JP2014077035A - Blending method of blast furnace coke raw material - Google Patents

Blending method of blast furnace coke raw material Download PDF

Info

Publication number
JP2014077035A
JP2014077035A JP2012224247A JP2012224247A JP2014077035A JP 2014077035 A JP2014077035 A JP 2014077035A JP 2012224247 A JP2012224247 A JP 2012224247A JP 2012224247 A JP2012224247 A JP 2012224247A JP 2014077035 A JP2014077035 A JP 2014077035A
Authority
JP
Japan
Prior art keywords
coke
coal
shrinkage
strength
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012224247A
Other languages
Japanese (ja)
Other versions
JP6065510B2 (en
Inventor
Hideyuki Hayashizaki
秀幸 林崎
Seiji Nomura
誠治 野村
Kei Yamaoka
圭 山岡
Masahiro Kubota
征弘 窪田
Takashi Niino
隆 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012224247A priority Critical patent/JP6065510B2/en
Publication of JP2014077035A publication Critical patent/JP2014077035A/en
Application granted granted Critical
Publication of JP6065510B2 publication Critical patent/JP6065510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blending method of a blast furnace coke raw material, achieving both an increase in the particle diameter of coke and an increase in the coke strength.SOLUTION: In a blending method of a blast furnace coke raw material containing a non-slightly-caking coal having a re-solidification temperature by the Gieseler Plastometer method defined in JISM8801 of 470°C or less and a low shrinkage carbonaceous material having a shrinkage factor of 10.5% or less when heated from the re-solidification temperature to 1000°C, the blast furnace coke raw material is blended for satisfying following formulae (1) to (3). X mass%≥70 mass% (1) SV×BD≥1.2 (2) DI>DI(3), where X mass% is a blending ratio of the non-slightly-caking coal and the low shrinkage carbonaceous material and remaining is a caking coal, SV is an expansion ratio volume at coal softening, BD is a charge bulk density of coal at coke oven charging, DIis a coke strength of standard coke containing X mass% of the non-slightly-caking coal and no low shrinkage carbonaceous material, and DIis coke strength of the blast furnace coke containing low shrinkage carbonaceous material.

Description

本発明は、高炉用コークス原料のコークス強度の向上及びコークス粒径を拡大する技術に関する。   The present invention relates to an improvement in coke strength of a blast furnace coke raw material and a technique for expanding the coke particle size.

高炉用コークスに代表される各種コークスは、多数の銘柄の石炭(原料炭)を粉砕して配合した後、コークス炉に装入される。装入された配合炭は、炉内で乾留されることによりコークスとなる。コークス製造の際に特に重要とされる品質管理項目として、コークス粒径及びコークス強度が知られている。
コークス粒度及びコークス強度を一定以上の値に保持することは、高炉の通気性を確保し安定操業を実現する上で不可欠である。
Various cokes such as blast furnace coke are pulverized and blended with many brands of coal (coking coal) and then charged into the coke oven. The charged coal mixture is coke by being carbonized in the furnace. Coke particle size and coke strength are known as quality control items that are particularly important in the production of coke.
Maintaining the coke grain size and coke strength at a certain level or more is indispensable for ensuring the air permeability of the blast furnace and realizing stable operation.

コークス粒径を拡大する技術は、これまで種々提案されており、特許文献1には、イナート物質の粒径と添加量を変数として得られるコークスの粒径との関係を求めておき、目的とするコークスの粒径を製造する方法が提案されている。   Various techniques for enlarging the coke particle size have been proposed so far, and Patent Document 1 obtains the relationship between the particle size of the inert substance and the particle size of the coke obtained using the added amount as a variable. A method for producing a coke particle size is proposed.

特許文献2には、低収縮炭材の種類および粒度によって、コークス粒径およびコークス強度に与える影響が異なることに着目し、目標コークス強度および粒度になるように、低収縮率材の種類および粒度を調整する方法が提案されている。特許文献3には、原料配合炭の再固化温度を超える加熱温度まで加熱して、再固化温度から加熱温度までの収縮量からコークス収縮率を測定し、この測定値からコークス粒径を推定し、この推定値が目的とするコークス粒径以上になるように、配合炭中の各石炭の配合比を調整する方法が提案されている。特許文献4には、配合炭を乾燥し、さらに予熱した後、150〜300℃の温度の微粉炭と粗粒炭の混合物に、タール重質留分、軟ピッチ、および石油ピッチのいずれか1種または2種以上からなる粘結材を、前記微粉炭と粗粒炭の混合物に対する添加することで、混合物の再固化温度が460℃以上にし、コークス強度およびコークス粒度を高める方法が提案されている。   In Patent Document 2, attention is paid to the fact that the influence on the coke particle size and coke strength differs depending on the type and particle size of the low-shrinkage carbonaceous material, and the type and particle size of the low-shrinkage material so that the target coke strength and particle size are obtained. A method of adjusting is proposed. In Patent Document 3, the coke shrinkage is measured from the amount of shrinkage from the resolidification temperature to the heating temperature by heating to a heating temperature exceeding the resolidification temperature of the raw coal blend, and the coke particle size is estimated from this measured value. A method of adjusting the blending ratio of each coal in the blended coal has been proposed so that the estimated value is equal to or larger than the target coke particle size. In Patent Document 4, after blended coal is dried and further preheated, a mixture of pulverized coal and coarse coal at a temperature of 150 to 300 ° C. is added to any one of heavy tar fraction, soft pitch, and petroleum pitch. A method has been proposed in which a caking material consisting of seeds or two or more kinds is added to the mixture of the pulverized coal and the coarse coal so that the resolidification temperature of the mixture is 460 ° C. or more, and the coke strength and the coke particle size are increased. Yes.

特開平11−181439号公報Japanese Patent Laid-Open No. 11-181439 特開2011−26514号公報JP 2011-26514 A 特開2005−232349号公報JP-A-2005-232349 特開2008−120973号公報JP 2008-120973 A

しかしながら、特許文献1の方法では、イナート物質の添加によるコークス強度の低下を、高価な粘結材によって補う必要がある。特許文献2の方法では、低収縮炭材の添加によるコークス強度の低下を、粘結材や装入嵩密度向上などの方法で補わなければならない。特許文献3の方法は、限られた石炭の種類の範囲内で各単味炭の配合比を調整する方法であって、この方法では、コークス粒径を十分に拡大することは困難であった。特許文献4の方法では、コークス粒径の拡大のために高価な粘結材を添加する必要があり、また十分にコークス粒径を拡大することができなかった。そこで、本願発明は、コークス粒径の拡大及びコークス強度の向上を両立する高炉用コークスの配合方法を提供することを目的とする。   However, in the method of Patent Document 1, it is necessary to compensate for a decrease in coke strength due to the addition of an inert substance with an expensive binder. In the method of Patent Document 2, the reduction in coke strength due to the addition of low-shrinkage carbonaceous material must be compensated for by a method such as a caking additive or charging bulk density improvement. The method of Patent Document 3 is a method for adjusting the blending ratio of each simple coal within a limited range of coal types, and with this method, it was difficult to sufficiently expand the coke particle size. . In the method of Patent Document 4, it is necessary to add an expensive binder to increase the coke particle size, and the coke particle size cannot be sufficiently increased. Then, an object of this invention is to provide the compounding method of the coke for blast furnaces which makes the coke particle size expansion and the improvement of coke strength compatible.

上記課題を解決するために、本願発明に係る高炉用コークス原料の配合方法は、JISM8801に規定するギーセラープラストメータ法での再固化温度が470℃以下である非微粘結炭と、再固化温度から1000℃まで加熱したときの収縮率が10.5%以下である低収縮炭材とを含む高炉用コークス原料の配合方法において、下記の式(1)乃至(3)を満足するように高炉用コークス原料を配合することを特徴とする。
X質量%≧70質量%・・・・・・・・・・・・(1)
SV×BD≧1.2・・・・・・・・・・・・・(2)
DI150 15>DI150 15base・・・・・・・・・・(3)
ただし、X質量%は非微粘結炭及び低収縮炭材の配合割合であり、残部は粘結炭である。SVは石炭軟化時の膨張比容積であり、BDはコークス炉装入時の石炭の装入嵩密度であり、DI150 15baseは非微粘結炭をX質量%含んで、かつ、低収縮炭材を含まない基準コークスのコークス強度であり、DI150 15は低収縮炭材を含む該高炉用コークスのコークス強度である。
In order to solve the above-mentioned problems, the blending method of the blast furnace coke raw material according to the present invention is a non-slightly caking coal having a resolidification temperature of 470 ° C. or less according to the Gisela plastometer method defined in JIS M8801, and resolidification In the blending method of coke raw material for blast furnace including a low shrinkage carbonaceous material having a shrinkage rate of 10.5% or less when heated from temperature to 1000 ° C., the following formulas (1) to (3) are satisfied: It is characterized by blending coke raw materials for blast furnace.
X mass% ≥ 70 mass% ... (1)
SV × BD ≧ 1.2 (2)
DI 150 15 > DI 150 15base (3)
However, X mass% is a blending ratio of non-slightly caking coal and low shrinkage carbonaceous material, and the balance is caking coal. SV is the expansion specific volume at the time of coal softening, BD is the bulk density of the coal at the time of charging into the coke oven, DI 150 15base contains X mass% of non-slightly caking coal, and low shrinkage coal The coke strength of the reference coke not containing the material, and DI 150 15 is the coke strength of the blast furnace coke containing the low shrinkage carbonaceous material.

本発明によれば、コークス粒径の拡大及びコークス強度の向上を両立した高炉用コークスの配合方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the compounding method of the coke for blast furnaces which can make the coke particle size expansion and the improvement of coke strength compatible can be provided.

石炭軟化時の空隙充填度(−)と表面破壊強度DI150 との関係を示している。Void filling degree during coal softening (-) to indicate a relationship between the surface fracture strength DI 0.99 6. 粘結炭と非微粘結炭とをそれぞれ乾留した場合の温度及び体積変化を模式的に示している。The temperature and the volume change at the time of dry distillation of caking coal and non-slightly caking coal are shown typically. 非微粘結炭の配合割合と、再固化後の収縮によって生じる体積破壊粉コークス量DI150 6-15との関係を示している。The relationship between the blending ratio of non-slightly caking coal and the volume fracture powder coke amount DI 150 6-15 generated by shrinkage after resolidification is shown.

本発明者は、非微粘結炭を多量に配合しても、石炭軟化時の空隙充填度SV×BD(−)を所定値以上とした条件において、非微粘結炭の一部を低収縮炭材に振り替えることにより、コークス強度の向上とコークス粒径の拡大とを両立できることを知見した。ここで、管理指標としてのコークス強度DI150 15は、表面破壊強度をDI150 、体積破壊粉コークス量をDI150 6−15とした場合に、下記の算出式から求めることができる。なお、以下の説明において用いられる「コークス強度」は、特に断りのない限り「管理指標としてのコークス強度DI150 15」を意味するものとする。
(数1)
DI 150 15=DI150 −DI150 6−15・・・・・・・・・・(1)
Even if a large amount of non-slightly caking coal is blended, the present inventor has reduced a part of non-slightly caking coal under the condition that the degree of void filling SV × BD (−) during coal softening is a predetermined value or more. It has been found that the coke strength can be improved and the coke particle size can be increased by switching to the contracted carbonaceous material. Here, the coke strength DI 150 15 as a management index can be obtained from the following calculation formula when the surface fracture strength is DI 150 6 and the volume fracture powder coke amount is DI 150 6-15 . The “coke strength” used in the following description means “coke strength DI 150 15 as a management index” unless otherwise specified.
(Equation 1)
DI 150 15 = DI 150 6 -DI 150 6-15 (1)

本発明における非微粘結炭とは、JISM8001に規定されたキーセラープラストメータ法での再固化温度が470℃以下の石炭のことである。非微粘結炭は、膨張性が優れず、収縮率が大きいという特徴を有する。非微粘結炭は、安価で揮発分が高く、膨張性が優れないため、石炭溶融時に石炭粒子同士が十分に接着できず、低強度のコークスとなる傾向がある。   The non-slightly caking coal in the present invention is a coal having a resolidification temperature of 470 ° C. or less according to the key celler plastometer method defined in JISM8001. Non-slightly caking coal has the characteristics that extensibility is not excellent and shrinkage rate is large. Non-slightly caking coal is inexpensive, has a high volatile content, and is not excellent in expansibility. Therefore, coal particles cannot be sufficiently bonded to each other when coal is melted, and tends to be low strength coke.

図1のグラフは、非微粘結炭を50%配合(残部の50%は粘結炭)した石炭を用いた場合の、石炭軟化時の空隙充填度SV×BD(−)と表面破壊強度DI150 との関係を示しており、横軸が空隙充填度(−)、縦軸が表面破壊強度DI150 を表している。同図から、空隙充填度(−)が1.2に到達するまで表面破壊強度DI150 は向上し、空隙充填度(−)が1.2を超えると表面破壊強度DI150 の向上が小さくなっていることがわかる。ここでSV(cm3/g)とは膨張比容積(Specific dilatation Volume)であり、BD(g/cm3)とは装入嵩密度(Bulk Density)である。装入嵩密度BD(g/cm3)と膨張比容積SV(cm3/g)の積である空隙充填度SV×BDは無次元数となり,いわば石炭粒子の膨張による空隙の充填度を示すパラメーターであり、石炭粒子同士の接着性を示している。 The graph in FIG. 1 shows the degree of void filling SV × BD (−) and the surface fracture strength when coal is softened when coal containing 50% non-caking coal (the remaining 50% is caking coal) is used. The relationship with DI 150 6 is shown, with the horizontal axis representing the degree of void filling (−) and the vertical axis representing the surface fracture strength DI 150 6 . From the figure, the surface breaking strength DI 150 6 is improved until the void filling degree (−) reaches 1.2, and when the void filling degree (−) exceeds 1.2, the surface breaking strength DI 150 6 is improved. You can see that it is getting smaller. Here, SV (cm 3 / g) is an expansion specific volume (Specific dilatation Volume), and BD (g / cm 3 ) is a charged bulk density (Bulk Density). The void filling degree SV × BD, which is the product of the charged bulk density BD (g / cm 3 ) and the expansion specific volume SV (cm 3 / g), is a dimensionless number, so to speak, indicates the degree of void filling due to the expansion of coal particles. It is a parameter and shows the adhesion between coal particles.

SV×BDが1よりも低い条件では、装入時に存在する石炭粒子間の空隙が、石炭の膨張により充填しきれず、石炭粒子間の空隙が欠陥となって残り、低強度のコークスとなることが知られている。また、SV×BD≧1では、装入時に存在する石炭粒子間の空隙が石炭の膨張により完全に充填されており、欠陥が存在せず強度は一定となると考えられる。ただし、実際のコークス炉では、装入嵩密度や石炭の性状にばらつきがあるため、SV×BD≧1.2とすることで、コークスの表面強度を充分に向上させることができることが判った。ちなみに、非微粘結炭を多量に配合した条件においても、コークスの表面破壊強度の値は低くなるものの、同様の傾向を示すことも、併せて確認している。   Under the condition that SV × BD is lower than 1, voids between coal particles existing at the time of charging cannot be filled due to expansion of coal, and voids between coal particles remain as defects, resulting in low-strength coke. It has been known. In addition, when SV × BD ≧ 1, voids between coal particles existing at the time of charging are completely filled by the expansion of coal, and it is considered that there is no defect and the strength is constant. However, in an actual coke oven, since the charging bulk density and the properties of coal vary, it has been found that the surface strength of coke can be sufficiently improved by setting SV × BD ≧ 1.2. Incidentally, it has also been confirmed that even under the condition where a large amount of non-slightly caking coal is blended, the value of the surface fracture strength of coke is low, but the same tendency is exhibited.

ここで膨張比容積は新日鉄技報 第384号(2006)p.43に記載されているように例えばJISM8801ディラトメーターにより測定される膨張率b(%)から
(数2)
膨張比容積(cm/g)=最大膨張時の石炭体積(cm)/ディラトメーターへの石炭装入量(g)=0.96π(1+b/100)/ディラトメーターへの石炭装入量(g)・・・・・・・(2)
なる計算式を用いて導出することができる。
Here, the expansion specific volume is calculated from, for example, the expansion rate b (%) measured by JISM8801 dilatometer as described in Nippon Steel Technical Report No. 384 (2006) p.43.
(Equation 2)
Expansion specific volume (cm 3 / g) = Coal volume at maximum expansion (cm 3 ) / Coal charge to dilatometer (g) = 0.96π (1 + b / 100) / Coil charge to dilatometer Receipt amount (g) (2)
Can be derived using the following formula.

上記の通り、非微粘結炭を50%配合した条件においても、石炭軟化時の空隙充填度SV×BD(−)を1.2以上とすることで、高炉に使用するために充分な表面破壊強度DI150 のコークスを製造することが可能である。ちなみに、石炭軟化時の空隙充填度SV×BD(−)を1.2以上とする方法として、コークス原料に配合される配合炭を調整すること、SCOPE21(Super Coke Oven for Productivity and Environmental enhancement toward the 21st century)などの石炭の急速加熱処理、タールなどの粘結材添加技術などの方法によって膨張比容積(cm/g)を所望の値に制御したり、或いはDAPS(Dry -cleaned and Agglomerated Precompaction System)などの予熱炭装入またはスタンピングを用いて装入嵩密度(g/cm)を所望の値に制御することにより担保することができる。つまり、空隙充填度(−)を1.2以上に高めるためには、公知の方法を含む様々な方法を用いることができる。 As described above, even when 50% non-finely caking coal is blended, a sufficient surface for use in a blast furnace can be obtained by setting the degree of void filling SV × BD (−) during coal softening to 1.2 or more. It is possible to produce coke with a breaking strength DI 150 6 . By the way, as a method of setting the void filling degree SV × BD (−) during coal softening to 1.2 or more, adjusting the blended coal blended with the coke raw material, SCOPE21 (Super Coke Oven for Productivity and Environmental enhancement toward the 21st century) and other methods such as rapid heat treatment of coal, addition of binders such as tar, etc., to control the expansion specific volume (cm 3 / g) to a desired value, or DAPS (Dry-cleaned and Agglomerated Precompaction It can be ensured by controlling the charging bulk density (g / cm 3 ) to a desired value by using preheating charcoal charging such as System) or stamping. That is, various methods including a known method can be used in order to increase the void filling degree (−) to 1.2 or more.

しかしながら、石炭軟化時の空隙充填度SV×BD(−)を1.2以上とした場合でも、コークス原料の中に非微粘結炭を多量に配合(70質量%以上)すると、収縮率が大きいため、収縮時にcmオーダの大亀裂が多量に生成し、体積破壊粉コークス量DI150 6−15の増加によるコークス強度の低下およびコークス粒径の減少を招くという問題がある。 However, even when the degree of void filling SV × BD (−) during softening of coal is 1.2 or more, if a large amount of non-slightly caking coal is blended in the coke raw material (70% by mass or more), the shrinkage rate is reduced. Due to the large size, there is a problem that a large number of large cracks in the order of cm are generated at the time of shrinkage, resulting in a decrease in coke strength and a decrease in coke particle size due to an increase in the volume fracture powder coke amount DI 150 6-15 .

コークス原料の中に非微粘結炭を多量に配合(70%以上)すると、収縮率が大きくなることについて、図2を用いて説明する。図2は、粘結炭と非微粘結炭とをそれぞれ乾留した場合の温度及び体積変化を模式的に示しており、横軸が温度、縦軸が体積変化を表している。図2に示す通り、粘結炭は約400℃で膨張を開始し、軟化溶融した石炭が約500℃で再固化して、約1000℃まで収縮する。一方、非微粘結炭は粘結炭よりも低い温度で膨張を開始し、470℃よりも低い温度で軟化溶融した石炭が再固化して、約1000℃まで収縮する。つまり、非微粘結炭は、粘結炭よりも再固化温度が低いため、相対的に収縮率が大きくなる。   The fact that the shrinkage rate increases when non-slightly caking coal is blended in a large amount (70% or more) in the coke raw material will be described with reference to FIG. FIG. 2 schematically shows changes in temperature and volume when caking coal and non-slightly caking coal are each carbonized, with the horizontal axis representing temperature and the vertical axis representing volume change. As shown in FIG. 2, caking coal starts expanding at about 400 ° C., and the softened and melted coal resolidifies at about 500 ° C. and contracts to about 1000 ° C. On the other hand, the non-slightly caking coal starts expanding at a temperature lower than that of the caking coal, and the softened and melted coal is re-solidified at a temperature lower than 470 ° C. and contracts to about 1000 ° C. That is, the non-slightly caking coal has a lower resolidification temperature than that of the caking coal, so that the shrinkage rate is relatively large.

また、図3のグラフは、非微粘結炭の配合割合と、再固化後の収縮によって生じる体積破壊粉コークス量との関係を示しており、横軸が配合割合、縦軸が体積破壊粉コークス量を表している。ここで、体積破壊は肉眼で観察できるようなcmオーダの大亀裂を基点として発生する。体積破壊の原因になるcmオーダの大亀裂は、コークス全体の収縮の不均一さから発生する熱応力により生成される。すなわち、非微粘結炭の配合割合が大きくなると、収縮率の増加に伴い、コークス全体の収縮の不均一も増加するため、体積破壊粉コークス量DI150 6−15が増加する。従って、表面破壊強度DI150 が一定の場合、体積破壊粉コークス量DI150 6−15の増加により、コークス強度DI150 15が低下し、これにより、コークス粒径の減少を招くという問題がある。 Moreover, the graph of FIG. 3 has shown the relationship between the mixture ratio of non-slightly caking coal, and the volume fracture | rupture powder coke amount which arises by shrinkage | contraction after resolidification, a horizontal axis | shaft is a mixture ratio, and a vertical axis | shaft is volume fracture powder. It represents the amount of coke. Here, the volume fracture occurs with a large crack on the order of cm that can be observed with the naked eye as a base point. Large cracks on the order of centimeters that cause volume fracture are generated by thermal stresses generated by non-uniform shrinkage of the entire coke. That is, when the blending ratio of non-slightly caking coal increases, the shrinkage rate increases, and the non-uniform shrinkage of the entire coke also increases, so the volume fracture powder coke amount DI 150 6-15 increases. Therefore, when the surface fracture strength DI 150 6 is constant, there is a problem in that the coke strength DI 150 15 is reduced due to the increase in the volume fracture powder coke amount DI 150 6-15 , thereby causing a reduction in the coke particle size. .

そこで、体積破壊粉コークス量DI150 6−15を低減させ、かつ、コークス粒径を拡大させるためには、低収縮炭材を適切に添加することで、これらを両立できることを新たに見出し、本発明を成すに至った。 Therefore, in order to reduce the volume fracture powder coke amount DI 150 6-15 and expand the coke particle size, it has been newly found that these can be achieved by appropriately adding a low shrinkage carbonaceous material. Invented the invention.

低収縮炭材は、コークス粒径を拡大する添加材として知られている。ここで、低収縮炭材とは、再固化温度から1000℃に達するまでの収縮率が10.5%以下の炭材のことであり、測定方法は、特許文献3に記載されているように、石炭の再固化温度以上の温度T(℃)まで加熱し、再固化温度と温度Tとにおける内容物の容積差又は長さの差を再固化温度における容積又は長さで除した値をその石炭から生成したコークスの温度Tにおける収縮率とする。コークス収縮率の測定方法の詳細は、特許文献3に記載されているので省略する。低収縮炭材には、石油コークス、無煙炭、半無煙炭、粉コークスが含まれる。   Low shrinkage carbonaceous materials are known as additives that increase the coke particle size. Here, the low shrinkage carbon material is a carbon material having a shrinkage rate of 10.5% or less from the resolidification temperature to 1000 ° C., and the measurement method is as described in Patent Document 3. , Heating to a temperature T (° C.) above the coal resolidification temperature, and dividing the volume difference or length difference between the resolidification temperature and temperature T by the volume or length at the resolidification temperature It is set as the shrinkage rate at the temperature T of coke produced from coal. The details of the method for measuring the coke shrinkage rate are described in Patent Document 3 and will be omitted. Low shrinkage carbonaceous materials include petroleum coke, anthracite, semi-anthracite, and powdered coke.

一方で、低収縮炭材と、低収縮炭材よりも収縮率が高い石炭(粘結炭と非微粘結炭の配合炭で、非微粘結炭の配合割合が70質量%未満)とを配合したコークス原料を乾留した場合、体積破壊粉コークス量DI150 6−15は、ほとんど変化しないが、表面破壊強度DI150 が低下するという問題があった。表面破壊強度DI150 が低下する理由は、局部的な、石炭粒子間の収縮の不均一さによる応力から、低収縮炭材の周りにmmオーダの小亀裂が発生することによるものと考えられる。 On the other hand, low-shrinkage carbonaceous material and coal having a higher shrinkage rate than low-shrinkage carbonaceous material (a blended coal of caking coal and non-slightly caking coal, with a blending ratio of non-slightly caking coal less than 70% by mass) When the coke raw material blended with carbon was subjected to dry distillation, the volume fracture powder coke amount DI 150 6-15 hardly changed, but there was a problem that the surface fracture strength DI 150 6 decreased. The reason why the surface fracture strength DI 150 6 is decreased is considered to be that a small crack of the order of mm is generated around the low-shrinkage carbonaceous material due to the stress due to the unevenness of the shrinkage between the coal particles locally. .

しかし、本発明者らが検討したところ、非微粘結炭の配合割合が70質量%以上の配合炭であれば、非微粘結炭の一部を低収縮炭材に振り替えることで、体積破壊粉コークス量DI150 6−15を減少させることができることを新たに見出した。 However, as a result of the study by the present inventors, if the blending ratio of the non-slightly caking coal is 70% by mass or more, the volume of the non-slightly caking coal may be transferred to the low shrinkage carbonaceous material. It has been newly found that the amount of broken powder coke DI 150 6-15 can be reduced.

非微粘結炭の配合割合が70質量%以上の配合炭について、非微粘結炭の一部を低収縮炭材に振り替えることで、体積破壊粉コークス量DI150 6−15を減少させることができたことについては、以下の様に推察する。 For blended coal whose blending ratio of non-slightly caking coal is 70% by mass or more, the volume fracture powder coke amount DI 150 6-15 is reduced by transferring a part of the non-slightly caking coal to a low shrinkage carbonaceous material. We can guess as follows.

低収縮炭材をコークス原料として添加した場合、低収縮炭材の添加による加重平均分の収縮率の低下に加え、低収縮炭材の周りにmmオーダの小亀裂が生成され易くなることによるマトリックスとしての収縮率が低下することにより、大亀裂の発生が抑制される。これにより、体積破壊粉コークス量DI150 6−15を低減させることができると考えられる。 When a low shrinkage carbonaceous material is added as a coke raw material, in addition to a reduction in the shrinkage ratio of the weighted average due to the addition of the low shrinkage carbonaceous material, a matrix due to the fact that small cracks on the order of mm are likely to be generated around the low shrinkage carbonaceous material. As the shrinkage rate decreases, the occurrence of large cracks is suppressed. Thereby, it is thought that the volume fracture powder coke amount DI 150 6-15 can be reduced.

但し、コークス強度は、前述の(1)式で示した通り、表面破壊強度DI150 から体積破壊粉コークス量DI150 6−15を差し引いた値として求められるため、非微粘結炭の配合割合が70質量%以上の配合炭について、非微粘結炭の一部を低収縮炭材に振り替えた場合に、表面破壊強度DI150 がどの様な変化を示すかということも、コークス強度として重要な要因となる。 However, since the coke strength is obtained as a value obtained by subtracting the volume fracture powder coke amount DI 150 6-15 from the surface fracture strength DI 150 6 as shown by the above-described formula (1), For the blended coal with a ratio of 70% by mass or more, the change in the surface fracture strength DI 150 6 when a part of the non-slightly caking coal is transferred to the low-shrinkage coal is also related to the coke strength. As an important factor.

低収縮炭材を配合した場合に、表面破壊強度DI150 も増加する場合は、コークス強度は増加する。しかし、低収縮炭材を配合した場合に、表面破壊強度DI150 が低下する場合は、体積破壊粉コークス量DI150 6−15の低減効果の方が大きくなる様に、適切に添加量を設定することが重要である。 When the low shrinkage carbonaceous material is blended, if the surface fracture strength DI 150 6 also increases, the coke strength increases. However, when the low shrinkage carbonaceous material is blended, if the surface fracture strength DI 150 6 decreases, the amount added should be appropriately adjusted so that the effect of reducing the volume fracture powder coke amount DI 150 6-15 is greater. It is important to set.

まず、低収縮炭材と、低収縮炭材よりも収縮率が高い石炭(粘結炭、非微粘結炭)とを配合したコークス原料を乾留して、表面破壊強度DI150 が大きくなる場合について説明する。この様な低収縮炭材としては、石油コークス(収縮率:9.8%)、半無煙炭(収縮率:9.8%)が例示できる。 First, a low shrinkage carbonaceous material, shrinkage than the low shrinkage carbonaceous material is high coal (coking coal, non-fine caking) by dry distillation of the coke raw material blended with a surface fracture strength DI 0.99 6 increases The case will be described. Examples of such a low shrinkage carbon material include petroleum coke (shrinkage rate: 9.8%) and semi-anthracite (shrinkage rate: 9.8%).

これらの低収縮炭材を配合した場合に、表面破壊強度DI150 が大きくなる理由としては、表面破壊強度DI150 は、前述した石炭軟化時の空隙充填度SV×BD(−)だけでなく、顕微鏡で視える程度のmmオーダの小亀裂、および、コークス塊の角張った稜、の影響も受けるためであると考えられる。すなわち、上記の通り、表面破壊の原因になるmmオーダの小亀裂は、コークス全体の収縮でなく、局部的な、石炭粒子間の収縮の不均一さによる応力から生成され、一方、コークス塊の角張った稜は、cmオーダの大亀裂による体積破壊により生成される。このコークス塊の角張った稜は破壊しやすいため、稜が多いと表面破壊強度DI150 が低下する。従って、前述の低収縮炭材をコークス原料に添加することにより、その周りにmmオーダの小亀裂が発生するため、この現象によりコークスの表面破壊強度DI150 は低下する。 The reason why the surface fracture strength DI 150 6 is increased when these low shrinkage carbonaceous materials are blended is that the surface fracture strength DI 150 6 is determined only by the degree of void filling SV × BD (−) during coal softening described above. This is considered to be due to the influence of small cracks on the order of mm that can be seen with a microscope and the angular ridges of the coke mass. That is, as described above, a small crack of the order of mm, which causes surface fracture, is generated not from the shrinkage of the entire coke but from the stress due to the unevenness of the shrinkage between the coal particles. Angular ridges are generated by volume fracture due to large cracks on the order of cm. The angular edge of the coke mass for easy fracture, surface fracture strength DI 0.99 6 and edges often decreases. Therefore, by adding a low shrinkage carbonaceous material above the coking, since the small cracks mm order is generated around the surface fracture strength DI 0.99 6 coke is reduced by this phenomenon.

一方、コークスの表面破壊は角張った稜との間に相関関係があり、一般的に、コークスの角張った稜が多くなるほど表面破壊強度DI150 は低下する。本実施形態では、非微粘結炭及び低収縮炭材が多量に配合(70質量%以上)されており、低収縮炭材を添加していない状態では、体積破壊粉コークス量DI150 6−15が大きいが、低収縮炭材をコークス原料に添加することにより、体積破壊が抑制される。これにより、角張った稜の生成が抑制されるため、表面破壊強度DI150 が増加する確率が高くなる。この表面破壊強度DI150 の増加分が、小亀裂による表面破壊強度DI150 の低下分を上回った場合に、コークス粒径の拡大とともに表面破壊強度DI150 が向上するものと考えられる。 On the other hand, there is a correlation between the ridges which angular surface destruction of the coke, generally, edge of angular of coke is surface-breaking strength DI 0.99 6 as increases decreases. In the present embodiment, the non-slightly caking coal and the low shrinkage carbonaceous material are blended in a large amount (70% by mass or more), and in the state where the low shrinkage carbonaceous material is not added, the volume fracture powder coke amount DI 150 6− Although 15 is large, volume fracture is suppressed by adding a low shrinkage carbonaceous material to a coke raw material. Accordingly, since the generation of the angular edges are suppressed, the probability of surface fracture strength DI 0.99 6 is increased becomes high. Increase in the surface fracture strength DI 0.99 6 is, when exceeded decrement of surface fracture strength DI 0.99 6 by small cracks, surface fracture strength DI 0.99 6 with the expansion of the coke particle size is thought to be improved.

以上により、前述の低収縮炭材及び非微粘結炭の含有量をX質量%(X質量%≧70質量%)(以下、第1の条件という場合がある)、膨張比容積(cm/g)及び装入嵩密度(g/cm)を乗じた空隙充填度(−)が1.2以上(以下、第2の条件という場合がある)であることを満足させるとともに、前述の低収縮炭材を体積破壊抑制効果および表面破壊強度DI150 の増加効果が発現する添加量にて添加することにより、コークス強度を基準コークス強度よりも高めることができる。ここで、基準コークス強度とは、低収縮炭材を全て非微粘結炭に振り替えた場合のコークス強度のことである。併せて、コークス粒径の拡大も実現することが可能となる。 As described above, the content of the aforementioned low shrinkage carbonaceous material and non-slightly caking coal is X mass% (X mass% ≧ 70 mass%) (hereinafter sometimes referred to as the first condition), expansion specific volume (cm 3). / G) and the filling density (g / cm 3 ) multiplied by the void filling degree (−) is 1.2 or more (hereinafter sometimes referred to as the second condition), and By adding the low-shrinkage carbon material in an addition amount that exhibits the effect of suppressing the volume fracture and the effect of increasing the surface fracture strength DI 150 6 , the coke strength can be made higher than the reference coke strength. Here, the standard coke strength is coke strength when all of the low shrinkage carbonaceous materials are transferred to non-slightly caking coal. In addition, the coke particle size can be increased.

低収縮炭材が石油コークス(収縮率:9.8%)、半無煙炭(収縮率:9.8%)である場合、添加量の下限値は、体積破壊抑制効果および表面破壊強度DI150 増加効果が発現する最小の添加量であり、具体的には2質量%が例示できる。添加量の上限値については、上記第1及び第2の条件を満足していれば、低収縮炭材の添加による体積破壊抑制効果および表面破壊強度DI150 増加効果を発現することを確認しているため、この観点からは特に規定しない。 When the low shrinkage carbonaceous material is petroleum coke (shrinkage ratio: 9.8%), semi-anthracite coal (shrinkage ratio: 9.8%), the lower limit value of the addition amount is the volume fracture inhibiting effect and the surface fracture strength DI 150 6 It is the minimum addition amount in which the increase effect is manifested. The upper limit of the addition amount, if satisfy the above first and second conditions, to confirm that express volume destruction suppressing effect and surface fracture strength DI 0.99 6 increasing effect due to the addition of low profile carbonaceous material Therefore, it is not specified from this viewpoint.

なお、本願では、粘結炭と非微粘結炭の配合炭に対して、非微粘結炭の一部を低収縮炭材に振り替えた配合炭を対象としている。また、低収縮炭材の配合割合の上限は、前述の低収縮炭材の添加量の上限で決定され、具体的には、膨張比容積(cm/g)及び装入嵩密度(g/cm)を乗じた空隙充填度(−)が1.2以上を満足する配合割合で決定される。ちなみに、低収縮炭材が石油コークスや半無煙炭の場合、35質量%程度が例示できる。 In addition, in this application, with respect to the coal mixture of caking coal and non-slightly caking coal, the coal blend which changed a part of non-caking coal to the low shrinkage carbon material is made into object. Further, the upper limit of the blending ratio of the low shrinkage carbonaceous material is determined by the upper limit of the amount of the low shrinkage carbonaceous material, and specifically, the expansion specific volume (cm 3 / g) and the charging bulk density (g / The degree of void filling (−) multiplied by cm 3 ) is determined at a blending ratio satisfying 1.2 or more. Incidentally, when the low-shrinkage carbon material is petroleum coke or semi-anthracite, about 35% by mass can be exemplified.

次に、低収縮炭材と、低収縮炭材よりも収縮率が高い石炭(粘結炭と非微粘結炭の配合炭で、非微粘結炭の配合割合が70質量%以上)とを配合したコークス原料を乾留して、表面破壊強度DI150 が低下する低収縮炭材について説明する。この様な低収縮炭材としては、粉コークス(収縮率:0.1%)が例示できる。 Next, low-shrinkage coal and coal having a higher shrinkage rate than low-shrinkage coal (a mixture of caking coal and non-caking coal, with a blending ratio of non-caking coal of 70% by mass or more) The low-shrinkage carbon material in which the surface fracture strength DI 150 6 is reduced by dry-distilling the coke raw material blended with the above will be described. An example of such a low shrinkage carbonaceous material is powder coke (shrinkage rate: 0.1%).

粉コークスのような低収縮炭材の場合も、前記第1〜第2の条件を満足させるように、粉コークスを添加することが必要である。ただし、粉コークスの場合は、上記第1及び第2の条件を満足していても、表面破壊強度低下分が体積破壊抑制効果を上回る場合があるため、第3の条件を満たすとは限らない。すなわち、粉コークスの場合は、上記第1及び第2の条件を満足しているだけでは、コークス強度を基準コークス強度よりも高くすることができない場合がある。例えば、収縮率が0.1%程度の粉コークスは、添加量が10質量%を超えると、コークス強度が基準コークス強度よりも低くなってしまう場合がある。つまり、粉コークスの添加量が石炭の配合によっても異なるが10質量%を超えると、空隙充填度(−)が1.2以上であっても、コークス強度が基準コークス強度よりも低くなってしまう場合がある。これは、粘結炭および非微粘結炭との収縮率の差が大きい粉コークスのような低収縮炭材は、乾留した場合、他の低収縮率炭材に比べ、mmオーダの小亀裂がより多く発生しやすく、表面破壊強度DI150 が大きく低下するためと考えられる。 Even in the case of a low-shrinkage carbonaceous material such as powdered coke, it is necessary to add powdered coke so as to satisfy the first and second conditions. However, in the case of coke breeze, even if the first and second conditions are satisfied, the surface fracture strength reduction may exceed the volume fracture suppression effect, so the third condition may not be satisfied. . That is, in the case of powder coke, the coke strength may not be higher than the reference coke strength only by satisfying the first and second conditions. For example, when the addition amount exceeds 10% by mass, the coke strength of powder coke having a shrinkage rate of about 0.1% may be lower than the reference coke strength. That is, although the addition amount of the powder coke varies depending on the blending of coal, if it exceeds 10% by mass, the coke strength becomes lower than the reference coke strength even if the void filling degree (−) is 1.2 or more. There is a case. This is because low shrinkage carbonaceous materials such as powdered coke, which have a large difference in shrinkage ratio between caking coal and non-slightly caking coal, have small cracks on the order of mm when dry-distilled compared to other low shrinkage carbonaceous materials. This is probably because the surface breaking strength DI 150 6 is greatly reduced.

ちなみに、粉コークスは、0.05質量%以上添加することにより、体積破壊抑制効果を発現するとともに、表面破壊強度DI150 の低下量よりも体積破壊粉コークス量DI150 6−15の低減効果の方が大きい。したがって、第2の低収縮炭材として粉コークスを用いる場合には、前記第1及び第2の条件に加えて、基準コークス強度DI150 15baseよりも、低収縮炭材を添加した場合の強度DI150 15が高くなるように、配合率を決定する必要がある。一方、粉コークスの添加量が多すぎると、体積破壊抑制効果を発現するものの、表面破壊強度DI150 の低下量の方が大きくなってしまうため、コークス強度が低下する場合が生じる。従って、表面破壊強度DI150 の低下量よりも体積破壊粉コークス量DI150 6−15の低減効果の方が大きくなる様に、添加量を設定することが重要である。具体的には、石炭の配合によっても異なるが、粉コークスの添加量は0.05質量%〜10質量%が例示できる。 Incidentally, by adding 0.05 mass% or more of powder coke, the effect of suppressing volume fracture is exhibited, and the effect of reducing the volume fracture powder coke amount DI 150 6-15 than the amount of decrease in the surface fracture strength DI 150 6 is achieved. Is bigger. Therefore, when using powder coke as the second low-shrinkage carbon material, in addition to the first and second conditions, the strength DI when the low-shrinkage carbon material is added to the reference coke strength DI 150 15base. It is necessary to determine the blending ratio so that 150 15 becomes high. On the other hand, when the amount of coke breeze is too large, although expressing the volume fracture inhibiting effect, since the direction of reduction of surface fracture strength DI 0.99 6 increases, occurs when the coke strength is lowered. Therefore, it is important to set the addition amount so that the reduction effect of the volume fracture powder coke amount DI 150 6-15 is larger than the reduction amount of the surface fracture strength DI 150 6 . Specifically, the amount of powdered coke added may be 0.05% by mass to 10% by mass, although it varies depending on the blending of coal.

また、石油コークスや半無煙炭等の低収縮炭材と、粉コークス等の収縮率がより小さい低収縮炭材と、を混合した混合低収縮炭材を用いる場合には、それぞれの低収縮炭材の含有量の添加量の範囲を、それぞれの基準に基づき定め、これらを加重平均することにより混合低収縮炭材の含有量の範囲を設定することができる。例えば、石油コークスや半無煙炭等の低収縮炭材の添加量の範囲がX1〜Y1、粉コークス等の低収縮炭材の添加量の範囲がX2〜Y2、石油コークスや半無煙炭等の低収縮炭材の添加量がx%、粉コークス等の低収縮炭材の添加量がy%である場合、混合低収縮炭材の添加量の下限値は(X1×x+X2×y)/(x+y)であり、上限値は(Y1×x+Y2×y)/(x+y)となる。   In addition, when using mixed low-shrinkage carbonaceous materials such as low-shrinkage carbonaceous materials such as petroleum coke and semi-anthracite and low-shrinkage carbonaceous materials having a smaller shrinkage rate such as powdered coke, the respective low-shrinkage carbonaceous materials The range of the content of the mixed low-shrinkage carbonaceous material can be set by determining the range of the content of the additive based on the respective standards and weighted averaging them. For example, the range of low shrinkage carbonaceous materials such as petroleum coke and semi-anthracite is X1 to Y1, the range of low shrinkage carbonaceous materials such as powder coke is X2 to Y2, and the low shrinkage of petroleum coke and semi-anthracite When the addition amount of carbon material is x% and the addition amount of low shrinkage carbon material such as coke breeze is y%, the lower limit value of the addition amount of mixed low shrinkage carbon material is (X1 × x + X2 × y) / (x + y) The upper limit value is (Y1 × x + Y2 × y) / (x + y).

実施例を示して本発明についてより具体的に説明する。表1は、本実施例に用いられるコークス原料としての粘結炭、非微粘結炭、低収縮炭材の性状(灰分、揮発分、再固化温度、収縮率、粉砕粒度)を表している。

Figure 2014077035
表2は、実施例1、比較例1〜5、参考例1〜2それぞれのコークス原料を、試験コークス炉において乾留し、膨張比容積(cm/g)、装入嵩密度(g/cm)、空隙充填度(−)、表面破壊強度DI150 、体積破壊強度DI150 6−15、コークス強度DI150 15、平均コークス粒径(mm)を測定した測定結果である。SV(cm/g)が膨張比容積(cm/g)を表しており、BD(g/cm)が装入嵩密度(g/cm)を表しており、SV×BD(−)が空隙充填度(−)を表している。試験コークス炉での平均コークス粒径は、乾留後のコークスについて、高さ2mのシャッター処理を1回行い、粒度分布を測定してドラム試験用の試料を採取し、ドラム30回転衝撃後の+25mmの平均粒度をもって平均コークス粒径としている。
Figure 2014077035
The present invention will be described more specifically with reference to examples. Table 1 shows the properties (ash content, volatile content, resolidification temperature, shrinkage rate, and pulverized particle size) of caking coal, non-slightly caking coal, and low-shrinkage charcoal as coke raw materials used in this example. .
Figure 2014077035
Table 2 shows that the coke raw materials of Example 1, Comparative Examples 1 to 5, and Reference Examples 1 to 2 were dry-distilled in a test coke oven, and the expansion specific volume (cm 3 / g) and charging bulk density (g / cm 3 ), void filling degree (−), surface fracture strength DI 150 6 , volume fracture strength DI 150 6-15 , coke strength DI 150 15 , and average coke particle size (mm). SV (cm 3 / g) represents the expansion specific volume (cm 3 / g), BD (g / cm 3 ) represents the charged bulk density (g / cm 3 ), and SV × BD (− ) Represents the void filling degree (-). The average coke particle size in the test coke oven was obtained by taking a 2m-high shutter once for coke after dry distillation, measuring the particle size distribution, collecting a sample for drum test, and + 25mm after drum 30 impact Average coke particle size.
Figure 2014077035

比較例1は、A炭(粘結炭)を20質量%、B炭(非微粘結炭)を80質量%含むコークス原料であり、実施例1は、比較例1のB炭(非微粘結炭)を15質量%だけ石油コークスに振り替えたコークス原料である。比較例1及び実施例1の装入嵩密度(g/cm)は共に0.80(g/cm)とした。比較例1及び実施例1を比較参照して、B炭(非微粘結炭)の一部を石油コークス(低収縮炭材)に振り替えることにより、体積破壊が大幅に抑制され、表面破壊強度DI150 が向上した。その結果、管理指標であるコークス強度DI150 15が向上した。また、実施例1のコークス原料には、収縮率が低い石油コークスが添加されているため、平均コークス粒径が拡大した。石油コークスを装入することによるコークス粒径拡大効果は、比較例2及び3、参考例1及び2においても同様に見られた。なお、比較例1、2及び参考例1のコークス強度DI150 15が基準コークス強度である。 Comparative Example 1 is a coke raw material containing 20% by mass of coal A (caking coal) and 80% by mass of coal B (non-minor caking coal). This is a coke raw material obtained by transferring caking coal) to petroleum coke by 15% by mass. The charging bulk density (g / cm 3 ) of Comparative Example 1 and Example 1 was both 0.80 (g / cm 3 ). By comparing and comparing Comparative Example 1 and Example 1, part of B coal (non-slightly caking coal) is transferred to petroleum coke (low shrinkage carbonaceous material), so that volume fracture is greatly suppressed, and surface fracture strength. DI 150 6 improved. As a result, the coke strength DI 150 15 as a management index was improved. Moreover, since the coke raw material of Example 1 was added with petroleum coke having a low shrinkage rate, the average coke particle size was expanded. The effect of expanding the coke particle diameter by charging petroleum coke was also observed in Comparative Examples 2 and 3 and Reference Examples 1 and 2. The coke strength DI 150 15 of Comparative Examples 1 and 2 and Reference Example 1 is the reference coke strength.

比較例2は、空隙充填度(−)が比較例1よりも低いコークス原料である。比較例3は、比較例2のB炭(非微粘結炭)を15質量%だけ石油コークスに振り替えたコークス原料である。比較例3は、空隙充填度(−)が1.2を下回っているため、石油コークスによる体積破壊抑制効果はあるものの、表面破壊強度DI150 が改善されなかった。そのため、管理指標であるコークス強度DI150 15は向上しなかった。 Comparative Example 2 is a coke raw material having a void filling degree (-) lower than that of Comparative Example 1. Comparative Example 3 is a coke raw material in which the B coal (non-slightly caking coal) of Comparative Example 2 is transferred to petroleum coke by 15% by mass. In Comparative Example 3, since the void filling degree (−) was less than 1.2, the surface fracture strength DI 150 6 was not improved although there was a volume fracture suppression effect by petroleum coke. Therefore, the coke strength DI 150 15 that is a management index was not improved.

参考例1は、A炭(粘結炭)を50質量%、B炭(非微粘結炭)を50質量%含むコークス原料である。参考例2は、参考例1のB炭(非微粘結炭)を15質量%だけ石油コークスに振り替えたコークス原料である。参考例1及び参考例2の装入嵩密度(g/cm)は共に0.80(g/cm)とした。
参考例1は、非微粘結炭の配合量が少なすぎるため、そもそも体積破壊が起こりにくく、石油コークスを添加することによる体積破壊抑制効果が全くみられなかった。そのため、石油コークスの周りに生じる表面破壊が、体積破壊を抑制することによる表面破壊強度DI150 の向上効果を上回ってしまい、表面破壊強度DI150 が低下した。その結果、管理指標であるコークス強度DI150 15が低下した。
Reference Example 1 is a coke raw material containing 50% by mass of coal A (caking coal) and 50% by mass of coal B (non-caking coal). Reference Example 2 is a coke raw material obtained by transferring B coal (non-slightly caking coal) of Reference Example 1 to petroleum coke by 15% by mass. The charging bulk density (g / cm 3 ) of Reference Example 1 and Reference Example 2 was both 0.80 (g / cm 3 ).
In Reference Example 1, since the blending amount of the non-slightly caking coal was too small, volume fracture did not easily occur in the first place, and no effect of suppressing volume fracture by adding petroleum coke was observed. Therefore, surface breakage occurring around the petroleum coke, will exceed the effect of improving surface fracture strength DI 0.99 6 by inhibiting volume fracture, surface fracture strength DI 0.99 6 is lowered. As a result, the coke strength DI 150 15, which is a management index, decreased.

表3は、B炭(非微粘結炭)から石油コークスへの振替率が異なる複数のコークス原料について、膨張比容積(cm/g)、装入嵩密度(g/cm)、空隙充填度(−)、表面破壊強度DI150 、体積破壊強度DI150 6−15、コークス強度DI150 15、平均コークス粒径(mm)を測定した測定結果である。

Figure 2014077035
表3を参照して、実施例2及び1に示すように、空隙充填度(−)が1.2以上である場合には、非微粘結炭から石油コークスへの振替率を増加することにより体積破壊抑制効果が増大し、表面破壊強度DI150 が向上した。その結果、管理指標であるコークス強度DI150 15が向上した。一方、比較例4に示すように、非微粘結炭から石油コークスへの振替率が高くなりすぎると、空隙充填度(−)が1.2未満に低下し、表面破壊強度DI150 が著しく低下した。その結果、管理指標であるコークス強度DI150 15が低下した。 Table 3 shows the expansion specific volume (cm 3 / g), charging bulk density (g / cm 3 ), voids for a plurality of coke raw materials with different transfer rates from B coal (non-slightly caking coal) to petroleum coke. degree of filling (-), the surface fracture strength DI 0.99 6, volume breaking strength DI 0.99 6-15, coke strength DI 0.99 15, a measurement result of measuring the average coke particle size (mm).
Figure 2014077035
Referring to Table 3, as shown in Examples 2 and 1, when the degree of void filling (-) is 1.2 or more, increase the transfer rate from non-slightly caking coal to petroleum coke. As a result, the effect of suppressing volume fracture was increased and the surface fracture strength DI 150 6 was improved. As a result, the coke strength DI 150 15 as a management index was improved. On the other hand, as shown in Comparative Example 4, when the transfer rate from non-slightly caking coal to petroleum coke becomes too high, the degree of void filling (−) decreases to less than 1.2, and the surface fracture strength DI 150 6 is Remarkably reduced. As a result, the coke strength DI 150 15, which is a management index, decreased.

表4は、低収縮炭材の種類が異なる複数のコークス原料について、膨張比容積(cm/g)、装入嵩密度(g/cm)、空隙充填度(−)、表面破壊強度DI150 、体積破壊強度DI150 6−15、コークス強度DI150 15、平均コークス粒径(mm)を測定した測定結果である。

Figure 2014077035
実施例1、3〜6に示すように、B炭(非微粘結炭)及び低収縮炭材の含有量が70質量%以上であって、空隙充填度(−)が1.2以上である場合には、低収縮炭材を添加することにより、管理指標としてのコークス強度DI150 15が向上することがわかった。ただし、比較例5に示すように、収縮率が極めて小さい粉コークスは、含有量が10質量%を超えると、空隙充填度(−)が1.2以上であっても、管理指標としてのコークス強度が低下してしまうことがわかった。 Table 4 shows the expansion specific volume (cm 3 / g), charging bulk density (g / cm 3 ), degree of void filling (−), surface fracture strength DI for a plurality of coke raw materials with different types of low shrinkage carbonaceous materials. It is the measurement result which measured 150 6 , volume fracture strength DI 150 6-15 , coke strength DI 150 15 , and average coke particle size (mm).
Figure 2014077035
As shown in Examples 1 and 3 to 6, the content of B charcoal (non-slightly caking coal) and the low shrinkage carbonaceous material is 70% by mass or more, and the void filling degree (−) is 1.2 or more. In some cases, it was found that the addition of low shrinkage carbonaceous material improves coke strength DI 150 15 as a management index. However, as shown in Comparative Example 5, when the content of the coke powder having an extremely small shrinkage rate exceeds 10% by mass, the coke as a management index even if the void filling degree (−) is 1.2 or more. It turned out that intensity falls.

表5は、収縮率が異なる2種類の低収縮炭材を含むコークス原料等について、膨張比容積(cm/g)、装入嵩密度(g/cm)、空隙充填度(−)、表面破壊強度DI150 、体積破壊強度DI150 6−15、コークス強度DI150 15、平均コークス粒径(mm)を測定した測定結果である。

Figure 2014077035
実施例7及び8に係る混合低収縮炭材は、添加率の上下限値の範囲内であるため、管理指標としてのコークス強度DI150 15が向上した。 Table 5 shows the expansion specific volume (cm 3 / g), charging bulk density (g / cm 3 ), degree of void filling (−), etc. for coke raw materials including two types of low shrinkage carbon materials having different shrinkage rates. surface fracture strength DI 0.99 6, volume breaking strength DI 0.99 6-15, coke strength DI 0.99 15, a measurement result of measuring the average coke particle size (mm).
Figure 2014077035
Since the mixed low shrinkage carbonaceous materials according to Examples 7 and 8 are within the range of the upper and lower limits of the addition rate, the coke strength DI 150 15 as a management index is improved.

Claims (2)

JISM8801に規定するギーセラープラストメータ法での再固化温度が470℃以下である非微粘結炭と、再固化温度から1000℃まで加熱したときの収縮率が10.5%以下である低収縮炭材とを含む高炉用コークス原料の配合方法において、
下記の式(1)乃至(3)を満足するように高炉用コークス原料を配合することを特徴とする高炉用コークス原料の配合方法。
X質量%≧70質量%・・・・・・・・・・・・(1)
SV×BD≧1.2・・・・・・・・・・・・・(2)
DI150 15>DI150 15base・・・・・・・・・・(3)
ただし、X質量%は非微粘結炭及び低収縮炭材の配合割合であり、残部は粘結炭である。SVは石炭軟化時の膨張比容積であり、BDはコークス炉装入時の石炭の装入嵩密度であり、DI150 15baseは非微粘結炭をX質量%含んで、かつ、低収縮炭材を含まない基準コークスのコークス強度であり、DI150 15は低収縮炭材を含む該高炉用コークスのコークス強度である。
Non-slightly caking coal whose re-solidification temperature is 470 ° C or less according to JISM8801 and low shrinkage whose shrinkage is 10.5% or less when heated from the re-solidification temperature to 1000 ° C. In the blending method of coke raw material for blast furnace including carbonaceous material,
Blast furnace coke raw material is blended so as to satisfy the following formulas (1) to (3).
X mass% ≥ 70 mass% ... (1)
SV × BD ≧ 1.2 (2)
DI 150 15 > DI 150 15base (3)
However, X mass% is a blending ratio of non-slightly caking coal and low shrinkage carbonaceous material, and the balance is caking coal. SV is the expansion specific volume at the time of coal softening, BD is the bulk density of the coal at the time of charging into the coke oven, DI 150 15base contains X mass% of non-slightly caking coal, and low shrinkage coal The coke strength of the reference coke not containing the material, and DI 150 15 is the coke strength of the blast furnace coke containing the low shrinkage carbonaceous material.
前記の低収縮炭材は、石油コークス、無煙炭、半無煙炭または粉コークスであることを特徴とする請求項1に記載の高炉用コークス原料の配合方法。   2. The method for blending a blast furnace coke raw material according to claim 1, wherein the low shrinkage carbonaceous material is petroleum coke, anthracite, semi-anthracite or powdered coke.
JP2012224247A 2012-10-09 2012-10-09 Method of blending coke raw material for blast furnace Active JP6065510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012224247A JP6065510B2 (en) 2012-10-09 2012-10-09 Method of blending coke raw material for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012224247A JP6065510B2 (en) 2012-10-09 2012-10-09 Method of blending coke raw material for blast furnace

Publications (2)

Publication Number Publication Date
JP2014077035A true JP2014077035A (en) 2014-05-01
JP6065510B2 JP6065510B2 (en) 2017-01-25

Family

ID=50782625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012224247A Active JP6065510B2 (en) 2012-10-09 2012-10-09 Method of blending coke raw material for blast furnace

Country Status (1)

Country Link
JP (1) JP6065510B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088869A (en) * 2015-11-09 2017-05-25 新日鐵住金株式会社 Carbonaceous material for coke production, production method thereof and production method of coke
JP2018169199A (en) * 2017-03-29 2018-11-01 宇部興産株式会社 Evaluation method of coal degradation
JP2020094200A (en) * 2018-11-28 2020-06-18 日本製鉄株式会社 Method of blending coal and selecting coal type in the production of blast furnace coke

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047095A (en) * 1983-08-25 1985-03-14 Nippon Kokan Kk <Nkk> Preparation of coke for metallurgy
JP2000080376A (en) * 1998-09-04 2000-03-21 Nkk Corp Preparation of formed coal
JP2008120973A (en) * 2006-11-15 2008-05-29 Nippon Steel Corp Process for producing blast furnace coke
JP2013076069A (en) * 2011-09-16 2013-04-25 Nippon Steel & Sumitomo Metal Corp Method for upgrading low-grade coal, methods for producing coke and sintered ore, and method for operating blast furnace
JP2014012789A (en) * 2012-07-05 2014-01-23 Kobe Steel Ltd Method for producing iron-containing coke and iron-containing coke

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047095A (en) * 1983-08-25 1985-03-14 Nippon Kokan Kk <Nkk> Preparation of coke for metallurgy
JP2000080376A (en) * 1998-09-04 2000-03-21 Nkk Corp Preparation of formed coal
JP2008120973A (en) * 2006-11-15 2008-05-29 Nippon Steel Corp Process for producing blast furnace coke
JP2013076069A (en) * 2011-09-16 2013-04-25 Nippon Steel & Sumitomo Metal Corp Method for upgrading low-grade coal, methods for producing coke and sintered ore, and method for operating blast furnace
JP2014012789A (en) * 2012-07-05 2014-01-23 Kobe Steel Ltd Method for producing iron-containing coke and iron-containing coke

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016014731; 野村誠治 有馬孝 加藤健次 山口幸一: 'コークス炉乾燥炭操業における石炭配合技術' 新日鉄技報 384号, 2006, pp43-47 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088869A (en) * 2015-11-09 2017-05-25 新日鐵住金株式会社 Carbonaceous material for coke production, production method thereof and production method of coke
JP2018169199A (en) * 2017-03-29 2018-11-01 宇部興産株式会社 Evaluation method of coal degradation
JP2020094200A (en) * 2018-11-28 2020-06-18 日本製鉄株式会社 Method of blending coal and selecting coal type in the production of blast furnace coke
JP7273314B2 (en) 2018-11-28 2023-05-15 日本製鉄株式会社 Coal blending method and coal type selection method in the production of blast furnace coke

Also Published As

Publication number Publication date
JP6065510B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP4879706B2 (en) Method for producing blast furnace coke
JP6065510B2 (en) Method of blending coke raw material for blast furnace
JP6265015B2 (en) Coke manufacturing method
JPWO2010116722A1 (en) Method for producing blast furnace coke
WO2014007184A1 (en) Coke and method for producing same
JP6241336B2 (en) Method for producing blast furnace coke
JP2015120840A (en) Method for producing coke
JP5386838B2 (en) Ferro-coke for metallurgy
JP5888539B2 (en) Method for producing metallurgical coke
JP6145503B2 (en) Method for producing metallurgical coke
JP4892928B2 (en) Ferro-coke manufacturing method
JP7070228B2 (en) Estimating method of surface fracture strength of coke
KR101864524B1 (en) Method for manufacturing blast furnace coke, and blast furnace coke
JP5087868B2 (en) Ferro-coke manufacturing method
JP5011833B2 (en) Coke manufacturing method
JP4751408B2 (en) Method for producing blast furnace coke
JP6720827B2 (en) Carbon material for producing coke, method for producing the same, and method for producing coke
JP4625253B2 (en) Method for producing blast furnace coke
JP2014214187A (en) Manufacturing method of coke
KR101240393B1 (en) A process way of the cokes which a residue isn&#39;t happened and lump cokes
JP7188245B2 (en) Method for estimating surface fracture strength of blast furnace coke
JP4438532B2 (en) Coke and method for producing coke
JP6189811B2 (en) Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP5482837B2 (en) Ferro-coke manufacturing method
JP2001323281A (en) Method for producing coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R151 Written notification of patent or utility model registration

Ref document number: 6065510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350