JP5668287B2 - Method for producing metallurgical coke - Google Patents

Method for producing metallurgical coke Download PDF

Info

Publication number
JP5668287B2
JP5668287B2 JP2009294131A JP2009294131A JP5668287B2 JP 5668287 B2 JP5668287 B2 JP 5668287B2 JP 2009294131 A JP2009294131 A JP 2009294131A JP 2009294131 A JP2009294131 A JP 2009294131A JP 5668287 B2 JP5668287 B2 JP 5668287B2
Authority
JP
Japan
Prior art keywords
coal
inert
mass
coke
blending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009294131A
Other languages
Japanese (ja)
Other versions
JP2011132396A (en
Inventor
深田 喜代志
喜代志 深田
下山 泉
泉 下山
孝思 庵屋敷
孝思 庵屋敷
藤本 英和
英和 藤本
広行 角
広行 角
勇介 土肥
勇介 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009294131A priority Critical patent/JP5668287B2/en
Publication of JP2011132396A publication Critical patent/JP2011132396A/en
Application granted granted Critical
Publication of JP5668287B2 publication Critical patent/JP5668287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)

Description

本発明は、イナート高分散炭を用いて冶金用コークスを製造する方法に関するものである。   The present invention relates to a method for producing metallurgical coke using inert highly dispersed coal.

製鉄原料として用いるコークスの原料には、数種類から十数種類の石炭を混合した配合炭が用いられている。石炭は、産地や銘柄で性状が異なるだけでなく、同じ銘柄でもロット毎に性状が変動することから、多種類の石炭を配合して目標の品質を持ったコークスを製造するための配合理論が構築されてきた。特に、コークスは高炉内の通気性を確保するという重要な役割を担っていることから、高炉内で粉化しにくい、強度の高いコークスを製造することを目的とした配合技術が発展してきた。   As a raw material for coke used as an iron-making raw material, blended coal obtained by mixing several to a dozen types of coal is used. Coal not only has different properties depending on the production area and brand, but the properties of the same brand also vary from lot to lot.Therefore, there is no blending theory for blending various types of coal to produce coke with the desired quality. Has been built. In particular, since coke plays an important role of ensuring air permeability in the blast furnace, a blending technique has been developed for the purpose of producing high-strength coke that is difficult to be pulverized in the blast furnace.

石炭の配合構成を決める際には、具体的な配合パラメーターとして、揮発分(VM)、ビトリニット最大平均反射率(Ro)あるいは強度指数(SI)などの「石炭化度パラメーター」と、ギーセラー最高流動度(MF)、全膨張率(TD)、組織平衡指数(CBI)などの「粘結性パラメーター」の、2種類のパラメーターが組み合わせて用いられている。また、あわせて灰分量など化学成分の量も考慮されているが、強度とは異なり石炭毎の化学成分量の加重平均などにより簡単に算出されている(例えば、非特許文献1参照)。   When determining the composition of coal, specific coalescence parameters such as volatile content (VM), vitrinite maximum average reflectance (Ro) or strength index (SI), and coalescer maximum flow Two types of parameters such as “caking parameter” such as degree (MF), total expansion rate (TD), and tissue equilibrium index (CBI) are used in combination. In addition, the amount of chemical components such as the amount of ash is also considered, but unlike the strength, it is easily calculated by the weighted average of the amount of chemical components for each coal (for example, see Non-Patent Document 1).

上記の配合パラメーターに加えて、乾留時のガス圧を考慮した配合技術(例えば、特許文献1参照。)や、あるいは配合炭を各石炭2種類の組み合わせの集合として実測値の平均と各2炭種組み合わせのコークス特性の平均値からのずれ(相互作用係数)を尺度とした配合技術(例えば、特許文献2参照。)などが提案されている。   In addition to the above blending parameters, blending technology that takes into account the gas pressure during dry distillation (see, for example, Patent Document 1), or blended coal as a set of combinations of two types of each coal, the average of actual measurements and each two coals A blending technique (for example, see Patent Document 2) using a deviation (interaction coefficient) from the average value of coke characteristics of the seed combination as a scale has been proposed.

また、従来から特定の石炭を用いる場合には、従来の配合理論で十分に対応できず、使用が困難である場合があった。そのような一部の石炭に関しては、例えば、カナダ炭のように、個別にその配合効果の評価が行われている(例えば、非特許文献2参照。)。   Moreover, when using a specific coal conventionally, it could not respond | correspond enough with the conventional mixing | blending theory, and there existed a case where it was difficult to use. For some of such coals, for example, Canadian coals are individually evaluated for blending effects (see, for example, Non-Patent Document 2).

特開平9−272871号公報Japanese Patent Laid-Open No. 9-228771 特許第3550862号公報Japanese Patent No. 3550862

美浦義明著 「コークスの製造」燃料協会誌、第58巻1979年、p.902−913Miura Yoshiaki “Coke Production” Fuel Association, Vol. 58, 1979, p. 902-913 土橋厚、鈴木豊、池田耕一、有馬孝、加藤健次、W.Ross Leeder、C.T.Kolijn著 「カナダ炭多量配合時のコークス品質評価」第43回石炭科学会議、p.147−148Atsushi Dobashi, Yutaka Suzuki, Koichi Ikeda, Takashi Arima, Kenji Kato, W. Ross Leeder, C.T. 147-148

従来の配合設計では、配合炭の平均品位が一定になるように管理する方法が基本である。しかし、上記のように石炭化度パラメーターと粘結性パラメーターの2つのパラメーターを組み合わせる従来の配合理論では十分な説明がつかず、経験的に使用が難しい石炭の存在が指摘されており、カナダ炭の一部はその代表的な石炭と考えられてきた。   The conventional blending design is based on a method of managing the blended coal so that the average quality is constant. However, as described above, the conventional blending theory that combines the two parameters of coalification parameter and cohesiveness parameter cannot be fully explained, and it has been pointed out that some coals are difficult to use empirically. Some have been considered the representative coal.

そこで、従来の配合理論を補完するため、様々な新しい制御因子が開発されている。例えば、粘結性パラメーターの補完的な位置づけにあるガス圧は、コークス品質を制御する重要な因子と考えられる。しかし、経験的に使用が難しい石炭に対する影響が十分に検証されていない。   Therefore, various new control factors have been developed to complement the conventional compounding theory. For example, gas pressure, which is complementary to the caking parameter, is considered an important factor controlling coke quality. However, the impact on coal that is difficult to use empirically has not been fully verified.

また、石炭の組み合わせ効果を定量化した相互作用係数も、一般的な配合条件の場合には、その係数を推定して使用することができるが、経験的に使用が難しい石炭に対しては、十分な検証がなされていないと同時に、実験的に得る場合には、数多くの実験を必要とする。   In addition, in the case of general blending conditions, the interaction coefficient quantifying the coal combination effect can be estimated and used, but for coal that is difficult to use empirically, At the same time that it has not been fully verified, many experiments are required if it is obtained experimentally.

したがって、本発明の目的は、従来の配合理論を用いては十分にその性能を発揮させるように他の石炭と配合して使用することが困難と考えられてきた、経験的に使用が難しい種類の石炭を用いて、高品質な冶金用コークスを製造する方法を提供することにある。   Therefore, the object of the present invention is to empirically use a kind that has been considered difficult to be used in combination with other coal so that its performance can be fully demonstrated using conventional blending theory. It is an object to provide a method for producing high-quality metallurgical coke by using coal.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)コークス製造用原料である石炭を配合する際に、イナート高分散炭を用い、該イナート高分散炭の配合率を40mass%超えとすることを特徴とする冶金用コークスの製造方法。
(2)配合炭のギーセラー最高流動度(logMF)を調整する際に、前記配合炭を構成する石炭のうちギーセラー最高流動度が3.0以上の石炭について、ギーセラー最高流動度の算術平均値が4.0未満となるように配合することを特徴とする(1)に記載の冶金用コークスの製造方法。
(3)イナート高分散炭が、6mm以下100mass%の粒度分布に粉砕された状態にある石炭を充填密度が750kg/m3に充填した場合のイナート成分の個数密度が2.0×1010個/m3以上となる石炭であることを特徴とする(1)または(2)に記載の冶金用コークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing metallurgical coke, characterized in that inert high-dispersion coal is used when blending coal, which is a raw material for producing coke, and the blending ratio of the inert high-dispersion coal exceeds 40 mass%.
(2) When adjusting the Gieseler maximum fluidity (logMF) of the blended coal, the arithmetic average value of the Gieseeller maximum fluidity is about coal having a Gieseler maximum fluidity of 3.0 or more among the coals constituting the blended coal. The method for producing metallurgical coke according to (1), wherein the compounding is performed so as to be less than 4.0.
(3) The number density of the inert component is 2.0 × 10 10 when the coal in which the inert high-dispersion coal is pulverized to a particle size distribution of 6 mm or less and 100 mass% is packed to a packing density of 750 kg / m 3. The method for producing metallurgical coke according to (1) or (2), characterized in that the coal is coal of not less than / m 3 .

本発明によれば、コークス用原料として使用し難いと考えられていたカナダ炭等のイナート高分散炭の使用が容易となる。これにより、使用する石炭の選択の幅が広がり、資源制約が縮小するとともに、安定した品質のコークスが供給できるようになるため、高炉操業も安定的に継続することができる。   According to the present invention, it is easy to use inert high-dispersion coal such as Canadian coal, which has been considered difficult to use as a raw material for coke. As a result, the choice of coal to be used is widened, resource constraints are reduced, and stable quality coke can be supplied. Therefore, blast furnace operation can be stably continued.

配合炭における石炭Oの配合率と、得られたコークスのドラム150回転15mm指数との関係を示すグラフ。The graph which shows the relationship between the compounding rate of the coal O in blended coal, and the drum 150 rotation 15mm index | exponent of the obtained coke. 配合炭を構成する石炭のうちギーセラー最高流動度logMFが3.0以上の石炭でのギーセラー流動度の算術平均値と、イナート高分散炭0mass%配合コークスのドラム150回転15mm指数に対するイナート高分散炭50mass%配合コークスのドラム150回転15mm指数の増加量との関係を示すグラフ。Inert high-dispersion coal with respect to the arithmetic average value of Gieseller fluidity in coal with a Gieseler maximum fluidity log MF of 3.0 or more among the coals constituting the blended coal and the drum 150 rpm 15 mm index of 0 mass% inert high-dispersion coal The graph which shows the relationship with the increase amount of the drum 150 rotation 15mm index | exponent of 50 mass% compounding coke. 実炉における本発明の効果を示すグラフ。The graph which shows the effect of the present invention in a real furnace.

本発明者らは、従来の配合理論で十分に対応できず、使用が困難であるカナダ炭等の石炭について検討を行ない、これらの石炭の一部はイナート成分の分散性が高いことを見出し、石炭のイナート成分の分散性の違いに着目した。そして、イナート成分の分散性が高いイナート高分散炭を抽出し、イナート高分散炭の配合条件とコークス性状の関係について綿密な調査を行ない、イナート高分散炭の最適な配合方法を見出した。   The present inventors have studied about coal such as Canadian coal, which cannot be adequately handled by conventional compounding theory, and are difficult to use, and found that some of these coals have high dispersibility of inert components, We focused on the difference in the dispersibility of the inert components of coal. And the inert high dispersion charcoal with high dispersibility of the inert component was extracted, and the relationship between the blending condition of the inert high dispersion charcoal and the coke properties was investigated, and the optimum blending method of the inert high dispersion charcoal was found.

イナート成分の分散性は、石炭の種類毎に異なるため、その定量評価が必要となる。イナート成分の分散性とは、石炭中に含まれるイナート成分の分散の高さを示す状態をあらわし、イナート成分の個数密度を用いて定義することができる。イナート成分の個数密度は、イナート成分の量と石炭粒度に影響を受けるが、イナート成分量は石炭の種類毎に概ね一定値であるのに対して、石炭粒度は石炭の粉砕条件により大きく変化する。そこで、粉砕条件の前提を一定として評価するのが好ましく、実操業での粉砕に近い条件が最も望ましい。例えば、実操業における石炭の粉砕粒度は、3mm以下80mass%前後が一般的であることから、3mm以下80mass%、3mm以下100mass%、あるいは6mm以下100mass%などの粒度分布が、実操業の条件に近く、管理が容易であると考えられる。   Since the dispersibility of the inert component differs depending on the type of coal, quantitative evaluation is required. The dispersibility of the inert component represents a state indicating the height of dispersion of the inert component contained in the coal, and can be defined using the number density of the inert component. The number density of the inert component is affected by the amount of the inert component and the coal particle size. The amount of the inert component is almost constant for each type of coal, whereas the coal particle size varies greatly depending on the coal pulverization conditions. . Therefore, it is preferable to evaluate the premise of the pulverization condition as being constant, and a condition close to pulverization in actual operation is most desirable. For example, the pulverization particle size of coal in actual operation is generally about 3 mm or less and about 80 mass%, so particle size distribution such as 3 mm or less, 80 mass%, 3 mm or less, 100 mass%, or 6 mm or less, 100 mass% is the condition of actual operation. It is considered close and easy to manage.

また、使用する粉砕機などの粉砕方法も石炭粒度に影響を及ぼすため、石炭粒度を調整する際には、粉砕方法を一定とすることが望ましいが、粉砕条件を若干変更した場合も、イナート成分の分散性の銘柄間における大小関係に変化は認められなかったことから、粉砕条件の変動は比較的許容できる。   In addition, since the pulverization method such as the pulverizer to be used also affects the coal particle size, it is desirable to make the pulverization method constant when adjusting the coal particle size. Since there was no change in the size relationship between the different dispersibility brands, fluctuations in the grinding conditions are relatively acceptable.

イナート成分を同定するためには、石炭の組織分析が代表的な手法である。例えば、粉砕後の石炭を所定の粒度区分に分け、各区分のイナート成分量を同定することにより、イナート成分の粒度毎の存在割合分布や個数密度など、イナート成分の分散性が評価できる。尚、必ずしも顕微鏡による同定を行う必要は無く、同じような情報が得られる方法であれば、どのような方法を採用してもよい。   Coal structure analysis is a typical technique for identifying inert components. For example, by dividing the pulverized coal into predetermined particle size categories and identifying the amount of the inert component in each category, the dispersibility of the inert components such as the existence ratio distribution and number density of the inert components for each particle size can be evaluated. Note that it is not always necessary to perform identification using a microscope, and any method may be adopted as long as similar information can be obtained.

イナート成分の分散性が高いイナート高分散炭を一義的に定義することは難しいが、イナート高分散炭は従来の配合理論が適用可能な石炭よりもイナート成分の分散性が高い石炭であり、本発明においては、6mm以下100mass%の粒度分布に粉砕された状態にある石炭を充填密度が750kg/m3に充填した場合のイナート成分の個数密度が2.0×1010個/m3以上となる石炭をイナート高分散炭と定義する。またこの他に、3mm以下80mass%の粒度分布に粉砕された状態にある石炭を充填密度が750kg/m3に充填した場合のイナート成分の個数密度が2.0×1010個/m3以上となる石炭や、3mm以下100mass%の粒度分布に粉砕された状態にある石炭を充填密度が750kg/m3に充填した場合のイナート成分の個数密度が2.0×1010個/m3以上となる石炭と定義することもできる。 Although it is difficult to uniquely define inert high-dispersion coal with a high dispersibility of inert components, inert high-dispersion coal is a coal with a higher dispersibility of inert components than coal to which conventional blending theory can be applied. In the present invention, the number density of the inert component when the packing density is 750 kg / m 3 of coal in a state of being pulverized to a particle size distribution of 6 mm or less and 100 mass% is 2.0 × 10 10 pieces / m 3 or more. Is defined as inert high dispersion coal. In addition to this, the number density of inert components when coal in a state of being pulverized to a particle size distribution of 3 mm or less and 80 mass% is filled to a packing density of 750 kg / m 3 is 2.0 × 10 10 pieces / m 3 or more. The number density of inert components is 2.0 × 10 10 pieces / m 3 or more when the packing density is 750 kg / m 3 and the coal is pulverized to a particle size distribution of 3 mm or less and 100 mass%. Can be defined as coal.

石炭は、軟化溶融温度域において、軟化溶融を示す活性成分中に気泡が生成して、それが成長することにより膨張を示す。均質成分系では、気泡はあらゆる位置に同じ確率で生成するが、石炭軟化溶融状態では、イナート成分が混在しているなどにより不均一系であり、その場合には、均質成分での気泡核生成自由エネルギーと比べると、イナート成分の周りなど不均一な部分での気泡核生成自由エネルギーは小さいため、気泡が生成しやすくなる。イナート高分散炭では、イナート成分が細かく、数多く存在していることから、気泡が数多く生成すると同時に、イナート成分が気泡の結合を抑制することになる。その結果、気孔の成長が抑制されるため、膨張量が小さくなる。   Coal exhibits expansion in the softening and melting temperature range by generating bubbles in the active ingredient that exhibits softening and melting and growing it. In the homogeneous component system, bubbles are generated at the same probability at every position, but in the coal softened and melted state, it is a heterogeneous system due to the presence of inert components. In that case, bubble nucleation with homogeneous components is performed. Compared with free energy, bubble nucleation free energy in non-uniform portions such as around inert components is small, and bubbles are likely to be generated. In inert high-dispersion coal, the inert component is fine and there are many, so that many bubbles are generated and at the same time the inert component suppresses the bonding of the bubbles. As a result, since the growth of pores is suppressed, the amount of expansion is reduced.

また、石炭は軟化溶融後に再固化し、温度の上昇に伴って水素などのガスを放出しながら収縮していく。この過程で、活性成分とイナート成分由来の組織で収縮量が異なるため、収縮量が異なる組織が存在している部分で亀裂が生成しやすい。この結果、亀裂の体積分がコークスを占有することになり、コークスの塊としての収縮量は減少する。イナート高分散炭では、亀裂の起点となるイナートが多く存在しているため、コークスの塊としての収縮は抑制される。   Coal resolidifies after softening and melting, and shrinks while releasing gas such as hydrogen as the temperature rises. In this process, the contraction amount is different between the tissue derived from the active component and the inert component, so that cracks are likely to be generated at a portion where the tissue having a different contraction amount exists. As a result, the volume of the crack occupies the coke, and the amount of shrinkage as a coke mass decreases. In inert high-dispersion coal, since there are many inerts that are the starting points of cracks, shrinkage as a coke mass is suppressed.

そこで、本発明者らは、軟化溶融時の膨張量が小さい一方で、再固化後の収縮量が小さい特徴を有するイナート高分散炭の配合比率がコークス化過程に影響を及ぼしていると考え、イナート高分散炭の配合率とコークス性状の影響を綿密に調査を行ない、配合構成を制御することで、イナート高分散炭使用を前提とした高品質コークス製造技術の確立に至った。   Therefore, the present inventors consider that the blending ratio of the inert highly dispersed coal having the characteristic that the amount of expansion after softening and melting is small, while the amount of shrinkage after resolidification is small has an influence on the coking process. By conducting a thorough investigation into the effect of inert high-dispersion coal and the effect of coke properties, the composition of the mixture was controlled, leading to the establishment of high-quality coke production technology based on the use of inert high-dispersion coal.

イナート高分散炭を含めて、配合炭性状の代表的な物性値である平均最大反射率(Ro)、ギーセラー最高流動度(logMF)、全イナート割合(TI)を一定としても、イナート高分散炭の配合率、配合炭の構成がコークス品質に影響を及ぼすことが見出された。具体的には、石炭中に含まれるイナート成分の分散性が高い石炭であるイナート高分散炭の配合率が25mass%から30mass%程度までは、配合率の増加に伴いコークス品質は悪くなる傾向を示し、30mass%程度から50mass%程度までは、配合率の増加に伴いコークス品質は改善する傾向を示す。イナート高分散炭を使用しない場合よりも高品質なコークスを得るためには、イナート高分散炭をコークス炉に装入する石炭に対して40mass%よりも高い割合で配合することが望ましく、その配合率が45mass%から55mass%が最も望ましい。   Inert high dispersion charcoal, including average high reflectivity (Ro), maximum Gieseller fluidity (log MF) and total inert ratio (TI), which are typical physical properties of blended coal properties, including inert high dispersion charcoal It has been found that the blending ratio and the composition of the blended coal have an influence on the coke quality. Specifically, when the blending ratio of inert high-dispersion coal, which is coal with high dispersibility of the inert component contained in the coal, is about 25 mass% to about 30 mass%, the coke quality tends to deteriorate as the blending ratio increases. From about 30 mass% to about 50 mass%, the coke quality tends to improve as the blending ratio increases. In order to obtain coke with higher quality than when inert high dispersion coal is not used, it is desirable to mix inert high dispersion coal in a proportion higher than 40 mass% with respect to the coal charged into the coke oven. A rate of 45 mass% to 55 mass% is most desirable.

尚、膨張収縮の大きな粒子と小さな粒子を所定割合で混在させた場合の熱応力解析を行った結果からも、膨張収縮の大きな粒子と小さな粒子の比率を75mass%と25mass%とした場合は、膨張収縮の大きな粒子と小さな粒子の比率を0mass%と100mass%および50mass%と50mass%とした場合よりも、乾留時に生成する熱応力が大きくなり、膨張収縮が大きい粒子3個、膨張収縮の小さい粒子1個が融着している部分で最大の熱応力が発生することを検証している。   In addition, also from the result of the thermal stress analysis in the case where the large and small particles are mixed in a predetermined ratio, when the ratio of the large and small particles is 75 mass% and 25 mass%, Compared to the case where the ratio of large and small particles of expansion and contraction is 0 mass% and 100 mass%, and 50 mass% and 50 mass%, the thermal stress generated during the dry distillation is larger, three particles with large expansion and contraction, and small expansion and contraction. It is verified that the maximum thermal stress is generated at the part where one particle is fused.

また、イナート高分散炭にはギーセラー流動性が低いものなど粘結性に乏しい石炭が多いため、粘結性に富む石炭を用いて、配合炭全体の粘結性、例えばギーセラー最高流動度を一定に管理することが必要になる。ギーセラー最高流動度の高い石炭には多くの種類の石炭が存在するが、コークス品質をより高めるためには、配合炭を構成する石炭のうちギーセラー最高流動度logMFが3.0以上である1銘柄以上の石炭について、ギーセラー最高流動度logMFが算術平均値で4.0未満とすることが好ましく、3.5以上、3.7未満とすることが最も望ましい。   Inert high-dispersion coal has many coals with poor caking properties, such as those with low Guesser fluidity, and therefore, using coal with high caking properties, the caking properties of the blended coal as a whole, for example, the maximum Gieseler fluidity is constant. It will be necessary to manage. There are many types of coal in the highest Gieseller fluidity, but in order to further improve coke quality, one of the coals that make up the blended coal has a Gieseller maximum fluidity log MF of 3.0 or higher. About the above coal, it is preferable that the Gieseler maximum fluidity log MF is less than 4.0 in terms of arithmetic average value, and most desirably 3.5 or more and less than 3.7.

石炭の銘柄(石炭A〜U)毎にイナート分散性の評価を行ない、イナート高分散炭の選別を実施した。   The inert dispersibility was evaluated for each coal brand (coal A to U), and inert high-dispersion coal was selected.

まず、石炭を6mm以下100mass%の粒度分布に粉砕後、0.1mm以下、0.1〜0.3mm、0.3〜0.5mm、0.5〜1.0mm、1.0〜3.0mm、3.0〜6.0mmの6つの粒度に区分し、各区分の石炭に対して組織分析を行ない、粒度区分毎にイナート成分の体積割合を測定した。   First, coal is pulverized to a particle size distribution of 6 mm or less and 100 mass%, then 0.1 mm or less, 0.1 to 0.3 mm, 0.3 to 0.5 mm, 0.5 to 1.0 mm, 1.0 to 3. It classify | categorized into 6 particle size of 0 mm and 3.0-6.0 mm, the structure | tissue analysis was performed with respect to the coal of each division, and the volume ratio of the inert component was measured for every particle size division.

次に、イナート成分を球形と仮定し、粒度区分毎にイナート成分1個の平均体積を求め、前記組織分析で得られた粒度区分毎のイナート成分体積量をイナート成分1個の平均体積で除すことにより、粒度区分毎のイナート成分の個数を求めた。そして、粒度区分毎でのイナート成分の個数の総和をイナート成分の個数密度(個/m3)とした。尚、単位体積当たりの個数に換算するに際し、石炭の充填密度を750kg/m3、石炭比重を1300kg/m3一定と仮定して計算した。 Next, assuming that the inert component is spherical, the average volume of one inert component is obtained for each particle size category, and the volume of the inert component for each particle size category obtained by the above-described structure analysis is divided by the average volume of one inert component. Thus, the number of inert components for each particle size category was determined. The sum of the number of inert components in each particle size category was defined as the number density of inert components (pieces / m 3 ). In addition, when converting into the number per unit volume, it was calculated on the assumption that the packing density of coal was 750 kg / m 3 and the specific gravity of coal was constant 1300 kg / m 3 .

石炭銘柄毎のイナート分散性の評価結果を表1に示す。表1には、イナート成分の個数密度と共に、各石炭銘柄毎の平均最大反射率(Ro)、ギーセラー最高流動度(logMF)、全イナート割合(TI)も示す。尚、Ro及びTIの測定はJIS M8816、logMFの測定はJIS M8801に準拠して行った。   Table 1 shows the evaluation results of inert dispersibility for each coal brand. Table 1 also shows the number density of inert components, the average maximum reflectance (Ro) for each coal brand, the Gieseler maximum fluidity (logMF), and the total inert rate (TI). Note that Ro and TI were measured according to JIS M8816, and log MF was measured according to JIS M8801.

Figure 0005668287
Figure 0005668287

表1によれば、イナート成分の分散性は石炭銘柄により異なり、RoあるいはTIが大きい石炭ほどイナート成分の個数密度が大きい傾向が得られた。   According to Table 1, the dispersibility of the inert component differs depending on the coal brand, and the tendency is that the number density of the inert component tends to increase as the Ro or TI increases.

特に、石炭M、O、Q、RおよびSは他の石炭と比べるとイナート成分の個数密度が大きく、イナート高分散炭の代表銘柄であることが分かった。   In particular, coals M, O, Q, R, and S have a larger number density of inert components than other coals, and are found to be representative brands of inert highly dispersed coal.

イナート高分散炭の代表銘柄と判明した石炭のうち、個数密度のほぼ等しい石炭OとMの配合条件がコークス品質に及ぼす影響を評価するため、配合率を変化させて石炭OあるいはMを配合した配合炭を乾留し、得られたコークスの性状試験を行った。尚、配合炭の調整は、Roが1.1、logMFが2.3の一定値となるように行った。また、石炭の充填条件は、水分6mass%、装入嵩密度775kg/m3の一定とした。 Of the coals that were identified as representatives of inert high-dispersion coals, coal O or M was blended at varying blending ratios in order to evaluate the effect of blending conditions of coals O and M of approximately equal number density on coke quality. The coal blend was dry-distilled, and the properties of the obtained coke were tested. The blended coal was adjusted so that Ro was a constant value of 1.1 and logMF was 2.3. Moreover, the filling conditions of coal were set to a constant of 6 mass% moisture and a charged bulk density of 775 kg / m 3 .

乾留試験には実炉をシミュレート可能な小型電気炉を使用し、得られたコークスの性状評価にはJIS K2151に定められているドラム150回転15mm指数のドラム強度を用いた。   A small electric furnace capable of simulating an actual furnace was used for the dry distillation test, and the drum strength of the drum 150 rotation 15 mm index defined in JIS K2151 was used for property evaluation of the obtained coke.

図1に、製造したコークスについて、イナート高分散炭配合率とドラム強度との関係を示す。図1において、横軸は石炭Oの配合割合、縦軸はコークスのドラム150回転15mm指数である。図1によれば、イナート高分散炭の配合割合はコークス強度に影響を及ぼすことが確認できる。具体的には、石炭Oの配合率の低い0、10mass%ではほとんど影響が認められないものの、25mass%から30mass%程度の配合率ではドラム強度は低下し、さらに配合率を40、50mass%まで増加させると、それまでとは反対に強度が向上する傾向を示している。尚、石炭Mでも石炭Oと同様の結果が得られた。   FIG. 1 shows the relationship between the inert high dispersion charcoal content and the drum strength for the produced coke. In FIG. 1, the horizontal axis represents the blending ratio of coal O, and the vertical axis represents the coke drum 150 rotation 15 mm index. According to FIG. 1, it can be confirmed that the blending ratio of the inert highly dispersed coal affects the coke strength. Specifically, although 0% and 10 mass% where the blending ratio of coal O is low, almost no effect is recognized, the blending ratio of 25 mass% to 30 mass% decreases the drum strength, and further increases the blending ratio to 40, 50 mass%. When increasing, the strength tends to improve contrary to the previous one. In addition, the same result as coal O was obtained also in coal M.

次に、横軸を配合炭を構成する石炭のうちギーセラー最高流動度logMFが3.0以上の石炭でのギーセラー最高流動度の算術平均値として、縦軸に、イナート高分散炭0mass%配合コークスのドラム150回転15mm指数(ベース)に対する、イナート高分散炭50mass%配合コークスのドラム150回転15mm指数の増加量(ΔDI150 15)をプロットした結果を図2に示す。 Next, the horizontal axis represents the arithmetic average value of the Gieseler maximum fluidity in coal with a Gieseler maximum fluidity log MF of 3.0 or more among the coals constituting the blended coal. FIG. 2 shows the result of plotting the increase amount (ΔDI 150 15 ) of the drum 150 rotation 15 mm index of the coke containing 50 mass% of the inert highly dispersed coal against the drum 150 rotation 15 mm index (base).

図2によれば、配合炭を構成する石炭のうちギーセラー最高流動度logMFが3.0以上の石炭でのギーセラー最高流動度の算術平均値が4.0以上では、イナート高分散炭0mass%配合コークスに対して強度が低下することが明らかである。   According to FIG. 2, 0% mass of inert high dispersion coal is included when the arithmetic average value of the highest Gieseller fluidity is 4.0 or higher for coal having a Gieseller maximum fluidity log MF of 3.0 or higher among the coals constituting the blended coal. It is clear that the strength decreases with respect to coke.

コークス炉(実炉)において本発明の効果の確認試験を実施した。   A confirmation test of the effect of the present invention was performed in a coke oven (actual furnace).

石炭の配合設計は、一般的なコークス強度因子であるRoが1.0、logMFが2.7となるよう行った。イナート成分の分散性が高い石炭として実施例1で用いた石炭Oを採用し、石炭Oの配合率を平均3mass%と50mass%の2水準行うことで、イナート高分散炭の配合率とコークス強度の関係を調査した。尚、石炭水分、粒度、燃焼温度、乾留時間などその他の操業因子がほぼ一定となるよう操業した。   Coal blending was designed such that Ro, which is a general coke strength factor, was 1.0 and logMF was 2.7. The coal O used in Example 1 is adopted as coal with high dispersibility of the inert component, and the blending ratio of the coal and the coke strength of the inert high-dispersion coal is determined by performing the blending ratio of the coal O in two levels of 3 mass% and 50 mass% on average. The relationship was investigated. The operation was performed so that other operating factors such as coal moisture, particle size, combustion temperature, and carbonization time were almost constant.

石炭Oの配合率が平均3mass%(比較例)と50mass%(本発明例)の場合について、製造されたコークスのドラム強度を測定した。ドラム強度は実施例1と同様のドラム150回転15mm指数であり、約一週間での平均値を求めた。結果を図3に示す。尚、図3の各棒グラフ上に重ねて示した直線は、ドラム強度のばらつきを示す。   The drum strength of the produced coke was measured when the blending ratio of coal O was an average of 3 mass% (comparative example) and 50 mass% (invention example). The drum strength was a drum 150 rotation 15 mm index similar to that in Example 1, and an average value for about one week was obtained. The results are shown in FIG. In addition, the straight line shown on each bar graph of FIG. 3 shows the dispersion | variation in drum intensity | strength.

図3によれば、イナート高分散炭の配合率を40mass%超えとする本発明方法を用いることで、コークス強度が向上することを確認できた。   According to FIG. 3, it was confirmed that the coke strength is improved by using the method of the present invention in which the blending ratio of the inert highly dispersed coal exceeds 40 mass%.

Claims (1)

コークス製造用原料である石炭を配合する際に、6mm以下100mass%の粒度分布に粉砕された状態にある石炭を充填密度が750kg/m 3 に充填した場合のイナート成分の個数密度が2.0×10 10 個/m 3 以上となる石炭と定義されるイナート高分散炭を用いる冶金用コークスの製造方法であって、
前記イナート高分散炭の配合率を40mass%超え55mass%以下し、
配合炭を構成する石炭のうちギーセラー最高流動度が3.0以上の石炭について、ギーセラー最高流動度の算術平均値が4.0未満となるように配合することを特徴とする冶金用コークスの製造方法。
When blending coal, which is a raw material for producing coke, the number density of the inert component when the packing density is 750 kg / m 3 when the coal is pulverized to a particle size distribution of 6 mm or less and 100 mass% is 2.0. a × 10 10 atoms / m 3 or more and becomes coal being defined inert high manufacturing method of dispersing coal metallurgical coke Ru with,
The blending ratio of the inert high dispersion coal and less 40 mass% greater than 55 mass%,
Manufacture of metallurgical coke characterized by blending so that the arithmetic average value of Gieseller maximum fluidity is less than 4.0 for coal with a maximum Gieseller fluidity of 3.0 or more among the coal composing the blended coal Method.
JP2009294131A 2009-12-25 2009-12-25 Method for producing metallurgical coke Active JP5668287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294131A JP5668287B2 (en) 2009-12-25 2009-12-25 Method for producing metallurgical coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294131A JP5668287B2 (en) 2009-12-25 2009-12-25 Method for producing metallurgical coke

Publications (2)

Publication Number Publication Date
JP2011132396A JP2011132396A (en) 2011-07-07
JP5668287B2 true JP5668287B2 (en) 2015-02-12

Family

ID=44345493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294131A Active JP5668287B2 (en) 2009-12-25 2009-12-25 Method for producing metallurgical coke

Country Status (1)

Country Link
JP (1) JP5668287B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073953B (en) * 2013-02-21 2018-05-25 杰富意钢铁株式会社 The manufacturing method of metallurgical coke

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100543816B1 (en) * 1998-07-29 2006-01-23 제이에프이 스틸 가부시키가이샤 Method for producing metallurgical coke
JP4058019B2 (en) * 2003-04-25 2008-03-05 新日本製鐵株式会社 Manufacturing method of high strength coke

Also Published As

Publication number Publication date
JP2011132396A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP5045039B2 (en) Manufacturing method of high strength coke
JP4551494B2 (en) Method for producing blast furnace coke
JP5052964B2 (en) Method for producing blast furnace coke
JP5668287B2 (en) Method for producing metallurgical coke
JP2004083849A (en) Method for producing high strength coke
JP2008133383A (en) Method for producing high strength coke
JP6694161B2 (en) Method of manufacturing metallurgical coke
JP5304049B2 (en) Method for producing metallurgical coke
JP5686052B2 (en) Coke production method
JP6145503B2 (en) Method for producing metallurgical coke
JP2015174934A (en) Method of producing coke for plast furnace
JP4890200B2 (en) Manufacturing method of high strength coke
JP4551493B2 (en) Manufacturing method of high strength coke
JP5011833B2 (en) Coke manufacturing method
JP6107374B2 (en) Coke production method
JP5163247B2 (en) Coke production method
JP5768726B2 (en) Coke production method
JP4438532B2 (en) Coke and method for producing coke
JP6979267B2 (en) How to make coke
WO2016024513A1 (en) Metallurgical coke and method of manufacturing same
JP2001323281A (en) Method for producing coke
KR101910405B1 (en) Ferrocoke manufacturing method
JP2010144096A (en) Method for producing ferrocoke
CN114901782A (en) Method for producing coal blend and method for producing coke
JP2010043197A (en) Method for preparing high strength coke

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5668287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250