熱温度とコークス収縮係数との関係を測定し、当該石炭の再固化温度以上の温度うち、コークス収縮係数の極小を示す温度を求め、
前記石炭の前記極小を示す温度未満の温度で、前記炭材を製造するための原料石炭を炭化して、前記炭材が、当該原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度で炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内となるようにする
ことを特徴とするコークス製造用炭材の製造方法。
A method for producing a carbon material for coke production that is added to the coal when the coal is carbonized to produce coke,
For the coal, measure the relationship between the heating temperature and the coke shrinkage coefficient during the coal dry distillation, find the temperature that indicates the minimum of the coke shrinkage coefficient among the temperatures above the resolidification temperature of the coal,
Carbonizing the raw material coal for producing the carbonaceous material at a temperature lower than the temperature indicating the minimum of the coal, the carbonaceous material in the relationship between the heating temperature and the carbonaceous material shrinkage coefficient during the raw material coal dry distillation The carbon material has a maximum shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal, and the temperature indicating the maximum is within ± 30 ° C. of the temperature indicating the minimum of the coal. A method for producing carbonaceous materials for coke production.
前記原料石炭として、ドライベースの揮発分VMが35〜50%と、粘結力指数CIが20以上の少なくとも一方の条件を満たすものを用いることを特徴とする請求項2に記載のコークス製造用炭材の製造方法。   3. The coke production according to claim 2, wherein the raw material coal uses at least one of a dry base volatile content VM of 35 to 50% and a cohesive strength index CI of 20 or more. A method for producing charcoal. 前記原料石炭として、平均粒度3mm以上の粒状物または造粒物を用いることを特徴とする請求項2または3に記載のコークス製造用炭材の製造方法。   The method for producing a carbon material for coke production according to claim 2 or 3, wherein a granular material or a granulated material having an average particle size of 3 mm or more is used as the raw material coal. 石炭にコークス製造用炭材を添加して乾留するコークスの製造方法であって、
前記石炭として、当該石炭乾留時の加熱温度とコークス収縮係数との関係において、当該石炭の再固化温度以上の温度にコークス収縮係数の極小を有するものを用い、
前記炭材として、当該炭材の原料石炭乾留時の加熱温度と炭材収縮係数との関係において、前記石炭の再固化温度以上の温度に炭材収縮係数の極大を有し、当該極大を示す温度が前記石炭の前記極小を示す温度の±30℃以内であるものを用いる
ことを特徴とするコークスの製造方法。
A method for producing coke in which a carbon material for coke production is added to coal and subjected to dry distillation,
As the coal, in the relationship between the heating temperature and the coke shrinkage coefficient during the coal dry distillation, the one having the minimum coke shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal,
As the carbon material, the relationship between the heating temperature and the carbon material shrinkage coefficient during the raw coal dry distillation of the carbon material has a maximum carbon material shrinkage coefficient at a temperature equal to or higher than the resolidification temperature of the coal, and shows the maximum value. A method for producing coke, characterized in that the temperature is within ± 30 ° C. of the minimum temperature of the coal.
JP2016207726A 2015-11-09 2016-10-24 Carbon material for producing coke, method for producing the same, and method for producing coke Active JP6720827B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015219486 2015-11-09
JP2015219486 2015-11-09

Publications (2)

Publication Number Publication Date
JP2017088869A true JP2017088869A (en) 2017-05-25
JP6720827B2 JP6720827B2 (en) 2020-07-08

Family

ID=58767816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207726A Active JP6720827B2 (en) 2015-11-09 2016-10-24 Carbon material for producing coke, method for producing the same, and method for producing coke

Country Status (1)

Country Link
JP (1) JP6720827B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192488A (en) * 1981-05-22 1982-11-26 Kawasaki Steel Corp Preparation of coke for blast furnace
JPH06264069A (en) * 1993-03-15 1994-09-20 Nippon Steel Corp Production of coke
JPH073309A (en) * 1993-06-17 1995-01-06 Kawasaki Steel Corp Production of molded coke
JPH11181442A (en) * 1997-12-18 1999-07-06 Nkk Corp Production of coke for metallurgy
JP2013028800A (en) * 2011-06-24 2013-02-07 Nippon Steel & Sumitomo Metal Corp Method of selecting binding supplementary material and method of producing high strength coke using the same
JP2014077086A (en) * 2012-10-11 2014-05-01 Nippon Steel & Sumitomo Metal Method of producing highly reactive coke for blast furnace
JP2014077035A (en) * 2012-10-09 2014-05-01 Nippon Steel & Sumitomo Metal Blending method of blast furnace coke raw material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192488A (en) * 1981-05-22 1982-11-26 Kawasaki Steel Corp Preparation of coke for blast furnace
JPH06264069A (en) * 1993-03-15 1994-09-20 Nippon Steel Corp Production of coke
JPH073309A (en) * 1993-06-17 1995-01-06 Kawasaki Steel Corp Production of molded coke
JPH11181442A (en) * 1997-12-18 1999-07-06 Nkk Corp Production of coke for metallurgy
JP2013028800A (en) * 2011-06-24 2013-02-07 Nippon Steel & Sumitomo Metal Corp Method of selecting binding supplementary material and method of producing high strength coke using the same
JP2014077035A (en) * 2012-10-09 2014-05-01 Nippon Steel & Sumitomo Metal Blending method of blast furnace coke raw material
JP2014077086A (en) * 2012-10-11 2014-05-01 Nippon Steel & Sumitomo Metal Method of producing highly reactive coke for blast furnace

Also Published As

Publication number Publication date
JP6720827B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP4102426B2 (en) Method for producing blast furnace coke
JP4879706B2 (en) Method for producing blast furnace coke
US10308513B2 (en) Method for producing graphite bodies
JP4757956B2 (en) Method for producing blast furnace coke
JP6265015B2 (en) Coke manufacturing method
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP6241336B2 (en) Method for producing blast furnace coke
KR101767800B1 (en) Method for producing metallurgical coke
JP6260563B2 (en) Ferro-coke manufacturing method
JP7070228B2 (en) Estimating method of surface fracture strength of coke
JP6073648B2 (en) Graphite material manufacturing method and carbon-based raw material crusher
KR101864524B1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP6464912B2 (en) Coke production method
JP5011833B2 (en) Coke manufacturing method
JP2007246593A (en) Method for producing coke
JP2007119602A (en) Method for producing ferrocoke
JP4695244B2 (en) Coke manufacturing method
JP4819197B2 (en) Manufacturing method of high strength coke
JP2007119601A (en) Method for producing ferrocoke
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP2019002011A (en) Method for manufacturing coke
JP2010144096A (en) Method for producing ferrocoke
JPH0639587B2 (en) Pitch coke manufacturing method
JP2021004302A (en) Method for producing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6720827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151