JP2017165850A - Manufacturing method of coke - Google Patents

Manufacturing method of coke Download PDF

Info

Publication number
JP2017165850A
JP2017165850A JP2016051879A JP2016051879A JP2017165850A JP 2017165850 A JP2017165850 A JP 2017165850A JP 2016051879 A JP2016051879 A JP 2016051879A JP 2016051879 A JP2016051879 A JP 2016051879A JP 2017165850 A JP2017165850 A JP 2017165850A
Authority
JP
Japan
Prior art keywords
coal
coke
less
total expansion
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016051879A
Other languages
Japanese (ja)
Other versions
JP6795314B2 (en
Inventor
勇樹 大八木
Yuki Oyagi
勇樹 大八木
裕子 西端
Hiroko Nishihata
裕子 西端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2016051879A priority Critical patent/JP6795314B2/en
Publication of JP2017165850A publication Critical patent/JP2017165850A/en
Application granted granted Critical
Publication of JP6795314B2 publication Critical patent/JP6795314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of coke capable of increasing intensity of manufactured coke by rationalizing pulverization particle size by a simple method without needs for specific device.SOLUTION: There is provided a manufacturing method of coke for manufacturing coke by dry distillating a coal charge obtained by blending a plurality of kinds of single coals, which includes a process A for screening each single col by a sieve with a predetermined opening, a process B for measuring total expansion ratio of a fraction with the predetermined opening or less, which is screened in the process A by a dilatometer, a process C for calculating a value Y exhibiting pulverization effect by Y=a×X+b×X+c, where Xis Gieseler maximum fluidity (ddpm), Xis total expansion ratio of a fraction with the predetermined opening or less and a, b and c are constants, a process D for determining a single coal having at least the largest value Y and a process for pulverizing the single coal which is determined to have at least the largest value Y.SELECTED DRAWING: Figure 1

Description

本発明は、コークスの製造方法に関する。   The present invention relates to a method for producing coke.

従来、製鉄原料として用いられるコークスは、高炉内での通液性を確保するため、高強度であることが求められる。   Conventionally, coke used as an iron-making raw material is required to have high strength in order to ensure liquid permeability in a blast furnace.

しかしながら、高強度なコークスを製造する、高品質な石炭を多く使用するとコークス製造コストが増加する。そこで、安価で高強度なコークス製造技術について、様々な検討がされてきており、その一環として粉砕粒度を適正化することで強度を制御する方法が検討されてきた。   However, if a large amount of high-quality coal that produces high-strength coke is used, coke production costs increase. Therefore, various investigations have been made on cheap and high-strength coke production techniques, and as part of this, methods for controlling the strength by optimizing the pulverized particle size have been studied.

一般に石炭をコークス炉へ装入した際の充填密度が一定であれば、同一配合において石炭を細かく粉砕するほど均質性が増加し、乾留して得られるコークスの強度が高まると言われている。   Generally, if the packing density when charging coal into a coke oven is constant, the homogeneity increases as the coal is finely pulverized in the same composition, and the strength of the coke obtained by dry distillation is said to increase.

しかしながら、粉砕粒度を細かくすることで充填密度が低下し、生産性が低下することが懸念されてきた。そこで、充填密度の低下を抑制するため、配合前の各単味炭を各石炭性状により整理し、各石炭の適切な粉砕粒度を設定する方法が報告されている。   However, it has been a concern that reducing the pulverized particle size reduces the packing density and decreases the productivity. Therefore, in order to suppress a decrease in packing density, there has been reported a method of arranging each simple coal before blending according to each coal property and setting an appropriate pulverization particle size of each coal.

例えば、特許文献1〜4には、イナート組織のサイズに応じて石炭の粉砕粒度、配合を制御することで高強度コークスを製造する方法が開示されている。   For example, Patent Documents 1 to 4 disclose a method for producing high-strength coke by controlling the pulverization particle size and blending of coal according to the size of the inert structure.

また、特許文献5〜7には、膨張率、全イナート量、入荷時平均粒度、平均最大反射率、ギーセラー最高流動度、ハードグローブ指数等、各種石炭性状に応じて適切な粉砕粒度を決定し、高強度コークスを製造する方法が開示されている。   In Patent Documents 5 to 7, an appropriate pulverization particle size is determined according to various coal properties such as expansion rate, total inert amount, average particle size at arrival, average maximum reflectance, maximum Gieseller fluidity, hard glove index, etc. A method for producing high strength coke is disclosed.

また、特許文献8には、浸透距離が大きい石炭を粉砕することで強度低下を抑制する方法が開示されている。   Patent Document 8 discloses a method for suppressing a decrease in strength by pulverizing coal having a large penetration distance.

また、特許文献9には、揮発分が30質量%以上で、ジラトメーター測定による全膨張率が40%以下、ギーセラー流動度(ddpm)の対数値が1.5以下の非微粘結炭を粉砕して配合炭の一部としてコークスを製造するにあたり、膨張性阻害変動率が所定の値以下になるように前記非微粘結炭の粉砕粒度を決定するコークスの製造方法が開示されている。   Patent Document 9 pulverizes non-coking coal having a volatile content of 30% by mass or more, a total expansion rate of 40% or less by dilatometer measurement, and a logarithmic value of Gieseller fluidity (ddpm) of 1.5 or less. In producing coke as part of the blended coal, a method for producing coke is disclosed in which the pulverization particle size of the non-slightly caking coal is determined so that the expansion inhibition fluctuation rate is a predetermined value or less.

特開2004−339503号公報JP 2004-339503 A 特開2008−297385号公報JP 2008-297385 A 特開2010−138254号公報JP 2010-138254 A 特開2006−273884号公報JP 2006-27384 A 特開2007−112941号公報JP 2007-112941 A 特開2008−133383号公報JP 2008-133383 A 特開2013−6958号公報JP2013-6958A 特開2012−72388号公報JP 2012-72388 A 特開2015−203045号公報Japanese Patent Laid-Open No. 2015-203045

特許文献1〜4において、イナートサイズを評価する方法は、顕微鏡によって撮影した石炭、コークス画像を画像解析する方法、イナートの累積体積比から評価する方法などである。しかしながら、このような手法による、粉砕後の石炭もしくは乾留後のコークスのイナートサイズの評価は煩雑であり、時間もかかるといった問題がある。   In Patent Documents 1 to 4, methods for evaluating the inert size include coal photographed by a microscope, a method of analyzing a coke image, a method of evaluating from a cumulative volume ratio of inert, and the like. However, the evaluation of the inert size of coal after pulverization or coke after carbonization by such a method is complicated and takes time.

また、特許文献5〜7の方法では、石炭性状を組み合わせる場合、複数の測定を実施する必要があり、情報を得るためには時間を要し、必要試料量も多くなるといった問題がある。   In the methods of Patent Documents 5 to 7, when coal properties are combined, it is necessary to perform a plurality of measurements, and it takes time to obtain information, and there is a problem that the amount of sample required increases.

また、特許文献8の方法では、浸透距離測定には特殊な測定装置が必要であるといった問題がある。   Further, the method of Patent Document 8 has a problem that a special measuring device is required for measuring the penetration distance.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、特殊な装置を必要とせず、簡便な方法で粉砕粒度を適正化して、製造されるコークスの強度を高強度化することが可能なコークスの製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and the object thereof is to increase the strength of coke produced by optimizing the pulverization particle size by a simple method without requiring a special apparatus. An object of the present invention is to provide a method for producing coke that can be used.

本発明者らは、各単味炭の粉砕粒度を適正化し、製造されるコークス強度を高強度化する方法について鋭意検討を行った。その結果、単味炭の中でも、粒度の細かい部分の性状が、よりコークス強度に寄与するであろう考えた。そして、鋭意検討したところ、所定粒度以下のフラクションの全膨張率が粉砕効果と相関があることを本発明者らは見出した。本発明は、上記知見を基になされたものである。   The present inventors diligently studied a method for optimizing the pulverized particle size of each simple coal and increasing the strength of the coke produced. As a result, it was considered that the properties of the fine-grained part of simple coal would contribute to the coke strength. As a result of intensive studies, the present inventors have found that the total expansion rate of fractions having a predetermined particle size or less has a correlation with the grinding effect. The present invention has been made based on the above findings.

すなわち、本発明は、以下のようなものを提供する。
複数種の単味炭を配合して得られる装入炭を乾留することによりコークスを製造するコークスの製造方法であって、
所定の目開きの篩で各前記単味炭を篩分けする工程A、
前記工程Aにより篩分けされた所定粒度以下のフラクションの全膨張率を、ジラトメーターにより測定する工程B、
粉砕効果を示す値Yを、下記式(1)により算出する工程C、
Y=a×X+b×X+c・・・・・・・式(1)
(ただし、Xは、ギーセラー最高流動度(ddpm)であり、Xは、所定粒度以下のフラクションの全膨張率であり、a、b及びcは定数である。)
少なくとも前記値Yの一番大きい単味炭を決定する工程D、及び、
少なくとも前記値Yが一番大きいと決定された単味炭を粉砕する工程E
を含むことを特徴とするコークスの製造方法。
That is, the present invention provides the following.
A method for producing coke in which coke is produced by dry distillation of charging coal obtained by blending plural kinds of simple coals,
Step A of sieving each of the above simple coals with a sieve having a predetermined opening,
A step B of measuring a total expansion coefficient of a fraction having a predetermined particle size or less sieved by the step A by a dilatometer;
Step C for calculating the value Y indicating the grinding effect by the following formula (1),
Y = a × X 1 + b × X 2 + c... Formula (1)
(Wherein, X 1 is Gisera maximum fluidity degree (DDPM), X 2 is the total expansion ratio of the predetermined particle size or less of the fractions, a, b and c are constants.)
A step D for determining a simple coal having the largest value Y, and
Step E for crushing simple coal determined to have at least the largest value Y
A method for producing coke, comprising:

前記構成によれば、まず、各単味炭のギーセラー最高流動度、及び、所定粒度以下のフラクションの全膨張率に基づいて、粉砕効果を示す値Yの一番大きい単味炭を決定する(工程A〜工程D)。粉砕効果が大きいとは、同量の単味炭を粉砕した際に、コークス強度の向上の程度が大きいことをいう。そして、工程Eにおいて、前記値Yが一番大きいと決定された単味炭を粉砕する。
つまり、工程Dにおいて複数種のなかで粉砕効果の最も大きいと決定された単味炭を、工程Eにおいて粉砕するため、装入炭全体の粉砕粒度が細かくなりすぎない態様で、コークス強度を効率的に高強度化することができる。
なお、特許文献9の方法は、全膨張率が40%以下、ギーセラー流動度(ddpm)の対数値が1.5以下の非微粘結炭を粉砕して配合炭の一部としてコークスを製造するにあたり、粉砕粒度を決定するものであり、複数の単味炭の粉砕順を決定するものではない。
According to the above-described configuration, first, based on the Gieseler maximum fluidity of each simple coal and the total expansion coefficient of fractions having a predetermined particle size or less, the simple coal having the largest value Y indicating the grinding effect is determined ( Step A to Step D). The fact that the pulverization effect is large means that the degree of improvement in coke strength is large when the same amount of simple coal is pulverized. And in the process E, the simple charcoal determined that the said value Y is the largest is grind | pulverized.
In other words, in order to pulverize the simple coal determined to have the largest pulverization effect among the plurality of types in Step D in Step E, the coke strength is efficiently reduced in a mode in which the pulverized particle size of the entire charged coal is not too fine. The strength can be increased.
In the method of Patent Document 9, coke is produced as a part of blended coal by pulverizing non-slightly caking coal having a total expansion rate of 40% or less and a logarithmic value of Gieseller fluidity (ddpm) of 1.5 or less. In doing so, the pulverization particle size is determined, and the order of pulverization of a plurality of simple coals is not determined.

本発明者らは、鋭意研究の結果、単味炭のなかでも、ギーセラー最高流動度が350ddpm以上のもののなかから、粉砕する単味炭を決定すれば、よりコークス強度を効率的に高強度化することができる知見を得た。   As a result of diligent research, the inventors of the present invention have been able to increase coke strength more efficiently by determining the simple coal to be crushed from among the simple coals having a Gieseler maximum fluidity of 350 ddpm or more. Obtained knowledge that can be.

すなわち、前記構成において、各前記単味炭は、ギーセラー最高流動度が350ddpm以上であることが好ましい。各前記単味炭が、ギーセラー最高流動度が350ddpm以上であると、よりコークス強度を効率的に高強度化することができる。   That is, in the said structure, it is preferable that each said simple coal has a Gieseler maximum fluidity of 350 ddpm or more. When each of the simple coals has a Gieseler maximum fluidity of 350 ddpm or more, the coke strength can be increased more efficiently.

前記構成においては、前記篩の目開きが、3mm以下の範囲内で選択されることが好ましい。実施例の結果からも分かるように、篩の目開きが、3mm以下の範囲内で選択されると、当該フラクションの全膨張率と実測の粉砕効果との相関が高くなる。従って、前記篩の目開きを、3mm以下の範囲内で選択すれば、粉砕効果の推定値がより正確となる。その結果、値Yの一番大きい単味炭をより正確に決定することが可能となり、さらにコークス強度を効率的に高強度化することができる。   In the said structure, it is preferable that the opening of the said sieve is selected within the range of 3 mm or less. As can be seen from the results of the examples, when the sieve opening is selected within a range of 3 mm or less, the correlation between the total expansion coefficient of the fraction and the actually measured pulverization effect increases. Accordingly, if the sieve opening is selected within a range of 3 mm or less, the estimated value of the pulverization effect becomes more accurate. As a result, it becomes possible to determine the simple coal having the largest value Y more accurately, and further, the coke strength can be efficiently increased.

本発明によれば、特殊な装置を必要とせず、簡便な方法で粉砕粒度を適正化して、製造されるコークスの強度を高強度化することが可能なコークスの製造方法を提供することができる。   According to the present invention, it is possible to provide a coke production method capable of increasing the strength of coke produced by optimizing the pulverization particle size by a simple method without requiring a special apparatus. .

ドラム強度試験により実際に求めた3.0mm以下割合1%あたりのDI向上幅(実測粉砕効果)と、「−0.5mm全膨張率」との関係を示すグラフである。It is a graph which shows the relationship between the DI improvement width (actually measured grinding | pulverization effect) per 3.0% ratio 1% actually calculated | required by the drum strength test, and "-0.5mm total expansion coefficient". ドラム強度試験により実際に求めた3.0mm以下割合1%あたりのDI向上幅(実測粉砕効果)と、「−1.5mm全膨張率」との関係を示すグラフである。It is a graph which shows the relationship between the DI improvement width (actual measurement grinding | pulverization effect) per 1% of the ratio of 3.0 mm or less actually calculated | required by the drum strength test, and "-1.5mm total expansion coefficient". ドラム強度試験により実際に求めた3.0mm以下割合1%あたりのDI向上幅(実測粉砕効果)と、「−3.0mm全膨張率」との関係を示すグラフである。It is a graph which shows the relationship between the DI improvement width (actual measurement grinding | pulverization effect) per 1% of the ratio of 3.0 mm or less actually calculated | required by the drum strength test, and "-3.0mm total expansion coefficient". ドラム強度試験により実際に求めた実測粉砕効果と、値Y(推定粉砕効果)との関係を示すグラフである。It is a graph which shows the relationship between the measurement grinding | pulverization effect actually calculated | required by the drum strength test, and the value Y (estimated grinding | pulverization effect).

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本実施形態に係るコークスの製造方法は、
複数種の単味炭を配合して得られる装入炭を乾留することによりコークスを製造するコークスの製造方法であって、
所定の目開きの篩で各前記単味炭を篩分けする工程A、
前記工程Aにより篩分けされた所定粒度以下のフラクションの全膨張率を、ジラトメーターにより測定する工程B、
粉砕効果を示す値Yを、下記式(1)により算出する工程C、
Y=a×X+b×X+c・・・・・・・式(1)
(ただし、Xは、ギーセラー最高流動度(ddpm)であり、Xは、所定粒度以下のフラクションの全膨張率であり、a、b及びcは定数である。)
少なくとも前記値Yの一番大きい単味炭を決定する工程D、及び、
少なくとも前記値Yが一番大きいと決定された単味炭を粉砕する工程E
を少なくとも含む。
The method for producing coke according to the present embodiment is as follows:
A method for producing coke in which coke is produced by dry distillation of charging coal obtained by blending plural kinds of simple coals,
Step A of sieving each of the above simple coals with a sieve having a predetermined opening,
A step B of measuring a total expansion coefficient of a fraction having a predetermined particle size or less sieved by the step A by a dilatometer;
Step C for calculating the value Y indicating the grinding effect by the following formula (1),
Y = a × X 1 + b × X 2 + c... Formula (1)
(Wherein, X 1 is Gisera maximum fluidity degree (DDPM), X 2 is the total expansion ratio of the predetermined particle size or less of the fractions, a, b and c are constants.)
A step D for determining a simple coal having the largest value Y, and
Step E for crushing simple coal determined to have at least the largest value Y
At least.

以下、各工程について説明する。   Hereinafter, each step will be described.

[工程A]
まず、工程Aにおいて、所定の目開きの篩で各前記単味炭を篩分けする。
[Step A]
First, in the process A, each said simple charcoal is sieved with the sieve of a predetermined opening.

前記篩の目開きとしては、後述する工程Bにおいて測定されるフラクションの全膨張率と、実測粉砕効果とがある程度相関が得られる範囲内であることが好ましい。具体的に、前記篩の目開きとしては、例えば、3mm、1.5mm、0.5mmが挙げられる。実施例の結果からも分かるように、篩の目開きが、3mm以下の範囲内で選択されると、当該フラクションの全膨張率と実測の粉砕効果との相関が高くなる。従って、前記篩の目開きを、3mm以下の範囲内で選択すれば、粉砕効果の推定値がより正確となる。その結果、値Yの一番大きい単味炭をより正確に決定することが可能となり、さらにコークス強度を効率的に高強度化することができる。   The opening of the sieve is preferably within a range in which a correlation between the total expansion coefficient of the fraction measured in Step B, which will be described later, and the measured pulverization effect is obtained to some extent. Specifically, examples of the sieve opening include 3 mm, 1.5 mm, and 0.5 mm. As can be seen from the results of the examples, when the sieve opening is selected within a range of 3 mm or less, the correlation between the total expansion coefficient of the fraction and the actually measured pulverization effect increases. Accordingly, if the sieve opening is selected within a range of 3 mm or less, the estimated value of the pulverization effect becomes more accurate. As a result, it becomes possible to determine the simple coal having the largest value Y more accurately, and further, the coke strength can be efficiently increased.

工程Aにおける、篩分けの対象となる単味炭は、ギーセラー最高流動度が350ddpm以上のものであることが好ましく、より好ましくは、500ddpm以上である。また、前記単味炭のギーセラー最高流動度は、大きいほど好ましいが、例えば、60000ddpm以下等が挙げられる。各前記単味炭が、ギーセラー最高流動度が350ddpm以上であると、よりコークス強度を効率的に高強度化することができる。   In the process A, the simple coal to be subjected to sieving preferably has a Gieseler maximum fluidity of 350 ddpm or more, and more preferably 500 ddpm or more. Moreover, although it is preferable that the Gieseler maximum fluidity of the simple coal is as large as possible, for example, 60000 ddpm or less may be mentioned. When each of the simple coals has a Gieseler maximum fluidity of 350 ddpm or more, the coke strength can be increased more efficiently.

[工程B]
次に、前記工程Aにより篩分けされた所定粒度以下のフラクションの全膨張率を、ジラトメーターにより測定する。
[Step B]
Next, the total expansion coefficient of the fraction having a predetermined particle size or less sieved in the step A is measured with a dilatometer.

[工程C]
次に、粉砕効果を示す値Yを、下記式(1)により算出する。
Y=a×X+b×X+c・・・・・・・式(1)
(ただし、Xは、ギーセラー最高流動度(ddpm)であり、Xは、所定粒度以下のフラクションの全膨張率であり、a、b及びcは定数である。)
[Step C]
Next, a value Y indicating the pulverization effect is calculated by the following formula (1).
Y = a × X 1 + b × X 2 + c... Formula (1)
(Wherein, X 1 is Gisera maximum fluidity degree (DDPM), X 2 is the total expansion ratio of the predetermined particle size or less of the fractions, a, b and c are constants.)

なお、定数a、b、及びcは、炉の型式や操業方法によって決まる定数であり、多数の実操業データを統計的に解析することによって求めることができる。具体的には、重回帰分析により求めることができる。   The constants a, b, and c are constants determined by the furnace type and operation method, and can be obtained by statistically analyzing a large number of actual operation data. Specifically, it can be determined by multiple regression analysis.

[工程D]
次に、少なくとも前記値Yの一番大きい単味炭を決定する。
本発明では、少なくとも前記値Yの一番大きい単味炭がどれであるかを決定すればよいが、前記値Yの値が大きい順に単味炭の順位を決定することが好ましい。なお、順位を決定する場合、すべての単味炭について順位をつけてもよいが、上位の数種類にのみ順位をつけてもよい。例えば、10種の単味炭を配合する場合に、前記値Yの大きい5番目までにのみ順位をつけることとしてもよい。
[Step D]
Next, at least the simple coal having the largest value Y is determined.
In the present invention, it is only necessary to determine which of the simple charcoal having the largest value Y, but it is preferable to determine the rank of the simple charcoal in descending order of the value Y. In addition, when determining a ranking, you may give a ranking about all the simple charcoal, but you may give a ranking only to several high rank types. For example, when 10 kinds of simple coal are blended, the ranking may be given only to the fifth largest value Y.

[工程E]
次に、少なくとも前記値Yが一番大きいと決定された単味炭を粉砕する。工程Cにおいて決定された、前記値Yの一番大きい単味炭は、粉砕効果の最も大きい単味炭である。粉砕効果が大きいとは、同量の単味炭を粉砕した際に、コークス強度の向上の程度が大きいことをいう。
つまり、工程Dにおいて複数種のなかで粉砕効果の最も大きいと決定された単味炭を、工程Eにおいて粉砕するため、装入炭全体の粉砕粒度が細かくなりすぎない態様で、コークス強度を効率的に高強度化することができる。
[Step E]
Next, at least the simple charcoal determined to have the largest value Y is pulverized. The solid coal having the largest value Y determined in Step C is the simple coal having the largest grinding effect. The fact that the pulverization effect is large means that the degree of improvement in coke strength is large when the same amount of simple coal is pulverized.
In other words, in order to pulverize the simple coal determined to have the largest pulverization effect among the plurality of types in Step D in Step E, the coke strength is efficiently reduced in a mode in which the pulverized particle size of the entire charged coal is not too fine. The strength can be increased.

また、工程Dにおいて前記値Yの値が大きい順に単味炭の順位を決定した場合、工程Eにおいて、前記値Yの値が大きい順に単味炭を粉砕する。例えば、目標とする装入炭全体の粉砕粒度になるまで、工程Dで決定した順位で単味炭を粉砕すれば、コークス強度をより効率的に高強度化することができる。   Further, when the rank of the simple coal is determined in the order of increasing the value Y in the process D, the simple coal is pulverized in the order of the value Y in the process E. For example, if the simple coal is pulverized in the order determined in the step D until the pulverized particle size of the entire charged coal is reached, the coke strength can be increased more efficiently.

上述した実施形態では、工程Dにおいて前記値Yの値が大きい順に単味炭の順位を決定した場合、工程Eにおいて、前記値Yの値が大きい順に単味炭を粉砕する場合について説明した。しかしながら、本発明はこの例に限定されず、順位をつけたものについて1又は複数種ごとにグループ化(好ましくは3つ以上にグループ化)し、グループごとに粉砕することとしてもよい。   In the above-described embodiment, in the case where the rank of the simple charcoal is determined in the descending order of the value Y in the process D, the case where the simple charcoal is pulverized in the descending order of the value Y in the process E has been described. However, the present invention is not limited to this example, and those with a ranking may be grouped into one or more types (preferably grouped into three or more) and pulverized into groups.

以下、本発明に関し、実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded.

<実測粉砕効果と所定粒度以下のフラクションの全膨張率との相関性>
まず、表1に示す4種類の銘柄の単味炭を準備した。
表1には、これらの単味炭の石炭性状(VM、RoMF、TI、全膨張率、−3mm全膨張率、−1.5mm全膨張率、−0.5mm全膨張率)について、示している。表1中、VM、RoMF、TI、全膨張率、−3mm全膨張率、−1.5mm全膨張率、−0.5mm全膨張率は、下記を意味する。
VM:空気との接触を断って、既定の条件のもとで試料を加熱したときの、質量減少率から水分を差引いた値(JIS M 8812に従って測定できる。)
Ro:ビトリニット(主として植物の木質部に由来する微細組織)の反射率測定において、1個の研磨資料の50点以上の最大反射率の平均値。原料石炭の石炭化度を示すパラメーター。)
MF:ギーセラー最高流動度(ギーセラ−プラストメーターを使用する試験(JISM8801にその詳細が規定されている石炭の加熱軟化溶融特性試験)において回転翼が最高回転数を示す値の対数値。原料石炭の粘結性を代表する指標。)
TI:イナート組織全量の石炭全体に対する体積割合(JIS M 8816に従って測定できる。)
全膨張率:篩分けしていない状態の単味炭の全膨張率
−3mm全膨張率:篩分けしていない状態の単味炭を目開き3mmの篩で篩分けした後の、粒度3mm以下のフラクションの全膨張率
−1.5mm全膨張率:篩分けしていない状態の単味炭を目開き1.5mmの篩で篩分けした後の、粒度1.5mm以下のフラクションの全膨張率
−0.5mm全膨張率:篩分けしていない状態の単味炭を目開き0.5mmの篩で篩分けした後の、粒度0.5mm以下のフラクションの全膨張率
上記全膨張率、−3mm全膨張率、−1.5mm全膨張率、及び、−0.5mm全膨張率は、いずれも、JIS M8801に記載の膨張性測定方法(ジラトメーター法)により測定される収縮率及び膨張率の和(Total Dilatation)である。
<Correlation between the measured pulverization effect and the total expansion coefficient of fractions of a predetermined particle size or less>
First, four kinds of brand simple charcoal shown in Table 1 were prepared.
Table 1 shows the coal properties (VM, Ro , MF, TI, total expansion coefficient, −3 mm total expansion coefficient, −1.5 mm total expansion coefficient, −0.5 mm total expansion coefficient) of these simple coals. Show. In Table 1, VM, Ro , MF, TI, total expansion coefficient, -3 mm total expansion coefficient, -1.5 mm total expansion coefficient, and -0.5 mm total expansion coefficient mean the following.
VM: A value obtained by subtracting moisture from the mass reduction rate when the sample is heated under predetermined conditions with contact with air being cut off (measured according to JIS M 8812).
Ro: average value of 50 or more maximum reflectances of one polishing material in the reflectance measurement of vitrinite (a fine structure mainly derived from a woody part of a plant). A parameter indicating the degree of coalification of raw coal. )
MF: Maximum Gieseller fluidity (logarithmic value of the value at which the rotor blades show the maximum number of revolutions in a test using a Giesera-Plastometer (coal heat softening and melting characteristics test specified in JISM8801). An index representative of caking properties.)
TI: Volume ratio of the total amount of inert tissue to the whole coal (measured according to JIS M 8816)
Total expansion rate: Total expansion rate of uncoated plain coal -3 mm Total expansion rate: Particle size of 3 mm or less after sieving uncoated solid coal with a 3 mm sieve -1.5 mm total expansion coefficient: The total expansion coefficient of the fraction having a particle size of 1.5 mm or less after sieving the uncoated plain coal with a 1.5 mm sieve. -0.5 mm total expansion coefficient: after the sieving of uncoated plain coal with a sieve having an opening of 0.5 mm, the total expansion coefficient of the fraction having a particle size of 0.5 mm or less, the total expansion coefficient,- The 3 mm total expansion coefficient, -1.5 mm total expansion coefficient, and -0.5 mm total expansion coefficient are all of the shrinkage ratio and the expansion coefficient measured by the expansibility measuring method (dilatometer method) described in JIS M8801. It is the sum (Total Dilatation).

Figure 2017165850
Figure 2017165850

<実測粉砕効果と−0.5mm全膨張率との相関性>
(製造例1〜製造例4)
ベースとなる配合炭に、表2の「配合率」に示す配合率でA炭〜D炭のいずれかが配合された評価用配合炭を作製した。ベースとなる配合炭と、評価対象の炭(A炭〜D炭)との合計が100%となるように配合した。例えば、製造例1では、ベースとなる配合炭80%に対して、A炭を20%配合して評価用配合炭とした。
配合する際には、粉砕粒度が3.0mm以下のものが含まれる割合を、表2の「3.0mm以下割合」に示す割合となるように、ハンマーミル、ジョークラッシャーあるいはコーヒーミルで粉砕した上で、配合した。
具体的には、各製造例において、それぞれ評価石炭A〜Dの粉砕粒度を3.0mm以下が約80%となるものと、100%となるものとの2水準に粉砕した。
例えば、製造例1において製造例1−Aでは、評価石炭Aの粉砕粒度を、3.0mm以下が82.6%(A炭全体を100%としたときの3.0mm以下のものの割合が82.6%)となるようにする一方、製造例1−Bでは、100%とした。
<Correlation between measured grinding effect and -0.5 mm total expansion coefficient>
(Production Example 1 to Production Example 4)
An evaluation blended charcoal was prepared by blending any one of coals A to D with the blending ratio shown in “mixing ratio” in Table 2 to the base blended coal. It mix | blended so that the sum total of the combination charcoal used as a base and charcoal of evaluation object (A charcoal-D charcoal) might be 100%. For example, in Production Example 1, 20% of Charcoal A was blended with 80% of the blended coal serving as the base to obtain a blended coal for evaluation.
When blending, the ratio of the particles having a pulverized particle size of 3.0 mm or less was pulverized with a hammer mill, jaw crusher or coffee mill so that the ratio shown in Table 2 “3.0 mm or less ratio” was obtained. Formulated above.
Specifically, in each of the production examples, the pulverized particle sizes of the evaluation coals A to D were pulverized into two levels of 3.0 mm or less, which is about 80%, and 100%.
For example, in Production Example 1 in Production Example 1-A, the pulverized particle size of evaluation coal A is 82.6% when 3.0 mm or less (the ratio of 3.0 mm or less with respect to 100% of the entire A coal is 82%). .6%), while in Production Example 1-B, it was set to 100%.

評価用配合炭を作成後、水分を7.5%±0.2%に調整した。   After preparing the coal blend for evaluation, the water content was adjusted to 7.5% ± 0.2%.

次に、水分調整した試料をL:235mm×W:300mm×H:235mmの缶容器に充填密度735dry−kg/mで充填した。 Next, the moisture-adjusted sample was filled into a can container of L: 235 mm × W: 300 mm × H: 235 mm at a filling density of 735 dry-kg / m 3 .

次に、乾留温度1,000℃で約19時間乾留してコークスを得た。   Next, coke was obtained by carbonization at a carbonization temperature of 1,000 ° C. for about 19 hours.

[ドラム強度試験]
得られたコークスをシャッター試験2回実施後、ドラム試験機で150回転させ、DI150 15を測定した。結果を表2に示す。また、実測粉砕効果も表2に示した。実測粉砕効果は、粒度3.0mm以下の炭1%当たりのDI向上量である。例えば、製造例1では、粒度3.0mm以下の炭が17.4%増加すると(100%−82.6%=17.4%)、DIが0.7向上しているから(85.0−84.3=0.7)、実測粉砕効果は、約0.040となる(0.7/17.4≒0.040)。ここで、実測粉砕効果の値が大きいほど、粉砕による強度向上の効果が大きいことを意味する。そこで、実測粉砕効果の大きい順に、順位をつけた。
[Drum strength test]
The obtained coke was subjected to shutter test twice, and then rotated 150 times with a drum tester, and DI 150 15 was measured. The results are shown in Table 2. The measured grinding effect is also shown in Table 2. The measured pulverization effect is the DI improvement per 1% of charcoal having a particle size of 3.0 mm or less. For example, in Production Example 1, when the charcoal having a particle size of 3.0 mm or less is increased by 17.4% (100% -82.6% = 17.4%), DI is improved by 0.7 (85.0 -84.3 = 0.7), the measured grinding effect is about 0.040 (0.7 / 17.4≈0.040). Here, the larger the measured grinding effect value, the greater the strength improvement effect by grinding. Therefore, the ranking was given in descending order of the measured grinding effect.

図1は、上記ドラム強度試験により実際に求めた3.0mm以下割合1%あたりのDI向上幅、すなわち、「実測粉砕効果」と、「−0.5mm全膨張率」との関係を示すグラフである。具体的には、表1の炭A〜炭Dの−0.5mm全膨張率の値を横軸に、表2の実測粉砕効果の値を縦軸として、プロットしたものである。
図1から分かるように、実測粉砕効果の値と、−0.5mm全膨張率とはよい相関を示している。
FIG. 1 is a graph showing a DI improvement width per 1% of a ratio of 3.0 mm or less actually obtained by the drum strength test, that is, a relationship between “measured grinding effect” and “−0.5 mm total expansion rate”. It is. Specifically, the values of -0.5 mm total expansion rate of charcoal A to charcoal D in Table 1 are plotted on the horizontal axis, and the measured grinding effect values in Table 2 are plotted on the vertical axis.
As can be seen from FIG. 1, the value of the measured grinding effect and the -0.5 mm total expansion coefficient show a good correlation.

<実測粉砕効果と−1.5mm全膨張率との相関性>
図2は、上記ドラム強度試験と同様にして実際に求めた3.0mm以下割合1%あたりのDI向上幅、すなわち、「実測粉砕効果」と、「−1.5mm全膨張率」との関係を示すグラフである。
<Correlation between measured grinding effect and -1.5 mm total expansion coefficient>
FIG. 2 shows the DI improvement width per 1% of the ratio of 3.0 mm or less actually obtained in the same manner as in the drum strength test, that is, the relationship between “measured grinding effect” and “−1.5 mm total expansion rate”. It is a graph which shows.

<実測粉砕効果と−3.0mm全膨張率との相関>
図3は、上記ドラム強度試験と同様にして実際に求めた3.0mm以下割合1%あたりのDI向上幅、すなわち、「実測粉砕効果」と、「−3.0mm全膨張率」との関係を示すグラフである。
<Correlation between measured grinding effect and -3.0 mm total expansion coefficient>
FIG. 3 shows the DI improvement width per 1% of the ratio of 3.0 mm or less actually obtained in the same manner as in the drum strength test, that is, the relationship between “measured grinding effect” and “−3.0 mm total expansion rate”. It is a graph which shows.

図2からわかるように、実測粉砕効果の値と、−1.5mm全膨張率とはよい相関を示している。また、図3からわかるように、実測粉砕効果の値と、−3.0mm全膨張率とはよい相関を示している。従って、本実施例では、粒度3mm以下のフラクションの全膨張率を用いれば、精度よく粉砕効果の推定値が得られることが分かる。なかでも、本実施例では、実測粉砕効果の値と、−1.5mm全膨張率とがよりよい相関を示していることが分かる。従って、−0.5mm全膨張率を用いれば、より精度よく粉砕効果の推定値が得られることが分かる。
以上より、工程Aにより、目開きが3mmかそれよりも小さい篩を用いることにすれば、精度よく粉砕効果の推定値が得られ、精度よく粉砕する単味炭を決定することが可能となる。
なお、工程Aにおいて使用する篩の目開きは、実測粉砕効果との間で、所望の相関が得られる範囲内において、適宜設定すればよく、3mm以下に限定されない。
As can be seen from FIG. 2, the measured grinding effect value and the -1.5 mm total expansion coefficient show a good correlation. Moreover, as can be seen from FIG. 3, the value of the measured grinding effect and the -3.0 mm total expansion coefficient show a good correlation. Therefore, in this example, it can be seen that the estimated value of the pulverization effect can be obtained with high accuracy by using the total expansion coefficient of the fraction having a particle size of 3 mm or less. Especially, in the present Example, it turns out that the value of the measurement grinding | pulverization effect and the -1.5mm total expansion coefficient show the better correlation. Therefore, it can be seen that the estimated value of the pulverization effect can be obtained more accurately by using the -0.5 mm total expansion coefficient.
As described above, if a sieve having a mesh opening of 3 mm or smaller is used in Step A, an estimated value of the pulverization effect can be obtained with high accuracy, and it is possible to determine the simple coal to be crushed with high accuracy. .
In addition, what is necessary is just to set suitably the opening of the sieve used in the process A within the range in which a desired correlation is acquired with the measurement grinding | pulverization effect, and it is not limited to 3 mm or less.

<−0.5mm全膨張率を採用した場合の推定粉砕効果の算出>
本実施例では、もっとも相関のよかった−0.5mm全膨張率を採用し、推定粉砕効果を算出した。具体的には、推定粉砕効果を示す値Yを、下記式(1)により算出した。結果を表2に示す。
Y=a×X+b×X+c・・・・・・・式(1)
(ただし、Xは、ギーセラー最高流動度(ddpm)であり、Xは、−0.5mmのフラクションの全膨張率であり、a、b及びcは定数である。具体的なa、b及びcは、下記の通りであり、重回帰分析により求めた。)
a:4.48×10−6
b:0.000834
c:−0.0320
<Calculation of estimated grinding effect when -0.5 mm total expansion rate is adopted>
In this example, the most correlated -0.5 mm total expansion coefficient was adopted to calculate the estimated grinding effect. Specifically, the value Y indicating the estimated pulverization effect was calculated by the following formula (1). The results are shown in Table 2.
Y = a × X 1 + b × X 2 + c... Formula (1)
(Where X 1 is the Gieseler maximum fluidity (ddpm), X 2 is the total expansion coefficient of the fraction of −0.5 mm, and a, b and c are constants. And c are as follows and were determined by multiple regression analysis.)
a: 4.48 × 10 −6
b: 0.000834
c: -0.0320

Figure 2017165850
Figure 2017165850

図4は、上記ドラム強度試験により実際に求めた0.5mm以下割合1%あたりのDI向上幅、すなわち、「実測粉砕効果」と、工程A〜工程Cの手順により算出した石炭A〜Dの値Y「推定粉砕効果」との関係を示すグラフである。
図4からわかるように、実測粉砕効果の値と、本発明に係る推定粉砕効果の値とはよい相関を示している。従って、推定粉砕効果の値、すなわち、値Yの高い単味炭から順に粉砕すれば、装入炭全体の粉砕粒度が細かくなりすぎない態様で、コークス強度を効率的に高強度化することができることがわかる。
FIG. 4 shows the DI improvement width per 1% of the ratio of 0.5 mm or less actually obtained by the drum strength test, that is, the “measured grinding effect” and the coals A to D calculated by the procedures of the steps A to C. It is a graph which shows the relationship with value Y "estimated crushing effect".
As can be seen from FIG. 4, the measured grinding effect value and the estimated grinding effect value according to the present invention show a good correlation. Therefore, if the value of the estimated pulverization effect, that is, the pulverized coal in order from the highest value Y is pulverized in order, the coke strength can be efficiently increased in a manner that the pulverized particle size of the entire charged coal is not too fine. I understand that I can do it.

Claims (3)

複数種の単味炭を配合して得られる装入炭を乾留することによりコークスを製造するコークスの製造方法であって、
所定の目開きの篩で各前記単味炭を篩分けする工程A、
前記工程Aにより篩分けされた所定粒度以下のフラクションの全膨張率を、ジラトメーターにより測定する工程B、
粉砕効果を示す値Yを、下記式(1)により算出する工程C、
Y=a×X+b×X+c・・・・・・・式(1)
(ただし、Xは、ギーセラー最高流動度(ddpm)であり、Xは、所定粒度以下のフラクションの全膨張率であり、a、b及びcは定数である。)
少なくとも前記値Yの一番大きい単味炭を決定する工程D、及び、
少なくとも前記値Yが一番大きいと決定された単味炭を粉砕する工程E
を含むことを特徴とするコークスの製造方法。
A method for producing coke in which coke is produced by dry distillation of charging coal obtained by blending plural kinds of simple coals,
Step A of sieving each of the above simple coals with a sieve having a predetermined opening,
A step B of measuring a total expansion coefficient of a fraction having a predetermined particle size or less sieved by the step A by a dilatometer;
Step C for calculating the value Y indicating the grinding effect by the following formula (1),
Y = a × X 1 + b × X 2 + c... Formula (1)
(Wherein, X 1 is Gisera maximum fluidity degree (DDPM), X 2 is the total expansion ratio of the predetermined particle size or less of the fractions, a, b and c are constants.)
A step D for determining a simple coal having the largest value Y, and
Step E for crushing simple coal determined to have at least the largest value Y
A method for producing coke, comprising:
各前記単味炭は、ギーセラー最高流動度が350ddpm以上であることを特徴とする請求項1に記載のコークスの製造方法。   The coke production method according to claim 1, wherein each simple coal has a Gieseler maximum fluidity of 350 ddpm or more. 前記篩の目開きが、3mm以下の範囲内で選択されることを特徴とする請求項1又は2に記載のコークスの製造方法。   The method for producing coke according to claim 1 or 2, wherein an opening of the sieve is selected within a range of 3 mm or less.
JP2016051879A 2016-03-16 2016-03-16 How to make coke Active JP6795314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016051879A JP6795314B2 (en) 2016-03-16 2016-03-16 How to make coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051879A JP6795314B2 (en) 2016-03-16 2016-03-16 How to make coke

Publications (2)

Publication Number Publication Date
JP2017165850A true JP2017165850A (en) 2017-09-21
JP6795314B2 JP6795314B2 (en) 2020-12-02

Family

ID=59912884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051879A Active JP6795314B2 (en) 2016-03-16 2016-03-16 How to make coke

Country Status (1)

Country Link
JP (1) JP6795314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523755A (en) * 2019-09-28 2019-12-03 哈尔滨工业大学 It is a kind of for screening the Simple semi-automatic method of uniform particle size flyash

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133383A (en) * 2006-11-29 2008-06-12 Jfe Steel Kk Method for producing high strength coke
JP2014214187A (en) * 2013-04-23 2014-11-17 新日鐵住金株式会社 Manufacturing method of coke

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133383A (en) * 2006-11-29 2008-06-12 Jfe Steel Kk Method for producing high strength coke
JP2014214187A (en) * 2013-04-23 2014-11-17 新日鐵住金株式会社 Manufacturing method of coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523755A (en) * 2019-09-28 2019-12-03 哈尔滨工业大学 It is a kind of for screening the Simple semi-automatic method of uniform particle size flyash

Also Published As

Publication number Publication date
JP6795314B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
KR101232586B1 (en) Process for producing coke for blast furnace
JP5052964B2 (en) Method for producing blast furnace coke
TWI718018B (en) Coal evaluation method and blended coal preparation method, and coke production method
KR101649672B1 (en) Method for sample quality prediction and Method for forecasting CSR(Coke Strength Reaction)
JP5045081B2 (en) Manufacturing method of high strength coke
JP2004083849A (en) Method for producing high strength coke
JP2017165850A (en) Manufacturing method of coke
JP4788167B2 (en) Method for producing metallurgical coke
JP4887883B2 (en) Coke strength estimation method
JP2016148019A (en) Manufacturing method of coke
JP6874524B2 (en) Coke strength estimation method
JP6075354B2 (en) Coke production method
JP4890200B2 (en) Manufacturing method of high strength coke
JP2017088794A (en) Estimation method of coke strength
JP6115509B2 (en) Coke production method
JP5309943B2 (en) Method for producing blast furnace coke
JP6107374B2 (en) Coke production method
JP6979267B2 (en) How to make coke
JP2013001873A (en) Method for producing coke
JP6590155B2 (en) Coke for metallurgy and method for producing the same
JP4899390B2 (en) Coke production method
JP4438532B2 (en) Coke and method for producing coke
JP3637838B2 (en) Coal pulverization method in metallurgical coke manufacturing process and metallurgical coke manufacturing method
JP2019031594A (en) A method for determining a blending ratio and a method for producing coke
JP4102015B2 (en) Method for adjusting the particle size of coal for coke production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190516

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190517

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190607

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20190611

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20191113

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20191224

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200311

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200403

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200603

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201001

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201029

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201112

R150 Certificate of patent or registration of utility model

Ref document number: 6795314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250