JP3637838B2 - Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method - Google Patents
Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method Download PDFInfo
- Publication number
- JP3637838B2 JP3637838B2 JP2000098550A JP2000098550A JP3637838B2 JP 3637838 B2 JP3637838 B2 JP 3637838B2 JP 2000098550 A JP2000098550 A JP 2000098550A JP 2000098550 A JP2000098550 A JP 2000098550A JP 3637838 B2 JP3637838 B2 JP 3637838B2
- Authority
- JP
- Japan
- Prior art keywords
- coal
- blended
- particle size
- coke
- caking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coke Industry (AREA)
Description
【0001】
この発明は、コークス炉に装入する石炭の粉砕方法及びコークスの製造方法に関するものである。
【0002】
【従来の技術】
多種多用な原料炭を配合し、粉砕してコークスを製造する場合、原料炭の配合条件を一定にしても、粉砕後の粒度構成によって、製造されるコークスの強度は異なることが従来から指摘されている。一般的に、冶金用コークスの製造においては、粉砕後の石炭粒度が、3mm以下の粒度割合が、70〜90wt%になるように管理されている。
【0003】
石炭の粉砕後の粒度を適切化して、コークス品質を改善する方法の一つとして、石炭の性状に応じて粉砕粒度を管理する方法がある。例えば、活性成分に富んだ石炭を、最大粒子径が4〜10mmになるように粉砕し、活性成分に富まない石炭を、最大粒子径が1〜3mmになるように粉砕する方法が、特開昭56−32587号公報に開示されている。ここでは、石炭を構成するフジニット、セミフジニット、スクレロチニット、マクリニット及び鉱物質の含有率が20容積%未満の石炭を、活性成分に富む石炭と定義している。同公報に開示されたの方法は、石炭中の不活性成分を選択的に細粒化し、均一分散させることによりコークス組織の均一性を向上させ、コークス強度を改善することを特徴としている。
【0004】
しかし、最近、配合炭のコスト合理化を目的に、非微粘結炭に代表される活性成分に富まない石炭の使用割合が増加している。この状況下では、活性成分に富まない石炭を選択的に細粒化すると、コークス炉への装入嵩密度が低下し、コークス強度が逆に低下する。加えて、生産量が減少するといった悪影響も発生する。
【0005】
石炭をその性状に応じて2つ以上のグループに分けて配合、粉砕した後、全ての石炭を混合するに先立って、各グループの粒度目標値をそのコークス化性に応じて定める方法の一つとして、粉砕性の高い石炭の粉砕後の粒度構成を配合炭全体の粒度目標値より粗くし、粉砕性の低い石炭の粒度構成を配合炭全体の粒度目標値より細かくすることにより、配合炭全体の微粉部分の粒度構成を調整し、石炭の装入嵩密度を向上させ、コークス品質の向上を図る方法が、特開平8−259953号公報に開示されている。
【0006】
図4に、石炭性状と石炭のハードグローブ粉砕指数(HGI)との関係を示す。ここで、HGIはJIS−M8801に従って測定した値である。特開平8−259953号公報によれば、HGIが80以上の石炭を粗く粉砕することから、このグループに含まれる高反射率非微粘結炭の一部が、大粒子径のまま配合炭中に残ることになる。非微粘結炭の大粒子径の界面では、大きな熱応力が発生するため、高反射率非微粘結炭の界面には、亀裂が発生し易い。これは、コークス強度を低下させる要因となる。
【0007】
また、特開平9−279152号公報に開示された方法は、全膨張率の大きい石炭を所定値より粗く粉砕し、全膨張率の小さい石炭を所定値より細かく粉砕することを特徴としている。
【0008】
全膨張率の小さい石炭には、低反射率非微粘結炭と高反射率非微粘結炭が該当し、低反射率非微粘結炭に比し高反射率非微粘結炭は炭化が進んでいるため、より活性である。この結果、高反射率非微粘結炭の微粉は、低反射率非微粘結炭の微粉に比較し、コークス強度に悪影響を与える。
【0009】
【発明が解決しようとする課題】
上述した状況に鑑み、この発明は上記問題点を解決するための方法として、コークス炉に装入すべき石炭の適切な粉砕技術を開発することを課題とする。そして、この発明の目的は、コークス強度の低下影響度の異なる性状を有する石炭、特に低反射率非微粘結炭と高反射率非微粘結炭とを別々の粉砕グループに分けて粉砕することにより、コークス炉への装入嵩密度を低下させずに、高強度の冶金用コークスを製造するための石炭の粉砕方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者等は、上記課題を解決して、コークス強度を低下させることなく、非微粘結炭の使用量を増加するためには、多数の銘柄の石炭をそれぞれの性状に基づきグループ分けし、それぞれのコークス化性に基づき適切な粒度に粉砕した後、それぞれのグループの粉砕炭を配合し、混合してコークス炉に装入すれば、所期の目的を達成し得ることを知見した。
【0011】
この発明は上記知見に基づきなされたものであり、その要旨は次の通りである。即ち、請求項1記載の発明に係る冶金用コークス製造過程における石炭の粉砕方法は、2以上の銘柄の石炭を、各銘柄の石炭の性状に応じて2つ以上のグループに分け、こうして分けられた各石炭グループ毎に配合し、その各石炭グループ毎に、各銘柄の石炭のコークス化性に基づいて予め粉砕後の目標粒度を定めておき、この定められた粒度目標値を満たすように粉砕する。次いで、得られた各石炭グループ毎に粉砕された石炭の全てを配合し、混合して得られた配合炭中に占める、低反射率非微粘結炭であってその粒径が6〜10mmのものの割合を8wt%以下とし、且つ配合炭中に占める、粘結炭であってその粒径が6〜10mmのものの割合を5〜20wt%の範囲内とすることに特徴を有するものである。
【0012】
請求項2記載の発明に係る冶金用コークスの製造方法は、2以上の銘柄の石炭を、当該各銘柄の石炭の性状に応じて2つ以上のグループに分け、こうして分けられた各石炭グループ毎に事前に配合し、当該各石炭グループ毎に定められた粒度目標値を満たすように粉砕した後、得られた当該各石炭グループ毎に粉砕された石炭の全てを配合し、混合して得られた配合炭中に占める、低反射率非微粘結炭であってその粒径が6〜10mmのものの割合を8wt%以下とし、且つ当該配合炭中に占める、粘結炭であってその粒径が6〜10mmのものの割合を5〜20wt%の範囲内とすることに特徴を有するものである。
【0013】
【発明の実施の形態】
石炭は種類により入荷時の粒度や粉砕性が異なるため、石炭を配合した後そのまま粉砕機に通して、配合炭全体の粒度構成を調整した場合には、柔らかい石炭の優先粉砕現象が発生し、一方、入荷時の粒径が大きく、粉砕性の悪い石炭は、粗粒部分に多く偏在することになる。低反射率非微粘結炭は、入荷時の粒径が大きく、粉砕性の悪い石炭の代表的なものである。
【0014】
そこで、均一な粘結層内に低反射率非微粘結炭粒子が存在すると仮定し、乾留時におけるコークス化した粘結炭と低反射率非微粘結炭粒子との界面における熱応力の計算を行なった。その結果、コークスの基質部(粘結炭)と低反射率非微粘結炭粒子とでは、乾留時の膨張収縮挙動が異なるため、粒子界面には大きな熱応力が発生し、その大きさは低反射率非微粘結炭粒子の粒子径増加に伴って大きくなる。この結果、低反射率非微粘結炭粒子の粒子径増加に伴って粒子界面に発生する亀裂は増加し、コークス強度は低下する。
【0015】
そこで、コークス強度の低下を招く、低反射率非微粘結炭の粗粒子割合の増加を抑制するために、石炭をその性状に応じて2つ以上のグループに分け、例えば、低反射率非微粘結炭とその他の石炭との少なくとも2つ以上のグループに分け、分けられた石炭グループ毎に配合し、粉砕した後、グループ毎に粉砕された全ての石炭を混合し、得られた混合炭をコークスにする方法が、コークス強度の低下防止に有効となる。
【0016】
このように、良質なコークスを製造しようとする場合、石炭を粉砕するに当たっては、粉砕される各石炭グループ内で優先粉砕現象が発生するのを抑制することが必要であり、そのためには、石炭のグループ分け基準の一つとして、石炭の粉砕性を採用するのが望ましい。
【0017】
また、同じ非微粘結炭の中でも、低反射率非微粘結炭と高反射率非微粘結炭とでは、それらが粗粒子であるか微粒子であるかを問わず、両者間でのコークス化性が異なる。このようにコークス化性が異なる石炭を、コークス製造過程における石炭のグループ分け基準の一つとして採用することは必須要件とすべきである。従って、コークス製造過程で石炭を粉砕するに当たって石炭をグループ分けするときの基準として、コークス化性を採用することも必須要件とすべきである。
【0018】
以上により、石炭を乾留して良質のコークスを製造する際の石炭粉砕時には、石炭を粘結炭、低反射率非微粘結炭、及び高反射率非微粘結炭の少なくとも3グループに事前に分類することが望ましい。
【0019】
次に、本発明における上記3分類された各石炭の使用方法の限定とその理由を説明する。
【0020】
高反射率非微粘結炭は、粗粒子の割合の増加あるいは微粒子の割合の増加のいずれによってでも、コークス強度の低下要因となる。一方、高反射率非微粘結炭は粉砕性がよいので、粉砕を強化しなくても粗粒子の発生は抑制される。従って、高反射率非微粘結炭の粉砕に際しては、微粉の発生を抑制するために、全配合炭の平均目標粒径までの粉砕に留めておくのが望ましい。
【0021】
低反射率非微粘結炭は粉砕性が悪いので、若干粉砕を強化して、コークスの亀裂発生の要因となる低反射率非微粘結炭の粗粒子の割合を抑制する必要がある。配合炭中に占める低反射率非微粘結炭の6mm以上の粒子割合は、少ない方がよく、8wt%以下であることがコークス品質上、特にコークス強度上望ましい。
【0022】
これに対して、粘結炭は粉砕性が良好であるから、粗粒子の割合及び微粒子の割合がコークス化性に及ぼす影響度は小さい。しかし、非微粘結炭の粗粒子の割合が減少すると、配合炭の装入嵩密度が低下する。従って、配合炭全体の粒度分布を適切に調整するため、粘結炭は全配合炭の平均目標粒径よりも粗く粉砕する必要がある。
【0023】
従って、配合炭中に占める粘結炭の6mm以上の粒子割合は、所定の範囲内にあることが望ましく、特に、5〜8wt%の範囲内にあることが望ましい。
【0024】
【実施例】
この発明を実施例により更に説明する。
試験用小型乾留炉における試験結果を[試験1]に、そして、実炉における試験結果を[試験]2に示す。
【0025】
[試験1]
実操業のコークス炉をシミュレートすることができる試験用小型乾留炉を用いて石炭の乾留試験を行なった。試験は、本発明の範囲内にある実施例1及び本発明の範囲外にある比較例1の試験を行なった。実施例1及び比較例1のいずれの試験においても石炭試料として、表1に示す粘結炭を2銘柄(粘結炭1、粘結炭2)及び非微粘結炭を2銘柄(非微粘結炭1、非微粘結炭2)使用した。
【0026】
【表1】
【0027】
ここで、非微粘結炭1及び非微粘結炭2はいずれも、表1に示した測定値からわかるように、低反射率非微粘結炭である。
【0028】
実施例1及び比較例1のいずれの場合にも、石炭試料を、そのコークス化性に基づき、粘結炭1及び粘結炭2からなる粘結炭グループ(「グループA」)と、非微粘結炭1及び非微粘結炭2からなる低反射率非微粘結炭グループ(「グループB」)とに分けた。次いで、石炭グループA及び石炭グループB共に、各石炭グループに属する銘柄の石炭を50wt%ずつ事前に配合した。こうして事前に配合された石炭を、グループ毎にそれぞれを粉砕した。
【0029】
実施例1及び比較例1のそれぞれにおける、石炭グループ毎(石炭グループAと石炭グループB)の粉砕目標の粒度分布は、表2に示す通りである。
【0030】
【表2】
【0031】
表2よりわかるように、実施例1においては、石炭グループAを構成する粘結炭の粒度目標値として、6mm以上の粒子割合を16wt%、そして石炭グループBを構成する非微粘結炭の粒度目標値として、6mm以上の粒子割合を0wt%と定めた。これに対して、比較例1においては、石炭グループAを構成する粘結炭の粒度目標値として、6mm以上の粒子割合を8wt%、そして石炭グループBを構成する非微粘結炭の粒度目標値として、6mm以上の粒子割合も8wt%と定めた。
【0032】
次いで、実施例1及び比較例1のそれぞれにおいていずれも、石炭グループAの粉砕炭と石炭グループBの粉砕炭とを50wt%ずつ配合し、混合して、実施例1及び比較例1のそれぞれの配合炭を得た。
【0033】
その結果、実施例1にあっては、その配合炭中の、3mm以下の粒子割合は76wt%、6mm以上の粒子割合は8wt%となり、低反射率非微粘結炭であってその粒度が6mm以上のものの割合は0wt%特徴を有するものである。なる。これに対して、比較例1にあっては、その配合炭中の、3mm以下の粒子割合は実施例1と同じく76wt%、また6mm以上の粒子割合も実施例1と同じく8wt%となるが、低反射率非微粘結炭であってその粒度が6mm以上のものの割合は、実施例1における0wt%に対して高くなり、即ち、通常の実操業水準である4〜8wt%の低位水準である4wt%となっている。
【0034】
このように、配合炭中の粒度構成に関し、実施例1及び比較例1のいずれにおいても、3mm以下の粒子割合を76wt%で同じとし、且つ6mm以上の粒子割合を8wt%で同じとしたのは、コークス品質に及ぼす一要因である配合炭全体としての粒度の相違による影響を排除するためである。
【0035】
上記実施例1及び比較例1の各配合炭をそれぞれ、試験用小型乾留炉で乾留し、コークスを調製した。得られたコークスの強度試験を行ない、配合炭中に占める低反射率非微粘結炭であって粒径が6mm以上の粒子割合と、コークス強度との関係を、図1に示す。
【0036】
図1より、配合炭中に占める低反射率非微粘結炭の6mm以上の粒子割合を、4wt%から0wt%に減らすことにより、コークス強度は向上したことがわかる。
【0037】
[試験2]
(実施例2、実施例3)
本発明の石炭の粉砕方法として、実施例2及び実施例3を次の通り行なった。即ち、十数銘柄の石炭について、各石炭の最大平均反射率(RO)及び流動度(MF)の測定値を、図2に示すようにプロットし、x軸及びy軸で示した各特性値である、最大平均反射率(RO)と流動度(MF)の値の組合せによる占有領域に基づき、当該十数銘柄の石炭を、同図に示すように、石炭グループ1〜3に3分類した。
【0038】
その結果、石炭グループ1に分類された銘柄の石炭は、大半が粘結炭に属するものからなり、石炭グループ3に分類された銘柄の石炭は、大半が非微粘結炭に属するものからなり、そして、石炭グループ2に分類された銘柄の石炭は、全て高反射率炭からなり、粘結炭に属するものと、非微粘結炭に属するものとの両方が含まれることになった。
【0039】
こうして分類された各石炭グループ毎に、それぞれの石炭を配合し、各グループ毎に粉砕粒度目標値を定め、当該粉砕粒度目標値を満たすように粉砕した。そして、各石炭グループの粉砕炭中に占める粒径6mm以上のものの重量割合を測定した。
【0040】
表3に、実施例2及び3について、石炭グループ1〜3のそれぞれについての、粉砕炭中に占める粒径6mm以上のものの割合を示す。
【0041】
【表3】
【0042】
次いで、石炭グループ1〜3の粉砕炭を所定の割合で配合し、混合して配合炭を調製した。こうして調製された配合炭中に占める非微粘結炭の粒径6mm以上のものの割合を測定した。測定結果を表3に併記した。即ち、配合炭中に占める非微粘結炭の粒径6mm以上のものの割合は、実施例2では4wt%、実施例3では2wt%であった。
【0043】
(比較例2)
一方、本発明の範囲外の石炭の粉砕方法として、比較例2を次の通り行なった。即ち、粉砕に使用した石炭は、実施例2及び3と同一の十数銘柄の石炭を使用した。但し、それらを石炭グループに分類せずに、それら全ての銘柄の石炭を所定割合で配合し、粉砕粒度目標値を定め、当該粉砕粒度目標値を満たすように粉砕した。その結果、この粉砕炭即ち配合炭中に占める粒径6mm以上のものの重量割合は、表3に併記する通り、8〜10wt%であった。そして、この比較例2の配合炭中に占める非微粘結炭の粒径6mm以上のものの割合は、同表に示す通り、8wt%であった。
【0044】
このように実施例2及び3により調製された各配合炭、並びに、比較例2により調製された配合炭をそれぞれ実機コークス炉に装入し、コークスを試験製造した。
こうして得られたコークスの強度を測定した。測定結果を図3に示す。
【0045】
図3より、本発明の粉砕方法である実施例2及び3により粉砕された石炭をコークス炉に装入した場合には、本発明の粉砕方法を実施しなかった比較例2により粉砕された石炭をコークス炉に装入した場合よりも、製造されたコークスの強度は優れていることがわかる。更に、実施例2及び3により、配合炭中に占める非微粘結炭の粒径6mm以上のものの割合を、4wt%から2wt%に減らすと、製造されるコークスの強度は一層向上することがわかる。
【0046】
なお、上記実施例において、配合炭中に占める非微粘結炭の粒径6mm以上のものの割合を0wt%にした場合には、石炭乾留中に発生する非微粘結炭の粒子界面における熱応力が減少するので、コークス強度は更に向上することが予測される。
【0047】
【発明の効果】
以上述べたように、この発明によれば、コークス強度を従来通りに維持しつつ、非微粘結炭の使用量を増やすことが可能となるので、原料炭のコスト低減を図ることができる。このような冶金用コークス製造過程における石炭の粉砕方法及びコークスの製造方法を提供することができ、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】試験用小型乾留炉に装入された、本発明の粉砕方法により粉砕された配合炭、及び本発明の範囲外の粉砕方法により粉砕された配合炭のそれぞれに占める、非微粘結炭中の粒径6mm以上のものの割合と、得られたコークスの強度との関係を示すグラフである。
【図2】複数銘柄の石炭を、その性状特性としての最大平均反射率(RO)及び流動度(MF)により分類した場合を説明する図である。
【図3】コークス炉に装入された、本発明の粉砕方法により粉砕された石炭中に占める非微粘結炭中の粒径6mm以上のものの割合と、得られたコークスの強度との関係、並びに、本発明の範囲外である比較例による場合のそれを示すグラフである。
【図4】石炭化度と石炭のハードグローブ粉砕指数(HGI)との関係を示すグラフである。
【図5】非微粘結炭の粒子径と粒子界面熱応力との関係を示すグラフである。[0001]
The present invention relates to a method for manufacturing a grinding how and coke coal charged into the coke oven.
[0002]
[Prior art]
It has been pointed out that when coke is produced by blending various coking coals and pulverizing to produce coke, the strength of the coke produced varies depending on the particle size composition after pulverization, even if the mixing conditions of the raw coal are constant. ing. Generally, in the manufacture of metallurgical coke, the coal particle size after pulverization is controlled such that the particle size ratio of 3 mm or less is 70 to 90 wt%.
[0003]
As a method for improving the coke quality by optimizing the particle size after pulverization of coal, there is a method of managing the pulverization particle size according to the properties of the coal. For example, a method in which coal rich in active ingredients is pulverized so that the maximum particle diameter is 4 to 10 mm, and coal not rich in active ingredients is crushed so that the maximum particle diameter is 1 to 3 mm. This is disclosed in Japanese Utility Model Laid-Open No. 56-32587. Here, Fujinit, Semi Fujinit, Sclerotinit, Macrinit, and coal with a mineral content of less than 20% by volume are defined as coal rich in active ingredients. The method disclosed in the publication is characterized in that the coke strength is improved by selectively finely pulverizing and uniformly dispersing the inert components in the coal to improve the coke texture uniformity.
[0004]
However, recently, for the purpose of rationalizing the cost of blended coal, the proportion of coal that is not rich in active components typified by non-caking coal is increasing. Under this circumstance, when coal that is not rich in active components is selectively refined, the bulk density charged into the coke oven is lowered, and the coke strength is lowered. In addition, there is an adverse effect such as a decrease in production.
[0005]
One of the methods to determine the target particle size of each group according to its coking properties before mixing all coal after blending and pulverizing coal into two or more groups according to its properties As a result, the grain size composition after pulverization of coal with high pulverization is coarser than the target grain size of the entire blended coal, and the grain size composition of coal with low pulverization is made finer than the target grain size of the entire blended coal. JP-A-8-259953 discloses a method for improving the coke quality by adjusting the particle size structure of the fine powder portion of the steel to improve the coal bulk density.
[0006]
FIG. 4 shows the relationship between the coal properties and the hard glove grinding index (HGI) of the coal. Here, HGI is a value measured according to JIS-M8801. According to Japanese Patent Laid-Open No. 8-259953, coal having HGI of 80 or more is coarsely pulverized. Therefore, a part of the high reflectance non-slightly caking coal contained in this group remains in the blended coal with a large particle size. Will remain. Since a large thermal stress is generated at the interface of the non-slightly caking coal with a large particle diameter, cracks are likely to occur at the interface of the high reflectance non-slightly caking coal. This becomes a factor of reducing the coke strength.
[0007]
Moreover, the method disclosed in Japanese Patent Application Laid-Open No. 9-279152 is characterized in that coal having a large total expansion coefficient is pulverized coarsely from a predetermined value, and coal having a small total expansion coefficient is pulverized finer than a predetermined value.
[0008]
Coal with a small total expansion rate includes low-reflectivity non-fine-coking coal and high-reflectivity non-micro-coking coal. It is more active due to the progress of carbonization. As a result, the fine powder of high reflectivity non-slightly caking coal has an adverse effect on the coke strength compared to the fine powder of low reflectivity non-slightly caking coal.
[0009]
[Problems to be solved by the invention]
In view of the above-described situation, an object of the present invention is to develop an appropriate pulverization technique for coal to be charged into a coke oven as a method for solving the above problems. The object of the present invention is to pulverize coals having different properties of coke strength lowering effects, in particular, low-reflectivity non-slightly caking coal and high-reflectivity non-slightly caking coal in separate pulverization groups. Thus, an object of the present invention is to provide a coal pulverization method for producing high-strength metallurgical coke without reducing the bulk density charged into the coke oven.
[0010]
[Means for Solving the Problems]
In order to solve the above problems and increase the amount of non-slightly caking coal without reducing the coke strength, the present inventors grouped many brands of coal based on their properties. It was discovered that the desired purpose could be achieved if each group of pulverized coal was blended, mixed and charged into a coke oven after being pulverized to an appropriate particle size based on the respective coking properties.
[0011]
The present invention has been made based on the above findings, and the gist thereof is as follows. That is, the method of pulverizing coal in the metallurgical coke manufacturing process according to
[0012]
Manufacturing process of metallurgical coke according to a second aspect of the present invention, two or more coal stocks, the divided into two or more groups according to the properties of coal each stock, thus divided was the coal group After blending in advance and pulverizing so as to meet the target particle size defined for each coal group, all the coal pulverized for each coal group obtained is blended and mixed. A low-reflectivity non-slightly caking coal occupying in the blended coal, and a ratio of the particle size of 6 to 10 mm is 8 wt% or less, and the caking coal occupying in the blended coal It is characterized in that the ratio of particles having a particle diameter of 6 to 10 mm is in the range of 5 to 20 wt%.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Since coal has different particle sizes and grindability at the time of arrival depending on the type, when coal is blended and passed through the grinder as it is and the particle size composition of the entire blended coal is adjusted, the preferential crushing phenomenon of soft coal occurs, On the other hand, coal with a large particle size at the time of arrival and poor pulverization is unevenly distributed in the coarse portion. Low-reflectivity non-coking coal has a large particle size at the time of arrival and is representative of coal with poor grindability.
[0014]
Therefore, assuming that there are low-reflectivity non-fine-coking coal particles in the uniform caking layer, the thermal stress at the interface between coking coke and low-reflectivity non-coking coal particles during dry distillation is assumed. Calculations were made. As a result, the coke matrix part (caking coal) and low-reflectivity non-caking coal particles have different expansion and contraction behaviors during dry distillation, so a large thermal stress is generated at the particle interface. It increases with an increase in the particle size of the low-reflectivity non-caking coal particles. As a result, cracks generated at the particle interface increase with an increase in the particle diameter of the low-reflectivity non-finely caking coal particles, and the coke strength decreases.
[0015]
Therefore, in order to suppress an increase in the ratio of coarse particles of low-reflectivity non-slightly caking coal that causes a reduction in coke strength, coal is divided into two or more groups according to its properties. Divided into at least two or more groups of finely caking coal and other coal, blended for each divided coal group, pulverized, then mixed all the pulverized coal for each group, and obtained mixing The method of using charcoal as coke is effective in preventing reduction in coke strength.
[0016]
Thus, when trying to produce good-quality coke, when pulverizing coal, it is necessary to suppress the occurrence of the preferential pulverization phenomenon in each coal group to be pulverized. It is desirable to adopt coal grindability as one of the grouping criteria.
[0017]
In addition, among the same non-slightly caking coal, the low reflectance non-slightly caking coal and the high reflectance non-slightly caking coal, regardless of whether they are coarse particles or fine particles, Different coking properties. It should be an essential requirement to adopt coal with different coking properties as one of the coal grouping criteria in the coke production process. Therefore, it should be an essential requirement to adopt coking properties as a standard for grouping coal in the process of pulverizing coal in the coke production process.
[0018]
As described above, when coal is pulverized when carbonized to produce high-quality coke, the coal is preliminarily made into at least three groups of caking coal, low reflectance non-caking coal, and high reflectance non-caking coal. It is desirable to classify
[0019]
Next, the limitation of the use method of each of the three classified coals in the present invention and the reason thereof will be described.
[0020]
High reflectance non-slightly caking coal will cause a reduction in coke strength, either by increasing the proportion of coarse particles or by increasing the proportion of fine particles. On the other hand, since high reflectivity non-slightly caking coal has good grindability, the generation of coarse particles can be suppressed without pulverization. Therefore, when pulverizing high-reflectivity non-coking coal, it is desirable to keep the pulverization to the average target particle size of all blended coals in order to suppress the generation of fine powder.
[0021]
Since low reflectivity non-slightly caking coal has poor grindability, it is necessary to slightly crush and suppress the ratio of coarse particles of low reflectivity non-slightly caking coal that cause cracks in coke. The proportion of particles of 6 mm or more of the low-reflectivity non-finely caking coal in the blended coal should be small, and 8 wt% or less is desirable in terms of coke quality, particularly coke strength.
[0022]
On the other hand, caking coal has good grindability, so the degree of influence of the ratio of coarse particles and the ratio of fine particles on coking properties is small. However, when the ratio of the coarse particles of non-slightly caking coal decreases, the charging bulk density of the blended coal decreases. Therefore, in order to appropriately adjust the particle size distribution of the entire blended coal, the caking coal needs to be pulverized more coarsely than the average target particle size of the entire blended coal.
[0023]
Therefore, the particle ratio of 6 mm or more of the caking coal in the blended coal is desirably within a predetermined range, and particularly desirably within a range of 5 to 8 wt%.
[0024]
【Example】
The invention is further illustrated by the examples.
The test result in the test small dry distillation furnace is shown in [Test 1], and the test result in the actual furnace is shown in [Test] 2.
[0025]
[Test 1]
Coal dry distillation tests were performed using a small dry distillation test furnace capable of simulating an actual coke oven. The test was conducted on Example 1 within the scope of the present invention and Comparative Example 1 outside the scope of the present invention. In both tests of Example 1 and Comparative Example 1, as coal samples, two brands of caking coal shown in Table 1 (caking
[0026]
[Table 1]
[0027]
Here, as can be seen from the measured values shown in Table 1, both the
[0028]
In any case of Example 1 and Comparative Example 1, a coal sample was mixed with a caking coal group consisting of caking
[0029]
The particle size distribution of the pulverization target for each coal group (coal group A and coal group B) in each of Example 1 and Comparative Example 1 is as shown in Table 2.
[0030]
[Table 2]
[0031]
As can be seen from Table 2, in Example 1, as the particle size target value of the caking coal constituting the coal group A, the particle ratio of 6 mm or more is 16 wt%, and the non-minor caking coal constituting the coal group B As a particle size target value, a particle ratio of 6 mm or more was determined as 0 wt%. On the other hand, in the comparative example 1, as a particle size target value of the caking coal which comprises the coal group A, the particle ratio of 6 mm or more is 8 wt%, and the particle size target of the non-micro caking coal which comprises the coal group B As a value, a particle ratio of 6 mm or more was also determined to be 8 wt%.
[0032]
Next, in each of Example 1 and Comparative Example 1, 50 wt% of coal group A and coal group B of pulverized coal were blended and mixed, and each of Example 1 and Comparative Example 1 was mixed. A blended charcoal was obtained.
[0033]
As a result, in Example 1, the proportion of particles of 3 mm or less in the blended coal was 76 wt%, the proportion of particles of 6 mm or more was 8 wt%, and was a low-reflectivity non-slightly caking coal with a particle size of The ratio of 6 mm or more has 0 wt% characteristics. Become. On the other hand, in Comparative Example 1, the proportion of particles of 3 mm or less in the blended coal is 76 wt% as in Example 1, and the proportion of particles of 6 mm or more is 8 wt% as in Example 1. The ratio of low-reflectivity non-coking coal having a particle size of 6 mm or more is higher than 0 wt% in Example 1, that is, a low level of 4 to 8 wt% which is a normal actual operation level. It is 4 wt%.
[0034]
Thus, regarding the particle size composition in the blended coal, in both Example 1 and Comparative Example 1, the particle ratio of 3 mm or less was the same at 76 wt%, and the particle ratio of 6 mm or more was the same at 8 wt%. This is in order to eliminate the influence of the difference in the particle size of the entire blended coal, which is one factor affecting the coke quality.
[0035]
Each of the blended coals of Example 1 and Comparative Example 1 was subjected to carbonization in a test small carbonization furnace to prepare coke. The strength test of the obtained coke was conducted, and the relationship between the proportion of particles having a low reflectance of non-slightly caking coal having a particle size of 6 mm or more in the blended coal and the coke strength is shown in FIG.
[0036]
From FIG. 1, it can be seen that the coke strength was improved by reducing the proportion of particles of 6 mm or more of the low-reflectivity non-slightly caking coal in the blended coal from 4 wt% to 0 wt%.
[0037]
[Test 2]
(Example 2, Example 3)
Example 2 and Example 3 were performed as follows as the coal pulverization method of the present invention. That is, with respect to ten or more brands of coal, the measured values of maximum average reflectance ( RO ) and fluidity (MF) of each coal are plotted as shown in FIG. Based on the occupied area by the combination of the values of the maximum average reflectance (R O ) and the fluidity (MF), which are the values, the coal groups of 1 to 3 are assigned to the
[0038]
As a result, most of the brands classified as
[0039]
For each coal group thus classified, each coal was blended, a pulverization particle size target value was determined for each group, and pulverization was performed so as to satisfy the pulverization particle size target value. And the weight ratio of the thing with a particle size of 6 mm or more occupied in the pulverized coal of each coal group was measured.
[0040]
Table 3 shows the ratio of particles having a particle diameter of 6 mm or more in the pulverized coal for each of the
[0041]
[Table 3]
[0042]
Subsequently, the pulverized coals of
[0043]
(Comparative Example 2)
On the other hand, Comparative Example 2 was performed as follows as a method for pulverizing coal outside the scope of the present invention. That is, as the coal used for pulverization, the same dozen brands of coal as in Examples 2 and 3 were used. However, without classifying them into coal groups, coals of all of these brands were blended at a predetermined ratio, a pulverization particle size target value was determined, and pulverized so as to satisfy the pulverization particle size target value. As a result, as shown in Table 3, the weight ratio of the pulverized coal, that is, the one having a particle diameter of 6 mm or more in the pulverized coal was 8 to 10 wt%. And the ratio of the non-slightly caking coal with a particle size of 6 mm or more in the blended coal of Comparative Example 2 was 8 wt% as shown in the table.
[0044]
In this way, each of the blended coals prepared in Examples 2 and 3 and the blended coal prepared in Comparative Example 2 were respectively charged into an actual coke oven, and coke was produced on a test basis.
The strength of the coke thus obtained was measured. The measurement results are shown in FIG.
[0045]
From FIG. 3, when the coal pulverized according to Examples 2 and 3 which are the pulverization method of the present invention was charged into a coke oven, the coal pulverized according to Comparative Example 2 where the pulverization method of the present invention was not performed. It can be seen that the strength of the produced coke is superior to the case of charging the coke oven. Further, according to Examples 2 and 3, when the ratio of non-slightly caking coal having a particle size of 6 mm or more in the blended coal is reduced from 4 wt% to 2 wt%, the strength of the coke produced can be further improved. Understand.
[0046]
In addition, in the said Example, when the ratio of the thing of the particle size 6mm or more of the non-slightly caking coal occupied in blended coal is 0 wt%, the heat | fever in the particle | grain interface of the non-slightly caking coal generated during coal carbonization As the stress decreases, the coke strength is expected to improve further.
[0047]
【The invention's effect】
As described above, according to the present invention, it is possible to increase the amount of non-slightly caking coal while maintaining the coke strength as before, and thus the cost of the raw coal can be reduced. Such method for producing metallurgical coke crushing how the coal in the manufacturing process and coke can provide, industrially useful effects are provided.
[Brief description of the drawings]
FIG. 1 shows the non-viscous viscosity of each of the blended coal pulverized by the pulverization method of the present invention and the blended coal pulverized by the pulverization method outside the scope of the present invention. It is a graph which shows the relationship between the ratio of the thing of particle size 6mm or more in carbonization, and the intensity | strength of the obtained coke.
FIG. 2 is a diagram illustrating a case where a plurality of brands of coal are classified by maximum average reflectance (R O ) and fluidity (MF) as their property characteristics.
FIG. 3 shows the relationship between the ratio of non-slightly caking coal with a particle size of 6 mm or more in coal pulverized by the pulverization method of the present invention charged in a coke oven and the strength of the obtained coke. And it is a graph which shows that in the case of the comparative example which is outside the scope of the present invention.
FIG. 4 is a graph showing the relationship between the degree of coalification and the hard glove grinding index (HGI) of coal.
FIG. 5 is a graph showing the relationship between the particle diameter of non-slightly caking coal and the particle interface thermal stress.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000098550A JP3637838B2 (en) | 2000-03-31 | 2000-03-31 | Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000098550A JP3637838B2 (en) | 2000-03-31 | 2000-03-31 | Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001279254A JP2001279254A (en) | 2001-10-10 |
JP3637838B2 true JP3637838B2 (en) | 2005-04-13 |
Family
ID=18613017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000098550A Expired - Fee Related JP3637838B2 (en) | 2000-03-31 | 2000-03-31 | Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3637838B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6107374B2 (en) * | 2013-04-23 | 2017-04-05 | 新日鐵住金株式会社 | Coke production method |
-
2000
- 2000-03-31 JP JP2000098550A patent/JP3637838B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001279254A (en) | 2001-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101232586B1 (en) | Process for producing coke for blast furnace | |
JP4054278B2 (en) | Manufacturing method of high strength coke | |
JP4788167B2 (en) | Method for producing metallurgical coke | |
JP3637838B2 (en) | Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method | |
CN110982548B (en) | Coal preparation method for coking coal material | |
JP4336208B2 (en) | Crushing method for coke oven coal | |
JP2006321935A (en) | Method and facilities for producing coke | |
JP5686052B2 (en) | Coke production method | |
JP4618219B2 (en) | Coke manufacturing method and manufacturing equipment | |
JP3580203B2 (en) | Adjustment method of coal for charging coke oven | |
JP4617814B2 (en) | Coke production method | |
KR100865223B1 (en) | Process for production of cokes and productive facilities therefor | |
JP5942971B2 (en) | Coke production method | |
JP5434214B2 (en) | Coke production method | |
JP5151490B2 (en) | Coke production method | |
JP4899390B2 (en) | Coke production method | |
JP6107374B2 (en) | Coke production method | |
JP3874004B2 (en) | Coke manufacturing method and manufacturing equipment | |
JP4102015B2 (en) | Method for adjusting the particle size of coal for coke production | |
JP3620386B2 (en) | Coke oven charging coal | |
JP2016148019A (en) | Manufacturing method of coke | |
JP4857603B2 (en) | Coke production method | |
JP5087911B2 (en) | Coke production method | |
JP4438532B2 (en) | Coke and method for producing coke | |
JP6115509B2 (en) | Coke production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050103 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3637838 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080121 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120121 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |