JP4438532B2 - Coke and method for producing coke - Google Patents
Coke and method for producing coke Download PDFInfo
- Publication number
- JP4438532B2 JP4438532B2 JP2004192670A JP2004192670A JP4438532B2 JP 4438532 B2 JP4438532 B2 JP 4438532B2 JP 2004192670 A JP2004192670 A JP 2004192670A JP 2004192670 A JP2004192670 A JP 2004192670A JP 4438532 B2 JP4438532 B2 JP 4438532B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- coke
- melting
- softening
- hardly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000571 coke Substances 0.000 title claims description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 17
- 239000003245 coal Substances 0.000 claims description 149
- 239000002245 particle Substances 0.000 claims description 64
- 238000002844 melting Methods 0.000 claims description 63
- 230000008018 melting Effects 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 40
- 239000000654 additive Substances 0.000 claims description 33
- 230000000996 additive effect Effects 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 24
- 239000002994 raw material Substances 0.000 claims description 23
- 238000003763 carbonization Methods 0.000 claims description 16
- 238000000197 pyrolysis Methods 0.000 claims description 9
- 238000010298 pulverizing process Methods 0.000 description 38
- 238000004939 coking Methods 0.000 description 28
- 238000002156 mixing Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000007873 sieving Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011802 pulverized particle Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004079 vitrinite Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Landscapes
- Coke Industry (AREA)
Description
本発明は、冶金用等に用いるコークスおよびコークスの製造方法に関するものである。 The present invention relates to coke used for metallurgy and the like and a method for producing coke.
コークスは、高炉内の通気性を維持する重要な役割を担っており、安定した微粉炭多量吹き込み操業、高出銑操業あるいは低還元材比操業を達成するため、高品質なコークスは必要不可欠であると考えられている。特に、高炉内での粉発生を抑制する高強度コークスや高炉内の空隙形成効果の大きな大粒径コークスの供給が強く望まれている。 Coke plays an important role in maintaining air permeability in the blast furnace, and high-quality coke is indispensable in order to achieve stable large pulverized coal blowing operation, high brewery operation, or low reducing material ratio operation. It is thought that there is. In particular, it is strongly desired to supply high-strength coke that suppresses the generation of powder in the blast furnace and large particle size coke that has a large void forming effect in the blast furnace.
上記のような高品質のコークスを製造するためには、コークス炉に装入する配合炭の性状、例えば、平均最大反射率(Ro)や最高流動度(MF)を向上させる方法がある。しかし、RoやMFの大きな高品質の石炭は高価であり、コスト面からの制約により、この方法だけで高品質のコークスを製造することは困難である。 In order to produce such high-quality coke, there is a method for improving the properties of the blended coal charged into the coke oven, for example, average maximum reflectance (Ro) and maximum fluidity (MF). However, high quality coal with large Ro and MF is expensive, and it is difficult to produce high quality coke only by this method due to cost constraints.
一方、コークス製造コストを大幅に削減するためには、安価ではあるが低品質な非微粘結炭を配合用石炭として使用することが望ましい。通常、低品質な非微粘結炭の配合量を増加させた場合にはコークス強度は低下することから、強度低下を回避するための開発が必要である。 On the other hand, in order to significantly reduce the coke production cost, it is desirable to use non-slightly caking coal that is inexpensive but of low quality as coal for blending. Usually, when the blending amount of low-quality non-caking coal is increased, the coke strength is lowered, so development for avoiding the strength reduction is necessary.
このように、配合炭としては安価で低品質なものを用いつつ、高品質のコークスを製造することが大きな課題となっている。このために、コークスの製造方法が検討され、特に石炭の粉砕方法を制御することによるコークス品質制御方法に関する開発が積極的に行われてきた。 Thus, it is a big problem to produce high-quality coke while using cheap and low-quality coal blends. For this reason, a method for producing coke has been studied, and in particular, development regarding a coke quality control method by controlling a coal crushing method has been actively carried out.
たとえば、原料炭を篩い分けした後、一定粒度以上のものは粉砕した上、再度篩い分けを行い一定粒度以上のものを再粉砕して配合し、全体として中間粒度のものを多くするように粒度調整を行う方法が知られている(例えば、特許文献1、特許文献2参照。)。また、活性成分に富んだ石炭と活性成分に富まない石炭で別々に粉砕粒度目標値を定める方法が知られている(例えば、特許文献3参照。)。 For example, after sieving the raw coal, pulverize those with a certain particle size or more, then re-sieve and remix those with a certain particle size or more, so that the overall particle size is increased A method of performing adjustment is known (see, for example, Patent Document 1 and Patent Document 2). In addition, a method is known in which a pulverized particle size target value is separately determined for coal rich in active components and coal not rich in active components (see, for example, Patent Document 3).
上記の方法でコークスの品質が向上するのは、以下の理由によるものである。石炭を乾留して製造されるコークスの強度あるいは粒径は、石炭乾留過程に形成される亀裂や気孔などの欠陥構造の大きさや量に大きく依存している。特に、亀裂はコークスの物理性状に多大な影響を及ぼしており、その大部分が、石炭中に混在している乾留時に軟化溶融を示す組織と軟化溶融をほとんど示さない組織など、性状の異なる組織成分間の膨張収縮挙動の差に起因して発生している。そこで、高品質のコークスを製造するためには、このような亀裂の発生を抑制することが有効な手段となる。 The reason why the coke quality is improved by the above method is as follows. The strength or particle size of coke produced by carbonizing coal largely depends on the size and amount of defect structures such as cracks and pores formed during the coal carbonization process. In particular, cracks have a great influence on the physical properties of coke, and most of them have different properties such as a structure that shows soft melting and a structure that hardly shows soft melting during dry distillation mixed in coal. This occurs due to the difference in expansion and contraction behavior between the components. Therefore, in order to produce high quality coke, it is an effective means to suppress the occurrence of such cracks.
亀裂発生を抑制するためには、石炭乾留過程において、軟化溶融をほとんど示さない組織成分と軟化溶融物との融着性を向上させる方法、軟化溶融をほとんど示さない組織成分の周辺に発生する熱応力を抑制する方法などが考えられる。特許文献1〜特許文献3に記載の方法では、軟化溶融をほとんど示さない組織成分の含有量の多い軟化溶融性の低い石炭粒子の粒径を選択的に小さくすることにより、融着性の改善と膨張収縮挙動の差に起因して発生する熱応力の抑制を達成している。 In order to suppress crack initiation, in the coal carbonization process, a method of improving the fusing property between the softening melt and the structural component that hardly shows softening melting, the heat generated around the structural component showing little softening and melting. A method for suppressing the stress is conceivable. In the methods described in Patent Literature 1 to Patent Literature 3, the fusion property is improved by selectively reducing the particle size of coal particles having a low softening and melting property and containing a large amount of tissue components that hardly show softening and melting. The thermal stress generated due to the difference in expansion and contraction behavior is suppressed.
いずれの方法においても、石炭のコークス化過程において強度低下や粒径低下の原因となる亀裂の発生を抑制するため、亀裂の発生源となっている粗粒子の石炭粒子や活性成分に富まない石炭粒子を選択的に小さくすることを目的としている。
特許文献1、特許文献2、特許文献3に記載された方法を用いることにより、安価な非微粘結炭のような低品質な石炭を使用しつつ、従来相当の品質をもつコークスを製造可能となった。しかし、現在はより高強度、大粒径を有する、従来以上に高品質なコークスが要求されている。 By using the methods described in Patent Document 1, Patent Document 2, and Patent Document 3, coke having a quality equivalent to that of conventional products can be produced while using low-quality coal such as inexpensive non-coking coal. It became. However, at present, there is a demand for coke having higher strength and larger particle size and higher quality than before.
したがって本発明の目的は、このような従来技術の課題を解決し、高強度、大粒径を有する高品質なコークスおよびこのようなコークスを低コストで製造できるコークスの製造方法を提供することにある。 Accordingly, an object of the present invention is to solve such problems of the prior art and provide a high-quality coke having a high strength and a large particle size and a method for producing a coke that can produce such a coke at a low cost. is there.
このような課題を解決するための本発明の特徴は以下の通りである。
(1)コークス原料である石炭を、コークス炉における石炭の乾留過程において軟化溶融をほとんど示さない組織成分の形状が平均扁平率で0.58以下となるように調整することを特徴とするコークスの製造方法。
(2)石炭の反射率を0.9以上、1.2以下に調整することを特徴とする(1)に記載のコークスの製造方法。
(3)コークス原料である複数種類の石炭を、コークス炉における石炭の乾留過程において軟化溶融をほとんど示さない組織成分の平均扁平率に応じて2つ以上のグループに分類し、グループ別に粉砕した後混合することを特徴とする(1)または(2)に記載のコークスの製造方法。
(4)コークス原料である石炭に添加する添加物粒子がコークス炉における石炭の乾留過程において軟化溶融をほとんど示さない成分であって、前記石炭に由来する石炭の乾留過程において軟化溶融をほとんど示さない組織成分と添加物粒子との形状が平均扁平率で0.58以下となるように調整することを特徴とする(1)ないし(3)のいずれかに記載のコークスの製造方法。
The features of the present invention for solving such problems are as follows.
( 1 ) Coal which is a coke raw material is adjusted so that the shape of the structure component which hardly shows softening and melting in the process of carbonization of coal in a coke oven is 0.58 or less in average flatness. Production method.
( 2 ) The method for producing coke according to ( 1 ), wherein the reflectance of coal is adjusted to 0.9 or more and 1.2 or less.
( 3 ) After classifying multiple types of coal, which are coke raw materials, into two or more groups according to the average flatness of the structural components that hardly show softening and melting during the coal carbonization process in the coke oven, The method for producing coke according to ( 1 ) or ( 2 ), wherein mixing is performed.
( 4 ) The additive particles added to the coal as the coke raw material are components that hardly show softening and melting in the coal dry distillation process in the coke oven, and hardly show softening and melting in the dry distillation process of coal derived from the coal. The method for producing coke according to any one of ( 1 ) to ( 3 ), wherein the shape of the tissue component and additive particles is adjusted so that the average flatness is 0.58 or less.
本発明によれば、従来製造されているコークスよりもさらに高品質なコークスを製造することができる。このような高品質なコークスを高炉で使用することで、高炉内において充分な通気性が確保され、高炉の安定操業を継続することができる。また、安価な非微粘結炭を多量に使用しながら、従来製造されているコークス相当の品質のコークスを製造でき、コークスの製造コストを削減できる。 According to the present invention, coke having a higher quality than that of conventionally manufactured coke can be produced. By using such high-quality coke in the blast furnace, sufficient air permeability is secured in the blast furnace, and stable operation of the blast furnace can be continued. In addition, while using a large amount of inexpensive non-coking coal, coke having a quality equivalent to that of conventionally manufactured coke can be produced, and the production cost of coke can be reduced.
本発明者らは、石炭の乾留過程において軟化溶融をほとんど示さない組織成分の形状制御に着目し、配合条件や粉砕条件を変えることにより配合炭中の軟化溶融をほとんど示さない組織成分の形状を扁平なものから真球に近づけることで、コークス品質が大幅に改善することを新たに見出して本発明を完成した。 The present inventors pay attention to the shape control of the structural component that hardly shows softening and melting in the coal carbonization process, and the shape of the structural component that hardly shows softening and melting in the mixed coal by changing the mixing conditions and the grinding conditions. The present invention has been completed by newly discovering that coke quality is greatly improved by bringing a flat object closer to a true sphere.
石炭粒子の形状ではなく組織成分の形状に着目した理由は以下の通りである。石炭粒子には単一の組織のみで構成されているものと複数の組織成分で構成されているものが混在している。実際の乾留過程において軟化溶融をほとんど示さない粒子としての挙動を示すのは、石炭粒子そのものではなく、石炭粒子を構成している組織成分である。したがって、亀裂の発生抑制を進めていくためには組織成分そのものを管理すべきだと考えた。ここで、石炭の組織成分とは、JIS M8816に基づき顕微鏡で観察されるビトリニット、セミフジニット、フジニット等の微細組織成分を表している。これらのうちで、軟化溶融をほとんど示さない組織とは、イナーチニットグループに分類されるセミフジニット、フジニット等である。 The reason for focusing on the shape of the tissue component, not the shape of the coal particles, is as follows. Coal particles include those composed of only a single structure and those composed of a plurality of tissue components. It is not the coal particles themselves but the tissue components that make up the coal particles that exhibit behavior as particles that hardly exhibit softening and melting in the actual carbonization process. Therefore, we thought that the structural components themselves should be managed in order to proceed with the crack suppression. Here, the structure | tissue component of coal represents fine structure components, such as vitrinite, semi-fujinit, and Fujinit observed with a microscope based on JISM8816. Among these, structures that hardly exhibit softening and melting include semi-fuji knit, fuji knit, and the like classified into the inert knit group.
石炭の軟化溶融をほとんど示さない組織成分の形状がコークス化に及ぼす影響は、軟化溶融物の移動現象挙動と再固化以降の熱応力発生挙動の2つの観点から考えられる。前者に関しては、軟化溶融をほとんど示さない組織成分の形状が扁平な場合とそうで無い場合とでは、軟化溶融をほとんど示さない組織成分と軟化溶融物との間での流体力学的相互作用が異なり、形状が扁平なほど軟化溶融物の拡散が阻害される。この結果、組織成分形状が扁平なほど軟化溶融物との融着性が悪化する。また後者に関しては、軟化溶融をほとんど示さない組織成分の形状が扁平なほど、組織成分端点の応力拡大係数が大きくなるため、応力集中が起こりやすくなる。この結果、亀裂の発生確率が高くなる。 The influence of the shape of the structural component that hardly shows softening and melting of coal on coking can be considered from two viewpoints: the movement phenomenon behavior of the softened melt and the thermal stress generation behavior after resolidification. With regard to the former, the hydrodynamic interaction between the tissue component showing little softening melt and the softening melt differs depending on whether the shape of the tissue component showing little softening melt is flat or not. As the shape becomes flatter, the diffusion of the softened melt is hindered. As a result, the flatness of the tissue component shape deteriorates the fusion property with the softened melt. In the latter case, the flatter the shape of the tissue component that hardly shows softening and melting, the greater the stress intensity factor at the end point of the tissue component, so that stress concentration tends to occur. As a result, the probability of occurrence of cracks increases.
したがって、軟化溶融をほとんど示さない組織成分の大きさがほとんど同じ場合でも、形状を扁平から真球に近づけることにより、コークス化過程に発生する欠陥の発生を抑制できるため、コークス品質は向上する。 Therefore, even when the sizes of the tissue components that hardly exhibit softening and melting are almost the same, the occurrence of defects occurring in the coking process can be suppressed by bringing the shape closer to a true sphere, thereby improving the coke quality.
石炭中の軟化溶融をほとんど示さない組織成分とは、コークス炉等を用いて石炭を乾留する際の温度(コークス化温度)において軟化溶融する成分が3分の1程度以下の組織成分であり、微細組織成分群でイナーチニットに分類されるミクリニット、スクレロチニット、フジニット、セミフジニットの中から選ばれる一種または二種以上が対象(JIS M 8816等参照)である。 The structural component that hardly shows softening and melting in coal is a structural component in which the component that softens and melts at a temperature (coking temperature) when coal is carbonized using a coke oven or the like is about one third or less, One or two or more types selected from miclinit, sclerotite, Fujinit, and semi-Fujinit classified as inert knit in the fine tissue component group are targets (see JIS M 8816, etc.).
上記のように、石炭中の軟化溶融をほとんど示さない組織成分の形状を扁平なものから真球に近づけることで、製造されたコークス中の軟化溶融をほとんど示さない組織成分の形状が扁平なものから真球に近づき、コークス品質が向上する。一方で、軟化溶融をほとんど示さない組織成分であれば、石炭由来の組織成分でない場合でも真球に近づけることで同様の効果がある。すなわち、コークス原料として石炭以外に添加物粒子を添加する場合、添加物粒子がコークス化温度で軟化溶融をほとんど示さないものであれば、添加物粒子の形状を扁平なものから真球に近づけて配合炭に添加して、コークスを製造することでも、製造されたコークス中の軟化溶融をほとんど示さない組織成分の形状が扁平なものから真球に近づき、コークス品質が向上する。 As mentioned above, the shape of the tissue component that hardly shows softening and melting in the coal is made flat, and the shape of the tissue component that shows almost no softening and melting in the produced coke is flat. Approach to the true sphere and improve coke quality. On the other hand, if it is a tissue component that hardly shows softening and melting, even if it is not a coal-derived tissue component, the same effect can be obtained by bringing it closer to a true sphere. That is, when additive particles other than coal are added as a coke raw material, if the additive particles exhibit little softening and melting at the coking temperature, the shape of the additive particles is made closer to a sphere from a flat one. Even when coke is produced by adding it to the blended coal, the shape of the tissue component that hardly exhibits softening and melting in the produced coke approaches from a flat shape to a true sphere, and the coke quality is improved.
コークス化温度で軟化溶融をほとんど示さない添加物粒子としては、粉コークス、石油コークス、無煙炭、砂等のイナート質を用いることが望ましい。イナート質の添加は、1mass%以上、10mass%以下とすることが望ましい。 As additive particles that hardly exhibit softening and melting at the coking temperature, it is desirable to use an inert material such as powdered coke, petroleum coke, anthracite, or sand. It is desirable that the inert material be added in an amount of 1 mass% to 10 mass%.
上記のように、石炭中の軟化溶融をほとんど示さない組織成分や、添加物粒子の形状は、真球に近い程望ましいが、形状分布の大きな場合に三次元の形状を定量化するのは手間がかかりコスト高であるので、二次元の断面形状で代替することが好ましい。また、石炭中の軟化溶融をほとんど示さない組織成分や、添加物粒子は、石炭の乾留過程において表面状態に多少の変化は生じるものの形状の変化は小さく、扁平率に及ぼす影響はほとんどないため、コークス化温度で軟化溶融をほとんど示さない成分の形状を製造されたコークスの段階で観察することも可能である。すなわち、石炭中の軟化溶融をほとんど示さない組織成分の形状と、コークス化温度で軟化溶融をほとんど示さない添加物粒子の形状である、石炭の乾留過程において軟化溶融をほとんど示さない成分は、コークスの任意の断面において扁平なものから真円に近づくほどコークス品質が向上する。 As described above, it is desirable that the shape of the structure component and additive particles that hardly show softening and melting in coal is closer to the true sphere, but it is troublesome to quantify the three-dimensional shape when the shape distribution is large. Therefore, it is preferable to substitute a two-dimensional cross-sectional shape. In addition, the structural components that hardly show softening and melting in coal, and additive particles, although there are some changes in the surface state during the coal distillation process, the shape change is small, and there is almost no effect on the flatness, It is also possible to observe the shape of the component showing little softening and melting at the coking temperature at the stage of the coke produced. That is, the shape of the structural component that hardly shows softening and melting in coal and the shape of additive particles that show little softening and melting at the coking temperature, and the component that shows little softening and melting in the coal carbonization process are coke. The coke quality improves as it approaches a perfect circle from a flat one in any cross section.
軟化溶融をほとんど示さない組織成分・添加物粒子の形状が、真球、真円に近づいている度合いは、形状係数を用いて定量化することが望ましく、その形状係数が真球、真円の形状係数に近いほど望ましい。形状係数として、三次元の形状を示す係数としては、長短度、扁平度、Zinggの指数、Wandellの球形度、Aschenbrennerの球形度等があるが、上記のように実用的には二次元の形状を定量化することが望ましく、二次元の係数として、扁平率、真円度、円形度等を用いることが望ましい。形状を示す係数として二次元の扁平率を用いることが、流体力学的相互作用、応力拡大係数への影響が大きい板状、片状、棒状、針状、繊維状、角状などの形状をもっとも感度高く表現できるため最適であり、コークスの強度を十分に向上させるためには配合炭中の軟化溶融をほとんど示さない組織成分・添加物粒子の平均扁平率を0.58以下とすることが望ましい。また扁平率を0.53以下とすることが特に望ましい。または、扁平率が0.7以上の組織成分・添加物粒子の数を全粒子数の25%以下とすることも望ましい。 The degree to which the shape of the tissue component / additive particles that hardly show softening and melting approaches the true sphere or perfect circle is desirably quantified using the shape factor. The closer to the shape factor, the better. As the shape factor, there are three-dimensional shape factors such as length, flatness, Zingg index, Wandell sphericity, Aschenbrenner sphericity, etc. Is desirably quantified, and it is desirable to use flatness, roundness, circularity, etc. as a two-dimensional coefficient. The use of two-dimensional flatness as a coefficient indicating the shape is most effective for plate-like, piece-like, rod-like, needle-like, fiber-like, square-like shapes that have a great influence on the hydrodynamic interaction and stress intensity factor. It is optimal because it can be expressed with high sensitivity, and in order to sufficiently improve the strength of coke, it is desirable that the average flatness of tissue components and additive particles that hardly show softening and melting in the blended coal be 0.58 or less. . Further, it is particularly desirable that the aspect ratio is 0.53 or less. Alternatively, the number of tissue component / additive particles having an aspect ratio of 0.7 or more is desirably 25% or less of the total number of particles.
一方で、コークスを製造する際には原料石炭の反射率と最高流動度を所定の範囲に調整することが望ましい。これは、反射率に代表される石炭化度パラメーター(基質強度と関係)と最高流動度に代表される粘結性パラメーター(粒子の接着性と関係)を適正化することで、高炉の操業に必要な強度を有するコークスを製造可能であるためである。一般に扁平率の小さい石炭は軟らかく反射率が高い傾向があり、単に扁平率の小さい石炭を原料としてコークスを製造すると、流動性の低い、反射率の高い石炭が主体となり、コークス強度が低下してしまう場合がある。したがって、コークス原料の石炭の軟化溶融をほとんど示さない組織成分の平均扁平率を0.58以下とすると同時に、石炭の反射率を0.9以上、1.2以下に調整してコークスを製造することが望ましい。より望ましくは、0.95以上、1.1以下である。さらに、石炭の最高流動度(logMF)を2.08以上とすることが望ましい。より望ましくは、2.26以上である。 On the other hand, when producing coke, it is desirable to adjust the reflectivity and maximum fluidity of the raw coal within a predetermined range. This is achieved by optimizing the coalification parameter (relevant to substrate strength) typified by reflectance and the caking parameter (relevant to particle adhesion) typified by maximum fluidity. This is because coke having the required strength can be produced. In general, coal with low flatness tends to be soft and have high reflectivity. When coke is produced using coal with low flatness as a raw material, coal with low fluidity and high reflectivity is the main component, and the coke strength decreases. May end up. Therefore, coke is produced by adjusting the average flatness of the structural component that hardly shows softening and melting of coal as a coke raw material to 0.58 or less, and adjusting the reflectance of coal to 0.9 or more and 1.2 or less. It is desirable. More desirably, it is 0.95 or more and 1.1 or less. Furthermore, it is desirable that the maximum fluidity (log MF) of coal be 2.08 or more. More desirably, it is 2.26 or more.
コークス化温度で軟化溶融をほとんど示さない石炭由来の組織成分および添加物粒子の形状係数は、例えば以下の(a)〜(c)の工程による方法を用いて測定することができる。(a)原料炭である石炭、製造されたコークスを樹脂埋めして微細組織成分が同定可能な顕微鏡により写真撮影する。添加物粒子についても石炭と同様に樹脂埋めして顕微鏡により写真撮影する。(b)作成した顕微鏡写真について、画像処理ソフトを用いて、当該組織成分を手動あるいは自動でマーキングし、形状係数を算出するのに必要な値を計測する。(c)形状係数を、扁平率=(長軸−短軸)/長軸、真円度=周囲長2/(4×π×面積)、あるいは円形度=(4×π×面積)/周囲長2等として求め、平均値を算出して平均形状係数とする。 The shape factor of the coal-derived tissue component and additive particles that hardly show softening and melting at the coking temperature can be measured using, for example, a method according to the following steps (a) to (c). (A) Coal as raw coal and manufactured coke are filled with resin and photographed with a microscope capable of identifying the fine structure components. The additive particles are filled with resin in the same manner as coal and photographed with a microscope. (B) Using the image processing software, the tissue component is marked manually or automatically for the created micrograph, and a value necessary for calculating the shape factor is measured. (C) Shape factor, flatness = (long axis−short axis) / long axis, roundness = circumferential length 2 / (4 × π × area), or circularity = (4 × π × area) / perimeter Obtained as a length of 2 etc., and calculate the average value to obtain the average shape factor.
形状係数は、石炭銘柄および添加物の種類により異なるため、コークス製造に使用するすべての石炭および添加物粒子について測定して定量化しておくことが望ましい。例えば、JIS M 8816石炭の微細組織成分および反射率測定方法に準拠して調整したモールドを用いてコークス原料石炭の平均扁平率を石炭の種類(銘柄)ごとに測定して、標準値として使用すると、石炭銘柄選定の際に有効である。 Since the shape factor varies depending on the coal brand and type of additive, it is desirable to measure and quantify all the coal and additive particles used in coke production. For example, when the average flatness of coke raw material coal is measured for each type (brand) of coal using a mold adjusted in accordance with the microstructure and reflectance measurement method of JIS M 8816 coal, and used as a standard value This is effective when selecting coal brands.
同様に反射率と最高流動度についてもコークス製造に使用するすべての石炭銘柄について測定して定量化しておくことが望ましい。本発明で用いる石炭(配合炭)の反射率は、JIS M 8816に準拠して測定した各銘柄の石炭の反射率を、配合炭中の各銘柄の割合に対して加重平均として算出したものであり、本発明で用いる石炭(配合炭)の最高流動度はJIS M 8801に準拠して測定した各銘柄の石炭の最高流動度の対数値を、配合炭中の各銘柄の割合に対して加重平均として算出したものである。 Similarly, it is desirable to measure and quantify the reflectance and maximum fluidity for all coal brands used in coke production. The reflectivity of coal (mixed coal) used in the present invention is calculated by calculating the reflectivity of each brand of coal measured according to JIS M 8816 as a weighted average with respect to the ratio of each brand in the blended coal. Yes, the maximum fluidity of coal (mixed coal) used in the present invention is obtained by weighting the logarithmic value of the maximum fluidity of each brand of coal measured according to JIS M 8801 with respect to the ratio of each brand in the blended coal. It is calculated as an average.
コークス化温度で軟化溶融をほとんど示さない組織成分の形状を真円に近づけるためには、(A)コークス化温度で軟化溶融をほとんど示さない組織成分の形状が真円に近い石炭や添加物粒子で配合炭を構成する、(B)石炭、添加物粒子を粉砕して粒径を小さくする、の2つの方法(A)、(B)のどちらか一方または両方を用いることが望ましい。 In order to bring the shape of the structure component that hardly shows softening and melting at the coking temperature close to a perfect circle, (A) coal or additive particles whose shape of the structure component that shows little softening and melting at the coking temperature is close to a perfect circle It is desirable to use either or both of the two methods (A) and (B): (B) coal and additive particles are pulverized to reduce the particle size.
(A)の方法は、適当な銘柄の石炭や添加物粒子を選択してコークス原料に用いるものである。コークス化温度で軟化溶融をほとんど示さない組織成分の平均扁平率が真円に近い、できるだけ平均扁平率が小さい石炭をコークス原料として選択する。平均扁平率が小さい石炭は、反射率が高い傾向にあり、高価格である傾向がある。したがって、平均扁平率が小さく比較的安価である石炭を、また平均扁平率が同程度である場合は、原料石炭を配合した際に所定の反射率を有するような反射率を有する石炭を、コークス原料として選択することが望ましい。従来以上に高強度を有するコークスを製造するためには、コークス原料である石炭を、コークス炉における石炭の乾留過程において軟化溶融をほとんど示さない組織成分の形状が平均扁平率で0.58以下となるように調整することが望ましい。また、同時に石炭の反射率を0.9以上、1.2以下に調整することが望ましい。石炭の乾留過程において軟化溶融をほとんど示さない組織成分の形状が平均扁平率で0.58以下となり、石炭の反射率が0.9以上、1.2以下となるようにコークス原料の石炭を配合することで、コークス炉における従来のコークス製造技術を用いて、より高強度で平均粒径の大きいコークスを製造することが可能となる。コークス化温度で軟化溶融をほとんど示さない組織成分のコークス原料中の割合は、50mass%以下程度とすることが望ましい。 In the method (A), an appropriate brand of coal or additive particles is selected and used as a coke raw material. Coal is selected as the coke raw material, with the average flatness of the tissue component that hardly shows softening and melting at the coking temperature being as close to a perfect circle as possible and having the lowest average flatness. Coal with a low average flatness tends to have a high reflectance and a high price. Therefore, if the average flatness is small and the average flatness is about the same, or if the average flatness is about the same, coal that has a reflectivity that has a predetermined reflectivity when blended with raw coal is coke. It is desirable to select it as a raw material. In order to produce coke having higher strength than before, the coke raw material coal has an average flatness of 0.58 or less in the shape of the structure component that hardly shows softening and melting in the coal carbonization process in the coke oven. It is desirable to adjust so that it becomes. At the same time, it is desirable to adjust the reflectance of coal to 0.9 or more and 1.2 or less. Coal raw material coal is blended so that the shape of the structural component that hardly shows softening and melting during the carbonization process of coal is 0.58 or less in average flatness, and the reflectance of coal is 0.9 or more and 1.2 or less. By doing so, it becomes possible to produce coke having higher strength and a larger average particle size by using conventional coke production technology in a coke oven. It is desirable that the ratio of the structural component that hardly shows softening and melting at the coking temperature in the coke raw material is about 50 mass% or less.
(B)の方法は、粉砕することで形状を真円に近づけるものであり、粉砕の程度と形状の変化は組織の構造により異なるが、形状が真円から大きくはずれている石炭を選択的に粉砕することが望ましい。具体的には、原料炭をそのコークス化性および軟化溶融をほとんど示さない組織成分の形状の両方を考慮してグルーピングし、グループ毎に定めた粒度目標値まで粉砕を行った後、配合する方法などを用いることができる。あるいは形状が真円から大きくはずれている添加物粒子を選択的に粉砕することが望ましい。 In the method (B), the shape is brought close to a perfect circle by pulverization, and the degree of pulverization and the change in the shape vary depending on the structure of the structure, but the coal whose shape is greatly deviated from the perfect circle is selectively selected It is desirable to grind. Specifically, the coking coal is grouped in consideration of both its coking property and the shape of the structural component that hardly exhibits softening and melting, and is pulverized to a target particle size determined for each group, and then blended Etc. can be used. Alternatively, it is desirable to selectively pulverize additive particles whose shape is significantly different from a perfect circle.
したがって、コークス原料である複数種類の石炭を、コークス炉における石炭の乾留過程において軟化溶融をほとんど示さない組織成分の平均扁平率に応じて2つ以上のグループに分類し、グループ別に粉砕した後、(A)で説明したように、石炭の乾留過程において軟化溶融をほとんど示さない組織成分の形状が平均扁平率で0.58以下となるようにコークス原料の石炭を混合することが望ましい。またさらに、石炭の反射率が0.9以上、1.2以下となるようにコークス原料の石炭を混合することが望ましい。また、コークス原料として添加物粒子を用いる場合は、コークス原料である石炭に添加する添加物粒子がコークス炉における石炭の乾留過程において軟化溶融をほとんど示さない成分であって、前記石炭に由来する石炭の乾留過程において軟化溶融をほとんど示さない組織成分と添加物粒子との形状が平均扁平率で0.58以下となるように調整することが望ましい。 Therefore, after classifying multiple types of coal, which is a coke raw material, into two or more groups according to the average flatness of the structural components that hardly show softening and melting in the coal carbonization process in the coke oven, As described in (A), it is desirable to mix the coke raw material coal so that the shape of the tissue component that hardly shows softening and melting in the coal carbonization process is 0.58 or less in terms of average flatness. Furthermore, it is desirable to mix the coke raw material coal so that the reflectance of the coal is 0.9 or more and 1.2 or less. In addition, when additive particles are used as the coke raw material, the additive particles added to the coal as the coke raw material are components that hardly exhibit softening and melting in the coal carbonization process in the coke oven, and are derived from the coal. It is desirable to adjust the shape of the tissue component and additive particles that hardly show softening and melting in the dry distillation process so that the average aspect ratio is 0.58 or less.
上記の方法を用いれば、コークス中の軟化溶融をほとんど示さない組織成分の形状が選択的に真円に近づくため、従来技術よりもコークス品質は大幅に改善する。 When the above method is used, the shape of the tissue component that hardly exhibits softening and melting in the coke is selectively close to a perfect circle, so that the coke quality is greatly improved as compared with the prior art.
石炭を乾留してコークスを製造する試験を行った。試験に使用する各石炭(種類A〜J)および添加物粒子について扁平率の測定を行った。尚、石炭(種類A〜J)は粒径3mm以下80mass%の粒度に粉砕処理し、添加物粒子には2種類の粉コークス(a、b)を使用した。平均扁平率の測定は、まず石炭、添加物粒子を樹脂埋めし、偏光顕微鏡を用い各種類の石炭、添加物粒子について50枚ずつの写真を撮影し、次に作成した顕微鏡写真について、画像処理ソフトを用いて、石炭中の軟化溶融をほとんど示さない組織成分であるセミフジニット、フジニット、ミクリニット、スクレロチニットあるいは粉コークス粒子を手動でマーキングし、平均扁平率を算出した。石炭については、平均扁平率以外に反射率(Ro)、最高流動度(logMF)、全イナート割合(TI)も測定した。反射率はJIS M 8816に準拠して測定し、最高流動度はJIS M 8801に準拠して測定し、石炭に占める軟化溶融をほとんど示さない微細組織成分の割合である全イナート割合は、JIS M 8816に準拠して測定し、2/3SF+F+Mc+Sc+MM(SF、F、Mc、Sc、MMは各組織の体積%を示す。SF:セミフジニット、F:フジニット、Mc:ミクリニット、Sc:スクレチニット、MM:鉱物質)により算出した。 A test was conducted in which coal was carbonized to produce coke. The flatness of each coal (types A to J) and additive particles used in the test was measured. Coal (types A to J) was pulverized to a particle size of 3 mm or less and 80 mass%, and two types of powder coke (a, b) were used as additive particles. The average flatness is measured by first filling the coal and additive particles with resin, taking 50 photographs of each type of coal and additive particles using a polarizing microscope, and then processing the micrographs created. Semi-Fujinit, Fujinit, Miclinit, Sclerotinit, or powder coke particles, which are structural components that hardly show softening and melting in coal, were manually marked using software, and the average flatness was calculated. For coal, the reflectance (Ro), maximum fluidity (log MF), and total inert ratio (TI) were also measured in addition to the average flatness. The reflectivity is measured in accordance with JIS M 8816, the maximum fluidity is measured in accordance with JIS M 8801, and the total inert rate, which is the proportion of fine structure components that hardly show softening and melting in coal, is determined by JIS M 2 / 3SF + F + Mc + Sc + MM (SF, F, Mc, Sc, MM indicates volume% of each tissue. SF: Semi Fujinit, F: Fujinit, Mc: Miclinit, Sc: Scretinite, MM: Mineral ).
表1に種類A〜Jの10銘柄の石炭の石炭性状の測定結果を、表2に2種類の粉コークス(a、b)の平均扁平率を示す。コークス化温度で軟化溶融をほとんど示さない組織成分であるセミフジニット、フジニット組織等の平均扁平率は、同じ条件で粉砕処理を行っても石炭銘柄により異なることが表1より明らかになった。 Table 1 shows the measurement results of the coal properties of 10 types of coal of types A to J, and Table 2 shows the average flatness of the two types of powder coke (a, b). Table 1 reveals that the average flatness of semi-fujinit and Fujinite structures, which are structural components that hardly show softening and melting at the coking temperature, differ depending on the coal brand even when pulverized under the same conditions.
次に、表1、2に示す石炭と、一部については添加物粒子とを配合して、乾留試験を行い、コークスの製造を行った。乾留試験には実際のコークス炉をシミュレート可能な乾留炉を用いた。石炭の配合条件(配合1〜4)を表3に示す。各石炭(種類A〜J)を配合した配合炭のRo、logMFおよびTIが配合後にほぼ一定となり、配合炭の平均扁平率のみが変化するように調整した。 Next, coal shown in Tables 1 and 2 and partly additive particles were blended, a dry distillation test was performed, and coke was produced. A dry distillation furnace capable of simulating an actual coke oven was used for the dry distillation test. Table 3 shows coal blending conditions (blendings 1 to 4). It adjusted so that Ro, logMF, and TI of the combination coal which mix | blended each coal (type AJ) became substantially constant after mixing | blending, and only the average flatness of a combination coal changed.
石炭の粉砕は、石炭の種類により粉砕の程度を変化させた、粉砕1、比較粉砕1、粉砕2、比較粉砕2の4種類の条件で行った。石炭の粉砕条件を表4に示す。表4における粉砕1、比較粉砕1において、1で示した石炭は粉砕緩和グループであり、6mmの篩目の篩でふるった後、篩い上を6mm以下100mass%となるように粉砕処理した。3で示した石炭は粉砕強化グループであり、6mmの篩目の篩でふるった後、篩い上を3mm以下100mass%となるように粉砕処理した。また、表4における粉砕2、比較粉砕2において、1で示した石炭は粉砕緩和グループであり、粒径6mm以上の粒子割合が10mass%以下となるように粉砕処理した。2で示した石炭は通常粉砕グループであり、粒径6mm以上の粒子割合が7mass%以下となるように粉砕処理した。3で示した石炭は粉砕強化グループであり、粒径6mm以上の粒子割合が4mass%以下となるように粉砕処理した。したがって、粉砕1は石炭をコークス化温度で軟化溶融をほとんど示さない組織成分の平均扁平率に応じて2つのグループに分類し、平均扁平率の高い石炭の粉砕を強化し、平均扁平率の低い石炭の粉砕を緩和して、粉砕強化グループ、粉砕緩和グループのすべての石炭を混合した場合である。粉砕2は石炭をコークス化温度で軟化溶融をほとんど示さない組織成分の平均扁平率に応じて3つのグループに分類し、比較的平均扁平率の高い石炭の粉砕を強化し、比較的平均扁平率の低い石炭の粉砕を緩和して、すべてのグループの石炭を混合した場合である。また比較粉砕1、2は、平均扁平率を考慮しないで石炭の種類別に粉砕を行いすべてのグループの石炭を混合した場合である。 Coal pulverization was performed under four conditions of pulverization 1, comparative pulverization 1, pulverization 2, and comparative pulverization 2 with the degree of pulverization varied depending on the type of coal. Table 4 shows coal pulverization conditions. In pulverization 1 and comparative pulverization 1 in Table 4, the coal indicated by 1 is a pulverization relaxation group, and after sieving with a 6 mm sieve, the sieving process was performed so that the top of the sieve was 6 mm or less and 100 mass%. The coal shown by 3 is a pulverization strengthening group, and after sieving with a 6 mm sieve, the sieving process was performed so that the top of the sieve was 3 mm or less and 100 mass%. Further, in pulverization 2 and comparative pulverization 2 in Table 4, the coal indicated by 1 is a pulverization relaxation group, and pulverization was performed so that the ratio of particles having a particle size of 6 mm or more was 10 mass% or less. The coal shown by 2 is usually a pulverization group, and was pulverized so that the ratio of particles having a particle size of 6 mm or more was 7 mass% or less. The coal shown by 3 is a pulverization strengthening group, and was pulverized so that the ratio of particles having a particle size of 6 mm or more was 4 mass% or less. Therefore, pulverization 1 classifies coal into two groups according to the average flatness of the tissue components that hardly show softening and melting at the coking temperature, strengthens the pulverization of coal with a high average flatness, and has a low average flatness This is a case where coal pulverization is relaxed and all coals of the pulverization strengthening group and the pulverization relaxation group are mixed. Crushing 2 classifies coal into three groups according to the average flatness of the tissue components that hardly show softening and melting at the coking temperature, strengthening the pulverization of coal with a relatively high average flatness, and relatively high average flatness This is the case when all the groups of coal are mixed by easing the low coal pulverization. Moreover, comparative grinding | pulverization 1 and 2 are the cases where it grind | pulverizes according to the kind of coal, without considering an average aspect ratio, and mixes the coal of all the groups.
さらに比較のために、配合1の石炭をすべて配合後に粉砕処理する、一括粉砕も行った。一括粉砕の場合には、石炭銘柄毎の粉砕粒度を管理することは不可能である。 Further, for comparison, batch pulverization was performed in which all of the coal of blend 1 was pulverized after blending. In the case of batch pulverization, it is impossible to control the pulverization particle size for each coal brand.
また、配合1の条件で、粉砕2の粉砕処理を行って配合した配合炭に、添加物粒子a、bを、それぞれ外数で3mass%添加した場合についても試験を行った。 In addition, a test was also performed in the case where additive particles a and b were added in an external number of 3 mass% to the blended coal blended by performing the pulverization process of pulverization 2 under the conditions of formulation 1.
上記の配合条件、粉砕条件で調整した原料を用いて、乾留炉で乾留温度900度、乾留時間15時間でコークスの製造を行い、製造されたコークスのコークス化温度で軟化溶融をほとんど示さない成分の平均扁平率、ドラム強度、平均粒径を測定した。コークス化温度で軟化溶融をほとんど示さない成分の平均扁平率は石炭中の軟化溶融をほとんど示さない組織成分の平均扁平率と同様にして測定した。コークスにおけるコークス化温度で軟化溶融をほとんど示さない成分の平均扁平率と、配合炭の段階でのコークス化温度で軟化溶融をほとんど示さない成分の平均扁平率との差は、誤差の範囲であった。石炭の配合条件、粉砕条件がコークス品質に及ぼす影響を表5に示す。 Ingredients that produce coke using a raw material adjusted under the above blending conditions and pulverization conditions at a carbonization temperature of 900 degrees centigrade and a carbonization time of 15 hours, and show little softening and melting at the coking temperature of the produced coke. The average flatness, drum strength, and average particle diameter were measured. The average flatness of the component showing little softening and melting at the coking temperature was measured in the same manner as the average flatness of the tissue component showing little softening and melting in coal. The difference between the average flatness of components that show little softening and melting at the coking temperature in coke and the average flatness of components that show little softening and melting at the coking temperature at the blended coal stage is within the range of error. It was. Table 5 shows the influence of coal blending conditions and pulverization conditions on coke quality.
また、添加物粒子a、bを添加した場合に製造されたコークスの、コークス化温度で軟化溶融をほとんど示さない組織成分の平均扁平率、ドラム強度、平均粒径を表6に示す。 Table 6 shows the average flatness, drum strength, and average particle diameter of the structural components that hardly show softening and melting at the coking temperature of the coke produced when additive particles a and b are added.
表5に示すように、一括粉砕や比較粉砕1、2の場合(No.6〜8)に比べて、平均扁平率に応じたグループ分けを行って粉砕処理の程度を変更した粉砕1、2(No.1〜5)の場合には、平均扁平率が小さくなり、コークス化温度で軟化溶融をほとんど示さない組織成分が真球に近づいたことが分かった。また、コークス化温度で軟化溶融をほとんど示さない組織成分の平均扁平率が低いほど、ドラム強度と平均粒径は大きくなり、より高品質のコークスが製造できることが分かった。 As shown in Table 5, as compared with the cases of batch pulverization and comparative pulverizations 1 and 2 (Nos. 6 to 8), the pulverization 1 and 2 were performed by grouping according to the average flatness and changing the degree of pulverization treatment. In the case of (No. 1 to 5), it was found that the average flattening ratio was small, and the tissue component that hardly showed softening and melting at the coking temperature approached the true sphere. In addition, it was found that the lower the average flatness of the tissue component that hardly shows softening and melting at the coking temperature, the larger the drum strength and the average particle diameter, and the higher quality coke can be produced.
また表6に示すように、原料石炭に平均扁平率の異なる添加物を加えた場合にも、添加物の平均扁平率が小さい方(No.11)が、コークスにおけるコークス化温度で軟化溶融をほとんど示さない組織成分全体としての平均扁平率が小さくなり、コークス品質が高くなることが確認された。 In addition, as shown in Table 6, when additives having different average flatness ratios were added to the raw material coal, the one having a smaller average flatness ratio (No. 11) was softened and melted at the coking temperature in the coke. It was confirmed that the average flatness of the entire tissue component which is hardly shown was reduced and the coke quality was improved.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192670A JP4438532B2 (en) | 2004-06-30 | 2004-06-30 | Coke and method for producing coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004192670A JP4438532B2 (en) | 2004-06-30 | 2004-06-30 | Coke and method for producing coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006016417A JP2006016417A (en) | 2006-01-19 |
JP4438532B2 true JP4438532B2 (en) | 2010-03-24 |
Family
ID=35790977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004192670A Expired - Lifetime JP4438532B2 (en) | 2004-06-30 | 2004-06-30 | Coke and method for producing coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4438532B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023054065A1 (en) * | 2021-09-30 | 2023-04-06 | Jfeスチール株式会社 | Coal analyzer, coal analysis method, mixed coal preparation method, and coke production method |
CN115365503B (en) * | 2022-07-25 | 2023-08-01 | 西安交通大学 | Preparation method of aluminum nitride reinforced aluminum alloy cylinder sleeve |
-
2004
- 2004-06-30 JP JP2004192670A patent/JP4438532B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2006016417A (en) | 2006-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008111068A (en) | Manufacturing process of coke for blast furnace | |
KR101232586B1 (en) | Process for producing coke for blast furnace | |
JP5737002B2 (en) | Method for producing blended coal for coke oven charging | |
JP6265015B2 (en) | Coke manufacturing method | |
JP4054278B2 (en) | Manufacturing method of high strength coke | |
JP4438532B2 (en) | Coke and method for producing coke | |
JP5686052B2 (en) | Coke production method | |
JP6694161B2 (en) | Method of manufacturing metallurgical coke | |
JP6107374B2 (en) | Coke production method | |
JP6065510B2 (en) | Method of blending coke raw material for blast furnace | |
TWI527895B (en) | Method for producing coke for metallurgy | |
JP2007169603A (en) | Method for producing ferrocoke and sintered ore | |
JP5942971B2 (en) | Coke production method | |
JP4890200B2 (en) | Manufacturing method of high strength coke | |
JP6075354B2 (en) | Coke production method | |
JP2015174934A (en) | Method of producing coke for plast furnace | |
JP5151490B2 (en) | Coke production method | |
JP4899390B2 (en) | Coke production method | |
JP5011833B2 (en) | Coke manufacturing method | |
JP5768726B2 (en) | Coke production method | |
JP6590155B2 (en) | Coke for metallurgy and method for producing the same | |
JP5668287B2 (en) | Method for producing metallurgical coke | |
JP3637838B2 (en) | Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method | |
JP2009249596A (en) | Method of manufacturing coke | |
JP2017165850A (en) | Manufacturing method of coke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091228 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4438532 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130115 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140115 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |